Autonomic SLA-driven Provisioning for Cloud
Applications

Nicolas Bonvin, Thanasis G. Papaioannou and Karl Aberer
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
firstname.lastname @epfl.ch

Abstract—Significant achievements have been made for auto-
mated allocation of cloud resources. However, the performance
of applications may be poor in peak load periods, unless their
cloud resources are dynamically adjusted. Moreover, although
cloud resources dedicated to different applications are virtually
isolated, performance fluctuations do occur because of resource
sharing, and software or hardware failures (e.g. unstable virtual
machines, power outages, etc.). In this paper, we propose a
decentralized economic approach for dynamically adapting the
cloud resources of various applications, so as to statistically meet
their SLA performance and availability goals in the presence
of varying loads or failures. According to our approach, the
dynamic economic fitness of a Web service determines whether
it is replicated or migrated to another server, or deleted. The
economic fitness of a Web service depends on its individual
performance constraints, its load, and the utilization of the
resources where it resides. Cascading performance objectives
are dynamically calculated for individual tasks in the appli-
cation workflow according to the user requirements. By fully
implementing our framework, we experimentally proved that our
adaptive approach statistically meets the performance objectives
under peak load periods or failures, as opposed to static resource
settings.

Index Terms—cost-efficiency, replication, migration, net bene-
fit, performance elasticity, web services

I. INTRODUCTION

With the emergence of the cloud computing paradigm,
avoiding high capital investment for infrastructure becomes
viable. Lower operational expenses are expected for renting
cloud resources on demand by the application providers. Al-
though achievements in automated cloud resource provisioning
were enough for the first wave of “best effort” application
deployments, adaptive resource allocation for satisfying the
performance and availability objectives of mission-critical ap-
plication remains an open issue. With static resource allocation
(based on resource planning and over-provisioning), a cluster
system would be likely to leave 50% of the hardware resources
(i.e. CPU, memory, disk) idle, thus baring unnecessary opera-
tional expenses without any profit (i.e. negative value flows).
Moreover, as described in [1], the performance of multiple
identical virtual machines may greatly vary, and thus might
drastically reduce the performance of a distributed application.
On the other hand, as clouds scale up, software and hardware
failures of any type (e.g. software stales, virtual machines go
“wonky” (i.e unstable), hardware or rack or even datacenter
failures, etc.) are unavoidable and often spatially correlated

[2]. Resource redundancy should be employed to increase
service reliability and availability, yet in a cost-effective way.
Another concern is that, as the size of the cloud increases, its
administrative overhead becomes unmanageable.

In this paper, we focus on cost-effective autonomic resource
allocation, so as to adaptively satisfy service level agreements
(SLAs) for performance and availability statistical guarantees
against load variations and software / hardware failures. We
propose a middleware (“Scattered Autonomic Resources”,
referred to as Scarce) that performs supple sharing to avoid
stranded and underutilized computational resources and dy-
namically adapts to changing conditions, such as failures, load
variations or “wonky” server (or virtual machines). As our
framework works indifferently on top of virtualized and/or
physical servers, henceforth, we use the terms server and
virtual machine interchangeably, unless stated otherwise. Our
middleware simplifies the development of online applications
composed by multiple independent components (e.g. web
services) following the Service Oriented Architecture (SOA)
principles. We consider a virtual economy, where components
are treated as individually rational entities that rent compu-
tational resources from servers, and migrate, replicate or exit
according to their economic fitness. This fitness expresses the
difference between the utility offered by a specific application
component and the cost for retaining it in the cloud. The server
rent price is an increasing function of the utilization of server
resources. Moreover, components of a certain application
are dynamically replicated to geographically-diverse servers
according to the availability requirements of the application.
A preliminary version of our work without offering any
performance guarantees was presented in [3].

Our approach combines the following unique characteris-
tics :

o Adaptive adjustment of cloud resource allocation in order
to statistically satisfy response time or availability SLA
requirements.

o Cost-effective resource allocation and component place-
ment for minimizing the operational costs of the cloud
application.

o Detection and removal or replacement of stale cloud
resources.

o Component replication and migration for accommodating
load variations and for supple load balancing.

o Decentralized self-management of the cloud resources for
the application.

o Geographically-diverse placement of clone component
instances, as shown in [3].

Having implemented a full prototype of our approach,
we experimentally prove that it effectively accommodates
load spikes, it satisfies compliance to the SLA response-time
requirements, it cost-effectively utilizes the cloud resources,
and it provides a dynamic geographical replica placement
without thrashing. We finally reveal the trade-off between
cost-effectiveness and meeting strict SLA requirements; the
latter may necessitate a more conservative (over-provisioning)
resource allocation approach.

The remainder of this paper is organized as follows: in
Section II, we present a motivating example application. In
Section III, we describe our economic approach for auto-
nomic component replica management. Section IV describes
how SLAs are propagated. In Section V, we describe how
the components dynamically adapt their resources to honor
their SLA. Subsection V-A describes how “wonky”and cloud
resources are detected and removed. In Section VI, we present
our experimental results. In Section VII, we overview the
related work and, finally in Section VIII, we conclude our
work.

II. MOTIVATION

Elastic platforms are becoming more and more popular
and start to be a viable alternative to host distributed ap-
plications and web applications in particular. In a typical
cloud infrastructure, a user can rent virtual machines (VM)
and allocate dedicated resources (such as CPU cores, RAM,
disk space, etc.) to them in order to closely match the
application needs. Moreover, through the cloud infrastructure
application programming interface (API), the user is able to
programmatically increase or decrease the resources allocated
to a virtual machine, and can also start new VMs or stop
unused ones. The virtualization technologies that have greatly
contributed to the success of cloud computing also come
with some drawbacks. In effect, a user does not have full
control over the underlying infrastructure. For example, in
today’s public cloud infrastructures, such as EC2 or Rackspace
Cloud, a user does not have the possibility to choose on
which physical server a VM will be started. Moreover, a VM
may migrate during its lifetime from one physical server to
another. Also, a user has no control over the virtual machines
that are collocated on the same physical server. This may
have a large performance impact, if for example, a collocated
VM performs an I/O intensive work. Figure 1 shows an
architectural view of a distributed application hosted by a
cloud computing infrastructure. The application consists of
5 replicated components (Comp I to Comp 5) and spans 4
VMs and 3 physical servers. In such elastic infrastructures,
each physical server hosts several VMs. As the application
owner has usually no control on where its VMs are hosted,
the application responsiveness may suffer from an overloaded

VM of another customer hosted at the same physical server
as the one employed by the application VM.

A well-engineered cloud application should be able to detect
slow or “wonky” VMs and react accordingly. A desirable
reaction would be to first gradually redirect the traffic for the
components of the “wonky” VM to their replica components
elsewhere. Second, if the overall performance of the applica-
tion has suffered considerably, a new VM should be started
in order to take over the redirected traffic. At some point, the
“wonky” VM will not receive any traffic and can safely be
removed, thus saving rental costs.

.
»

* v,
> %

Other customer VM]

',
%

Other customer VM
Other customer VM
Other customer VM

Other customer VM

[Other customer VM] [

[Other customer VM] [Other customer VM]

’, Physical server i v, Physical server j g,
e Y o ., y: J R e,

Physical server k 5
» 04

Fig. 1. Overview of a distributed application composed by 5 components
(i.e. Comp 1 to Comp 5) deployed on a cloud computing infrastructure.

III. SCARCE: THE QUEST OF AUTONOMIC APPLICATIONS
A. The approach

We consider applications formed by many independent
and stateless components that interact among each other to
provide a service to the end user, as in the Service Oriented
Architecture (SOA) paradigm. A component is self-managing,
self-healing and is hosted by a server (or a virtual machine),
which in turn is allowed to host many different components.
A component can stop, migrate or replicate to a new server
according to its load or availability. The approach to maintain
high availability is explained in Section III-E.

B. Server agent

The server agent is a special component that resides at each
server and is responsible for managing the resources of the
server according to our economic-based approach, as shown
in Figure 2. Specifically, this agent is responsible for starting
and stopping the components of the various applications at the
local server, as well as checking the “health” of the services
(e.g. by verifying if the service process is still running, or
by firing a test request and checking that the corresponding
reply is correct). The agent knows the properties of every
service that composes the application, such as the path of the
service executable, and its minimum and maximum replication
factor. This knowledge is acquired when the agent starts, by
contacting another agent (referred to as “bootstrap agent”).
Any running agent participating in the application cluster can
act as a bootstrap agent.

During the startup phase, the agent also retrieves the current
routing table from the bootstrap agent. A routing table consists

Agent

Agent | e

f;Gossipingj‘a[ﬂJ Routing table
' -_Manager Serveri
a) b)

Fig. 2. a) Agents communicate using a gossiping protocol b) A server hosts
many services and an agent.

of a mapping between services and servers (cf. Section III-C).
The number of replicas of a service and their placement are
handled by a distributed optimization algorithm autonomously
executed by the agents.

In an untrustworthy environment, where a server agent may
be malicious, the functionality of decision making could be
implemented directly in the component itself. While being
robust to strategic behaviors of server agents, this approach
tends to waste resources, as every component would have to
perform the tasks of a server agent (i.e. maintaining the routing
table, gossiping, etc.).

We assume that a server belongs to a rack, a room, a
datacenter, a city, a country and a continent. Note that finer
or coarser geographical granularity could also be considered,
especially in a cloud environment where the rack and room in-
formation may not be available. A label of the form “continent-
country-city-datacenter-room-rack-server” is attached to each
server in order to precisely identify its geographical location.
For example, a possible label for a server located in a data
center in London could be “EU-UK-LON-D1-C03-R11-S07”.

C. Routing table

Instead of using a centralized repository for locating ser-
vices, such as a UDDI registry (uddi.xml.org), each server
keeps locally mappings (i.e. a routing table) between com-
ponents and servers. This routing table (e.g. Table I) is
maintained by a gossiping algorithm (see Figure 2), where
each agent contacts a random subset [log(N) where N is
the total number of servers] of remote agents and exchanges
information about the services running at their respective
server.

TABLE 1

component __|
component 1
component 2
component 3

servers
server A, server B
server B, server C
server A

D. Economic model

Service replication should be highly adaptive to the pro-
cessing load and to failures of any kind in order to maintain
high service availability. To this end, each component is
treated by the server agent as an individual optimizer that acts
autonomously so as to ascertain the pre-specified by the SLA
availability guarantees and to balance its economic fitness.
Time is assumed to be split into epochs. At every epoch,

the server agent verifies from the local routing table that the
minimum number of replicas for every component is satisfied;
thus, no global or remote knowledge is required. If the required
availability level is not satisfied and if the service is not already
running locally, the agent starts the service. When the service
has started, the server agent informs all others by using a
hierarchical broadcast to update their respective routing tables.

At each epoch, a service pays a virtual rent to the servers
where it is running. The virtual rent corresponds to the usage
of the server resources, such as CPU, memory, network,
disk (I/O, space). A service may be replicated or migrated
to another server, or stopped by the server agent. These
decisions are made based on the service demand, the renting
cost and the maintenance of high availability upon failures.
There is no global coordination and each server agent behaves
independently for each hosted service. Only one replica of
a service is allowed to be stopped at the same epoch by
employing Paxos [4] distributed consensus algorithm. The
virtual rent of a server is updated at the beginning of a new
epoch by the server agent. The price of the other servers
participating in the application cluster are updated by the same
gossiping algorithm that is used to maintain the routing table.

The actions (i.e. replication, migration, stop) performed by
the server agent on behalf of a component c hosted at a server
s are directly related to the economic fitness or balance of
the component ¢, which is given by:

balance. = utility. — rents , (D)

The utility of a component corresponds to the value that it
creates for the various applications that employ it and it can
be safely assumed to be an increasing function of the server
resources utilized by the component. We denote as x. the
usage percentage of the server resources by the component
c and as x4 the resource utilization percentage of the server
s. x. can be calculated as follows:
Wt CPUe + Wiy - MEMe + Wy, - Nete + Wy - diske
T We + Wiy, + Wy, + Wy ’
2
where cpu., mem,,net., disk. are the component usage per-
centages for CPU, memory, network and disk respectively.
We, Wi, Wy, Wq are weights to adapt to different kinds of
application components (CPU-intensive, 1/O-intensive, etc.)
and they can be determined based on a process performance
profiler. x, reflects the contention level of the server for a
given application component, and is calculated similarly to
z. by employing the resource utilization percentages for the
total server instead of the single component ones and the
corresponding weights w,, Wy, , W, , wq of the component. For
example, zs of a server s may be high for a certain component
and low for another one to enable better multiplexing of server
resources. To this end, the utility of a component c residing
at server s is assumed to be given by the following convex
formula:

*

- 3)

where C' > 100 is a constant determining the starting point of
the fast-increasing part of the curve and k is a normalization
factor for maintaining the balance of the component close
to 0 for moderate resource utilization. The selection of the
parameters k, C' determines the reactivity of the balance with
respect to the resource usage. z: is a certain component
utilization threshold that determines when the component
residing at s is economically fir-enough to replicate, i.e.:

o = srvMinU sage ’ @
|componentss|

where |componentsg| is the number of components running
at the server and srvMinUsage is a percentage threshold
denoting a soft limit for server utilization, e.g. 25%. The utility
function is chosen so that it grows exponentially to the usage
and it is O for z, = z%. The virtual rent paid by the component
c to the server s is given by:

rents = confs - x5, ®)]

where conf, is a subjective estimation of the server quality
and reliability based on technical factors (hardware quality,
datacenter connectivity, redundancy, etc.) as well as non-
technicals ones (e.g. political and economical stability of the
country hosting the server, etc.).

Based on the balance., at the beginning of a new epoch, a
component may:

o migrate or stop: if it has negative balance for the last
f epochs. First, the component calculates its availability
without itself. If the availability is satisfactory, the com-
ponent stops. Otherwise, it tries to find a less expensive
(i.e. busy) server that is closer to the client locations
(according to maximization formula (7)). To avoid oscil-
lations of a replica among servers, the migration is only
allowed if the following migration conditions apply:

— The minimum availability is still satisfied using the
new server,

— the absolute price difference between the current and
the new server is greater than a threshold,

— the z, of the current server s is above the soft limit
sroMinU sage.

o replicate: if it has positive balance for the last f epochs,
it may replicate. For replication, a component has also
to verify that it can afford the replication by having a
positive balance b’ for consecutive f epochs:

b = balance, — (1 + ¢) - renty

where rent is the current virtual rent of the candidate
server s’ for replication (randomly selected among the
top-k ones ranked according to the formula (7)), while
the factor 1 4+ ¢ accounts for a ¢-100% increase at
this rent price in the next epoch due to the potentially
increased usage of the candidate server (an upper bound
of ¢ = 0.2 can typically be assumed). This action aims
to distribute to load of the current server towards another
one located closer to the clients. Thus, it tends to decrease

the processing and network latency of the requests for the

component.
E. Maintaining high-availability

Server or component failures or network partitioning may

unexpectedly occur at any time and they are often spatially-
correlated. As estimating the probability of each server to
fail necessitates access to a large set of historical data and
private information of the server, we adopt the approach of
[5] for maintaining high availability by geographically-diverse
placement of component replicas. The availability of a service
1 is defined as the sum of diversities between each distinct
pair of servers, i.e.:

[Si| 1Sil
avail; = Z Z conf; - conf; - diversity(s;,s;) (6)
i=0 j=i+1
where S; = (s1,82,...,8n) is the set of servers hosting

replicas of the service ¢ and conf;, conf; € [0, 1] are the
confidence levels of servers 7, j. The diversity function returns
a number calculated based on the geographical distance among
each server pair. This distance can be represented as a n-
bit number, having each bit corresponding to the n location
parts of a server, e.g. continent, country, city, data center, room
rack, server etc. The most significant bit (leftmost) represents
the wider enclosing geographical location (e.g. the continent),
while the least significant bit (rightmost) represents the server.
When two servers are not in the same location part, their
corresponding diversity bit is set to 1, otherwise to 0. The
diversity values of the server pairs are summed up, because
having more replicas in distinct servers always results in
increased availability regardless of their location. A component
knows the locations of its replicas by the local routing table
at the server where it is hosted.

The availability of a component should always be kept
above a minimum level th, which is derived by the SLA. When
the availability of a component falls below th, a new service
instance should be started (i.e. replicated) at a new server.
The best candidate server is selected so as to maximize the
net benefit between the diversity of the resulting set of replica
locations for the service and the virtual rent of the new server,

ie.
[Sil

Zgj -conf; - diversity(si, sj) —rent j, @)

k=1
where rent ; is the virtual rent price of candidate server j.
g; is a weight related to the proximity (i.e. inverse average
diversity) of the server location to the geographical distribution
of the client requests for the service (cf. [5]). Note that client
requests may come from other components. As a result, the
components will tend to replicate closer to the components that
heavily rely on the services of the former. The components
rank servers according to their net benefit (7) and randomly
choose the target for replication among the top-k ones for
avoiding server congestion. Note that the same approach
according to (7) is used for choosing the candidate server for
component migration.

IV. MEETING SLA PERFORMANCE GUARANTEES

Autonomic migration or replication of the application com-
ponents in order to utilize in a fair manner the available
resources may not always be good enough to guarantee
acceptable end-to-end service quality. If the latency of client
requests is not satisfactory and the allocated resources to the
application are not underutilized, one solution is to give more
resources to the application, e.g. by increasing the number of
cores of a virtual machine (VM), or by starting a new VM.

To this end, our framework is able to manage the physical
resources dedicated to the application based on a SLA defined
by the application owner. If the SLA is not met, then the
framework asks for more resources via the cloud API. Or, if
the application easily honors the SLA, it can remove some
extra resources.

A. Cascading performance constraints

The application owner requires the compliance of the per-
formance to certain constraints pre-specified in a SLA, e.g. an
upper bound on the response time for a service request. In case
of complex applications that consist of many components that
have dependencies on each other (as the one depicted in Fig-
ure 3), it is not always possible to comply to the SLA-driven
performance constraints, unless the latter are individually set
to each component constituting the application. However, the
performance constraints can be directly derived by the SLA
only for the entry component (i.e. the one that receives the
user requests) of the application; derivation of the performance
constraints for the other components by the SLA would
necessitate a priori knowledge of the application internals, e.g.
the exact execution workflow, the hardware resources allocated
to each component, the component computational needs, etc.
Moreover, the performance constraints for each component
should change over time, in order for the SLA to be met,
due to i) the dynamic demand for the application, ii) the fact
that its components are multiplexed with the components of
other applications and iii) the dynamic behaviour (e.g. software
stales, hardware failures, etc.) of the cloud infrastructure.

Comp C (srv3
L=min(median(367,371.5,382.5), median(379))=371.5
L=382.5ms 1=371.5ms 1=367ms L=379ms
Comp B (srv4) Comp B (srv1 Comp B (srv2) Comp A (srv2
L=410ms L=410ms L=400ms L=390ms
sTime=25 ms sTime=35ms sTime=30ms sTime=10ms

Fig. 3. Propagation of SLA from parents to children. The child Comp C
receives 4 SLA updates from its parents : 3 from replicas of Comp B and 1
from Comp A. The new SLA of the child component is computed following
equation (10).

More formally, assuming that the SLA requirement is an
upper bound in the response time, the response time L; of a
component j can be calculated as follows:

Lj = sTimej + mazr;cpj)(Li) , (8)

where sT'ime; is the service time of the j component, which
is the time required by a component j to process the request

locally, not accounting for the response time of its dependen-
cies D(j). Therefore, the response time of a component is the
sum of its service time and the response time of the slowest
of the components that it depends on.

In order to meet the user requirements, each component j
periodically propagates the individual suggested performance
constraints (e.g. an upper bound L; in the response time) to
its dependencies ¢ € D(j) according to the following formula:

E:E;—K'STimej — X-propj;,¥i € D(j), (9)

where prop;; is the network delay between components j
and i, while s, \ are factors (typically 1.1) to take into
account the volatility of the service time and the network delay
respectively.

When a component receives individual performance con-
straints from dependent components, it groups together the
constraints that come from replicas of a certain component.
Then, in order to compute its individual SLA constraint I:i, the
component ¢ chooses the minimum value among the median
SLA values of each group, i.e. :

L; = min{median(Ao), . .., median(A,)}, (10)

where A, is the group of the suggested performance con-
straints sent by the replicas of the dependent component g,
while n is the number of unique dependent components (not
counting the replicas). Choosing the median() performance
constraint instead of the mininum() or the average() one
allows the system to be more robust against unstable hosts.
Each component 7 should satisfy that its response time meets
its individual constraint within a certain confidence bound d,
ie.

L;<Li—d.

The selection of the global confidence bound implies a
trade-off between the worst-case SLA-compliance and cost-
efficiency. The proper value of d per application can be
dynamically learnt by employing a tattonment process for
meeting the performance constraint of the application.

V. AUTOMATIC PROVISIONING OF CLOUD RESOURCES

As explained in Section III, the framework takes care of
balancing the load among the available cloud resources in a
fair way, by the use of autonomic migration, replication and
suicide of components. However, these mechanisms might not
be sufficient to ensure that the end-to-end latency is acceptable
for an application owner. Essentially, each component of the
distributed application needs to satisfy an individual SLA.
When the application load is globally balanced, if a component
is not able to process the requests fast enough, it usually
means that the dedicated cloud resources are too scarce to
host the application and to provide acceptable performance.
A component that does not comply to its SLA is allowed to
dynamically ask for more resources. If the virtual machine
(VM) hosting the component is able to scale up (vertical
scaling), the framework will assign more resources to it
(e.g. increasing the number of CPU cores, adding memory,

etc.) by interacting directly with the cloud infrastructure API.
If the VM is already at the maximum of its capacity, the
framework will start a new VM (horizontal scaling), with the
minimum amount of dedicated resources. After a short period
of time, some components will migrate or replicate to the new
available VM. Essentially, after this load-balancing process,
the component is probably able to meet its SLA. On the other
hand, when a server agent realizes that the components, which
it is responsible for, have enough resources to serve requests
z times faster than required by their respective SLAs, the
framework will decrease the dedicated resources of the VM.
Thus, the adaptive provisioning of cloud resources is mainly
driven by the capacity of the components to satisfy their SLA.

A. Adaptivity to slow servers

Comp A: replicas of Comp B
Host 95p latency coefficient

{CompA (srv1) Comp B (srvs)} srv2 23.0 0.4
srv3 292 0.32
srv4 31.1 0.28

Fig. 4. Comp A keeps statistics about the response time of requests sent to
its children locally. Based on the 95th percentile of the response time of the
children, a parent computes the probability of choosing a replica of Comp B.

Each component keeps locally statistics about the latencies
of its children. Every time a component sends a request to one
of its dependencies, it stores the mean and the 95th percentile
of its response time. With these statistics, the component
computes a routing coefficient for every replica of a child
component (i.e. a component that it depends on) in order to
dynamically choose an appropriate replica. This coefficient
is the probability that the child replica will be chosen for
processing of subsequent requests.

Figure 4 illustrates an example where there are three replicas
of the child component Comp B. At the beginning, each child
component has a coefficient of p = 1/R = 1/3, where R is the
number of replicas, i.e. 3 in this case. Periodically, the parent
component (i.e. the dependent one) updates the coefficients
based on the latency of the children, as shown in pseudo-code
in the Algorithm 1. According to the algorithm, a small value
0 is added to the coefficient of the fastest component, which is
subtracted from the coefficient of a randomly chosen one that
is slower by more than 6. § expresses the robustness/adaptivity
trade-off of the reaction to the current component performance
and it is referred to as reactivity factor. If the replica of Comp
B on server srv2 is faster than the two other replicas, then,
after some time, it will have a greater coefficient, e.g. 0.4,
while the coefficients of components Comp B on servers srv3,
srv4 will become 0.32, 0.28 respectively. So, on the average,
Comp B on srv2 will receive 40% of the requests from the
parent, Comp B on srv3 32% and Comp B on srv4 will only
get 28%, so that the latency of the overall requests is always
minimized.

If one of the VMs (or the underlying physical server) is
much slower than the others, then the components hosted at

this slow VM will gradually receive less and less requests, and
thus the framework will scale the VM down. At some point,
the VM may also be completely stopped.

When a new replica of a component shows up at a server
(after a migration or a replication), only a small coefficient
do (e.g. 0o = 0.1) is assigned to the replica, in order not to
overload it until it is properly initialized. The coefficient of
the other replicas of the same component is then decreased by
do/(R—1). When a replica of a component disappears (after a
suicide or a migration), its coefficient is equally shared among
the rest of the replicas of the component.

Algorithm 1 Routine for updating the forwarding coefficients
of child components by a small value ¢ (e.g. § = 0.05)

Require: set of child components S,
array P of component coefficients,
array L of component 95th perc. of response times
S .
Ensure: Z‘Fll Pljl=1

fastest < argmin L[j]

slowComps j(— {}
for all j € S \{fastest} do
if L[j] — L[fastest] > 6 then
slowComps + slowComps + {j}
end if
end for
slower < Random(slowComps)
Pl[slower] + P[slower] — ¢
P[fastest] + P[fastest] +

VI. EVALUATION

The results regarding the load-balancing, the scalability
and the fault-tolerance of the approach have been thoroughly
discussed in our previous work [3]. Here, we investigate
the effectiveness of our approach for meeting statistical SLA
performance guarantees under varying request load and soft-
ware/hardware failures.

A. Experimental Setup

Component 2 Component 4]
Component 1
SLA: 500 ms
Component 3 Component 5]

Architecture of a test application composed by 5 components.

Fig. 5.

In our evaluation, we consider an application composed by
5 different components, as depicted on Figure 5. The results
presented in this section refer to an application that is mostly
CPU-intensive, hence w, >> wy,,w,,wy for every com-
ponent. However, we have also conducted experiments with
different types of applications (I/O intensive, CPU intensive,
a mix of both, etc.) and with different component workflows
(fully parallel, fully sequential, a mix of parallel/sequential
with several numbers of tiers) with similar conclusions on the

effectiveness of our approach. At startup, all components are
started on a single 1-core server. The minimum number of
replicas per component for ensuring fault-tolerance is set to 2.

The underlying cloud infrastructure is composed by 8 8-
cores servers (Intel Core i7 920 @ 2.67 GHz, 8GB Ram, Linux
2.6.32-trunk-amd64). The components interact with the cloud
infrastructure through an API that allows asking for more
resources (adding cores to a server, starting a new server) or
less resources (remove cores from a server, stopping a server).
Although each server CPU has 8 cores, we only allow a server
to employ 2, 3 or 6 cores at maximum in our evaluation, in
order to force the earlier provisioning of a new server. The
servers reside on a 1Gbps switched Ethernet LAN.

We have set the SLA (by means of an upper bound in
the response time) of the first component of the application
(i.e. “Component 1” on Figure 5) to be 500 ms, while no
confidence bound (i.e. d = 0) was considered. The parameters
employed in the utility formula are C' = 110, £ = 10000,
while z* = 25%.

B. Results

a) Adaptation to varying load: In this experiment, we
investigate the reactivity of our framework to quickly increas-
ing or shrinking load of application requests. The initial load
is assumed to be 5 requests per second. At the 8-th minute of
the experiment, we start increasing the load every minute by
5 requests per second until the total traffic reaches 60 requests
per second. Then, we keep the request load constant for 15
minutes. Afterwards, we start decreasing the load every minute
by 5 requests per second until the initial load is reached. We
allow a maximum number of 3 cores to be employed per
Server.

We compare the performance (in terms of response time)
of our dynamic approach with that of a static one under the
same load conditions. In the static setup, the total amount of
cloud resources allocated to the application remains constant
and equal to 2 servers with 2 cores each. During the total
time of the experiment (60 minutes), our dynamic approach
has employed for the application components 4 cores on the
average from the cloud. For a fair comparison regarding the
performance, we also employed a total of 4 cores for the
application in the static setup.

As depicted in Figure 6, our framework reacts appropriately
to the increasing amount of requests by asking for more cloud
resources in order to satisfy the SLA. Once the additional
resources are no longer required for SLA compliance (i.e. the
95th percentile response time of every component in the server
is x times faster than required), then the framework releases
them for reducing the costs. Clearly, in the long run, the overall
cost for the static setup would be much higher, as the user
would constantly pay for 4 cores even in low load periods
(where 2 cores can satisfy the SLA). Our framework uses the
minimum required resources to serve the application within the
SLA requirements by fully leveraging the elasticity of today’s
cloud infrastructures.

Also, thanks to the adaptivity of our framework, the maxi-
mum request load for the application (60 requests per second)
can be sustained, while keeping the average response time
under 500 ms, as shown in Figure 7. The static approach
is also able to serve the maximum request load, but the
average response time is greater and significantly varies with
time. Also, our adaptive framework achieves much lower 95th
percentile of the response time than that of the static approach,
as depicted in Figure 8. The framework only reacts when
the 95th percentile of the response time reaches 500 ms.
Until minute 13, the static setup has more resources (i.e.
2 servers with 2 cores) compared to Scarce, and therefore
performs better. After minute 20, Scarce has allocated the
needed resources to the application to meet the SLA and
clearly outperforms the static setup.

However, the confidence bound d should be properly se-
lected, according to the application tolerance to the QoS
violations. There is a clear trade-off between worst-case SLA-
compliance and cost-efficiency in the selection of the confi-
dence bound. As shown in Figure 11, if the application is
assumed to be inelastic and the confidence bound is selected as
d = 60% - response_time, then our adaptive approach would
allow almost no SLA violations, as opposed to the static setup.

As soon as the number of requests per second sent to
the application increases, the service time as well as the
response time of each component are impacted. Recall that
each component periodically sends a suggested SLA constraint
update to its child components. As the suggested SLA update
(given by equation (9)) depends on the component service
time, the application load has a direct effect on the derived
SLA constraint of each component. This effect is depicted in
Figure 10, where the SLA constraints for the components are
getting stricter with the growing application load.

Resource usage

T T
cores
servers

resource
IS o
—

L/

0 5 10 15 20 25 30 35 40 45 50
Time (min.)

Fig. 6. Scarce : Resources used by the application over time for varying
request load.

b) Adaptation to slow servers: A recurring issue with
cloud infrastructures is that the user has no control over the
performance of the rented resources. As a physical server
is shared by several virtual machines (VM), a VM might
intensively use the I/O subsystem, and may therefore degrade
the performance for the other VMs collocated on the same
physical server. In addition, a physical server, which has an
unreliable hardware component or a non-optimized operating

Requests latency

T T T
Scarce: mean F—+—i
1200 Static: mean %2

1000

@
S
S]

o
=1
S

latency (ms)

—
-

X
X

kﬁ%\[rn Ehmng
T T2

0 5 10 15 20 25 30 35 40 45 50
Time (min.)

N IS
=1 S
S S}

L
+
-
»«:@
ol
vy
i
Mji
Y
T
7
1
7
T
T
1
Z

o

Fig. 7. Mean response times of the application (SLA : 500 ms) as perceived
by remote clients under the adaptive approach (“Scarce”) and the static setup.

95th perc. Response Time

T T
H Scarce
1200 Z Static

1000

@
S
S]

o
=1
=]

latency (ms)

IS
S
S}

)
=1
S

o

0 5 10 15 20 25 30 35 40 45 50
Time (min.)

Fig. 8. 95th percentile response times of the application (SLA : 500 ms) as
perceived by remote clients under Scarce and the static setup.

system setup, will also have poorer performance, and will
therefore negatively impact the application end-to-end latency.
Our framework is able to detect slower servers and to discard
them transparently to the application. In this case, the maxi-
mum number of cores allowed to be employed per server is
2.

Here, the request load is assumed to be 25 requests per
second to the entry component of the application. After 4
minutes, one of the server starts to be slower and every
component hosted at it serves requests with a delay of 200ms.
All component that are not hosted at the “wonky” server
detects this slowdown, adapts the coefficients of their depen-
dencies accordingly and the traffic is slowly redirected to faster
components. Two minutes later (at minute 6), a new server is
started, because some components are no more able to honor
their SLA due to the redirected traffic. At minute 11, the
wonky server is removed from the cloud by the framework
as it receives only a negligible amount of requests. As shown
in Figure 12, our approach quickly adapts to the situation and
renders the response time of the application again compliant to
the SLA. The dynamic resource allocation for the application
in this scenario is depicted in Figure 13.

c) Scalability and stability: In this experiment, the rate
of requests for the application increases every minute by 5
requests/second until reaching the load of 150 requests/second.
Each server is allowed to employ up to 6 cores. In Figure 14,

Throughput
70

. AR
i /
N)

10 I

requests/sec

S

0 5 10 15 20 25 30 35 40 45 50
Time (min.)

0

Fig. 9. Throughput of the application during the varying load experiments.

Components SLA over time
600

500

400

300

sla (ms)

200

componentl
component2
component3 -------
component4

cgmponng -

0 5 10 15 20 25 30 35 40 45 50
Time (min.)

100

0

Fig. 10. Computed SLA constraints of the components hosted at a server.

the 95th percentile of the response time quickly stabilizes close
to the SLA constraint after the request rate stops increasing and
becomes constant. Finally, as shown in Figure 16, the global
amount of physical resources employed follows the trend of
the request load (depicted in Figure 15).

C. Discussion

Simple approaches proposed by cloud providers such as
Amazon allow a customer to set rules to automatically add
or remove resources when a metric (e.g. CPU usage) goes
above or below a threshold H and L respectively. However,
even if the CPU usage higher than H, the performance
constraint per component may be met, or vice versa. The
employment of fine-grained metrics, such as 95th percentile of
response time per component (server metrics are not enough),
is required to use the minimum amount of resources for a given
SLA. Moreover, Scarce efficiently multiplexes components at
servers based on component migration and replication.

VII. RELATED WORK

There is significant related work in the area of economic
approaches for resource management in distributed computing.
In [6], an approach is proposed for the utilization of idle com-
putational resources in an heterogeneous cluster. Agents assign
computational tasks to servers, given the budget constrain for
each task, and compete for CPU time in sealed-bid second-
price auction held by the latter. In a similar setting, Popcorn
approach [7] employs a first-price sealed-bid auction model.

Percentage of SLA violations: 95th percentile response time (SLA: 500 ms)
160

T T
Scarce
Static

140

120

100

80

60

SLA violations (in %)

40

20

(I

0 5 10 15 20 25 30 35 40 45 50
Time (1 unit = 15 sec.)

Fig. 11. Percentage of SLA violations from Scarce and the static approach
when the 95th percentile response time should stay under 500 ms.

Response Time

T T
mean
1200 95th perc 7

1000

800

600

200 /\’J\”/

0 2 4 6 8 10 12 14 16
Time (min.)

latency (ms)

Fig. 12. Mean and 95th percentile response times of the application (SLA :
500 ms) as perceived by remote clients in case of a “wonky” server.

Cougaar distributed multi-agent system [8] has an adaptivity
engine which monitors load by employing periodic ‘“health-
check” messages. An elected agent operates as load balancer
and determines the appropriate node for each agent that
must be relocated based on runtime performance metrics, e.g.
message traffic and memory consumption. Also, a coordinator
component determines potential failure of agents and restarts
them. However, cost-effectiveness is not among the objectives
of Cougaar, and moreover our approach is more lightweight
in terms of communication overhead.

In [9], a virtual currency (called Egg) is used for expressing
a user’s willingness to pay as well as a provider’s bid for a
accepting the job, and finally is given to the winning provider
as compensation for job execution. The central Egg entity
informs all candidate providers about the new job and acquires
responses (opportunity cost estimations for accepting the job).
However, the approach in [9] is centralized and it does not
provide availability guarantees.

In [10], applications trade computing capacity in a free
market, which is centrally hosted, and are then automatically
activated in virtual machines on the traded nodes on-call of
traffic spikes. The applications are responsible for declaring
their required number of nodes at each round based on usage
statistics and allocate their statically guaranteed resources or
more based on their willingness to pay and the equilibrium
price; this is the highest price at which the demand satu-

Resource usage
12 T T
cores
servers

10

resource
=3

0 2 4 6 8 10 12 14 16
Time (min.)

Fig. 13. Resources used by the application over time in case of a “wonky”
Server.
Response Time
1200 951hmpeea:2 1
1000
@ 800
E
£ R
E 600 [" i
= - . 0% ToE
400 foi /V\/\ : i
200 /V \/ /\M v/AI'\/W\
0
0 20 40 60 80 100 120
Time (min.)
Fig. 14. Mean and 95th percentile response times of the application (SLA:

500ms) as perceived by remote clients in the scalability experiment.

rates the cluster capacity. However, [10] does not deal with
availability guarantees, as opposed to our approach. Also, our
approach accommodates traffic spikes in a prioritized way
per application without requiring the determination of the
equilibrium price.

Pautasso er al. propose in [11] an autonomic controller
for the JOpera distributed service composition engine over a
cluster. The autonomic controller starts and stops navigation
(i.e. scheduler) and dispatcher (i.e. execution and composition)
threads based on several load-balancing policies that depend
on the size of their respective processing queues. However,
proper thread placement in the cluster and communication
overhead among threads are not considered in [11].

Also, SLA provisioning for web services [12] or multi-
tier web applications [18], [19] has been studied. [18], [19]
adapt the behavior of the underlying resources based on
the capacity of an application to honor an SLA. However,
monitoring of SLA compliance in [12], [18], [19] may require
the involvement of third-parties or centralized services. A
decentralized approach for SLA provisioning in grids based
on service migration between containers is proposed in [13].
However, this approach does not dynamically vary the total
amount of allocated resources to the application according to
the load and the potential software/hardware failures in the
cloud, as opposed to our work.

A bio-networking approach was proposed in [14], where
services are provided by autonomous agents that implement

Throughput

120 /
100 /

80

requests/sec

60

40

20

0 20 40 60 80 100 120
Time (min.)

Fig. 15. Scarce : Throughput of the application during the scalability

experiment.

Resource usage

20 .
cores
18 | servers [

16

14 H
12

0 r

resource

0 20 40 60 80 100 120
Time (min.)

Fig. 16. Resources used by the application over time during the scalability
experiment.

basic biological behaviors of swarms of bees and ant colonies
such as replication, migration, or death. To survive in the
network environment, an agent obtains “energy”’ by providing
a service to the users. However, [14] does not consider the
problem of satisfying performance constraints.

Moreover, several implementation frameworks exist towards
reliable SOA-based applications: [15] is a mechanism for spec-
ifying fault tolerant web service compositions, [16] is a virtual
communication layer for transparent service replication, and
[17] is a framework for the active replication of services across
sites. These frameworks do not consider dynamic adaptation
to changing conditions, such as load spikes, or do not provide
guarantees for geographical diversity of replicas.

VIII. CONCLUSIONS

We proposed an economic, lightweight approach for dy-
namic accommodation of load spikes and failures for com-
posite web services deployed in clouds, so as to satisfy
performance and availability guarantees. We derive perfor-
mance constraints per component and we scale up existing
VMs or create new whenever they are not met. Application
components act as individual optimizers and autonomously
replicate, migrate across VMs or terminate based on their
economic fitness. Their resource inter-dependencies are im-
plicitly taken into account by means of server rent prices.
The requests are routed across components based on their

respective prior performance. Our approach also detects unsta-
ble cloud resources and reacts accordingly, so as to minimize
the end-to-end application response time. As a future work,
we intend to explore our economic paradigm for autonomic
resource management in the context of multiple competitive
or cooperative cloud providers.

ACKNOWLEDGMENT

This work was partially funded by the EU project HY-
DROSYS (224416, DG-INFSO).

REFERENCES

[1] J. Dejun, G. Pierre and C. H. Chi, “EC2 Performance Analysis for
Resource Provisioning of Service-Oriented Applications,” in Proc. of
NFPSLAM-SOC, Stockholm, Sweden, 2009.

[2] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large
disk drive population. In Proc. of 5th USENIX Conference on File and
Storage Technologies (FAST '07), San Jose, CA, USA, February 2007.

[3] N. Bonvin, T. G. Papaioannou, and K. Aberer, “An economic approach
for scalable and highly-available distributed applications,” in Proc. of
the CLOUD, Miami, FL, USA, 2010.

[4] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, pp. 133-169, 1998.

[5] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized, fault-
tolerant and scalable replication scheme for cloud storage,” in Proc. of
the SOCC, Indianapolis, USA, 2010.

[6] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and
W. S. Stornetta, “Spawn: A distributed computational economy,” /[EEE
Transactions on Software Engineering, vol. 18, pp. 103-117, 1992.

[71 O. Regev and N. Nisan, “The popcorn market. online markets for
computational resources,” Decision Support Systems, vol. 28, no. 1-2,
pp. 177 — 189, 2000.

[8] A.Helsinger and T. Wright, “Cougaar: A robust configurable multi agent
platform,” in Proc. of the IEEE Aerospace Conference, 2005.

[9] J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng, D. C. Parkes, M. Seltzer,
J. Shank, and S. Youssef, “Egg: an extensible and economics-inspired
open grid computing platform,” in Proc. of the GECON, Singapore, May
2006.

[10] J. Norris, K. Coleman, A. Fox, and G. Candea, “Oncall: Defeating spikes
with a free-market application cluster,” in Proc. of the International
Conference on Autonomic Computing, New York, NY, USA, May 2004.

[11] C. Pautasso, T. Heinis, and G. Alonso, “Autonomic resource provi-
sioning for software business processes,” Information and Software
Technology, vol. 49, pp. 65-80, 2007.

[12] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Lud-
wig, M. Polan, M. Spreitzer, and A. Youssef, “Web services on demand:
Wsla-driven automated management,” IBM Syst. J., vol. 43, no. 1, pp.
136-158, 2004.

[13] C. Reich, K. Bubendorfer, M. Banholzer, and R. Buyya. “A SLA-
Oriented Management of Containers for Hosting Stateful Web Services”.
In Proc. of the IEEE Conference on e-Science and Grid Computing,
Washington, DC, USA, 2007.

[14] M. Wang and T. Suda, “The bio-networking architecture: a biologically
inspired approach to the design of scalable, adaptive, and surviv-
able/available network applications,” in Proc. of the IEEE Symposium
on Applications and the Internet, 2001.

[15] N. Laranjeiro and M. Vieira, “Towards fault tolerance in web services
compositions,” in Proc. of the workshop on engineering fault tolerant
systems, New York, NY, USA, 2007.

[16] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He, “Transparent
symmetric active/active replication for service-level high availability,” in
Proc. of the CCGrid, 2007.

[17] J. Salas, F. Perez-Sorrosal, n.-M. M. Pati and R. Jiménez-Peris, “Ws-
replication: a framework for highly available web services,” in Proc. of
the WWW, New York, NY, USA, 2006.

[18] W.Igbal, M. N. Dailey and D. Carrera, “SLA-Driven Dynamic Resource
Management for Multi-tier Web Applications in a Cloud,” in Proc. of
the CCGrid, Melbourne, Australia, 2010.

[19] G. Lodi, F. Panzieri, D. Rossi and E. Turrini, “SLA-Driven Clustering
of QoS-Aware Application Servers,” in IEEE Trans. Softw. Eng, March
2007.

