
Covering Cubes and the Closest Vector Problem

Friedrich Eisenbrand
École Polytechnique Fédérale

de Lausanne
Station 8

1015 Lausanne, Switzerland
friedrich.eisenbrand@epfl.ch

Nicolai Hähnle
École Polytechnique Fédérale

de Lausanne
Station 8

1015 Lausanne, Switzerland
nicolai.haehnle@epfl.ch

Martin Niemeier
École Polytechnique Fédérale

de Lausanne
Station 8

1015 Lausanne, Switzerland
martin.niemeier@epfl.ch

ABSTRACT
We provide the currently fastest randomized (1+ε)-approx-
imation algorithm for the closest lattice vector problem in
the ℓ∞-norm. The running time of our method depends on
the dimension n and the approximation guarantee ε by

2O(n)(log 1/ε)O(n)

which improves upon the (2 + 1/ε)O(n) running time of the
previously best algorithm by Blömer and Naewe.

Our algorithm is based on a solution of the following geo-
metric covering problem that is of interest of its own: Given
ε ∈ (0, 1), how many ellipsoids are necessary to cover the
cube [−1+ ε, 1− ε]n such that all ellipsoids are contained in
the standard unit cube [−1, 1]n? We provide an almost op-
timal bound for the case where the ellipsoids are restricted
to be axis-parallel.

We then apply our covering scheme to a variation of this
covering problem where one wants to cover [−1 + ε, 1 − ε]n

with parallelepipeds that, if scaled by two, are still contained
in the unit cube. Thereby, we obtain a method to boost any
2-approximation algorithm for closest-vector in the ℓ∞-norm
to a (1 + ε)-approximation algorithm that has the desired
running time.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Computa-

tions on discrete structures, Geometrical problems and com-

putations

General Terms
Algorithms, Theory

Keywords
closest lattice vector problem, approximation algorithm, el-
lipsoid cover, box cover, covering convex bodies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’11, June 13–15, 2011, Paris, France.
Copyright 2011 ACM 978-1-4503-0682-9/11/06 ...$10.00.

−1

−1

1

1

1. INTRODUCTION
The closest lattice vector problem (CVP) is one of the

central computational problems in the geometry of numbers.
Here, one is given a rational lattice Λ(A) = {Ax : x ∈ Zn},
A ∈ Qn×n, and a target vector t ∈ Qn. The task is to
compute a lattice-point in Λ(A) that is closest to t w.r.t. a
given norm. In this paper, we focus on the closest vector
problem in the ℓ∞-norm. CVP in the ℓ∞-norm is an integer

programming problem: The points of distance at most β
from the target vector t are the integer points x ∈ Zn that
are contained in the polytope {x ∈ Rn : − β · 1 ≤ Ax − t ≤
β1}, and thus an integer solution minimizing β is a solution
for CVP∞. On the other hand, any integer programming
problem as above can be directly reduced to CVP∞ in a
lattice in m-dimensional space, where m is the number of
inequalities describing the polytope.1 Integer programming

1To decide if a polytope P = {x ∈ Rn : Ax ≤ u}, contains
an integer point, compute a vector l < u such that P =
{x ∈ Rn : l ≤ Ax ≤ u}. By rescaling each row we can wlog
assume that u − l = 1. Now define t := l+u

2
and observe

that P contains an integer point iff there is a v ∈ Λ(A) with
‖v − t‖∞ ≤ 1

2
. This lattice is not necessarily of full rank, but

the techniques of this paper – whose running time, like those
of previous algorithms, depends on the ambient dimension
– can be applied.

is one of the most versatile modeling paradigms with a wide
range of applications. Thus the closest vector problem in
the ℓ∞-norm variant is particularly important.

The development of methods to solve closest-vector and
integer programming problems resulted in many deep dis-
coveries in geometry and algorithms. Lenstra [Len83] showed
that integer programming and thus CVP∞ can be solved in
polynomial time if the dimension is fixed. His algorithm lay
the first planks between the geometry of numbers and opti-
mization. For varying n, the running time of his method is

2O(n3) times a polynomial in the binary encoding length of
the input. Kannan [Kan87] presented algorithms for these
problems whose running-time dependence on n is bounded
by 2O(n log n). An important step forward in the quest for
a singly-exponential time algorithm was provided by Ajtai
et al. [AKS01]. They presented a 2O(n) randomized algo-
rithm for the shortest vector problem in the ℓ2-norm: Given
a lattice, find the shortest nonzero lattice vector. These re-
sults have been generalized for any ℓp-norm by Blömer and
Naewe [BN09]. Micciancio and Voulgaris [MV10] provided a
deterministic singly-exponential time algorithm both for the
shortest vector problem as well as for the closest vector prob-
lem in the ℓ2-norm. Recently Dadush et al. [DPV10] have
shown that the shortest vector problem w.r.t. any norm
can be solved with a deterministic singly-exponential time
algorithm.

Approximation algorithms
A (1 + ε)-approximation algorithm for the closest vector
problem computes a lattice vector whose distance to the
target vector t is at most (1 + ε) times the minimum dis-
tance min{‖v − t‖ : v ∈ Λ(A)}. The closest vector prob-
lem is NP-hard for any ℓp norm [vEB81] and NP-hard to
approximate within constant factors [Aro94] and even al-
most polynomial factors [DKRS03]. So clearly one can-
not expect to have a polynomial-time approximation scheme
(PTAS) for closest vector. An interesting problem is how-
ever to design exponential-time approximation algorithms
whose running-time dependence on the approximation guar-
antee is not too large. Ajtai et al. [AKS02] provided a (1+ε)-
approximation algorithm for CVP2 with a running time of
2O(1+1/ε)n. Blömer and Naewe [BN09] could improve on this
and provide a randomized (1 + ε)-approximation algorithm
for the closest vector problem w.r.t. any ℓp norm that has
a running time of (2 + 1/ε)O(n).

Our main result is a randomized (1 + ε)-approximation al-
gorithm for CVP∞ whose running time depends on n and
ε by 2O(n)(log 1/ε)O(n). In fact, we show that any singly-
exponential time constant factor approximation algorithm
can be strengthened to a (1 + ε)-approximation algorithm
that, in the end, has this running time. Using the random-
ized algorithm of Blömer and Naewe [BN09] to obtain 2-
approximate solutions, we obtain the desired running time.

The covering technique
We now explain how coverings of the cube by convex bodies
come into play to obtain the complexity result. Suppose
that we have an (exact) algorithm for closest vector in the
ℓ2-norm and we want to apply this to (approximately) decide
whether the translated ℓ∞-unit ball

B = {x ∈ R
n : ‖x − t‖∞ ≤ 1}

contains a lattice point in Λ(A). More precisely, given an
ε > 0, we either want

i) to find a lattice point in B,

ii) or to assert that the scaled unit ball

B′ = {x ∈ R
n : ‖x − t‖∞ ≤ 1 − ε}

does not contain a lattice point.

One obvious idea is to determine a set of balls of radius ε
whose centers lie in B′ and whose union covers B′. If we
then use the closest-vector algorithm for the ℓ2-norm and
target-vectors being the centers of the balls, we can solve
the above problem. If one of the calls to a closest vector
oracle returns a lattice point of distance at most ε, then we
are in case i). Otherwise we are in case ii).

This relates to a classical covering problem. Erdős and
Rogers [ER62] (see also [FK08]) showed that the space Rn

can be covered by translates of unit spheres in such a way
that no point is covered by more than O(n log n) spheres.
One can use this to cover [−1 + ε, 1 − ε]n with spheres
of radius ε that then will be contained in [−1, 1]n. The
Erdős and Rogers technique would yield an upper bound

of O(n log n) (2−2ε)n

(ε/2)nVn
where Vn is the volume of the ℓ2-unit

ball. This yields the bound (n/ε)O(n) for the number of
queries to the CVP2-oracle. Certainly, since the ratio of
the volume of the unit cube [−1, 1] to the volume of the ℓ2-

unit ball {x ∈ Rn : ‖x‖2 ≤ 1} is 2Θ(n log n), we cannot hope
to improve the dependency on the dimension. But can we
improve the dependence on ε?

Since an ellipsoid is the image of the ℓ2-unit-ball {x ∈
Rn : ‖x‖2 ≤ 1} under an affine transformation f(x) = E x+
d for some non-singular matrix E ∈ Rn×n and a vector
d ∈ Rn, the problem whether such an ellipsoid contains a lat-
tice vector is the closest vector problem w.r.t. the ℓ2-norm in
the lattice Λ(E−1A) and target vector E−1d. Thus, we can
apply the algorithm for CVP2 to decide whether an ellipsoid
contains a lattice point or not. This gives us more flexibility
for the reduction of approximate CVP∞ to CVP2. Conse-
quently, if we cover B′ with ellipsoids that are contained in
B we can solve the approximate decision problem via calls
to a CVP2-oracle. This motivates the following covering
problem.

How many ellipsoids that are contained in [−1, 1]n

are needed to cover [−1 + ε, 1 − ε]n?

As we mentioned above, the volume of the cube versus the
volume of an inscribed ball shows that covering with ellip-
soids cannot yield a singly-exponential dependence of the
running time on the dimension n. However, a similar idea
and technique is the basis of our promised complexity re-
sult. The image of the unit-cube [−1, 1]n under an affine
transformation f(x) = E x + d is a parallelepiped.

With a 2-approximation algorithm for CVP∞ one can,
for a given parallelepiped P find a lattice point in Ps, where
Ps stems from P via scaling by 2 from its center of gravity
d, or assert that P does not contain a lattice point. More
precisely this can be done by a call to a 2-approximation
algorithm on the lattice Λ(E−1A) and target-vector E−1d.
This motivates the following variant of the above described
covering problem.

How many parallelepipeds that, if scaled by 2
from their centers of gravity are contained in
the unit cube [−1, 1]n, are necessary to cover the
cube [−1 + ε, 1 − ε]n?

We consider the two covering problems from above and pro-
vide the following results.

• We show that the number of ellipsoids required for the
covering is bounded by 2O(n log n)(1 + log 1/ε)n from
above and provide a cn(1 + ⌊log 1/ε⌋)n−1 lower bound
for axis-parallel ellipsoids.

• We show that the number of required parallelepipeds
is bounded from above by 2n(1 + log 1/ε)n and from
below by c′n(1 + ⌊log 1/ε⌋)n.

The second result yields a 2O(n)(log 1/ε)O(n) randomized al-
gorithm that solves the approximate decision version of clos-
est vector in the ℓ∞-norm. The lower bound shows that this
complexity is optimal for an algorithm relying on this cover-
ing technique alone. Our main result, the 2O(n)(log 1/ε)O(n)

time (1+ε)-approximation algorithm, is then obtained via a
binary-search technique. We explain this in the final section
of our paper.

2. THE COVERING PROBLEMS
We now consider the two covering problems from the in-

troduction. We denote the cube [−1, 1]n by H and its scaled
version [−1 + ε, 1 − ε]n by Hε. The questions are again as
follows. Given an ε ∈ (0, 1), what is the smallest number
E(n, ε) of ellipsoids contained in H such that their union
covers the smaller cube Hε? What is the smallest number
P (n, ε) of parallelepipeds that are contained in H after being
scaled by 2 and whose union covers Hε?

2.1 Covering with ellipsoids
We first show that E(n, ε) is bounded by 2cn log n(1 +

log 1/ε)n. Since we can allow us a factor of 2n, we cover
each intersection of Hε with an orthant separately and then
combine the different coverings, see also the figure on the
title-page. After flipping coordinates and after translation,
the problem for one orthant can be interpreted as follows.
How many ellipsoids that are contained in H ′ := [0, 2]n are
needed to cover the cube [ε, 1]n?

The following elementary lemma (see also Figure 1) is used
in our construction.

Lemma 2.1. Let n ≥ 2, r = 1 + 2/(
√

n − 1) and Q :=
[1/r, 1]n, then the smallest ball containing Q is contained in

H ′. Furthermore, r is maximal with this property.

Proof. Let B be the smallest ball containing Q. The
center of Q and B is d · 1 with

d =
1 + 1

r

2
=

1 +
√

n−1√
n+1

2
=

√
n√

n + 1
.

Thus the radius R of B is simply the distance of d · 1 to the
vertices of Q

R =
√

n(1 − d) =
√

n ·
„

1 −
√

n√
n + 1

«

=

√
n√

n + 1
= d.

Thus the ball is contained in the positive orthant. Further-
more, d + R < 2, which shows the first claim, i.e. that
B ⊆ H ′. The choice of r is maximal because the ball touches
the coordinate hyperplanes.

1

1

1/r

1/r

Figure 1: Illustration of Lemma 2.1.

Corollary 2.2. Let n ≥ 2, r = 1 + 2/(
√

n − 1), v ∈
(0, 1]n and let Q := [v1r

−1, v1]×. . .×[vnr−1, vn]. Then there

exists an axis-parallel ellipsoid E such that Q ⊆ E ⊆ H ′.

This corollary is obtained from Lemma 2.1 by scaling. We
are now ready to prove the upper bound.

Theorem 2.3. One has E(n, ε) ≤ 2cn log n ·(1 + log 1/ε)n

for a fixed constant c > 0.

Proof. We provide a covering of [ε, 1]n by ellipsoids con-
tained in H ′ = [0, 2]n. Let r = 1 + 2/(

√
n − 1) as in Corol-

lary 2.2. For every α ∈ Nn
0 , the smallest ellipsoid containing

a box of the form

Q(α) =
h

r−(α1+1), r−α1

i

× · · · ×
h

r−(αn+1), rαn

i

,

is contained in H ′. How many of these boxes are needed to
cover the cube [ε, 1]n?

It is enough to consider those boxes Q(α) with r−αj > ε
for all j. Taking logarithms, one obtains αj log r < log 1/ε.
A standard approximation for the logarithm yields log r >
c′/

√
n for some constant c′ > 0, and so we can conclude

αj <
√

n log(1/ε)/c′. In total, we require at most
„

1 +

√
n

c′
· log 1/ε

«n

≤
„√

n

c′

«n

(1 + log 1/ε)n

≤ 2cn log n(1 + log 1/ε)n

boxes to cover [ε, 1]n. Since by Corollary 2.2, each of these
boxes can be covered by an ellipsoid contained in H ′, this
completes the proof.

2.1.1 A lower bound for axis parallel ellipsoids
Can the dependence on n be improved? Note that the

volume of Hε is (2− 2ε)n, whereas the largest ellipsoid con-
tained in H is the n-dimensional euclidean ball with radius
1 centered in 0 which is of volume 2−Ω(n log n). So for fixed
ε ∈ (0, 1

2
), simply by accounting for volume it is clear that

we need at least 2Ω(n log n) ellipsoids.
What about the dependence on ε? This seems to be a

more difficult question. We can prove the following.

Theorem 2.4. Fix the dimension n ≥ 2. There exists a

constant cn > 0, depending only on n, such that for all ε ∈
(0, 1), any covering of Hε by axis parallel ellipsoids contained

in H consists of at least cn · (1 + ⌊log 1/ε⌋)n−1
ellipsoids.

Proof. To simplify the argument, we again transform
the problem so that we can work entirely within the positive
orthant. Consider the grid

Gε := {v ∈ R
n | vj = 2−αj ≥ ε with αj ∈ N0

for all 1 ≤ j ≤ n}
Every covering of Hε using m axis parallel ellipsoids con-
tained in H corresponds, by an affine transformation, to a
covering of Gε using axis parallel ellipsoids E1,. . . ,Em ⊂
Rn

≥0. We assume that the ellipsoids touch all coordinate
hyperplanes. This is without loss of generality because oth-
erwise we can grow the ellipsoids by scaling (independent in
each dimension) around their centers by an adequate factor.
The ellipsoids can then be described as

Ei =

(

x ∈ R
n |

n
X

j=1

„

2−µij − xj

2−µij

«2

≤ 1

)

,

where the center of Ei is at (2−µi1 , . . . , 2−µin).
We will proceed to give an upper bound on the number

|Ei ∩ Gε| of grid points contained in an ellipsoid. Let v =
(2−αj)n

j=1 ∈ Ei ∩ Gε.

1 ≥
n

X

j=1

„

2−µij − 2−αj

2−µij

«2

=
n

X

j=1

`

1 − 2µij−αj
´2

At most one summand – say the k-th – can be greater than
one half. We then must have (1−2µij−αj)2 ≤ 1

2
for all j 6= k.

A rough calculation shows −2 < µij − αj < 1, so there are
at most 3 possible choices of αj ∈ N0 for every j 6= k. On
the other hand, αk can take any integer value between 0 and
¨

log 1
ε

˝

. Finally, there are n choices for k, giving the upper
bound of

|Ei ∩ Gε| ≤ n3n−1 (1 + ⌊log 1/ε⌋) .

Combining this with the total number of grid points, we get

(1 + ⌊log 1/ε⌋)n = |Gε| ≤
m

X

i=1

|Ei ∩ Gε|

≤ mn3n−1 (1 + ⌊log 1/ε⌋) .

The statement of the theorem follows by defining the con-
stant cn := (n3n−1)−1.

Note that this proof only works for axis parallel ellipsoids.
It seems implausible that allowing arbitrary ellipsoids could
yield significantly more efficient coverings.

2.2 Covering with parallelepipeds
The goal is to cover Hε = [−1 + ε, 1 − ε]n by paral-

lelepipeds that, if scaled by 2, are contained in H = [−1, 1]n.
The smallest number of such parallelepipeds is P (n, ε). We
again provide an axis-parallel covering. This time, however,
we derive a lower bound that is asymptotically tight in the
exponent, even for non-axis-parallel parallelepipeds. We re-
mark that the results of this sections hold with only minor
numerical changes for any constant scaling factor. We fix
the factor 2 for concreteness and to simplify the presenta-
tion. First, we need an elementary lemma whose proof is
straightforward. See Figure 2 for an illustration.

Lemma 2.5. Let v ∈ (0, 1]n and U = [1 − v1, 1 − v1/3] ×
. . . × [1 − vn, 1 − vn/3]. If U is scaled by a factor of 2 from

its center of gravity, then it is still contained in [−1, 1]n.

U

0

1

Figure 2: An illustration of Lemma 2.5 for v1 = · · · =
vn = 1.

Theorem 2.6. One has P (n, ε) ≤ 2n(1 + log 1/ε)n.

Proof. We proceed by covering [0, 1−ε]n by boxes that,
if scaled by two, are contained in [−1, 1]n. Consider a box
of the form

U(α) =
ˆ

1 − 3−α1 , 1 − 3−α1−1˜

× · · ·×
ˆ

1 − 3−αn , 1 − 3−αn−1˜

, α ∈ N
n
0 .

By Lemma 2.5 these boxes are still contained in H after they
are scaled by 2. How many of these boxes are needed to cover
[0, 1−ε]n? We only have to consider U(α) with 3−αj > ε for

all j. Taking logarithms, this implies αj < log(1/ε)
log 3

. Thus we

need at most (1 + log 1/ε)n boxes. Repeating the procedure
for each orthant yields the desired bound.

We refer to Figure 3 for an illustration of the covering scheme.

2.2.1 A lower bound
The approach described in the previous section can be

thought of, in a more general form, as the problem of cov-
ering the cube Hε using affine copies of a fixed centrally
symmetric convex body K, such that constant multiples of
the copies are still contained in H. We will show that the
number of parallelepipeds is optimal as far as the growth of
the exponents is concerned.The proof is analogous to that
of Theorem 2.4.

Theorem 2.7. Let K ⊂ Rn be a centrally symmetric body.

Let K1, . . . , Km be affine copies of K and let K′
j be the re-

sult of scaling Kj by a factor of 2 around its center point.

Suppose that K′
j ⊆ H for all j, and K1, . . . , Km together

cover Hε. Then m ≥ cn (1 + ⌊log 1/ε⌋)n
, where cn > 0 only

depends on n.

Proof. By translating the given bodies, we can instead
consider a situation where [ε, 1]n is covered by K1, . . . , Km

0

1

Figure 3: Covering one orthant with boxes of type

U(α).

and K′
j ⊂ Rn

≥0 for all j. In particular, this means that the
grid

Gε := {v ∈ R
n | vj = 2−αj ≥ ε with αj ∈ N0

for all 1 ≤ j ≤ n}
is covered. Let us now determine the number of grid points
contained in each Kj . Let aj be the center point of Kj . We
have

Kj ⊆ {x ∈ R
n | 1

2
aj ≤ x ≤ 3

2
aj},

where the first set of inequalities follows from the fact that
K′

j ⊂ Rn
≥0, and the second set of inequalities follows from

central symmetry of Kj . There are at most two choices for
αi ∈ N0 such that xi = 2−αi satisfies the corresponding
lower and upper bound. Consequently, Kj contains at most
2n grid points. Recall that the total number of grid points
is (1+⌊log 1/ε⌋)n, from which the statement of the theorem
follows.

3. THE APPROXIMATION ALGORITHM
We now present our (1 + ε)-approximation algorithm for

the closest vector problem in the ℓ∞ norm. We describe a
boosting technique that turns any constant factor approx-
imation algorithm for CVP∞ into a (1 + ε)-approximation
algorithm at the expense of an additional factor of

2O(n) (log 1/ε)O(n) bO(1)

in the running time, where b denotes the encoding length
of the input. It is a Karp reduction approach, i.e. the con-
stant factor approximation algorithm is used as an oracle
and called multiple times on different inputs.

We first consider the α-gap CVP∞ problem, which is
defined as follows. Given a lattice Λ(A), a target vector t and
a number D > 0, either find a lattice vector v ∈ Λ(A) with

‖v − t‖∞ ≤ D, or assert that all lattice vectors have distance
more than α−1D. We show how to construct a (1 + ε)-
gap algorithm for CVP∞ from a 2-gap algorithm using the
covering with parallelepipeds described in Section 2.2.

Afterwards we describe a binary search procedure to ob-
tain a (1+ε)-approximation algorithm, using the (1+ε)-gap
algorithm as an oracle in each iteration of the binary search.

We plug the currently fastest known constant approxima-
tion solver, the Blömer and Naewe (BN) algorithm [BN09],
into our construction and boost its success probability so
that we obtain the following approximation algorithm.

Theorem 3.1. For every ε ∈ (0, 1), there is a randomized

algorithm that (1 + ε)-approximates CVP∞ in time

2O(n)(log 1/ε)O(n)bO(1)

with success probability 1 − 2−Ω(n).

The randomness is due to the fact that the BN algorithm is
randomized. Our construction is deterministic.

3.1 Boosting gap solvers
We now describe the (1+ε)-gap algorithm for CVP∞ with

the following properties.

Theorem 3.2. Given an oracle that solves 2-gap CVP∞,

for every ε ∈ (0, 1] we can solve (1 + ε)-gap CVP∞ using at

most 2n · (2 + log 1/ε)n
oracle calls.

The encoding size of instances for each oracle query are

polynomial in n, the original encoding length and in log 1/ε.

In fact, any constant-gap oracle could be used. We choose
to fix the approximation factor to 2 for concreteness and to
simplify the presentation.

Let (B, t, D) be the input. To solve the (1 + ε)-gap
problem, we either need to find a vector v ∈ Λ(B) with
‖v − t‖∞ ≤ D, or assert that the box

T := t + D · [−1 + δ, 1 − δ]n

with 1 − δ = 1/(1 + ε) does not contain a lattice point. By
scaling the instance, we can assume without loss of gener-
ality that D = 1. Hence the box T is a translate of the
box Hδ = [−1 + δ, 1 − δ]n. As discussed in Section 2.2,
there is a covering of Hδ and therefore T with singly ex-
ponential many parallelepipeds. These parallelepipeds have
the property that if they are scaled by a factor of 2 around
their center of gravity, then they are still contained within
t + [−1, 1]n. This is useful because with one call to a 2-
approximation oracle for 2-gap CV P∞, we can either find a
lattice vector with distance at most 1 or assert that one of
the parallelepipeds does not contain a lattice vector, as we
show in the following lemma.

Lemma 3.3. Given a lattice Λ(A) and a parallelepiped

P := {x ∈ Rn : ‖E(x − d)‖∞ ≤ 1}, a single call to a

2-gap oracle for CV P∞ either asserts that P ∩ Λ(A) = ∅
or finds a lattice vector v ∈ Λ(A) contained in P s := {x ∈
Rn : ‖E(x − d)‖∞ ≤ 2}, i.e. P scaled by 2 around its

center of gravity d.

Proof. Define B := E ·A and t := E ·d and observe that
P ∩Λ(B) 6= ∅ (P s∩Λ(B) 6= ∅) if and only if there is a vector
v ∈ Λ(B) with distance at most 1 (2) from t.

Proof of Theorem 3.2. Let (B, t, D) be the input.
By scaling the instance, we can assume without loss of gen-
erality that D = 1. Let δ = ε

1+ε
, so that 1 − δ = 1

1+ε
. Our

goal is to either assert that the box T = t + [−1 + δ, 1− δ]n

is empty or to find a lattice vector in t + [−1, 1]n.
Let P1, . . . , Pk with k ≤ 2n ·

`

2 + log(1
ε
)
´n

be parallele-
pipeds as in Theorem 2.6. Moreover for each i let P s

i be the
parallelepiped Pi scaled by a factor of 2 around its center
of gravity. Then P1, . . . , Pk cover T and P s

i ⊆ t + [−1, 1]n

for each i. Lemma 3.3 shows that for each i, a single call
to the 2-gap CV P∞ oracle either yields a lattice vector in
t + [−1, 1]n or asserts that Pi does not contain a lattice
vector. Since the parallelepipeds cover T , if the answers for
all oracle calls are negative, we can assert that T does not
contain a lattice vector.

Finally note that the amount of scaling applied before each
oracle call is bounded by O(1/ε). Therefore, the desired
bound bound for the encoding size of the instances for each
oracle call holds.

3.2 Approximating the closest vector problem
In this section we first describe a procedure to Karp-

reduce the problem of computing a (1 + ε)-approximation
for CVP∞ to (1 + O(ε))-gap CVP∞. Then we combine
our constructions with the BN algorithm to obtain the cur-
rently fastest (randomized) (1+ε)-approximation algorithm
for CVP∞.

Theorem 3.4. For every ε ∈ (0, 1) and δ := min{ ε
5
, 1

2
},

given access to a (1+δ)-gap CVP∞ oracle, one can compute

a (1 + ε)-approximation for CVP∞ using

O(log b + log n + log 1/ε)

calls to the oracle.

We are given as input a lattice Λ = Λ(A) and target vector
t. Let us assume that the distance d(t, Λ) of a closest vector

to the target vector is between 1 and at most 2cn2·b for some
constant c > 0. This can be achieved by scaling, see [BN09].
We then perform a simple binary search in the following
way:

1. Set δ := min{ε/5, 1/2}

2. Initialize L ← 0 and U ←
l

log1+δ 2cn2·b
m

.

3. While U − L ≥ 3, do a binary search step:

(a) Solve the (1 + δ)-gap problem with input

(A, t, (1 + δ)L+⌈(U−L)/2⌉).

(b) If a lattice vector v is returned, update
U ←

˚

log1+δ ‖v − t‖∞
ˇ

.

(c) Otherwise, update L ← L + ⌈(U − L)/2⌉ − 1.

4. Solve the (1 + δ)-gap problem with input (A, t, (1 +
δ)U+1) and return the resulting lattice vector.

We first prove the correctness of this procedure before we
analyze its running time.

Lemma 3.5. The algorithm from above has the following

properties.

1. The binary search routine maintains the invariant that

(1 + δ)L ≤ d(t, Λ) ≤ (1 + δ)U .

2. The algorithm returns a lattice vector v that satisfies

‖v − t‖∞ ≤ (1 + ε)d(t, Λ).

Proof. 1. The initial choices of L and U are appro-
priate after scaling the lattice as mentioned in the
beginning of this section. In the case 3(b), the ex-
istence of the lattice vector v proves that the invariant
is maintained by the update of U . In the case 3(c),
that is, when the (1 + δ)-gap problem does not re-
turn a lattice vector, this implies by definition that
d(t, Λ) ≥ (1 + δ)L+⌈(U−L)/2⌉−1 and so the invariant is
maintained.

2. In the end, we know that d(t, Λ) ≤ (1+δ)U , so the final
application of the (1 + δ)-gap problem is guaranteed
to find a lattice vector v. This lattice vector satisfies

‖v − t‖ ≤ (1 + δ)U+1

≤ (1 + δ)L+3

≤ (1 + δ)3d(t, Λ)

≤ (1 + 5δ)d(t, Λ)

≤ (1 + ε)d(t, Λ).

For the second inequality, we used the fact that U −L
is an integer and therefore U − L ≤ 2.

Proof of Theorem 3.4. Correctness of the procedure
has already been shown in Lemma 3.5. It remains to bound
the number of oracle calls. Let Mj be the difference U − L
after the j-th search step. By the initial choices of L and U
we have

M0 =
l

log1+δ 2cn2·b
m

=

‰

cn2b

log(1 + δ)

ı

≤ c′n2b/δ

for some constant c′ > 0. Let us analyze what happens in
step j. In the case 3(b), we know that ‖v − t‖∞ ≤ (1 +

δ)⌈L+(U−L)/2⌉. Denoting the updated value of U by U ′, this
implies U ′ ≤ L + ⌈(U − L)/2⌉, and so Mj ≤ ⌈(U − L)/2⌉ ≤
Mj−1/2 + 1.

In the case 3(c), we get

Mj = U − (L + ⌈(U − L)/2⌉ − 1)

= Mj−1 − ⌈Mj−1/2⌉ + 1

≤ Mj−1/2 + 1.

We get the same upper bound in both cases and can conclude
using induction that

Mj ≤ 2−jM0 + 1 +
1

2
+

1

4
+ · · · ≤ 2−jM0 + 2.

This implies that the number of steps is bounded by ⌈log M0⌉
because the iteration stops when Mj drops below 3. From
this we can derive the desired upper bound for the number
of oracle calls.

We now prove the main theorem by using the BN algo-
rithm as a 2-approximation and applying the boosting tech-
nique for gap CVP combined with the binary search pro-
cedure. As their algorithm is randomized, one has to take
care of the success probabilities. Their algorithm has a fail-
ure probability of 2−Ω(n). Considering the amount of oracle
queries we have to issue and the requirement that every call
has to be successful, that failure probability is too high, so
we boost the success probability using standard techniques.

Proof of Theorem 3.1. The BN algorithm has a suc-
cess probability of at least 1−2−c·n for some constant c > 0

and a running time of (2 + 1
ε′

)O(n) · bO(1) when used as a
(1 + ε′)-approximation algorithm.

Set a := c′ ·
˚

(1 + max {log log 1/ε, 1} + 1
n

log b)
ˇ

for an
appropriate constant c′ > 0 that will be determined later.
Let BN+ be an algorithm that runs BN as a 2-approximation
algorithm a times on the same input and returns the closest
vector that was found among all runs. This aggregated al-
gorithm is a 2-approximation algorithm with a running time
of max{log log

`

1
ε

´

, 1} · 2O(n) · bO(1) and success probability
at least

1 − 2−acn ≥ 1 − 2−c′cn (log 1/ε)−cc′n · b−cc′ .

Using the boosting technique from Theorem 3.2, we can con-
struct a (1 + δ)-gap algorithm with

δ := min{ε/5, 1/2},
using BN+ as a 2-gap oracle. This amounts to a running

time of 2O(n) · (log 1/ε)O(n) · bO(1) for the (1 + δ)-gap algo-
rithm. Plugging this as a black-box into the binary search
procedure, we get a (1+ε)-approximation algorithm by The-
orem 3.4. Moreover, the number of calls to the (1 + δ)-gap
algorithm is bounded by O(log n + log b + log 1/ε). Thus in
total we get the desired running time bound of

2O(n)(log 1/ε)O(n)bO(1)

which is also an upper bound to the number of calls to BN+.
The probability for failure of the (1 + ε)-approximation al-
gorithm is bounded by the probability that one of the runs
of BN+ fails. By choosing c′ large enough, we get an upper
bound of 2−Ω(n) for the failure probability from the union
bound.

We remark that, although the encoding size for some of
the instances we query the oracle for may exceed b, it al-
ways stays within poly(n, log 1/ε, b) by Theorem 3.2 so the
asymptotic running time indicated above is not affected.

Acknowledgment
We would like to thank János Pach for discussions on cov-
erings and for pointing us to [ER62].

4. REFERENCES
[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve

algorithm for the shortest lattice vector
problem. In Proceedings of the Thirty-Third

Annual ACM Symposium on Theory of

Computing, pages 601–610 (electronic), New
York, 2001. ACM.

[AKS02] M. Ajtai, R. Kumar, and D. Sivakumar.
Sampling short lattice vectors and the closest
lattice vector problem. In Computational

Complexity, 2002. Proceedings. 17th IEEE

Annual Conference on, 2002.

[Aro94] S. Arora. Probabilistic checking of proofs and

the hardness of approximation problems. PhD
thesis, UC Berkeley, 1994.

[BN09] J. Blömer and S. Naewe. Sampling methods for
shortest vectors, closest vectors and successive
minima. Theoretical Computer Science,
410(18):1648–1665, 2009.

[DKRS03] I. Dinur, G. Kindler, R. Raz, and S. Safra.
Approximating CVP to within
almost-polynomial factors is NP-hard.
Combinatorica, 23(2):205–243, 2003.

[DPV10] Daniel Dadush, Chris Peikert, and Santosh
Vempala. Enumerative algorithms for the
shortest and closest lattice vector problems in
any norm via M-ellipsoid coverings. Manuscript,
2010.

[ER62] P. Erdős and C. A. Rogers. Covering space with
convex bodies. Acta Arith., 7:281–285,
1961/1962.

[FK08] Z. Füredi and J.-H. Kang. Covering the n-space
by convex bodies and its chromatic number.
Discrete Math., 308(19):4495–4500, 2008.

[Kan87] R. Kannan. Minkowski’s convex body theorem
and integer programming. Mathematics of

Operations Research, 12(3):pp. 415–440, 1987.

[Len83] H. W. Lenstra. Integer programming with a
fixed number of variables. Mathematics of

Operations Research, 8(4):538 – 548, 1983.

[MV10] D. Micciancio and P. Voulgaris. A deterministic
single exponential time algorithm for most
lattice problems based on voronoi cell
computations. In Proceedings of the 42nd ACM

symposium on Theory of computing, STOC ’10,
pages 351–358, New York, NY, USA, 2010.
ACM.

[vEB81] P. van Emde Boas. Another NP-complete
problem and the complexity of computing short
vectors in a lattice. Technical Report 81-04,
Mathematische Instituut, University of
Amsterdam, 1981.

