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Abstract—Anomalies and changes in sensor networks which
are deployed for activity recognition may abate the clas-
sification performance. Detection of anomalies followed by
compensatory reaction would ameliorate the performance. This
paper introduces a novel approach to detect the faulty or
degraded sensors in a multi-sensory environment and a way to
compensate it. The approach considers the distance between
each classifier output and the fusion output to decide whether
a sensor (classifier) is degraded or not. Evaluation is done on
two activity datasets with different configuration of sensors and
different types of noise. The results show that using the method
improves the classification accuracy.

Keywords-Activity recognition, classifier fusion, anomaly de-
tection, intelligent sensor nodes

I. INTRODUCTION

Sensor fault or degradation detection is a critical issue in
the field of sensor networks and wireless sensor networks
[1], [2]. The degradation or fault may come from loss of
energy, change of the sensor position or due to environ-
mental fluctuations. As an example, in the field of activity
and context recognition using wearable sensors [3] degra-
dation may come from the slippage or rotation of on-body
accelerometer sensors. These changes will be reflected on
the sensed data, and consequently on the overall recognition
performance. We propose a method for automatic detection
of changes in sensor networks for activity recognition.
Using a classifier fusion approach, we show that automatic
detection and removal of sensors with anomalous behavior
leads to graceful performance degradation with respect to
increasing levels of noise.

There are many studies regarding fault detection in
control-based systems where the goal is to detect abnormal
sensors. For that, one may extract a model of the system
and detect faults based on residual error signal [4]. In more
complex systems we can create the input-output model of the
system using regression methods and detect potential faults
when there is a change in the estimated parameters [5]–[7].
Cumulative Sum (CUSUM) is another approach that detects
changes over time in the distribution of a measured variable
[8], [9]. These methods regard only one stream of signals and

they decide whether it is faulty or not. However, in a sensor
network, one of them may not be faulty but its behavior can
change with respect to the other parts in the network (e.g.
sliding an on-body sensor, in this case sensor works normally
but sensory reading may change with respect to the other
sensors). There are approaches which recognize whether
sensed data belongs to a distribution or not; Chandola et al.
surveyed different methods on it for anomaly detection in
data [10]. However, these methods focus on the recognition
of faults in the whole pattern –corresponding to the feature
vector built using all the sensors– therefore, if one or few
sensor fails, the whole sensed data is considered as faulty.

We propose that changes in the sensor behavior with
respect to other sensors in the network can be used to detect
anomalies. These changes can be estimated based on the
correlations measured at different levels of the recognition
chain, i.e. raw data or individual features computed for each
sensor. Moreover, if the classifier fusion approach is used,
correlations can be also computed between the outputs of
individual classifiers. We choose this last approach (Fig 1)
because of the following advantages:

1) Each sensor comes up with a decision independent of
the other sensors. Therefore failure of one sensor will
not affect the classification of others.

2) This allows for the removal of individual classifiers
without requiring to re-train the remaining classifiers.
Moreover, there exist fusion techniques that can cope
with removal without recomputing the parameters (e.g.
Majority voting, Naive Bayesian fusion or Dempster
Shafer).

The rest of this paper is structured as follows: Section
II explains the proposed method, then we describe the
experiment details in section III and finally the results
of evaluation of the method on two activity datasets are
provided in section IV.

II. METHOD

We propose a method for detection of anomalous sensor
behavior in sensor networks. The rationale of the method is
to characterize the relationship between each sensor and the
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Figure 1. Schematic representation of the method. Detection process of
anomalous sensors takes place at the fusion level by computing distance
between corresponding classifier output and the fusion output.

overall network behavior. This relationship can be estimated
at any level of the recognition chain –i.e. raw signals, feature
vectors and classifier output. We propose to perform this
operation at the classifier level because the values from
all channels at this level are probability values, and is
independent of chosen features and sensor data while at
the other levels the values may be inhomogeneous using
different types of sensors. To this end, we can compare the
output of an individual classifier and the outcome of the
fusion and whenever the difference among the two exceeds
a particular threshold, the corresponding sensor is considered
as faulty and removed from the network. The schematic
representation of the method is shown in Fig. 1.

We assume that the classifiers output as well as the fusion
outcome are probabilistic output vectors (soft labels). Then
anomalous behavior is detected based on the distance be-
tween these two vectors. We use Mahalanobis [11] distance
which is more robust against classifier bias with respect to
Euclidean distance. This distance is computed as follows,

Dsc′ = (os − f)T Σ−1sc′ (os − f), (1)

where os is the output of classifier s and f is the outcome of
the fusion. c′ ∈ [1..C] is the recognized class after classifier
fusion. The covariance matrix, Σsc represents the correlation
between the classifier s and the fusion output, for class c.
This matrix is estimated from the training data set using the
correctly classified samples.

Σsc = E((ocs − f c)T (ocs − f c)) (2)

where ocs and f c are the output of the classifier s and the
output of fusion for the specific class c, respectively and
E(.) is the mathematical expectation.

During system operation a classifier whose distance to
the fusion output exceeds a given threshold is considered as
faulty. Thresholds were set individually for each classifier
and class such that Θsc = k max(Dsc), where k > 0, and
max(Dsc) is computed on the training set. The value of

k can be chosen according to the distribution of distances,
in the reported experiments it was chosen empirically to 4.
Notice that removal of a sensor may change the outcome
of the fusion process. For this reason, we apply the process
iteratively where we use the fusion outcome with the current
available sensors. If the distance of one classifier exceeds the
threshold, the corresponding sensor is removed from the net-
work, and the fusion of the remaining sensors is performed.
We compare then the distances to the re-computed output
and keep removing faulty sensors until no one exceeds its
threshold.

In order to have a better estimation of the sensor behavior,
at time t we use the average distance D̃sc over a window of
n preceding samples before comparing with the threshold.
Moreover, we also fix an upper bound in the distances to
avoid large values. A unique bound was set empirically for
all classes and sensors.

This leads us to the following algorithm:

begin
Σs,c ≡ Covariance matrix for classifier s and class c
Θsc ≡ Distance threshold for classifier s and class c
nS ≡ minimum number of sensors for fusion
D̃sc ≡ Average distance over specified window
f(S) ≡ Fusion of classifiers in set S
H ≡ set of healthy sensors (initially H = [s1..sn])
A ≡ set of anomalous sensors (initially A = φ)
while nSensor > nS

f = fusion(H)
c′ = argmaxc(f)
Compute distance D̃sc′ ∀s ∈ H
if D̃sc′ < Θsc

exit
else
A ≡ append argmaxs(D̃sc′) to A
H ≡ remove argmaxs(D̃sc′) from H
nSensor = nSensor − 1

end
end

III. EXPERIMENT

We evaluated the performance of the algorithm on two
activity datasets using different sensor configurations. Each
dataset contains data from body mounted sensors while hu-
man subjects perform different actions. In order to emulate
changes in the sensor network we artificially added different
levels of noise and assessed the method performance to de-
tect noisy channels, as well as the recognition performance.

The first dataset corresponds to a car manufacturing
scenario; It contains data from 8 subjects performing 10
recording sessions each (except one subject who recorded 8
sessions only) [12]. The sensors are accelerometer, rate gyro,
and magnetic sensors mounted on different parts of the body



(hands, upper and lower arms, and chest). We grouped sen-
sors into seven packages considering their physical locations,
where each package contains a set of sensors (accelerometer,
rate gyro and magnetic sensors). There are 20 classes of
activity including open hood, close hood, open door, close
door and etc. We used one-subject-out cross validation for
evaluating the performance.

The second dataset, termed the Opportunity dataset, con-
tains data for daily home activities in a breakfast scenario
[3]. The data were recorded in a highly instrumented envi-
ronment set up in a room with two doors, a kitchen and a
table in the center. For the present simulations we performed
classification based on five motion-jacket sensors while one
subject performed sequential low-level actions (e.g. Open
Fridge, Close door, Reach cup). We report classification
performance of 24 classes. Each sensor is composed of
accelerometer, rate gyro and magnetic sensors positioned
on upper and lower arms and chest. Note that the sensors
placed on the jacket and therefore they may move slightly
during the recording, also at each run the sensors may not be
precisely located at the same location as before. We tested
the method on one subject using 3-fold cross validation.

For each case we design an ensemble of classifiers whose
decisions are combined using a classifier fusion technique.
Linear Discriminant Analysis (LDA) classifier is chosen for
classification using mean and variance as features. Since the
method leads to the removal of anomalous sensors, a fusion
technique that can cope with these removals should be used
(e.g. Dempster-Shafer, Decision Template, Product Rule),
we present results obtained using naive Bayesian fusion and
Dempster-Shafer [13] for fusion.

Due to space limitations we only report the results using
accelerometers and gyros; Similar results were obtained
when including the magnetic sensors. We simulate different
configurations of sensors –and corresponding number of
classifiers– as follows:

1) Config1: Using accelerometers only. Each sensor feeds
one classifier. Therefore, there are 7 classifiers for
the car manufacturing dataset and 5 classifiers for the
Opportunity dataset.

2) Config2: Each classifier receives input from an ac-
celerometer and gyro located at the same position (i.e.
sensor package). The number of the classifiers is same
as in the Config1.

3) Config3: Using accelerometers and gyros but each type
of sensor feeds a different classifier. Then, there are
14 classifiers for the car manufacturing dataset and 10
classifiers for the Opportunity dataset.

We used two different types of noise in the simulations:
rotational and additive noise. In the former case, the level
of rotation is randomly chosen between 0◦ and 90◦ with
steps of 10◦. In the case of additive noise, the Signal Noise
Ratio (SNR) was varied between 100, 20, 10, 5, and 1 db.
For each condition we perform 10 repetitions with different
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Figure 2. Recognition of anomalous sensors on the car manufacturing
dataset (Config1; additive noise). 2(a) Effect of window length. 2(b) Effect
of noise level for different number of noisy sensors.

sets of noisy sensors, and at each repetition we compute
the accuracy for detecting anomalous sensors as well as
the activity classification accuracy. Detection accuracy is
computed as the number of true detections,

acc =
TruePositive+ TrueNegative

Number Of Sensors
(3)

In the experiments we chose the threshold coefficient,Θsc

and upper bound coefficient empirically, and is kept the same
for all the configurations of each dataset.

IV. RESULTS

Fig. 2(a) shows the accuracy on detecting the noisy
sensors on the car manufacturing dataset (Config1, additive
noise). It can be seen that the proposed method is able
to accurately identify the sensors to which additive noise
was added; recognition accuracy decreases from �95% to
∼73% as the number of noisy sensors increases from 1
to 6. Since the method uses the average distance over a
time window there may be trade off between the accuracy
and the detection latency. Simulations show that recognition
accuracy is rather constant with respect to the window size
and similar performance is obtained when using windows
of at least 25 samples (c.f. Fig. 2(a)). A window size of 50
samples was used in the remaining simulations presented in
this paper.

Fig. 2(b) shows the accuracy of detection of anomalous
channels with respect to the level of noise. Unsurprisingly,
the performance of the detection decreases for lower levels
of noise, since the added noise is comparable to the noise
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Figure 3. Classification performance –rotational noise– on the car manufacturing dataset.
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Figure 4. Classification performance –additive noise– on the car manufacturing dataset.

level inherently present in the data (please remind that
we use data recorded during actual performance of human
activities).

Upon detection of the faulty sensors, the corresponding
classifiers are removed from the fusion. Fig. 3 and 4 show
the classification accuracy in the car manufacturing scenario
for rotational and additive noise, respectively. We compare
the performance of the proposed model (Automatic removal),
with the performance if no action is taken (No removal).
As a comparison, we also report the performance when
classifiers affected by noise are manually removed from
the classification fusion (Perfect removal). In this case we
remove the classifier only if it gives a different decision
with respect to noiseless condition. So, this performance
corresponds to the upper bound of a detection system. In
all cases, Automatic removal outperforms the No removal
condition showing that the proposed approach consistently
yields more robust classification.

Fig. 5 shows the performance with respect to the level of
noise and the number of noisy sensors using accelerometers,
gyros and magnetic sensors in a packed mode. It is clear that
Automatic removal performs better than No removal as the
level of noise and number of affected channels increases.

To assess the independency of the approach with respect
to the fusion method, we show another simulation of the
configuration Config1 using Dempster-Shafer classifier fu-
sion. Obtained results, shown in Fig. 6, follow the same
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Figure 5. 3D view of classification accuracy on the car manufacturing
dataset for different levels of rotational noise using accelerometers, gyros,
and magnetic sensors on the car manufacturing dataset.
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Figure 6. Classification accuracy on the car manufacturing dataset using
Config1 and Dempster-Shafer classifier fusion.

trend as with the Naive fusion where the Automatic removal
performs better than the original sensor network.
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(b) Config2:Acc+ Gyro (packed)
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Figure 7. Classification performance using Naive Bayesian fusion on the Opportunity dataset (rotational noise).
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Figure 8. Classification performance using Dempster-Shafer fusion on the Opportunity dataset (rotational noise).

Simulations using the Opportunity dataset show similar
results. Fig. 7 and 8 show the results for different config-
urations on this dataset applying Naive Bayes fusion and
Dempster-Shafer fusion, respectively. As before, for both
fusion techniques, Automatic removal of anomalous sensors
results in a more graceful degradation of performance when
compared to the original sensor network.

While the algorithm iterates for removing faulty channels
from the classifier fusion for each pattern, the output of the
fusion may change. Table I provides the average number of
iterations for each pattern for different configurations.

On average about one iteration is required for all config-
urations for small rotational noise. When the noise becomes
larger, the method performs around three iterations in aver-
age in order to detect the anomalous sensors.

V. CONCLUSION

We have proposed a method to automatically detect
anomalous channels in activity recognition networks. Upon

Table I
AVERAGE NUMBER OF ITERATIONS FOR DIFFERENT CONFIGURATIONS

WHEN THE NOISE TYPE IS ROTATION.

Config1 Config2 Config3
Rotation level ≤ 20◦ > 20◦ ≤ 20◦ > 20◦ ≤ 20◦ > 20◦

Car manu. 1.18 3.34 1.06 3.30 1.12 3.10
Opportunity 1.35 2.28 1.35 2.81 1.24 3.58

recognition, these channels can be removed from the fusion
process leading to a more robust recognition system. Simu-
lated results using real data for activity recognition scenarios
consistently show accurate recognition and graceful degra-
dation with respect to different types of noise. The proposed
method –tested on activity recognition problems– can also
be applied to other multi-sensory classification problems.

The proposed approach has the advantage that it considers
the relationship between classifiers (via fusion output) in-
stead of considering only the data or the feature distribution
of individual channels. In real situations, the characteristics
of the data provided by a given sensor may not change,
but its behavior with respect to the whole network may
change, e.g. a wearable on-body sensor may be moved
from one hand to the other; in this case the signal feature
distribution may appear the same but its contribution for
recognizing a given activity will drastically change with
respect to other, unchanged sensors. In addition, related work
on characterization of sensor behavior within a network
suggests that this is better achieved at the fusion level than
at the sensor levels [14].

The proposed method for detecting anomalies takes into
account the outcome of the classifier fusion process. There-
fore, it is more suited to be implemented at a centralized
node (otherwise the outcome of the fusion process shall
be sent back to each node increasing the communication



overhead). Centralized implementations on sensor networks
may send information back to anomalous sensors so that
they stop transmitting their samples in order to reduce the
power consumption.

It should be noticed that in the current implementation
we compute the thresholds using the correctly classified
samples on the training data. Although the use of all training
samples may lead to a better estimation of the variability
of the incoming data, this choice allows us to use only
the data that has been observed to accurately contribute
to good classification. Although, this may lead to false
detections (i.e. healthy sensors recognized as anomalous) no
difference was observed among the proposed method and the
No Removal condition when tested without noise, suggesting
that this effect was not significant.

In the current study the free parameters (i.e. the threshold
and distance upper bound) were empirically set. However,
more systematic ways can be used to estimate them such as
cross-validation techniques. Future lines of research we plan
to perform is the combination of the change detection with
adaptation techniques that allow to overcome the changes
in a supervised or unsupervised manner while keeping the
changed sensors within the recognition systems.
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G. Tröster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha,
J. Doppler, C. Holzmann, M. Kurz, G. Holl, R. Chavarriaga,
H. Sagha, H. Bayati, M. Creatura, and J. R. Millán, “Col-
lecting complex activity data sets in highly rich networked
sensor environments,” in Seventh International Conference on
Networked Sensing Systems, 2010.

[4] A. S. Willsky, “A survey of design methods for failure
detection in dynamic systems,” Automatica, vol. 12, no. 6,
pp. 601 – 611, 1976.

[5] R. Isermann, “Process fault detection based on modeling and
estimation methods–a survey,” Automatica, vol. 20, no. 4, pp.
387 – 404, 1984.

[6] P. M. Frank, “Fault diagnosis in dynamic systems using
analytical and knowledge-based redundancy—a survey and
some new results,” Automatica, vol. 26, no. 3, pp. 459–474,
1990.

[7] P. Smyth, “Hidden markov models for fault detection in
dynamic systems,” Pattern Recognition, vol. 27, no. 1, pp.
149 – 164, 1994.

[8] B. F. J. Manly and D. Mackenzie, “A cumulative sum type
of method for environmental monitoring,” Environmetrics,
vol. 11, no. 2, pp. 151–166, 2000.

[9] C. Alippi and M. Roveri, “An adaptive cusum-based test for
signal change detection,” in ISCAS. IEEE, 2006.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009.

[11] P. C. Mahalanobis, “On the generalised distance in
statistics,” in Proceedings National Institute of Science,
India, vol. 2, no. 1, April 1936, pp. 49–55. [Online].
Available: http://ir.isical.ac.in/dspace/handle/1/1268

[12] T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and
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