The transmittance spectrum of halftone prints on paper is predicted thanks to a model inspired by the Yule–Nielsen modified spectral Neugebauer model used for reflectance predictions. This model is well adapted for strongly scattering printing supports and applicable to recto–verso prints. Model parameters are obtained by a few transmittance measurements of calibration patches printed on one side of the paper. The model was verified with recto–verso specimens printed by inkjet with classical and custom inks, at different halftone frequencies and on various types of paper. Predictions are as accurate as those obtained with a previously developed reflectance and transmittance prediction model relying on the multiple reflections of light between the paper and the print–air interfaces. Optimal n values are smaller in transmission mode compared with the reflection model. This indicates a smaller amount of lateral light propagation in the transmission mode.