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Deep Thiopental Anesthesia Alters Steady-
State Glucose Homeostasis but Not the
Neurochemical Profile of Rat Cortex
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Barbiturates are regularly used as an anesthetic for ani-
mal experimentation and clinical procedures and are
frequently provided with solubilizing compounds, such
as ethanol and propylene glycol, which have been
reported to affect brain function and, in the case of
'"H NMR experiments, originate undesired resonances
in spectra affecting the quantification. As an alternative,
thiopental can be administrated without any solubilizing
agents. The aim of the study was to investigate the
effect of deep thiopental anesthesia on the neurochem-
ical profile consisting of 19 metabolites and on glucose
transport kinetics in vivo |n rat cortex compared with a-
chloralose using localized 'H NMR spectroscopy. Thio-
pental was devoid of effects on the neurochemical pro-
file, except for the elevated glucose at a given plasma
glucose level resulting from thiopental-induced depres-
sion of glucose consumption at isoelectrical condition.
Over the entire range of plasma glucose levels, steady-
state glucose concentrations were increased on aver-
age by 48% = 8%, implying that an effect of deep
thiopental anesthesia on the transport rate relative to
cerebral glucose consumption ratio was increased
by 47% =+ 8% compared with light «-chloralose-
anesthetized rats. We conclude that the thiopental-
induced isoelectrical condition in rat cortex signifi-
cantly affected glucose contents by depressing brain
metabolism, which remained substantial at iso-
electricity. © 2009 Wiley-Liss, Inc.
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Barbiturates are widely used as anesthetics and to
some extent are applied as protective agents, such as dur-
ing and after anoxic events (Yatsu et al., 1972; Steen
et al., 1978; Amakawa et al., 1996; Kobayashi et al.,
2007) or traumatic brain injuries (Huynh et al., 2009,
and references therein), which can be ascribed to their
function as central nervous system depressants, mainly by
binding y-aminobutyric acid type A (GABA,) receptors
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and possibly interacting with glutamate receptors (Mars-
zalec and Narahashi, 1993). Additionally, barbiturates
have been shown to depress energy metabolism by, e.g.,
inhibiting the oxidation of NADH in the respiratory
chain (Aldridge and Parker, 1960; Chance et al., 1963),
glucose transport at the blood—brain barrier (BBB; Has-
pel et al., 1999), and cerebral glucose utilization (Strang
and Bachelard, 1973; Sokoloff et al., 1977). Therefore,
investigation of the effect of barbiturates in vivo in ani-
mal models might potentially help in understanding their
particular pharmacological roles.

Magnetic resonance spectroscopy (MRS) is a
powerful investigational tool that has been widely
applied to study brain metabolism noninvasively (see,
e.g., de Graaf et al., 2003; Gruetter et al., 2003; Morris
and Bachelard, 2003; Jansen et al., 2006; Zhu et al.,
2009, and references therein). For instance, the effect of
barbiturates on tricarboxylic acid cycle flux; aspartate,
glutamate, and glutamine metabolism; and glucose trans-
port kinetics has been assessed via '>C MRS (Choi
et al.,, 2002). However, in that study, a relatively large
volume of interest containing a mixture of gray matter
and white matter was used. It is well established that
there are regional differences in the cerebral metabolic
rate of glucose, CMRy. (Hawkins et al., 1983). Recent
studies of glucose transport kinetics on humans suggested
slightly lower glucose content in gray than in white mat-
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ter (de Graaf et al., 2001). Consequently, the apparent
glucose transport kinetic, mainly the maximum glucose
transport rate (T,..) to CMR,. ratio in gray matter,
was found to be lower than that in white matter (de
Graaf et al., 2001). Study of metabolism over specific
brain regions, such as cortex, would eventually minimize
possible contamination from other brain regions.

Although most MR studies addressmg brain glu-
cose content have used °C MRS, '"H MRS has higher
sensitivity and has recently shown the capability of meas-
uring metabolites, including glucose (Glc), from a rela-
tive small volume in rodents (Tkac¢ et al., 2007). Fur-
thermore, a neurochemical profile consisting of more
than 18 metabolites can be measured (Pfeuffer et al.,
1999; Mlynarik et al., 2006; Tkac¢ et al., 2007). How-
ever, barbiturates such as pentobarbital available for clini-
cal purposes contain compounds such as ethanol and
propylene glycol, which are detectable in acquired 'H-
MR spectra (Iltis et al., 2008, and references therein). As
a consequence, additional efforts are required to mini-
mize the effects on quantification. In addition, the effect
of barbiturates may be differentially affected by the
aforementioned solubilizing agents. Ethanol and propyl-
ene glycol likely enter the brain and have been reported
to affect glucose transport and CMR. in rat cortex
(Singh et al.,, 1993; Handa et al., 2000) as well as os-
motic opening of the BBB (Rapoport et al., 1972;
Demey et al.,, 1988). The aim of the present study was
to investigate the effect of deep anesthesia with thiopen-
tal prepared in saline solution on glucose transport
kmetlcs and the neurochemical profile in rat cortex via
"H MR spectroscopy.

MATERIALS AND METHODS
Animal Preparation and Handling

All procedures involving animals were performed
according to the federal law and approved by the local ethics
committee. Eighteen male Sprague Dawley rats (260-350 g;
Charles River, France) were intubated under 2% isoflurane
(Attane; Minrad) anesthesia in O, gas and mechanically venti-
lated thereafter (MRI-1 ventilator; CWE Inc.). Immediately
after both femoral veins and one femoral artery had been can-
nulated, anesthesia of animals was switched from isoflurane to
i.v. infusion of either light a-chloralose (Acros Oraganics,
Geel, Belgium) or deep thiopental anesthesia (distributed by
Ospedalia AG, Hunenberg, Switzerland). To mimic very light
anesthesia and allow comparison with previous in vivo MR
studies (Choi et al., 2001), an identical protocol was used in
eight rats as follows: a 40 mg/kg initial bolus followed by
~27 mg/kg/hr continuous rate infusion. Deep thiopental
anesthesia was achieved in 10 animals by administering a
50 mg/kg bolus followed immediately by a continuous infu-
sion at 7080 mg/kg/hr, which induced isoelectricity (Mather
et al.,, 2000; Michenfelder, 2002), and this was confirmed in
three animals on the bench by electroencephalographic meas-
urements (data not shown).

Rats were stereotaxically fixed with two ear pieces and
a bite bar in a home-made holder and placed at the isocenter

of the magnet. Throughout the entire experiment, the animal
was monitored for breathing, temperature, and blood pressure
(~90-150 mmHg) with an MR-compatible monitor system
(model 1025; SA Instruments, Stony Brook, NY), and rectal
temperature was maintained at 38.0°C by circulating warm
water. Blood gases were maintained within normal physiologi-
cal conditions (pH ~7.4, PaCO, ~40 mmHg) throughout
the studies based on the concomitant arterial blood measure-
ment using a nearby analyzer (AVL Compact 3; Roche Diag-
nostic AG, Basel, Switzerland). Once pH or PaCO, fell out
of normal ranges, such as 7.2-7.5 or 35—45 mmHg, respec-
tively, the acquired data were excluded for further analysis.
To minimize the residual effects of isoflurane anesthetic from
the preparation, all quantitative data were acquired 1 hr after
switching anesthesia.

'H MRS Methods

All MR experiments were performed in a 9.4-T/31-cm
horizontal magnet (Magnex Scientific, United Kingdom). The
magnet was equipped with an actively shielded 12-cm-diame-
ter gradient (400 mT/m in 120 psec; Magnex Scientific). The
magnet was interfaced to a VNMR]J console (Varian Inc.,
Palo Alto, CA). Eddy currents were minimized to be less than
0.01% by time-dependent quantitative eddy current field
mapping (Terpstra et al., 1998). A home-made quadrature
'"H radiofrequency (RF) coil with two geometrically
decoupled 16-mm (inner diameter) loops resonating at 400 MHz
was used as RF transceiver (Adriany and Gruetter, 1997).

Multislice fast spin echo images with T,-weigthed pa-
rameters (TE/TR = 50/5,000 msec) were acquired as ana-
tomical images to locate the volume of interest (VOI) of 30—
37 pl in the cerebral cortex. After automatic adjustment of
field inhomogeneities (Gruetter and Tkac, 2000), the resulting
water line width was 13-17 Hz. Localized 'H MRS was per-
formed with SPECIAL (Mlynarik et al., 2006) with echo time
of 2.8 msec and repetition time of 4 sec, and 160-320 scans
were averaged.

Quantification of '"H-MR Spectra

In vivo 'H MR spectra were processed as previously
described (Tkac¢ et al., 2007), frequency drift corrected,
summed, and eddy-current compensated using the water sig-
nal from the same VOI. Thereafter, absolute quantification
was obtained by using LCModel (Provencher, 1993), assum-
ing 80% brain water content (Tkac¢ et al., 2003). In this study,
all metabolites except macromolecules (Mac) in the basic set
of LCModel were simulated, i.e., alanine (Ala), ascorbate
(Asc), aspartate (Asp), creatine (Cr), myo-inositol (myo-Ins),
y-aminobutryric acid (GABA), Glc, glutamine (Gln), gluta-
mate (Glu), glycine (Gly), glycerophoshocholine (GPC), glu-
tathione (GSH), lactate (Lac), N-acetyl-aspartate (NAA), N-
acetyl-aspartyl-glutamate (NAAG), phosphocholine (PCho),
phosphocreatine (PCr), phosphorylethanolamine (PE), scyllo-
inositol (Scyllo), and taurine (tau). Most of the metabolites
were quantified with Cramer-Rao lower bounds (CRLB)
<35%, which corresponds to errors in metabolite concentra-
tions of less than 0.5 pmol/g. Measurements with CRLB
>50% were considered not detectable, such as Scyllo. Because
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GPC and PCho were not well-separated at 9.4 T (Tkac et al,,
1999), the sum of GPC and PCho was reported. Additionally,
summed metabolites including PCr + Cr, NAA + NAAG,
and Glu + GlIn, were evaluated for further comparison with
previous studies.

Determination of Glucose Transport Kinetics

To evaluate glucose transport kinetics from the relation-
ship between brain and plasma glucose as in previous studies
(Gruetter et al., 1998a; Lei and Gruetter, 2006), cortical glu-
cose content was measured by localized 'H MRS when
steady-state glycemia was maintained for at least 20 min by
adjusting the infusion rate of 20% (w/v) D-glucose (Sigma-
Aldrich, Switzerland) solution, based on the concomitant
measured plasma glucose using a nearby glucose analyzer
(GM7 Micro-Stat; Analox Instruments, United Kingdom). To
increase the precision of cortex glucose measurement at
plasma glucose below 10 mM, spectra were acquired with an
increased number of scans of 320.

It has been well established that apparent kinetic param-
eters of glucose transport at BBB can be estimated from the
relationship between brain glucose and plasma glucose at
steady state (Lund-Andersen, 1979; Gruetter et al., 1992,
1998b; Barros et al,, 2007). To compare with previous in
vivo studies, the reversible Michaelis-Menten model was used
to obtain kinetic parameters using the following equation
(Gruetter et al., 1998b):

(ene —

o ) X Gplasma - K
Geortex = VaX s (

Tinax
oMRy, T 1)

; (1)

where G represents the glucose concentrations in cortex
(umol/g) or in plasma (mM), V4 = 0.77 ml/g is the physical
distribution space of water in the cortex, T, is the apparent
maximum transport rate, CMR is the cerebral glucose met-
abolic rate, and K| is the apparent Michaelis-Menten constant.
Fitting of Equation 1 to the measured Ggypey as a function of
Gplasma Was performed in GraphPad Prism 5 (GraphPad Soft-
ware Inc., San Diego, CA).

Statistical Analysis

All data are presented as mean * SEM unless otherwise
stated. The experimental errors of calculated values, such as
change in the apparent transport ratio T,,,./CMRg. under
deep thiopental anesthesia compared with that under light a-
chloralose anesthesia was evaluated based on the law of propa-
gation of errors.

The neurochemical profile measured under both anes-
thetic regimes was compared by unpaired Student’s f-test. To
correct for multiple comparisons in the neurochemical pro-
files, the threshold for significant difference was restricted to
P = 0.01, whereas P = 0.0027 was the threshold after
Bonferroni correction for comparing the 19 constituents of
the neurochemical profile. The resulting parameters of glucose
transport, i.e., Ty /CMRg and K, obtained from of the fit
of Equation 1, were compared between anesthetic regimes
using the paradigm for comparing models, followed by the
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F test, provided in GraphPad Prism 5. The difference was
considered different at P = 0.05.

RESULTS

'"H MR Spectroscopy of Cortex

The adjustment of field inhomogeneities resulted
in excellent metabolite line widths of 9 = 1 Hz, and
water was noticeably and con51stently suppressed below
the level of NAA. Localized 'H spectra with signal-to-
noise ratios of 21 = 3 and 31 * 2 were acquired under
a-chloralose and thiopental anesthesia, respectively.
Consequently, LCModel analysis of such data allowed
analyzing 21 individual metabolites (Fig. 1).

Spectra acquired at the two different anesthetic
regimes did not exhibit apparent diftferences, as shown in
Figure 2. Note that, at a similar glycemic level of ~15
mM, the Glc resonance at 5.25 ppm was clearly visible
under both anesthesia conditions (Fig. 2B,C) and was
higher with deep thiopental anesthesia (Fig. 2C). Sub-
tracting the spectrum acquired under a-chloralose (Fig.
2B) from the spectrum obtained under deep thiopental
(Fig. 2C) resulted in residuals (Fig. 2D) most of which
are explained by difference in glucose content compared
with the glucose pattern in the range of 3—4.2 ppm (Fig.
2E), which is overlapped by other metabolites in Figures
1 and 2B,C.

Neurochemical Profiles of Cortex

LCModel quantification provided the neurochemi-
cal profiles consisting of 19 metabolites (Fig. 3). To
assess directly the effect of deep thiopental anesthesia on
neurochemical profile, the measurements from the two
anesthetic groups were compared at similar plasma glu-
cose levels, i.e., when plasma glucose was between 10
and 15 mM. The neurochemical profiles were not sig-
nificantly different except for cortical Glc content with
P = 0.0024 (Fig. 3), as judged from both the restricted
threshold and the threshold with Bonferroni correction
(see Materials and Methods). Further two-way ANOVA
analysis in categories of both anesthetic regimes (o-
chloralose vs. thiopental) and plasma glucose on the
measurements grouped into respective plasma glucose
ranges of 5—10 [8.2 £ 0.8(4) vs. 7.6 = 0.9(25)], 1020
[16.3 £ 0.7(7) vs. 15.4 = 0.6(12)], and 20-30 [24.4 =
1.0(6) vs. 23.2 £ 0.8(4)] mM showed a significant
increase in cortical glucose concentration with thiopental
anesthesia, with P < 0.01 and P < 0.001, respectively.

Glucose Transport Kinetics in Cortex

When plotting tissue glucose as a function of
plasma glucose concentration, a linear relationship was
observed over the entire range of plasma glucose meas-
ured with both anesthetic regimes (Fig. 4). In addition,
cortical glucose under deep thiopental anesthesia (trian-
gles in Fig. 4) was clearly higher than glucose measured
under o-chloralose anesthesia (circles in Figure 4).
When averaged at three different plasma glucose ranges,

e., 5-10, 10-20, and 20-30 mM, cortical glucose was
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Fig. 1. Typical example of LCModel analysis of one localized spec-
trum at 9.4 T. The top trace is the resulting spectrum fit followed by
the fit residual and the 21 individual components. Ala, alanine; Asc,
ascorbate; Asp, aspartate; Cr, creatine; myo-Ins, myo-inositol;
GABA, vy-aminobutryric acid; Glc, glucose; Gln, glutamine; Glu,
glutamate; Gly, glycine; GPC, glycerophosphocholine; GSH, gluta-
thione; Lac, lactate; Mac, macromolecule; NAA, N-acetyl-aspartate,
NAAG, N-acetyl-aspartyl-glutamate; PCho, phosphocholine; PCr,
phosphocreatine; PE, phosphorylethanolamine; Scyllo, scyllo-inositol;
Tau, taurine.

increased overall by 48% = 8%. Fitting the data with
Equation 1 resulted in an apparent maximum transport
rate, T, /CMRg, of 2.8 * 0.2 and an apparent
Michaelis-Menten constant, K, of 2.8 = 1.1 mM under
deep thiopental anesthesia and T,,,./CMRg. of 1.9 =
0.1 and K; of 2.5 = 1.2 mM under light a-chloralose
anesthesia. Between the two anesthetic regimes, T,/
CMR. was found to be different (P < 0.0001, F =
19.41) but not K, (P = 0.86, F = 0.03). Note that,
even under isoelectrical conditions, cortex glucose con-
tent was significantly lower than the corresponding
plasma glucose concentration.

DISCUSSION

The present study shows for the first time that
deep thiopental anesthesia has minimal effect on the

(A)

(B)

()
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H_.—" "‘«_‘-
’\JJ\/VV\” in vivo Glc difference

(E)

J\M LCMadel Glc component

(as Figure 1)

Fig. 2. Typical "H MR spectra were acquired in one of each anesthe-
tized animal when plasma glucose was ~15 mM under both light
a~chloralose (B) and deep thiopental (C) from cortex, indicated as in
the MR anatomical image (A; boxed area). The resonance of glucose
at 5.25 ppm was visible in both spectra and is indicated with “Glc¢”
and dotted lines. For the difference of spectra B and C, an identical
line width of total creatine (PCr + Cr) was achieved by applying
Gaussian apodization (gf = 0.18 sec) and line broadening (8 Hz for the
spectrum in B and 5 Hz for that in C). D is the direct result of
subtracting the spectrum in B from that in C with no further process-
ing. The difference (D) is apparently discriminated mainly by glucose
signals, as illustrated in E, in which the selected region from D (dashed
lines) was amplified (top trace in E), followed by the corresponding
Glc fit component (bottom trace in E, as in Fig. 1; see Materials and
Methods). Cr, creatine; Glc, glucose; Glu, glutamate; Mac, macromol-
ecule; NAA, N-acetyl-aspartate, PCr, phosphocreatine.

neurochemical profile but substantially increases brain
glucose content in rat cortex as measured in vivo by
localized "H MRS. The neurochemical profile measured
under light a-chloralose in the present study (Fig. 3)

Journal of Neuroscience Research
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Fig. 3. Neurochemical profile of rat cortex under either light o-
chloralose (~27 mg/kg/hr, open bars) or deep thiopental anesthesia
(~80 mg/kg/hr, solid bars) at plasma glucose concentrations ranging
from 10 to 15 mM (11.8 £ 0.7 and 12.1 = 1.8 mM of plasma glu-
cose for a-chloralose and thiopental anesthesia groups, respectively).
Error bars represent SEM. *P = 0.0024 by unpaired two-tailed Stu-
dent’s t-test. In each group, six spectra were selected based on the
criteria described in Materials and Methods. Ala, alanine; Asc, ascor-
bate; Asp, aspartate; Cr, creatine; GABA, y-aminobutryric acid; Glc,
glucose; Gln, glutamine; Glu, glutamate; Gly, glycine; GPC, glycero-
phosphocholine; GSH, glutathione; myo-Ins, myo-inositol; Lac,
lactate; Mac, macromolecule; NAA, N-acetyl-aspartate, NAAG,
N-acetyl-aspartyl-glutamate; PCho, phosphocholine; PCr, phospho-
creatine; PE, phosphorylethanolamine; Tau, taurine.

exhibits similar characteristics of cortical tissue, such as
Asp, myo-Ins, NAA, and Tau concentrations nearly
identical to those from the same strains (Xu et al.,
2005). In addition, the measured neurochemical profile
under deep thiopental anesthesia extends previous meas-
urements of concentrations of NAA, PCr, Cr, and Lac
(Michenfelder, 2002; Iltis et al., 2008) to a significantly
larger number of metabolites, such as total choline (GPC
+ PCho), Ala, Asc, Gln, Glu, GSH, Gly, PE, and Tau.
In particular, the unchanged Gln and Glu concentrations
in cortex over a wide range of plasma glucose levels sug-
gest a tight regulation of neurotransmitter homeostasis
when electrical activity is chemically depressed. The
impairment of astrocyte glutamate update observed in
vitro (Swanson and Seid, 1998) may be counteracted by
reduced glutamate efflux (Pastuszko et al., 1984; Qu
et al., 1999). This is in contrast to other isoelectrical
conditions, such as hibernation or hypoglycemia, in
which substantial decreases in total Glu + GIn have
been reported (Henry et al., 2007; Sutherland et al.,
2008). This suggests that the control of neurotransmitter
homeostasis depends not only on electrical activity but
also on the mechanism by which it is altered.

In contrast to all the aforementioned metabolites,
cortical glucose content at a given steady-state plasma
glucose concentration was increased under deep thiopen-
tal anesthesia compared with that under light o-chlora-
lose anesthesia (Figs. 2, 3). It has been well established
that steady-state glucose content in brain reflects the
capacity of the BBB to transport glucose relative to glu-
cose consumption, expressed by the ratio T,/ CMR g
(de Graaf et al., 2001; Choi et al., 2002; Lei and Gruet-
ter, 2006). It is of interest to note that the linear rela-
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Fig. 4. Cortex glucose contents as a function of plasma glucose con-
centrations at steady state under a-chloralose (circles) and deep thio-
pental (triangles) anesthesia. The results of the fit of Equation 1 are
shown as the dashed line and the solid line for a-chloralose and deep
thiopental anesthesia, respectively.

tionship between cortex and plasma glucose from 4 mM
up to 35 mM (Fig. 4) is a characteristic of the reversible
Michaelis-Menten kinetics model (Gruetter et al,
1998b) as well as the gliovascular glucose transport
model (Barros et al., 2007), which has been observed in
a number of studies across species or under different
states of electrical activities (Gruetter et al., 1998b; Choi
et al., 2001, 2002; de Graaf et al., 2001; Lei and Gruet-
ter, 2006). The observed elevated linear relationship
under deep thiopental anesthesia (Fig. 4) mostly reflects
changes in T,,,./CMRy. regardless of the specific ki-
netic model used. Conversely, an increase of T,/
CMRy. by 47% * 8% would explain the increase of
glucose contents observed in the present study. Addi-
tionally, the resulting apparent Michaelis-Menten con-
stants, K, with both anesthetic regimes did not present
any significant difference and was nearly identical to pre-
viously reported values for rodents (Gruetter et al.,
1998b; Choi et al., 2001).

When assuming that deep thiopental anesthesia
solely affects CMR g, the 47% increase of T,/ CMR
amounts to a 32% reduction in CMRy, which is
slightly lower than the previously reported 45% reduc-
tion in cortex under the same condition (Wechsler
et al., 1950; Sokoloff et al., 1977). The extent to which
minor reductions in T,,,. on the order of 20% might
have occurred in vivo, as has been reported in vitro
(Haspel et al., 1999), remains to be determined. Regard-
less of possible alterations in T, the fact that brain
glucose content was clearly increased with deep thiopen-
tal anesthesia (Figs. 2—4) implies that decreases in trans-
port capacity were smaller than the decreases in CMR,
insofar as the steady-state glucose content is a sensitive
indicator of T,,,./CMRy. (Choi et al., 2002; Lei and
Gruetter, 2006; Barros et al., 2007).

Although we observed a significant increase in
brain glucose content, a substantial glucose concentration
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gradient across the BBB was maintained at isoelectricity,
which implies the presence of significant glucose metab-
olism at isoelectricity. It is of interest to note that the
whole-brain glucose concentration increases under pen-
tobarbital anesthesia (Choi et al., 2002) were nearly two-
fold higher than the cortical glucose increase measured
in the current study (Fig. 4). At present, we cannot pre-
clude that this difference in brain glucose increase
reflects either a regional effect of pentobarbital or a
stronger effect of pentobarbital per se (Haspel et al,
1999) or is due to regional difference in the relative con-
tribution of the housekeeping energy requirements
(Attwell and Laughlin, 2001; Barros et al., 2005). Alter-
natively, propylene glycol has been shown to affect BBB
transport and permeability in a concentration-dependent
fashion (Rapoport et al., 1972; Sood et al., 2007), so the
extent to which addition of propylene glycol as well as
ethanol, which itself has been reported to affect the BBB
permeability (Rapoport et al., 1972; Demey et al.,
1988), can compound the effect of pentobarbital of brain
glucose content remains to be determined. We conclude
that deep thiopental anesthesia does not affect the neuro-
chemical profile in rat cortex but leads to increased brain
glucose content, implying a reduced glucose metabolic
rate that remains substantial at isoelectricial conditions
along with possible inhibition of glucose transport.
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