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Three-field simulations of interchange turbulence are presented for a simple magnetized toroidal
plasma with a vertical magnetic field. The simulations show the presence of two turbulent regimes
characterized by low (L) and high (H) confinement properties. We evaluate analytically the properties of
the L regime, obtaining expressions for the plasma gradients and for the density and heat fluxes that agree
well with the simulations. By increasing the plasma source strength or reducing the vertical magnetic
field, a transition to a H regime occurs, in which a strong velocity shear limits the perpendicular transport
with respect to the L scaling and the plasma profiles steepen. The analytic estimate of the transition

condition is in accord with the simulations.
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We consider plasma turbulence in a simple magnetized
torus (SMT) in which a vertical magnetic field B,,, super-
posed on a toroidal field B, creates helicoidal field lines
with both ends terminating on the torus vessel. As in the
scrape-off layer (SOL) of magnetic fusion devices, the
turbulence driven by magnetic curvature and plasma gra-
dients causes the plasma to diffuse in the radial direction,
while at the same time it is progressively lost due to flows
along the field lines. The SMT, employed since the 1980s
in the context of tokamak preionization [1], is used for
basic plasma physics studies [2,3]. The configuration fa-
cilitates the experimental study of low frequency instabil-
ities and the related turbulence and cross-field transport, as
it allows more detailed diagnostics and wider parameter
scans than are usually possible in major confinement de-
vices. Moreover, in addition to its intrinsic interest, the
SMT’s relative simplicity provides a useful test bed in
which to explore the physics that presumably underlies
transport in the SOL of more complex geometries.

In the present Letter, we describe three-field simulations
of plasma turbulence in the SMT configuration. For con-
creteness we focus on the typical parameters of the toroidal
plasma experiment (TORPEX) [3], confining an essen-
tially electrostatic, B <1, plasma with T, < T,.
Furthermore, we restrict our attention to the cases in which
the interchange-driven transport dominates over drift wave
transport, i.e., Dp/D; <1, where D; and D; are the
anomalous diffusion coefficients due to drift waves and
the interchange instability, respectively. According to mix-
ing length estimates Dy, ~ csp%/L,,, where L, is the pres-
sure scale length, ¢, =/T,/m;, p, = c¢,/Q;, and Q;=
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poloidal plane, i.., by the distance A =2#RB,/B, =
L,/N (N is the number of turns of a field line and L, the
SMT height; assuming a high aspect ratio, we take A
constant). Thus, interchange transport is expected to domi-
nate over drift waves if kApf[R/(ZLf,)]l/2 <1.

From drift-reduced Braginskii equations [4], we derive
simple two-dimensional fluid equations. We assume that
B, < By, so that B>~ ByR/r, and note that magnetic
curvature is constant along a field line and equal to r. We
denote the radial direction with x, the parallel direction
with z, and the direction perpendicular to x and z with y.
The Braginskii equations are integrated in the parallel
direction to evolve the line-integrated density n(x,y) =
[ N(x,y,2)dz/L,, potential ¢(x,y) = [ P(x,y, z)dz/L,,
and temperature T,(x,y) = [T ,(x,y,2)dz/L., L.=
2wNR being the magnetic field line length. Refer-
ence [5] shows that the ion parallel flow at the sheath
edge can be approximated as I'j; = nc,/2, and the elec-
tron flow as I'y|, = nc,exp(—e¢/T, + A)/2, with A =
logm , where the presheath drops (mainly local-
ized in a small region next to the sheath) in the evaluation
of the z integrals defining n and ¢ are neglected. With the
Boussinesq approximation for the polarization drift [6], the
fluid equations are

2 oT 0 d
on _ % n |+ 25 (ne Te—n ¢
at By eRBy\ dy dy y

+ DV?n — % exp(A —e/T,) + S, (1

2
eBy/(m;c). Later we show that D; ~ (c,/ky)\2L,/R, V'S _ %, V2 | + 2By (T, 9n + 0T, + vVie
. . . v ot By cm;R\ n dy dy
where R is the major radius of the torus and k, = 27/A o2
the minimum perpendicular wavelength of the interchange 4 TCMiRt ey A — T )
instability, constrained by the return of the field lines in the eR [ exp( ed /T @
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where S, and St represent particle and heat sources, o =
R/L.=A/Q2wL,), and [a,b]= d,ad,b — d,adb. A
similar system of equations has been used in Ref. [7]. We
denote equilibrium (i.e., time-averaged) quantities with the
overbar and fluctuations with a tilde (e.g., n = i1 + 7i).

Relative to the ideal growth rate, the linear growth vy
associated with Egs. (1)—(3) is reduced at low k, because
of sheath effects and at high k, because of diffusion.
Herein, however, we focus on systems in which sheath
effects do not affect strongly the linear properties of (1)—
), ie., kK3p? = o[L,/(2R)]/2. Thus, the longest wave-
length mode allowed in the system corresponds to the
fastest growing instability, with a growth rate comparable
to the interchange growth rate y ~ +/2c¢,/ JRL, = vo. The
nonlinear equations (1)—(3) are solved with a numerical
code developed from the ESEL code [8] that implements the
algorithm described in Ref. [9]. We consider a rectangular
domain with extension L, and A along x and y, respec-
tively. Dirichelet boundary conditions are imposed at x =
0, L,, and, because of the flute character of the interchange
mode, periodic boundary conditions are assumed along y.
The simulations are started with small amplitude random
noise in n, ¢, and T,. The sources then introduce plasma
and heat, increasing the plasma pressure and triggering the
interchange instability. After a transient phase, a quasista-
tionary state is reached in which the plasma, generated by
the source and transported by the interchange dynamics in
the radial direction, is eventually removed from the system
by parallel losses. The results described here focus on this
quasistationary state and its convergence has been checked
by following simulations up to #y, = 4000.

We normalize n and T, to reference values ng and T,
time 7 to R/cyy (cyo = +/Too/m;), and lengths to p,y =
c0/Q;. We use R =200, L, =64, L, =200, D=1,
v=0.5, k, =1, and A = 3. The sources are defined as
S, =Sr=So{Sunexp[—(x— xUH)Z/)\[ZJH] + Spcexp[—(x —
XEC)Z/)\%C]} (Sun = 1.5, Sgc = 1, Ayp =5, Agc = 2.5,
xyg = 35, xgc = 15), in order to mimic the upper hybrid
(UH) and electron cyclotron (EC) sources in TORPEX
[10]. The simulation results are insensitive to the details
of the plasma source. We perform a set of simulations in
which we vary o and S, (o = 0.03, 0.04, 0.05, 0.07, 0.08,
So = 0.01,0.025, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8).

The simulations show the presence of two turbulent
regimes. Typical snapshots of ¢ from a simulation in the
first regime, denoted as the low-confinement mode (L
mode), are shown in the upper panels in Fig. 1. In this
regime, background shear flow effects are negligible, and
the interchange instability displays an intermittent charac-
ter, with the emission of plasma blobs that transfer plasma

[1.71exp(A —ep/T,) —0.71]

from the source region to the low-field region while the
plasma is simultaneously drained by parallel absorption.
The profiles of 7, T,, and ¢ show an exponential decay on
the low-field side where the interchange dynamics is active
(i.e., for x > xg, x5 denoting the right-most peak in density
and temperature). By increasing S, or reducing o, a new
turbulent regime is reached, denoted as the H mode, in
which a strong E X B shear flow appears. This flow limits
the perpendicular diffusion coefficient, thereby causing a
reduction of the flux with respect to the L-mode estimate
and steeper plasma profiles. The lower panels in Fig. 1
show typical snapshots and profiles in the H-mode regime.

We first consider turbulence in the L-mode regime. Let
us estimate the y-averaged cross-field particle transport

r,= R(ﬁay@y. We first note that in the quasistationary
state, since L, <R and o <1, the dominant terms in
Eq. (1) lead to 9,n + R[¢, n] = 0. Since in the L mode
the shear flow plays a negligible role, one has ay¢3 ~
voii/ (R, 1), which is well satisfied by simulation data.
Turbulence saturation occurs when the instability drive is
removed from the system, i.e., when .7 ~ d,7i. By fol-
lowing standard local theory methods (outlined, e.g., in
Ref. [11] for drift waves), it is possible to estimate the
typical radial extension of the interchange mode in the
main regime of interest here: kL, > 1. The leading order
(i.e., ideal MHD interchange) terms in the system (1)—(3)
reduce to 92¢ — k2[1 + G(x)]¢ =0, where G(x) =
—2Rd,p,./(ny?). By Taylor-expanding G(x)~G,+
G{l(x — x¢)?/2, with x, the point of instantaneous steepest
pressure gradient, Gy = G(xo), and G = 92G(x)|,—,, ~
2RT,/(y*L3), one is lead to a harmonic oscillator equation
for ¢. In the limit kyL, > 1,onehas y = 70|x=x0 and ¢ o
exp[—a(x — x)?/2], with a = k,(IG}|/2)'* ~k,/L,.
The typical radial extension of the interchange mode is

20 0.8
0
20 0.6
0 4=
G —
0 = r
20 -_ -
. ol e

0
75 150 0 50 100 150
X

X

20
50

0
20
0
20
0
20
0

0 50 100 150
x

FIG. 1 (color online). ¢ (solid black curve), T, (dashed-dotted
black curve), and 7 (dashed red curve) and typical ¢ snapshots
for Sy = 0.01 (upper panels) and S, = 8 (lower panels). o = 0.05.
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dominant mode k, =k, one estimates 7 ~7i(ky/L )", dx dx 3

which finally gives i ~ (L ,/ka)"/?/L, (comparison with
simulation data shows that the latter overestimates the
density fluctuations by a factor of =~2). The evaluation of
i and ayqﬁ leads to estimates of the radial density flux in
the L-mode regime as I', ; = ﬁ(ZRLpTe)l/z/(LnkA) and to
an expression for the temperature flux I'z; =
(2RL,T3)"2/(Lrky,) [or equivalently, a diffusion coeffi-
cient D; = (2RL,T,)"/?/ks]. We note that the Kelvin-
Helmholtz (KH) instability could provide an alternative
saturation mechanism, but numerical tests (discussed later)
show that KH instability does not play a significant role in
the L mode. In Fig. 2, we compare the values of I',, and I';
from the simulations with the L-mode estimates, both
quantities being evaluated at x = xg, with L,, (L) deduced
from the radial distance between n,,, and n, /2 (T max
and T, 4/2). Two sets of simulations are shown: In the
first set, corresponding to all values of S for the highest o
and small values of S, for small o, both I',, and I'; follow
the predicted scaling laws. These simulations belong to the
L-mode regime. In the second set, i.e., small o and high S,
the transport level is smaller than the predictions.
Figure 3(a) shows that the discrepancies with the L-mode
predictions are related to shear flow stabilization. The H
factor, defined as H, =T, /I', and Hy =1y, /I'y, is
plotted as a function of y,/vg g, Where vy, is evaluated
at x = xg, while v g = 92¢ denotes the maximum shear
flow on the low-field side (H,, and Hy vary by ~15% along
x). For vy /vy > 0.7 the simulations fall in the L-mode
regime, where the previously obtained scaling is obeyed:
I''=al',; and I't = al'y;, with @ = 0.3 = 0.03. The
confinement improves when the shear flow increases: We
define the L-H transition to occur when I', = oI, ; /3 and
Iy = al';; /3; this takes place for yo/vgp = 0.5 (verti-
cal purple lines in Fig. 3).

We now show that, in the L-mode regime, L, and Ly
depend only on the geometric parameters of the SMT. As
illustrated in Fig. 1, the potential is constrained to follow
¢ = AT, due to the exponential dependence of A — ¢ /T,
in Egs. (1)-(3). By integrating Eqs. (1) and (2) along y,
time averaging, and neglecting diffusivity, one obtains

H-mode region

10° 10 10° 10
rn.L 1HT,L

H-mode region

FIG. 2 (color online). I', and I'y vs I',; and I'y;, for o =
0.03 (red stars), o = 0.04 (black circles), o = 0.05 (blue
crosses), o = 0.07 (magenta X), and o = 0.08 (green squares).
The shaded area is the H-mode region.

Within the L regime, Eqs. (4) admit solutions of
the form 7 = ny, expl(x —x5)/L,,] and T,=
T, max €xpl(x — x5)/Ly 1] on the low-field (right) side of
the source free region, i.e., for x > xg (where xg = 36 in
the present simulations). By substituting the expression
of I, and I';; for I', and I'; in Eqgs. (4), we obtain
2L, /Ly [1/ Loy +1/@L1 )] = /(LR and
a\2L, /L%, =4/OL,R), thus finding L, =
0.58(L,vR)*? and Ly, =~0.74(L,~/R)*?, which, as
claimed, depend only on the geometry of the machine. In
Fig. 3(b), we plot L1 /Ly Vs ¥o/vgxp: As expected, in
the case of negligible shear flow, L, and L; do not depend
on Sy, o, and x (within 15% oscillation); in the H mode,
the reduction of the diffusion coefficient with respect to D,
leads to smaller L, and L.

We now turn to the L-H transition threshold. Insight
into the nature of the velocity shear is given by the

time-averaged and y-integrated Eq. (2), Ro¥(7,,), =

o(JT,[1 — eA=¢/TI]) | where 7,, = 0,3, is the xy
component of the turbulence-induced Reynold stress (RS),
having neglected »V*¢ and approximated (T, logn), =
0. Since deviations of the potential from ¢ = AT, are due
to the presence of the RS, shear flow can be related either to
a sheared temperature profile (STP), i.e., 92¢p ~ A92T,, or
to RS-induced shear. In both cases, the amplitude of the
shear flow is limited by the KH instability. Reference [12]
evaluates the KH growth rate in the case of a Bickley jet
and shows that KH is stable if kL4 > ¢ ({=2).
Analogously, in our system, the KH instability imposes
kyL 4 > 0, where the most stringent criterion for stability is
obtained for k, = ky, i.e., Ly > 8A/(27). In most of our
simulations, shear flow tends to reach the maximum value
allowed by the KH instability, i.e., L, = §A/(2), so that,
in general, Uy p = X Pma /A%, with x=2.5 (6 =2/ /Y).

In the L regime, one observes that 92¢p > A92T, and
thus that shear flow is mostly related to the RS term.
However, L-mode simulations are not significantly af-
fected when the y-averaged RS term is artificially re-
moved, thus showing that shear flow plays no significant
role in this regime. When approaching the H mode, the
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FIG. 3 (color online). Hy and Ly;/Ly vs yo/Vgyg; same
notation as Fig. 2. The plots of H, and L,;/L, (not shown)
reveal essentially identical dependences.
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FIG. 4 (color online). L-H threshold from Eq. (5) and simu-
lations falling in the H-mode (red crosses) and L-mode (green
circles) regimes.

shear flow amplitude increases, and the relative importance
of the contribution due to the STP is enhanced. At the L-H
threshold, one then observes a comparable contribution to
the shear flow from the RS and the STP term, and thus
92¢ ~ AT, ie., Ly ~ Ly.

Assuming that L, ~ Ly and ¢, ~ AT, 1 leads to
Yo/ Vixp = 28%2/(YXAJRT, 1) at the L-H threshold.
The value T, ,,,x can be deduced by integrating Eq. (4)
along the x direction across the entire domain. An expo-
nential dependence of the temperature is assumed for x >
Xxg and, to take into account the diffusion-dominated dy-
namics for x < xg, a shape factor ¢ is introduced such that

IS T3 dx = fTS,/n%axxS (€ =0.5). One concludes that
T = [ Spdx/[o(2€xg/3 + 4L7/9)]. The L-H transi-
tion occurs for yo/vgyp = 0.5, which leads to

QA0 (4/9N + 2éxg/3\1/3 05
XA\/ﬁ( 27L, [ Srdx > T

Equation (5) can be used to find the relation between S|,
and A at the L-H threshold. With the simulation parame-
ters, the threshold condition can be written as Sy = 8.54 X
1078A"/2(1 + 0.039A). In Fig. 4, the L-H threshold pre-
diction shows good agreement with the simulations.

Deep into the H mode, the relative contribution to the
shear flow from the RS and the STP remain comparable. In
this regime the RS is essential. Contrary to the L-mode
simulations, if the y-averaged RS term is artificially re-
moved from the model, the H-mode simulations are deeply
affected. One observes the development of radial streamers
that continuously transport plasma from the source region
to the right boundary of the domain, degrading the perpen-
dicular confinement. This is related to the fact that the RS
is essential for the formation of sheared flows and the
breakup of radial streamers via, for example, the KH
instability. We also point out that, in the H mode, the
regions within the barrier in which the temperature profile
flattens, 9,7, =0, are centered on the location where
velocity shear is minimum, 92¢ = 0, i.e., where the inter-
change mode is not stabilized.

We finally note that the energy confinement time can be
estimated as 7(Ly) = [T.dx/ [Sydx = (Ly + éxg)/

(&)

[o( [ Spdx)'3(2éxg/3 + 4L1/9)*3], with the L-scaling
prediction being 7;, = 7(Lz,). If one attempts to evaluate
the gain in the confinement time, one observes that 7/7; =<
1 for Ly/Ly; = 1. Contrary to the tokamak case, the
H-mode confinement time thus decreases with respect to
the L scaling. This results from the fact that in a SMT all
field lines are subject to higher parallel sheath losses as 7,
increases in the H mode.

The intermittent turbulence recently reported in
TORPEX [13] corresponds, according to the theory out-
lined here, to the L-mode regime. The estimate of Dy, /D,
shows that the drift wave instability becomes more impor-
tant for small B, or steep plasma profiles, which are the
conditions typical for the H regime to appear. Fully three-
dimensional simulations are required to study the effect of
the drift wave dynamics on the system and how it is
impacted by the sheared flows discussed here. Strong
similarities exist between the tokamak and the SMT L-H
transition. In fact, as in the tokamak, the H mode is driven
by the increase of the input power and is characterized by
strong shear flows leading to a steeper density and tem-
perature gradients, higher peak density and temperature,
and reduced radial diffusion coefficients. However, con-
trary to the tokamak case, the confinement time is reduced
in the SMT, as a result of increased sheath losses.
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