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ANALYSIS OF THE FINITE ELEMENT HETEROGENEOUS

MULTISCALE METHOD FOR QUASILINEAR ELLIPTIC

HOMOGENIZATION PROBLEMS

ASSYR ABDULLE AND GILLES VILMART

Abstract. An analysis of the finite element heterogeneous multiscale method
for a class of quasilinear elliptic homogenization problems of nonmonotone type

is proposed. We obtain optimal convergence results for dimension d ≤ 3. Our

results, which also take into account the microscale discretization, are valid
for both simplicial and quadrilateral finite elements. Optimal a-priori error

estimates are obtained for the H1 and L2 norms, error bounds similar as

for linear elliptic problems are derived for the resonance error. Uniqueness
of a numerical solution is proved. Moreover, the Newton method used to

compute the solution is shown to converge. Numerical experiments confirm

the theoretical convergence rates and illustrate the behavior of the numerical
method.

1. Introduction

We consider a finite element method (FEM) for the numerical solution of a class
of nonlinear nonmonotone multiscale problems of the form

(1.1) −∇ · (aε(x, uε(x))∇uε(x)) = f(x) in Ω,

in a domain Ω ⊂ Rd, d ≤ 3, where aε(x, u) is a d × d tensor. We consider for
simplicity the homogeneous Dirichlet boundary conditions uε = 0 on ∂Ω, but our
analysis could apply to other types of boundary conditions. Such type of problems
arise in many applications (e.g., the stationary form of the Richards problem [11],
the modeling of the thermal conductivity of the Earth’s crust [35], or the heat
conduction in composite materials [32]).

Yet, often the multiscale nature of the medium, described in (1.1) through a
nonlinear multiscale conductivity tensor aε(x, uε(x)), is not taken into account in
the modeling due to the high computational cost in solving numerically (1.1) via
standard methods resolving the medium’s finest scale. Upscaling of equation (1.1) is
thus needed for an efficient numerical treatment. Rigorously described by the math-
ematical homogenization theory [12],[31], coarse graining (or homogenization) aims
at averaging the finest scales of a multiscale equation and deriving a homogenized
equation that captures the essential macroscopic features of the problem as ε→ 0.
The mathematical homogenization of (1.1) has been developed in [14, 10, 29] where
it is shown that the homogenized equation is of the same quasilinear type as the
original equation, with aε(x, uε(x)) replaced by a homogenized tensor a0(x, u0(x))
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depending nonlinearly on a homogenized solution u0 (the limit in a certain sense
of uε as ε→ 0).

While numerical methods for linear elliptic homogenization problems have been
studied in many papers - see [3, 24, 26, 8], and the references therein - the literature
for the numerical homogenization of nonlinear nonmonotone elliptic problems is less
abundant. Numerical methods based on the multiscale finite element method (Ms-
FEM) [26] for nonlinear elliptic problems of the form −∇ · (aε(x, uε(x),∇uε(x)) =
f(x) (a tensor nonlinear also with respect to ∇uε) have been studied in [27],[26],
where a monotonicity assumption has been used to derive convergence rates. This
assumption leads essentially to problems of the type −∇ · (aε(x,∇uε(x)) = f(x).
Following the two-grid discretization framework of [36], an analysis of the finite el-
ement heterogeneous multiscale method (FE-HMM) for the problem (1.1) has been
proposed in [25] and in [18] for the multiscale finite element method (MsFEM).
Simplicial finite elements were considered in both aforementioned work.

Unfortunately, there are several critical issues with the analysis of the FE-HMM
for the problem (1.1) in [25] that are addressed in the present paper. In addition,
several new results are derived (analysis for quadrilateral FEs, L2 error estimates,
improved resonance error analysis, convergence of the Newton method used to
compute the solution). Finally we note that all our results are valid for a fully
discrete formulation, taking into account also the micro scale discretization error.
For the convenience of the reader we briefly discuss the main issues of the analysis
in [25] and briefly discuss our contributions.

The first major issue in [25] resides in the treatment of the variational crime that
arises when using the FE-HMM. 1 As an intermediate step, one needs to estimate
|A(uH ;uH , wH)−AH(uH ;uH , wH)|, whereA(uH ;uH , wH) =

∫
Ω
a0(x, uH)∇uH∇wHdx

is the weak form for the exact problem and AH a corresponding nonlinear form
based on numerical quadrature. In [25, equ. 5.21] the estimate |A(uH ;uH , wH) −
AH(uH ;uH , wH)| ≤ CH`‖wH‖H1(Ω) is used. However, C depends (in a nonlinear

way) on the broken norms of uH in Sobolev spaces of the type W `+1,p(Ω). Thus, a
priori bounds (independent of H) are needed for these high-order broken norms of
the solution uH . This issue has not been discussed in [25]. Using W 1,∞ estimates
in [25], recent results [7, Prop. 2] on FEM with numerical quadrature for nonlinear
nonmonotone problems and an inverse inequality, it is possible to bound uH for
P1 and P2 triangular finite elements. However this argument does not apply for
P`-simplicial FEs when ` > 2 and we don’t know how to derive such bound in
general (notice that our new approach does not rely such bounds).

The second major issue in the analysis of [25] resides in the use [25, Lem. 5.3]
of a discrete Green function GzH for an error estimate in the W 1,∞ norm. The
logarithmic bound supz∈Ω ‖GzH‖W 1,1(Ω) ≤ C| logH| (see [25, equ.(5.16)]) is used in
the main a priori error estimate result [25, Thm. 5.4]. However, such a logarithmic
estimate is not available, to the best of our knowledge, in dimension d = 3 for
arbitrary bounded convex polyhedral domains. Thus, the results in [25] are not
valid for the dimension d = 3.

Both aforementioned issues are addressed in our analysis that is valid for P`-
simplicial FEs in dimension 1 ≤ d ≤ 3. In addition, we also derive several new

1We recall that this method couples a macroscopic solver based on FEM with numerical quad-
rature, with microscopic solvers based on FEM defined on sampling domains that recover locally

the missing macroscopic input data.
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results: optimal error estimates are derived for Q`-rectangular FEs (for such ele-
ments we don’t know how to obtain error estimates using the framework in [25]
even for the lowest order piecewise bilinear elements), optimal L2 error estimates
are derived for both P` and Q` FEs (notice that we cannot simply use the Aubin-
Nitche duality argument but need to study linear indefinite elliptic problems with
numerical quadrature arising from the linearization of (1.1)), improved convergence
rates for the so-called modeling or resonance error rMOD are obtained (in Theorem

3.7 we show the estimate rMOD ≤ C(δ + ε/δ), whereas rMOD ≤ C(δ +
√
ε/δ) was

obtained in [25, Thm. 5.5] 2), the Newton method used in practice to compute a
solution of the nonlinear discretized problem is shown to converge providing hence
a uniqueness result for our numerical scheme. Finally all our results are derived
for a fully discrete FE-HMM scheme, where the errors at both the microscopic and
the macroscopic grid are taken into account. The fully discrete error bounds are
also optimal in the microscopic convergence rates. Our uniqueness result is also
established in this fully discrete setting and it requires a new estimate of the micro
error for a modified micro problem (based on the derivative of the effective tensor).
Thus, the convergence of the Newton method for sufficiently fine macro and micro
meshes is also guaranteed in the fully discrete setting.

Our paper is organized as follows. In Sect. 2 we introduce the homogeniza-
tion problem for nonlinear nonmonotone problems and we describe the multiscale
method. In Sect. 3 we state our main results. The analysis of the numerical method
is given in Sect. 4. In Sect. 5 we first discuss an efficient implementation of the lin-
earization scheme used for solving the nonlinear macroscopic equation and present
various numerical experiments which confirm the sharpness of our a priori error
bounds and illustrate the versatility of our method.

2. Homogenization and multiscale method

Let Ω be a bounded convex polyhedral subset of Rd, where d ≤ 3. We consider
the quasilinear elliptic problems (1.1), where for simplicity we take homogeneous
Dirichlet boundary conditions, i.e., uε(x) = 0 on ∂Ω. Associated to ε > 0, a se-
quence of positive real numbers going to zero, we consider a sequence of tensors
aε(·, s) = (aεmn(·, s))1≤m,n≤d assumed to be continuous, bounded on Ω × R, uni-
formly elliptic, and uniformly Lipschitz continuous with respect to s, with constants
independent of the parameter ε. We further assume that f ∈ H−1(Ω). Under the
above assumptions, for all fixed ε > 0, the weak form of (1.1) has a unique so-
lution uε ∈ H1

0 (Ω) (see for example [19, Theorem 11.6]),which satisfies the bound
‖uε‖H1(Ω) ≤ C‖f‖H−1(Ω). Thus, standard compactness arguments implies the ex-

istence of a subsequence of {uε} converging weakly in H1(Ω). The aim of homog-
enization theory is to provide a limiting equation for u0. The following result is
shown in [14, Theorem 3.6] (see also [29]): there exists a subsequence of {aε(·, s)}
(again indexed by ε) such that the corresponding sequence of solutions {uε} con-
verges weakly to u0 in H1(Ω), where u0 is the solution of the so-called homogenized
problem

(2.1) −∇ ·
(
a0(x, u0(x))∇u0(x)

)
= f(x) in Ω, u0(x) = 0 on ∂Ω,

2Here ε is the size of the period and δ the length, in each spatial direction, of the sampling
domains.
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and where the tensor a0(x, s) is called the homogenized tensor. It can be shown
[14, Prop. 3.5] that the homogenized tensor is Lipschitz continuous with respect to
s, uniformly elliptic, and bounded. Precisely, there exists Λ1 > 0 such that

(2.2) |a0
mn(x, s1)− a0

mn(x, s2)| ≤ Λ1|s1 − s2|, ∀x, ∀s1, s2 ∈ R,∀m,n = 1, . . . , d,

and there exist λ,Λ0 > 0 such that

(2.3) λ‖ξ‖2 ≤ a0(x, s)ξ · ξ, ‖a0(x, s)ξ‖ ≤ Λ0‖ξ‖, ∀ξ ∈ Rd,∀s ∈ R,∀x ∈ Ω.

Under these assumptions, the homogenized problem (2.1) has also a unique solution
u0 ∈ H1

0 (Ω).
We further assume for the analysis that the coefficients of the homogenized tensor

are continuous,

(2.4) a0
mn ∈ C0(Ω× R), ∀m,n = 1, . . . , d.

Let us further mention the following characterization of the homogenized tensor,
instrumental to derive the homogenization result. Let {aε(·, s)} be the subsequence
of tensors considered above, then for all fixed real parameters s, the tensor a0(·, s)
is the homogenized tensor for the linear problem

(2.5) −∇ · (aε(x, s)∇vε(x)) = f(x) in Ω, vε(x) = 0 on ∂Ω.

If the homogenized tensor a0(x, s) is locally periodic, e.g., aε(x, s) = a(x, x/ε, s)
where a(x, y, s) is Y periodic with respect to y, then the weak convergence of uε to
the solution of (2.1) holds for the whole sequence. The homogenized tensor can be
characterized in the following way [10]:

(2.6) a0(x, s) =

∫
Y

a(x, y, s)(I + JTχ(x,y,s))dy, for x ∈ Ω, s ∈ R,

where Jχ(x,y,s) is a d×d matrix with entries Jχ(x,y,s)ij
= (∂χi)/(∂yj) and χi(x, ·, s),

i = 1, . . . , d are the unique solutions of the cell problems
(2.7)∫
Y

a(x, y, s)∇yχi(x, y, s) ·∇w(y)dy = −
∫
Y

a(x, y, s)ei ·∇w(y)dy, ∀w ∈W 1
per(Y ),

where ei, i = 1, . . . , d is the canonical basis of Rd.

2.1. Multiscale method. We define here the homogenization method based on
the framework of the HMM [24]. The numerical method is based on a macro-
scopic FEM defined on QF and linear microscopic FEMs recovering the missing
macroscopic tensor at the macroscopic quadrature points.

2.1.1. Macro finite element space. Let TH be a triangulation of Ω in simplicial or
quadrilateral elements K of diameter HK and denote H = maxK∈TH HK . We
assume that the family of triangulations {TH} is conformal and shape regular. For
each partition TH , we define a FE space

(2.8) S`0(Ω, TH) = {vH ∈ H1
0 (Ω); vH |K ∈ R`(K), ∀K ∈ TH},

where R`(K) is the space P`(K) of polynomials on K of total degree at most ` if K
is a simplicial FE, or the space Q`(K) of polynomials on K of degree at most ` in
each variables if K is a quadrilateral FE. We call TH the macro partition, K ∈ TH
being a macro element, and S`0(Ω, TH) is called the macro FE space. By macro
partition, we mean that H is allowed to be much larger than ε and, in particular,
H < ε is not required for convergence.
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2.1.2. Quadrature formula. For each element K of the of the macro partition we
consider a C1-diffeomorphism FK such that K = FK(K̂), where K̂ is the refer-
ence element (of simplicial or quadrilateral type). For a given quadrature formula

{x̂j , ω̂j}Jj=1 on K̂, the quadrature weights and integration points on K ∈ TH are
then given by ωKj = ω̂j |det(∂FK)|, xKj = FK(x̂j), j = 1, . . . , J . We make the
following assumptions on the quadrature formulas, which are standard assumptions
also for linear elliptic problems [20, Sect. 29]:

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑J
j=1 ω̂j |∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2

L2(K̂)
, ∀p̂(x̂) ∈ R`(K̂),

where λ̂ > 0;

(Q2)
∫
K̂
p̂(x)dx =

∑J
j=1 ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2` − 2, `) if K̂

is a simplicial FE, or σ = max(2`− 1, `+ 1) if K̂ is a quadrilateral FE.

2.1.3. Micro finite elements method. For each macro element K ∈ TH and each
integration point xKj ∈ K, j = 1, . . . , J, we define the sampling domains Kδj =

xKj + δI, I = (−1/2, 1/2)d (δ ≥ ε). We consider a conformal and shape regular
(micro) partition Th of each sampling domain Kδj in simplicial or quadrilateral
elements Q of diameter hQ and denote h = maxQ∈Th hQ. Usually, the size of
δ scales with ε, which implies that the complexity of the FEM presented below
remains unchanged as ε→ 0. We then define a micro FE space

(2.9) Sq(Kδj , Th) = {zh ∈W (Kδj ); z
h|Q,∈ Rq(Q), Q ∈ Th},

where W (Kδj ) is either the Sobolev space

(2.10) W (Kδj ) = W 1
per(Kδj ) = {z ∈ H1

per(Kδj );

∫
Kδj

zdx = 0}

for a periodic coupling or

(2.11) W (Kδj ) = H1
0 (Kδj )

for a coupling through Dirichlet boundary conditions. Here H1
per(Kδj ) is defined

as the closure in H1 of C∞per(Kδj ) (the subset of smooth periodic function on Kδj ).
The choice of the Sobolev space W (Kδj ) sets the coupling condition between macro
and micro solvers. The micro FEM problems on each micro domain Kδj is defined

as follows. Let wH ∈ S`0(Ω, TH) and consider its linearization

(2.12) wHlin,j(x) = wH(xKj ) + (x− xKj ) · ∇wH(xKj )

at the integration point xKj . For all real parameters s, we define a micro FE

function wh,sKj such that (wh,sKj − w
H
lin,j) ∈ Sq(Kδj , Th) and

(2.13)

∫
Kδj

aε(x, s)∇wh,sKj (x) · ∇zh(x)dx = 0 ∀zh ∈ Sq(Kδj , Th).

2.1.4. Finite element heterogeneous multiscale method (FE-HMM).. We have now
all the ingredients to define our multiscale method. Find uH ∈ S`0(Ω, TH) such that

(2.14) BH(uH ;uH , wH) = FH(wH), ∀wH ∈ S`0(Ω, TH),
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where
(2.15)

BH(uH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

∫
Kδj

aε(x, uH(xKj ))∇v
h,uH(xKj )

Kj
(x)·∇w

h,uH(xKj )

Kj
(x)dx,

and the linear form FH on S`0(Ω, TH) is an approximation of F (w) =
∫

Ω
f(x)w(x)dx,

obtained for example by using quadrature formulas. Here, w
h,uH(xKj )

Kj
denotes the

solution of the micro problem (2.13) with parameter s = uH(xKj ) (and similarly

for v
h,uH(xKj )

Kj
). Provided that we use for FH a QF satisfying (Q2), for f ∈W `,p(Ω)

with ` > d/p and 1 ≤ p ≤ ∞, we have3 [21, Thm. 4]

(2.16) |FH(wH)− F (wH)| ≤ CH`‖wH‖H1(Ω), ∀wH ∈ S`0(Ω, TH).

If in addition f ∈W `+1,p(Ω), then [21, Thm. 5]

(2.17) |FH(wH)− F (wH)| ≤ CH`+1
( ∑
K∈TH

‖wH‖2H2(K)

)1/2

, ∀wH ∈ S`0(Ω, TH).

The above constants C depend on ‖f‖W `,p(Ω) and ‖f‖W `+1,p(Ω) respectively, but
they are independent of H.

If we assume a locally periodic tensor, i.e. aε(x, s) = a(x, x/ε, s), Y -periodic
with respect to the second variable y ∈ Y = (0, 1)d, we shall consider the slightly
modified bilinear form
(2.18)

B̃H(uH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

∫
Kδj

a(xKj ,
x

ε
, uH(xKj ))∇v

h,uH(xKj )

Kj
(x)·∇w

h,uH(xKj )

Kj
(x)dx,

where w
h,uH(xKj )

Kj
is the solution of the micro problem (2.13) with the tensor

a(xKj , x/ε, u
H(xKj )) (and similarly for v

h,uH(xKj )

Kj
), where compared to (2.15), the

tensor a(x, y, s) is collocated in the slow variable x at the quadrature point xKj .
We shall discuss now the existence of a solution of (2.14). We first recall here a

result for the analysis of the FE-HMM, shown in [1], [25] in the context of linear
problems (see [3, Sect. 3.3.1] for details). The proof is similar in the nonlinear case
and is thus omitted.

Lemma 2.1. Assume that (Q1) holds and that the tensor aε satisfies (2.2),(2.3),(2.4).
Then the bilinear form BH(zH ; ·, ·), zH ∈ S`0(Ω, TH) is uniformly elliptic and
bounded. Precisely, there exist two constants again denoted λ,Λ0 > 0 such that
(2.19)
λ‖vH‖2H1(Ω) ≤ BH(zH ; vH , vH), |BH(zH ; vH , wH)| ≤ Λ0‖vH‖H1(Ω)‖wH‖H1(Ω),

for all zH , vH , wH ∈ S`0(Ω, TH). Analogous formulas also hold for the modified

bilinear form B̃H(zH ; ·, ·) defined in (2.18).

Notice at this stage that in Lemma 2.1 no structure assumption (as for example
local periodicity) is required for the tensor aε.

Since the micro problems (2.13) are linear with a uniformly bounded and coercive

tensor (2.3), their solutions wh,sKj ∈ Sq(Kδj , Th) are always uniquely defined, in

3Notice that the assumption (Q1) is not needed for the quadrature formula in FH .
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particular there is no restriction on the mesh size h. The macro solution uH of
the FE-HMM is a solution of the nonlinear system (2.14) and the existence of a
solution uH of (2.14) follows from a classical fixed point argument.

Theorem 2.2. Assume that the bilinear form BH(zH ; ·, ·), zH ∈ S`0(Ω, TH), defined
in (2.15) is uniformly elliptic and bounded (2.19), that it depends continuously on
zH , and that f ∈ W `,p(Ω) with `p > d. Then, for all H,h > 0, the nonlin-
ear problem (2.14) possesses at least one solution uH ∈ S`0(Ω, TH). In addition,
‖uH‖H1(Ω) ≤ C‖f‖W `,p(Ω) where C is independent of H.

The proof of Theorem 2.2 follows standard arguments ([22], see also [16]). It relies
on the Brouwer fixed point theorem applied to the nonlinear map SH : S`0(Ω, TH)→
S`0(Ω, TH) defined by

(2.20) BH(zH ;SHz
H , wH) = FH(wH), ∀wH ∈ S`0(Ω, TH).

In contrast, the proof of the uniqueness of a solution uH is non trivial (see Theorem
3.3).

2.2. Reformulation of the FE-HMM. A straightforward computation shows

that for all scalars s, the solution wh,sKj of the linear cell problem (2.13) is given by

(2.21) wh,sKj (x) = wHlin,j(x) +

d∑
i=1

ψi,h,sKj
(x)

∂wHlin,j
∂xi

, for x ∈ Kδj ,

where ψi,h,sKj
, i = 1, . . . , d are the solutions of the following auxiliary problems. Let

ei, i = 1 . . . d denote the canonical basis of Rd. For each scalar s and for each ei
we consider the problem: find ψi,h,sKj

∈ Sq(Kδj , Th) such that

(2.22)∫
Kδj

aε(x, s)∇ψi,h,sKj
(x)·∇zh(x)dx = −

∫
Kδj

aε(x, s)ei·∇zh(x)dx, ∀zh ∈ Sq(Kδj , Th),

where Sq(Kδj , Th) is defined in (2.9) with either periodic or Dirichlet boundary
conditions.

We also consider for the analysis the following problems (2.23), (2.24), which are
analogue to (2.13),(2.22), but without FEM discretization (i.e. with test functions
in the space W (Kδj ) defined in (2.10) or (2.11)): find wsKj such that (wsKj−w

H
lin,j) ∈

W (Kδj ) and

(2.23)

∫
Kδj

aε(x, s)∇wsKj (x) · ∇z(x)dx = 0 ∀z ∈W (Kδj ).

Similarly to (2.21), it can be checked that the unique solution of problem (2.23)

is given by (2.21) replacing ψi,h,sKj
(x) with ψi,sKj (x), where for each scalar s and for

each ei, ψ
i,s
Kj

are the solutions of the following problem: find ψi,sKj ∈ W (Kδj ) such

that
(2.24)∫

Kδj

aε(x, s)∇ψi,sKj (x) · ∇z(x)dx = −
∫
Kδj

aε(x, s)ei · ∇z(x)dx, ∀z ∈W (Kδj ).
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Consider for all scalars s the two tensors

a0
Kj (s) :=

1

|Kδj |

∫
Kδj

aε(x, s)

(
I + JT

ψh,sKj
(x)

)
dx,(2.25)

ā0
Kj (s) :=

1

|Kδj |

∫
Kδj

aε(x, s)

(
I + JTψsKj (x)

)
dx,(2.26)

where JψsKj (x) and Jψh,sKj (x) are d×dmatrices with entries (JψsKj (x))i` = (∂ψi,sKj )/(∂x`)

and (Jψh,sKj (x))i` = (∂ψi,h,sKj
)/(∂x`), respectively. The Lemma 2.3 below has been

proved in [6],[2] in the context of linear elliptic problems and is a consequence of

(2.21) (for wh,sKj (x) and wsKj (x)). It permits to interpret (2.14)-(2.15) as a standard

FEM applied with a modified tensor.

Lemma 2.3. Assume that the tensors a0, aε satisfy (2.3),(2.4). For all vH , wH ∈
S`0(Ω, TH), all sampling domains Kδj centered at a quadrature node xKj of a macro
element K ∈ TH and all scalar s, the following identities hold:

1

|Kδj |

∫
Kδj

aε(x, s)∇vh,sKj · ∇w
h,s
Kj
dx = a0

Kj (s)∇v
H(xKj ) · ∇wH(xKj ),

1

|Kδj |

∫
Kδj

aε(x, s)∇vsKj · ∇w
s
Kjdx = a0

Kj (s)∇v
H(xKj ) · ∇wH(xKj ),

where vh,sKj , vsKj are the solutions of (2.13), (2.23), respectively, and the tensors

a0
Kj

(s), a0
Kj

(s) are defined in (2.25), (2.26). Analogous formulas also hold for the

terms in the right-hand side of (2.18), with aε(x, s) replaced by a(xKj , x/ε, s) in
the above two identities and in (2.13),(2.22),(2.23),(2.24),(2.25).

3. Main results

We summarize here the main results of this paper. Given a solution uH of (2.14)
the aim is to estimates the errors ‖u0 − uH‖H1(Ω) and ‖u0 − uH‖L2(Ω), where u0 is
the unique solution of the homogenized problem (2.1) and to prove the uniqueness
of a numerical solution uH . We shall consider, for a0 the homogenized tensor in
(2.1) and a0

Kj
defined in (2.25), the quantity

(3.1) rHMM := sup
K∈TH ,xKj∈K,s∈R

‖a0(xKj , s)− a0
Kj (s)‖F ,

where ‖a‖F = (
∑
m,n |amn|2)1/2 denotes the Frobenius norm of a d× d matrix a.

In what follows we shall assume that the family of triangulations {TH} satisfies
the inverse assumption H/HK ≤ C for all K ∈ TH and all TH . Notice that such an
inverse assumption is often assumed for the analysis of FEM for non-linear problems
[34, 28, 36, 25, 17]. In our analysis it is used only in the proof of an L2 estimate
(see Lemma 4.2) and for the uniqueness of the numerical solution (Sect. 4.3).

The first results give optimal H1 and L2 error estimates, as functions of the
macro mesh size H, for the FE-HMM without specific structure assumption on the
nature of the small scales (e.g. as periodicity or stationarity for random problems).

Theorem 3.1. Consider u0 the solution of problem (2.1). Let ` ≥ 1. Let µ = 0
or 1. Assume (Q1), (Q2), (2.16), and

u0 ∈ H`+1(Ω) ∩W 1,∞(Ω), a0
mn ∈W `+µ,∞(Ω× R), ∀m,n = 1 . . . d.
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In addition to (2.2),(2.3),(2.4), assume that ∂ua
0
mn ∈ W 1,∞(Ω × R), and that the

coefficients a0
mn(x, s) are twice differentiable with respect to s, with the first and

second order derivatives continuous and bounded on Ω× R, for all m,n = 1 . . . d.
Then, there exist r0 > 0 and H0 > 0 such that, provided

(3.2) H ≤ H0 and rHMM ≤ r0,

any solution uH of (2.14) satisfies

‖u0 − uH‖H1(Ω) ≤ C(H` + rHMM ) if µ = 0, 1,(3.3)

‖u0 − uH‖L2(Ω) ≤ C(H`+1 + rHMM ) if µ = 1 and (2.17) holds.(3.4)

Here, the constants C are independent of H,h, rHMM .

The proof of Theorem 3.1 is postponed to Sect. 4.1. In contrast to previous
results [25, Thm 5.4], Theorem 3.1 is also valid for d = 3 and arbitrary high order
simplicial and quadrilateral macro FEs. We emphasize that the constants H0 and
r0 in Theorem 3.1 are independent of H, h, ε, δ. Thus, the framework used to
derive Theorem 3.1 allows to re-use results obtained for linear problems to derive a
fully discrete error analysis, where the micro FE discretization errors are also taken
into account.

Remark 3.2. Except for the W 1,∞ assumption on u0 and the smoothness4 of s 7→
a0(x, s) assumed to treat the non-linearity (as in [22] for one-scale nonmonotone
standard FEM), the smoothness assumptions of Theorem 3.1 on the homogenized
problem are identical to those classically assumed for one-scale linear FEM [21],[20,
Sect. 29]. Notice that the H1 estimate (3.3) and the uniqueness of uH can be
proved straightforwardly provided (3.2) (without assuming W 1,∞ regularity of u0

and quasi-uniform meshes) if Cλ−1Λ1‖u0‖H2(Ω) < 1 (see [7, Theorem 4]).

For the uniqueness result, we shall consider the quantity

(3.5) r′HMM := sup
K∈TH ,xKj∈K,s∈R

∥∥∥∥ dds (a0(xKj , s)− a0
Kj (s)

)∥∥∥∥
F

.

For r′HMM to be well defined and for the subsequent analysis, we need the assump-
tion
(3.6)
s ∈ R 7→ aε(·, s) ∈ (W 1,∞(Ω))d×d is of class C2 and |∂kuaε(·, s)|W 1,∞(Ω) ≤ Cε−1, k ≤ 2,

where C is independent of s and ε.

Theorem 3.3. Assume that the hypotheses of Theorem 3.1 and (3.6) hold. Then,
there exist positive constants H0, r0 such that if

(3.7) H ≤ H0 and H−1/2rHMM + r′HMM ≤ r0

the solution uH of (2.14) is unique.

If the oscillating coefficients are smooth and locally periodic coefficients (see
(H1) and (H2) below), then the assumptions for the uniqueness result can be
stated solely in terms of the size of the macro and micro meshes.

4Notice that in the locally periodic case (see assumption (H2) below), the C2 regularity of
s 7→ a0(x, s) can be shown using assumption (3.6) with the ideas of Lemma 6.1.
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Corollary 3.4. In addition to the hypotheses of Theorem 3.3, assume (H1) and
(H2) as defined below. Assume W (Kδj ) = W 1

per(Kδj ) (periodic coupling condi-

tions), δ/ε ∈ N∗ and that (2.18) is used for the solution uH of (2.14). Then, there
exists positive constants H0, r0 such that if

(3.8) H ≤ H0 and H−1/2(h/ε)2q ≤ r0

the solution uH of (2.14) is unique.

Remark 3.5. Inspecting the proofs of Theorem 3.3 and Corollary 3.4 (postponed
to Sect. 4.3) shows that in dimension d = 2, the quantity H−1/2 in (3.7),(3.8) can
be replaced by (1 + | logH|)1/2. In Corollary 3.4, if we use the form (2.15) for the
solution uH of (2.14), to obtain the uniqueness of uH , we need to assume in addition
that δ is small enough (ε ≤ δ ≤ CH1/2). Notice also that (3.8) is automatically
satisfied if (h/ε)2q ≤ CH ≤ H0 with H0 small enough.

We next describe our fully discrete a priori error estimates. For that, let us split
rHMM into
(3.9)
rHMM ≤ sup

K∈TH ,xKj∈K,s∈R
‖a0(xKj , s)− ā0

Kj (s))‖F︸ ︷︷ ︸
rMOD

+ sup
K∈TH ,xKj∈K,s∈R

‖ā0
Kj (s)− a

0
Kj (s))‖F︸ ︷︷ ︸

rMIC

,

where ā0
Kj

is the tensor defined in (2.26). Here rMIC stands for the micro error

(error due to the micro FEM) and rMOD for the modeling or resonance error. The
first result gives explicit convergence rates in terms of the micro discretization.
Some additional regularity and growth condition of the small scale tensor aε is
needed in order to have appropriate regularity of the cell function ψi,sKj defined in

(2.24) and involved in the definition of ā0
Kj

. We note that if aεij |K ∈W 1,∞(K) ∀K ∈
TH and |aεij |W 1,∞(K) ≤ Cε−1, for all parameters s with C independent of ε, s,

then classical H2 regularity results ([33, Chap. 2.6]) imply that |ψi,sKj |H2(Kδj ) ≤
Cε−1

√
|Kδj | when Dirichlet boundary conditions (2.11) are used. If aεij is locally

periodic, we can also use periodic boundary conditions (2.10) and analogous bounds

for ψi,sKj in terms of ε can be obtained, provided that we collocate the slow variables

in each sampling domain. In that case, higher regularity for ψi,sKj can be shown,

provided aε(·, s) is smooth enough (see e.g., [13, Chap. 3]). As it is more convenient

to state the regularity conditions directly for the function ψi,sKj , we assume

(H1) Given q ∈ N, the cell functions ψi,sKj defined in (2.24) satisfy |ψi,sKj |Hq+1(Kδj ) ≤
Cε−q

√
|Kδj |, with C independent of ε, the quadrature point xKj , the domain Kδj ,

and the parameter s for all i = 1 . . . d. We make the same assumption with the
tensor aε replaced by (aε)T in (2.24).

Theorem 3.6. Under the assumptions of Theorem 3.1 and (H1), it holds (for
µ = 0 or 1)

‖u0 − uH‖H1−µ(Ω) ≤ C(H`+µ +
(h
ε

)2q

+ rMOD),

where for µ = 1 we also assume (2.17) and we use the notation H0(Ω) = L2(Ω).
Here, C is independent of H,h, ε, δ.
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To estimate further the modeling error rMOD defined in (3.9), we need more
structure assumptions on aε. Here we assume local periodicity as encoded in the
following assumption.

(H2) for allm,n = 1, . . . , d, we assume aεmn(x, s) = amn(x, x/ε, s), where amn(x, y, s)
is y-periodic in Y , and the map (x, s) 7→ amn(x, ·, s) is Lipschitz continuous and
bounded from Ω× R into W 1,∞

per (Y ).

Theorem 3.7. Under the assumptions of Theorem 3.1, (H1) and (H2), it holds
(for µ = 0 or 1)
(3.10)

‖u0−uH‖H1−µ(Ω) ≤



C(H`+µ + (hε )2q + δ), if W (Kδj ) = W 1
per(Kδj ) and δ

ε ∈ N∗,

C(H`+µ + (hε )2q),
if W (Kδj ) = W 1

per(Kδj ) and δ
ε ∈ N∗,

with collocated tensor (see (2.18)),

C(H`+µ + (hε )2q + δ + ε
δ ), if W (Kδj ) = H1

0 (Kδj ) (δ > ε),

where for µ = 1 we also assume (2.17). The constants C are independent of
H,h, ε, δ.

For non periodic problems, we note that the modeling error for linear elliptic
problems with random coefficients has been studied in [25, Appendix A]. Related
work can be found in [37, 15, 30].

Remark 3.8. While the convergence uε → u0 (up to a subsequence) is strong in
L2(Ω), it is only weak in H1(Ω) and the quantity ‖uε−u0‖H1(Ω) does not converge
to zero in general as ε→ 0. One needs therefore to introduce a corrector [12],[31] to
recover the oscillating solution uε. In [14, Sect. 3.4.2], it is shown that any corrector
for the linear problem (1.1) where the tensor is evaluated at u0 instead of uε, is
also a corrector for the solution uε of the nonlinear problem (1.1). In our situation,
we have ∇rε → 0 strongly in (L1

loc(Ω))d where rε(x) := uε(x)− u0(x)− u1,ε(x).

4. Proof of the main results

We first show the a priori convergence rates at the level of the macro error
(Sect. 4.1) before estimating the micro and modeling errors (Sect. 4.2). These esti-
mates are useful to prove the uniqueness of the solution (Sect. 4.3).

4.1. Explicit convergence rates for the macro error. In this section, we give
the proof of Theorem 3.1. Consider for zH , vH , wH ∈ S`0(Ω, TH),

(4.1) AH(zH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωK,ja
0(xKj , z

H(xKj ))∇vH(xKj ) · ∇wH(xKj ),

where a0(x, s) is the tensor defined in (2.1) and let ũH0 be a solution of

(4.2) AH(ũH0 ; ũH0 , w
H) = FH(wH), ∀wH ∈ S`0(Ω, TH).

The problem (4.2) is a standard FEM with numerical quadrature for the problem
(2.1). Convergence rates for this nonlinear problem are not trivial to derive and
have recently been obtained in [7]. For the proof of Theorem 3.1, we first need to
generalize several results of [7]. For that, consider

(4.3) QH(zH) := sup
wH∈S`0(Ω,TH)

|AH(zH , zH , wH)− FH(wH)|
‖wH‖H1(Ω)

, ∀zH ∈ S`0(Ω, TH).
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We observe that QH(ũH0 ) = 0. The three lemmas below have been obtained in [7]
for the special case zH = ũH0 . Allowing for an arbitrary function zH ∈ S`0(Ω, TH)
leads to introducing the additional term QH(zH). The proofs of these more general
results remain, however, nearly identical to [7] (following the lines of Lemma 4,
Lemma 6 and Theorem 3 in [7], respectively) and are therefore omitted.

Lemma 4.1. If the hypotheses of Theorem 3.1 are satisfied, then

(4.4) ‖u0 − zH‖H1(Ω) ≤ C(H` +QH(zH) + ‖u0 − zH‖L2(Ω)),

for all zH ∈ S`0(Ω, TH), where C is independent of H and zH .

Lemma 4.2. Assume the hypotheses of Theorem 3.1 are satisfied with µ = 0 or 1.
Then, for all zH ∈ S`0(Ω, TH),

(4.5) ‖u0 − zH‖L2(Ω) ≤ C(H`+µ +QH(zH) + ‖u0 − zH‖2H1(Ω)),

where C is independent of H and zH .

Lemma 4.3. Under the assumptions of Theorem 3.1, consider a sequence {zH}
bounded in H1(Ω) as H → 0 and satisfying QH(zH)→ 0 for H → 0. Then, ‖u0 −
zH‖L2(Ω) → 0 for H → 0.

We next notice that QH(zH) can be bounded in terms of rHMM defined in (3.1).

Lemma 4.4. Assume that the tensors a0, aε satisfy (2.3),(2.4). Then

(4.6) QH(zH) ≤ CrHMM‖zH‖H1(Ω) + sup
wH∈S`0(Ω,TH)

|BH(zH , zH , wH)− FH(wH)|
‖wH‖H1(Ω)

,

for all zH ∈ S`0(Ω, TH), where the constant C is independent of H,h, δ.

Proof. The proof is a consequence of the inequality

|AH(zH , zH , wH)−FH(wH)| ≤ |(AH−BH)(zH ; zH , wH)|+|BH(zH , zH , wH)−FH(wH)|.
Using Lemma 2.3 and the Cauchy-Schwarz inequality, the first term is the above

right-hand side can be bounded by
(4.7)
|(AH−BH)(zH ; zH , wH)| ≤ C sup

K∈TH ,xKj∈Ks∈R
‖a0(xKj , s))−a0

Kj (s))‖F ‖z
H‖H1(Ω)‖wH‖H1(Ω)

where we used the estimate
∑
K∈TH

∑J
j=1 ωK,j‖vH(xKj )‖2 ≤ C‖vH‖2L2(Ω), with

vH = zH and vH = wH , which holds for all piecewise continuous polynomials
with respect to the partition TH , with C independent of H (but depending on the
maximum degree of vH). This concludes the proof. �

Corollary 4.5. Consider uH a solution of (2.14). Then QH(uH) ≤ CrHMM , where
QH(uH) is defined in (4.3) and the constant C is independent of H,h, δ.

Proof. Follows from Lemma 4.4 and Theorem 2.2. �

Proof of Theorem 3.1. We apply Lemmas 4.1, 4.2, 4.3 with zH = uH , the solution
of (2.14). Let µ = 0. This yields, for all H small enough

‖uH − u0‖H1(Ω) ≤ C(H` + rHMM + ‖uH − u0‖L2(Ω)),(4.8)

‖uH − u0‖L2(Ω) ≤ C(H` + rHMM + ‖uH − u0‖2H1(Ω)),(4.9)

‖uH − u0‖L2(Ω) → 0 for (H, rHMM )→ 0,(4.10)
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where we recall that QH(uH) ≤ CrHMM . Substituting (4.9) into (4.8), we obtain
an inequality of the form ‖uH − u0‖H1(Ω) ≤ C(H` + rHMM + ‖uH − u0‖2H1(Ω)), or

equivalently

(4.11) (1− C‖uH − u0‖H1(Ω))‖uH − u0‖H1(Ω) ≤ C(H` + rHMM ).

Using (4.8) and (4.10), we have ‖uH−u0‖H1(Ω) → 0 if (H, rHMM )→ 0. Thus, there

exists H0 and r0 such that if H ≤ H0 and rHMM ≤ r0, then 1−C‖uH−u0‖H1(Ω) ≥
ν > 0 in (4.11), independently of the choice of the particular solution uH . This
concludes the proof of (3.3) for H and rHMM small enough. For µ = 1, the
inequality (4.9) can be replaced by

‖uH − u0‖L2(Ω) ≤ C(H`+1 + rHMM + ‖uH − u0‖2H1(Ω)).

This inequality together with the H1 estimate (3.3) yields (3.4). �

4.2. Explicit convergence rates for the micro and modeling error. In this
section we give the proofs of Theorems 3.6 and 3.7. For that, we need to quantify
rHMM defined in (3.1) and involved in Theorem 3.1. In view of the decomposition
(3.9) we shall further estimate rMIC and rMOD. We emphasize that the results
in this section can be derived mutatis mutandis from the results for linear elliptic
problems (i.e. when the tensor a(x, s) is independent of s).

The following estimate of the micro error rMIC was first presented in [1] for
linear elliptic problems, generalized to high order in [3, Lemma 10],[2, Corollary 10]
(see also [4]), and to non-symmetric tensors in [23]. We provide here a short proof
which will be further useful in the proof of Lemma 4.12.

Lemma 4.6. Assume that the tensors a0, aε satisfy (2.3),(2.4) and (H1). Then
rMIC ≤ C(h/ε)2q, where C is independent of H, h, δ, ε.

Proof. From Lemma 2.3 and (2.22),(2.24), we deduce

(ā0
Kj (s)− a

0
Kj (s))mn =

−1

|Kδj |

∫
Kδj

aε(x, s)
(
∇ψn,sKj (x)−∇ψn,h,sKj

(x)
)
· ∇ψm,sKj (x)dx

where ψ
n,i

Kj , i = 1, . . . , d denote the solutions of (2.24) with aε(x, s) replaced by

aε(x, s)T . Using (2.22), (2.24), the above identity remains valid with ψ
m,s

Kj (x) re-

placed by ψ
m,s

Kj (x)−zh for all zh ∈ Sq(Kδj , Th). We take zh = ψ
m,h,s

Kj (the solutions

of (2.22) with aε(x, s) replaced by aε(x, s)T ), and we obtain
(4.12)

(ā0
Kj (s)−a

0
Kj (s))mn =

−1

|Kδj |

∫
Kδj

aε(x, s)
(
∇ψn,sKj −∇ψ

n,h,s
Kj

)
·(∇ψm,sKj −∇ψ

m,h,s

Kj )dx

Using the regularity assumption (H1) and standard FE results [20, Sect. 17], we
have

‖∇ψn,sKj −∇ψ
n,h,s
Kj
‖L2(Kδj ) ≤ Chq|∇ψn,sKj |Hq+1(Kδj ) ≤ C(h/ε)q

√
|Kδj )|,

and analogous estimates for ∇ψm,sKj . This combined with (4.12) and the Cauchy-
Schwarz inequality concludes the proof. �

We can further estimate the modeling error if we make the assumption of locally
periodic tensors.
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The following estimates on the modeling error rMOD were first presented in
[25, 23] (for the estimates rMOD ≤ C(δ+ ε/δ) and rMOD ≤ Cδ) and in [6] (for the
estimates rMOD = 0), in the context of linear elliptic homogenization problems.
Periodic and Dirichlet micro boundary conditions are discussed.

Lemma 4.7. Assume (2.2),(2.3),(2.4), and (H2). Consider the homogenized ten-
sor a0(x, s) and the tensor a0

Kj
(s) defined in (2.26) with parameters x = xKj and

s = uH(xKj ).

• If W (Kδj ) = W 1
per(Kδj ) and δ/ε ∈ N∗ then rMOD ≤ Cδ.

• If in addition, the tensor aε(x, s) is collocated at x = xKj (i.e. using (2.15))
then rMOD = 0.
• If W (Kδj ) = H1

0 (Kδj ) (δ > ε), then rMOD ≤ C(δ + ε/δ).

All above constants C are independent of H, h, ε, δ.

Proof. All the estimates of Lemma 4.7 are already known in the context of linear
problems [25, 6, 23]. Using the characterization (2.6), they hold mutatis mutandis
for our nonlinear tensor. �

4.3. Uniqueness of the FE-HMM solution. The proof of the uniqueness of
the FE-HMM solution of problem (2.14) relies on the convergence of the Newton
method used for the computation of a numerical solution. In fact, our results not
only show the uniqueness of a solution of (2.14) (under appropriate assumptions),
but also that the iterative method used in practice to compute an actual solution
converges.

For given zH , vH , wH ∈ S`0(Ω, TH) we consider the Fréchet derivative ∂BH ob-
tained by differentiating the nonlinear quantity BH(zH , zH , wH) with respect to
zH

(4.13) ∂BH(zH ; vH , wH) := BH(zH ; vH , wH) +B′H(zH ; vH , wH),

where using Lemma 2.3,
(4.14)

B′H(zH ; vH , wH) =
∑
K∈TH

J∑
j=1

ωKj
d

ds
a0
Kj (s)|s=zH(xKj )v

H(xKj )∇zH(xKj )·∇wH(xKj ).

The Newton method for approximating a solution uH of the nonlinear FE-HMM
(2.14) by a sequence {uHk } reads in weak form
(4.15)
∂BH(uHk ;uHk+1 − uHk , wH) = FH(wH)−BH(uHk ;uHk , w

H), ∀wH ∈ S`0(Ω, TH).

In order for B′H to be well defined, we need, in addition to (2.2),(2.3),(2.4), the
assumption (3.6). We also consider
(4.16)

A′H(zH ; vH , wH) =
∑
K∈TH

J∑
j=1

ωKj
d

ds
a0(xKj , s)

∣∣
s=zH(xKj )

vH(xKj )∇zH(xKj )·∇wH(xKj ).

and AH as defined in (4.1). Then, by replacing in (4.15) BH by AH and ∂BH by
∂AH we obtain the Newton method for solving (4.2) (standard FEM with numerical
integration)
(4.17)
∂AH(zHk ; zHk+1 − zHk , wH) = FH(wH)−AH(zHk ; zHk , w

H), ∀wH ∈ S`0(Ω, TH),
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where ∂AH(zH ; vH , wH) := AH(zH ; vH , wH)+A′H(zH ; vH , wH).We prove in Lemma
4.11 below that the iteration (4.15) is well defined for all k and that the sequence of
solutions of (4.15) converges to uH , the solution of (2.14), provided that the initial
guess uH0 ∈ S`0(Ω, TH) is close enough to uH . This allows to prove Theorem 3.3,
i.e., the uniqueness of a solution uH of (2.14). The following quantity will be useful

σH := sup
vH∈S`0(Ω,TH)

‖vH‖L∞(Ω)

‖vH‖H1(Ω)
.

One can show (provided quasi-uniform meshes) the standard estimates5 σH ≤ C(1+
| logH|)1/2 for d = 2 and σH ≤ CH−1/2 for d = 3, where C is independent of H.
We shall also need the following result.

Lemma 4.8. Assume that the tensors a0, aε satisfy (2.3),(3.6). Then

sup
zH ,vH ,wH∈S`0(Ω,TH)

∣∣AH(zH ; vH , wH)−BH(zH ; vH , wH)
∣∣

‖vH‖H1(Ω)‖wH‖H1(Ω)
≤ CrHMM ,(4.18)

sup
zH ,vH ,wH∈S`0(Ω,TH)

∣∣A′H(zH ; vH , wH)−B′H(zH ; vH , wH)
∣∣

‖zH‖W 1,6(Ω)‖vH‖H1(Ω)‖wH‖H1(Ω)
≤ Cr′HMM ,(4.19)

where rHMM and r′HMM are defined in (3.1),(3.5), respectively and where the con-
stant C is independent of H,h, δ.

Proof. The proof of (4.18) was given in (4.7). The proof of (4.19) is nearly identical.
Indeed, using Lemma 2.3, the quantity A′H(zH ; vH , wH)−B′H(zH ; vH , wH) is equal
to∑
K∈TH

J∑
j=1

ωKj

(
d

ds

∣∣∣∣
s=zH(xKj )

(
a0(xKj , s)− a0

Kj (s)
))

vH(xKj )∇zH(xKj )·∇wH(xKj ).

We deduce the result using the Cauchy-Schwarz inequality (similarly to the proof of
Lemma 4.4) and the estimate ‖vH∇zH‖L2(Ω) ≤ ‖vH‖L3(Ω)‖∇zH‖L6(Ω) ≤ C‖vH‖H1(Ω)‖zH‖W 1,6(Ω).

�

Lemma 4.9. Let τ > 0. Under the assumptions of Theorem 3.3, there exist
H0, ν, r0 > 0 such that if H ≤ H0, and zH ∈ S`0(Ω, TH) with

‖zH‖W 1,6(Ω) ≤ τ, σH‖zH − u0‖H1(Ω) ≤ ν, and rHMM + r′HMM ≤ r0

where rHMM , r
′
HMM are defined in (3.1) and (3.5), respectively, then for all linear

forms G on S`0(Ω, TH), there exists one and only one solution vH ∈ S`0(Ω, TH) of

∂BH(zH ; vH , wH) = G(wH), ∀wH ∈ S`0(Ω, TH).

Moreover, vH satisfies

‖vH‖H1(Ω) ≤ C sup
wH∈S`0(Ω,TH)

G(wH)

‖wH‖H1(Ω)

where C is a constant independent of H,h and zH .

5These two estimates follow from the inverse inequality ‖vH‖L∞(Ω) ≤ CH−d/p‖vH‖Lp(Ω) and

‖vH‖Lp(Ω) ≤ Cp1/2‖vH‖H1(Ω) with p = | logH| for d = 2, and ‖vH‖L6(Ω) ≤ C‖vH‖H1(Ω) for

d = 3.
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Proof. Lemma 4.9 has been proved in [7, Lemma 7] for ∂AH instead of ∂BH and can
be reformulated in terms of the following inf − sup inequality: there exist H0, ν > 0
such that if H ≤ H0, ‖zH‖W 1,6(Ω) ≤ τ and σH‖zH − u‖H1(Ω) ≤ ν, then

(4.20) inf
vH∈S`0(Ω,TH)

sup
wH∈S`0(Ω,TH)

∂AH(zH ; vH , wH)

‖vH‖H1(Ω)‖wH‖H1(Ω)
≥ K > 0,

where K is a constant independent of H and zH . Using Lemma 4.8 and the inequal-
ity ‖zH‖W 1,6(Ω) ≤ τ , it follows from (4.13) that for all zH , vH , wH ∈ S`0(Ω, TH),

∂BH(zH ; vH , wH) ≥ ∂AH(zH ; vH , wH)− (qHMM + τq′HMM )‖vH‖H1(Ω)‖wH‖H1(Ω)

≥ (K − C(rHMM + r′HMM ))‖vH‖H1(Ω)‖wH‖H1(Ω),

where qHMM , q′HMM are the left-hand sides of (4.18),(4.19), respectively. We
deduce the inf-sup inequality (4.20) for ∂BH with rHMM + r′HMM ≤ r0 where r0

is chosen small enough so that K − Cr0 > 0. This concludes the proof. �

In the next lemma we show that {uH} is bounded in W 1,6(Ω).

Lemma 4.10. Under the assumptions of Theorem 3.1 and if rHMM ≤ CH, there
exists τ > 0 such that ‖uH‖W 1,6(Ω) ≤ τ, where τ is independent of H,h.

Proof. Using the quasi-uniform mesh assumption, we have the inverse estimate
‖vH‖W 1,6(Ω) ≤ H−1‖vH‖H1(Ω) for all vH ∈ S`0(Ω, TH) (see [20, Thm. 17.2]) which
yields

‖uH‖W 1,6(Ω) ≤ ‖uH−IHu0‖W 1,6(Ω)+‖IHu0‖W 1,6(Ω) ≤ C(H−1(H`+rHMM )+‖u0‖H2(Ω)) ≤ τ,

where IH : C0(Ω) → S`0(Ω, TH) denotes the usual nodal interpolant [20, Sect. 12].
�

We can now prove that the Newton method (4.15) converges at the usual qua-
dratic rate.

Lemma 4.11. Assume that the hypotheses of Theorem 3.3 hold. Let uH be a
solution of (2.14). There exists H0, r0, ν > 0, such that if (3.7) holds and uH0 ∈
S`0(Ω, TH) satisfies

(4.21) σH‖uH0 − uH‖H1(Ω) ≤ ν,

then the sequence {uHk } of the Newton method (4.15) with initial value uH0 is well
defined and ‖uHk+1 − uH‖H1(Ω) ≤ CσH‖uHk − uH‖2H1(Ω), where C is a constant

independent of H,h, k.

Proof. The proof of Lemma 4.11 follows closely the lines of the proof of [22, Theorem
2] (see [7, Theorem 6] in the context of FEM with numerical quadrature), where we
use the C2 regularity of the tensor a0

K(s) with respect to s, and the boundedness of
∂ka0

K(s)/∂sk, k ≤ 2 which can be shown from (3.6), using the idea of the proof of
Lemma 6.1 (see Appendix). The main ingredient of the proof is Lemma 4.9 which
can be applied in the special case zH = uH thanks to Lemma 4.10 and the estimate
(using (3.3),(3.7) and σH ≤ CH1/2)

σH‖uH − u0‖H1(Ω) ≤ CσH(H` + rHMM ) ≤ C(σHH
` + σHr0) ≤ ν

for all H small enough and r0 chosen small enough in (3.7). We omit the details. �

We can now prove the claimed uniqueness result.
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Proof of Theorem 3.3. Let uH , ũH be two solutions of (2.14). We consider the
Newton method {uHk } defined by (4.15) with the initial guess uH0 = ũH . Us-
ing Theorem 3.1, we have σH‖ũH − uH‖H1(Ω) ≤ C(σHH

` + σHrHMM ) and thus

σH‖ũH − uH‖H1(Ω) satisfies (4.21) for H0, r0 small enough using (3.7). By Lemma

4.11, for ν small enough, ek = ‖uHk − uH‖H1(Ω) converges to 0 for k → ∞. Using

(2.14), we have uHk = uH0 = ũH for all k, which yields uH = ũH . �

If we want further to characterize the uniqueness in terms of the macro and micro
meshes, we need to estimate rHMM , r

′
HMM in terms of these quantities. This can be

done for locally periodic tensors. The quantity rHMM has been estimated in terms
of h, ε, δ in Section 4.2. Using similar techniques, the quantity r′HMM defined in
(3.1) can be estimated as described in the following lemma whose proof is postponed
to the Appendix.

Lemma 4.12. Assume that the hypotheses of Corollary 3.4 hold, then r′HMM ≤
C(h/ε)2. If we use the form (2.15) instead of (2.18) for the solution uH of (2.14),
then r′HMM ≤ C((h/ε)2 + δ).

Proof of Corollary 3.4. Follows from Theorem 3.3, Lemmas 4.12, 4.6 and 4.7. �

5. Numerical experiments

In this section, we first present an efficient numerical implementation of the
Newton method (4.15), whose theoretical convergence is shown in Lemma 4.11. We
then illustrate numerically that the theoretical a priori convergence rates derived
in this paper are optimal.

5.1. Newton method implementation. To solve the non-linear problem (2.14)
with the newton method, we consider a sequence of {zHk } in S`0(Ω, TH) and express

each function in the FE basis of S`0(Ω, TH) as zHk =
∑Mmacro

i=1 U ikφ
H
i . We further

denote Uk = (U1
k , . . . , U

Mmacro

k )T . The Newton method (4.15) translate in terms of
matrices as

(5.1)
(
B(zHk ) +B′(zHk )

)
(Uk+1 − Uk) = −B(zHk )Uk + F,

where B(zHk ), B′(zHk ) are the stiffness matrices associated to the bilinear forms
BH(zH ; ·, ·), B′H(zH ; ·, ·) defined in (2.15) and (4.14), respectively. Here, F is a
vector associated the source term (2.14), which also contains the boundary data.

Following the implementation in [5] we consider for each element K ∈ TH the FE
basis functions {φHK,i}

nK
i=1 associated with this element and the local contribution

BK(zHk ) to the stiffness matrix (BK(zHk ))nKp,q=1 =
∑J
j=1(BK,j(z

H
k ))nKp,q=1 with

(5.2)

(BK,j(z
H
k ))nKp,q=1 =

ωKj
|Kδj |

∫
Kδj

aε(x, zHk (xKj ))∇ϕ
h,zH(xKj )

Kj ,p
(x) · ∇ϕ

h,zH(xKj )

Kj ,q
(x)dx,

where ϕ
h,zH(xKj )

Kj ,p
, ϕ

h,zH(xKj )

Kj ,q
are the solutions of (2.13) constrained by φHK,p, φ

H
K,q,

linearized at xKj , respectively.
Differentiating (5.2), we see that the stiffness matrix B′(U) in (5.1) associated

to the non-symmetric form B′H(zH ; ·, ·) defined in (4.14) is given by the sum of J
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products of nK × nK matrices

B′K(zHk ) =

J∑
j=1

(
∂

∂s
(BK,j(s))

∣∣∣∣
s=zH(xKj )

)(
UK,k(φHK1

(xKj ), . . . , φ
H
KnK

(xKj ))
)

where the column vector UK,k of size nK gives the components of zH in the basis
{φHK,i}

nK
i=1 of the macro element K ∈ TH . Here, the derivative with respect to s of

the nK × nK matrix BK,j(s) can be simply approximated by the finite difference

∂

∂s
(BK,j(s)) ≈

BK,j(s+
√
eps)−BK,j(s)√
eps

,

where eps is the machine precision. Therefore, the cost of computing the stiffness
matrices for both B(zHk ) and B′(zHk ) is about twice the cost of computing the
stiffness matrix B(zHk ) alone.

5.2. Numerical illustration of theoretical convergence rates. We shall now
illustrate the sharpness of the H1 and L2 error estimates of Sections 3 and 4. Rect-
angular macro Q1 elements (Gauss quadrature with J = 4 nodes (1/2±

√
3/6, 1/2±√

3/6)) will be used and δ/ε ∈ N∗ (we emphasize that similar result can be obtained
with triangular P1 macro elements).

We recall that for a tensor of the form aε(x, s) = a(x, x/ε, s) where a(x, y, s) is
periodic with respect to the fast variable y and collocated in the slow variable x
(see (2.18)) we have

(5.3) ‖uH − u0‖H1(Ω) ≤ C(H + ĥ2), ‖uH − u0‖L2(Ω) ≤ C(H2 + ĥ2),

where ĥ := h/ε is the scaled micro mesh size.
We consider the non-linear problem (1.1) on the domain Ω = (0, 1)2 with homo-

geneous Dirichlet boundary conditions and the following anisotropic 2× 2 diagonal
oscillatory tensor

aε(x, s) =
1√
3

(
(2 + sin(2πx1/ε))(1 + x1 sin(πs)) 0

0 (2 + sin(2πx2/ε))(2 + arctan(s))

)
The homogenized tensor can be computed analytically and is given by the diagonal
matrix

a0(x, s) =

(
1 + x1 sin(πs) 0

0 2 + arctan(s)

)
The source f(x) in (1.1) is adjusted analytically so that the homogenized solution
is u0(x) = 8 sin(πx1)x2(1 − x2), The H1 and L2 relative errors between the exact
homogenized solution u0 and the FE-HMM solution uH ,

eL2 = ‖u0 − uH‖L2(Ω)/‖u0‖L2(Ω), eH1 = ‖∇(u0 − uH)‖L2(Ω)/‖∇u0‖L2(Ω),

can be estimated by quadrature with ‖u0−uH‖2L2(Ω) ≈
∑
K∈TH

∑J
j=1 ωKj |uH(xKj )−

u0(xKj )|2, and similarly for ‖∇(u0−uH)‖L2(Ω). We consider a sequence of uniform
macro partitions TH with meshsize H = 1/NMacro and NMacro = 4, 6, 8, . . . , 256.

In Figure 1(a),(b) the H1 an L2 relative errors between the exact homogenized
solution and the FE-HMM solutions are shown for the above sequence of partitions

using a simultaneous refinement of H and ĥ according to ĥ ∼ H (L2 norm) and

ĥ ∼
√
H (H1 norm). We observe the expected (optimal) convergence rates (5.3) in

agreement with Theorem 3.1.



FE-HMM FOR NONMONOTONE ELLIPTIC HOMOGENIZATION PROBLEMS 19

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

N
Macro

R
e
la

ti
v
e
 e

rr
o
r

 

 H
1
 error

L
2
 error

Slope 1

Slope 1

(a) Optimal H1 refinement strategy with
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(b) Optimal L2 refinement strategy with
NMicro = NMacro.
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(c) Computation with fixed NMicro = 4, 8, 16, 32, 64.

Figure 1. Convergence rates: eL2 error (dashed lines) and eH1 er-
ror (solid lines).

We next show that the ratio between the macro and micro meshes is sharp.
For that, we refine the macromesh H while keeping fixed the micro mesh size
(N = Micro = 4, 8, 16, 32, 64). This is illustrated in Figure 1(c), where we plot
the H1 an L2 relative errors as a function of H = 1/NMacro. It is observed that
optimal macro convergence rates are obtained only if macro and micro meshes are
refined simultaneously.

6. Appendix

We provide in this appendix a proof of Lemma 4.12 which is a crucial ingredient
for the proof of Corollary 3.4 on the uniqueness of the numerical solution uH for
small enough macro and micro mesh sizes H,h. For that, we will often use the
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following inequality (6.1). Given a closed subspace H of W (Kδj ), let ψi ∈ H,
i = 1, 2 be the solutions of∫

Kδj

ai(x)∇ψi(x) · ∇z(x)dx = −
∫
Kδj

fi(x) · ∇z(x)dx, ∀z ∈ H,

where a1, a2 ∈ L∞(Kδj )
d×d are elliptic and bounded tensors and f1, f2 ∈ L2(Kδj )

d.
A short computation shows
(6.1)
‖∇ψ1 −∇ψ2‖L2(Kδj ) ≤ λ−1 sup

x∈Kδj
‖a1(x)− a2(x)‖F ‖f2‖L2(Kδj ) + ‖f1 − f2‖L2(Kδj ),

where λ is the minimum of the ellipticity constants of a1, a2. We also need a
regularity result for the solutions of (2.22).

Lemma 6.1. Assume that aε is uniformly elliptic and satisfies (3.6) with k = 1.

Consider the solution ψi,sKj of (2.22). Then, the map s 7→ ψi,sKj ∈ H1(Kδj ) is of

class C1 and satisfies

(6.2)
∂

∂s
ψi,sKj = φi,sKj ,

∂

∂s
∇ψi,sKj = ∇φi,sKj ,

where for all z ∈W (Kδj ),
(6.3)∫

Kδj

aε(x, s)∇φi,sKj (x) · ∇z(x)dx = −
∫
Kδj

∂ua
ε(x, s)(∇ψi,sKj (x) + ei) · ∇z(x)dx.

An analogous statement holds also for the FEM discretization ψi,h,sKj
defined in

(2.24), where ∂
∂sψ

i,h,s
Kj

= φi,h,sKj
satisfies (6.2) and (6.3) with ψi,sKj , φ

i,s
Kj

and z replaced

by ψi,h,sKj
, φi,h,sKj

and zh ∈ Sq(Kδj , Th) respectively.

Proof. We consider twice the problem (2.24) with parameters s and s+∆s, respec-
tively. We deduce from (6.1) with H = W (Kδj ), and the smoothness of s 7→ aε(x, s)

that ‖ψi,s+∆s
Kj

(x)− ψi,sKj (x)‖H1(Kδj ) → 0 for ∆s→ 0. Consider now the identity

(6.4)∫
Kδj

aε(x, s)∇(ψi,s+∆s
Kj

−ψi,sKj )·∇zdx = −
∫
Kδj

(aε(x, s+∆s)−aε(x, s))(∇ψi,s+∆s
Kj

+ei)·∇zdx

Dividing (6.4) by ∆s, subtracting (6.3) and taking ∆s→ 0, we deduce from (6.1)

that ∂
∂sψ

i,s
Kj

(x) exists and that (6.2),(6.3) hold. Using again the property (6.1), we

obtain similarly the continuity of s 7→ φi,sKj ∈ H
1(Kδj ). This concludes the proof

for ψi,sKj . The proof for ψi,h,sKj
is nearly identical, using the property (6.1) with

H = Sq(Kδj , Th) �

Proof of Lemma 4.12. We start with the first estimate. We set x = xKj in (2.6).
A change of variable y → xKj + x/ε shows that

(6.5) (a0(xKj , s))mn =
1

|Kδj |

∫
Kδj

a(xK , x/ε, s)(en +∇χn(xK , x/ε, s)) · em
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where χn(xK , x/ε, s) solves for all z ∈W (Kδj ),
(6.6)∫
Kδj

a(xK , x/ε, s)∇χn(xK , x/ε, s) · ∇z(x)dx = −
∫
Kδj

a(xK , x/ε, s)en · ∇z(x)dx,

As the tensor aε is (locally) periodic and δ/ε ∈ N∗, if we collocate aε in (2.26) and
in (2.6) at x = xKj , we obtain a0(xKj , s) = a0

Kj
(s) and ψn,sKj (x) = εχn(xKj , x/ε, s).

We consider the elliptic system −∇ · (A∇Ξ) = ∇ · Fn formed by the augmented
problem (2.24)-(6.3), where

A =

(
a(xKj , x/ε, s) 0
∂ua(xKj , x/ε, s) a(xKj , x/ε, s)

)
, Fn =

(
a(xKj , x/ε, s)en
∂ua(xKj , x/ε, s)en

)
and Ξ = (ψn,sKj , φ

n,s
Kj

)T . It follows form well known H2 regularity results [13,

Sect. 3.4-3.6] that φn,sKj , ψ
n,s
Kj
∈ H2(Kδj ) and ‖φn,sKj ‖H2(Kδj )+‖ψn,sKj ‖H2(Kδj ) ≤ Cε−1

√
|Kδj |.

From standard FEM results [20, Sect. 17], we deduce that the corresponding FEM

discretization (ψm,h,sKj
, φm,h,sKj

) satisfies

‖∇φn,sKj −∇φ
n,h,s
Kj
‖L2(Kδj ) ≤ Ch‖φn,sKj ‖H2(Kδj ) ≤ C(h/ε)

√
|Kδj |,

and similarly for ψn,h,sKj
in place of φn,h,sKj

. Now, using Lemma 6.1 and differentiating

the identity (4.12) with respect to s, we deduce from the Cauchy-Schwarz inequality
| dds (ā0

Kj
(s) − a0

Kj
(s))mn| ≤ C(h/ε)2, where we used similar FEM estimates (as

obtained for ψn,h,sKj
, φn,h,sKj

) for ψ
m,h,s

Kj , φ
m,h,s

Kj . This concludes the proof of r′HMM ≤
C(h/ε)2. Consider now the case where the formulation (2.15) is used. We notice
that the Lipchitzness of the tensors a(x, y, s), ∂ua(x, y, s) with respect to x ∈ Kδj

yields for k = 0, 1, supx∈Kδj ,s∈R
‖∂kua(x, x/ε, s) − ∂kua(xKj , x/ε, s)‖F ≤ Cδ. Using

the inequality (6.1) with H = Sq(Kδj , Th), this perturbation of the tensors a, ∂ua

induces a perturbation of ψn,h,sKj
and φn,h,sKj

of size ≤ Cδ
√
|Kδj |, which concludes

the proof. �
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