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ABSTRACT

The construction of low-dimensional models explaining high-
dimensional signal observations provides concise and efficient data
representations. In this paper, we focus on pattern transformation
manifold models generated by in-plane geometric transformations
of 2D visual patterns. We propose a method for computing a mani-
fold by building a representative pattern such that its transformation
manifold accurately fits a set of given observations. We present a
solution for the progressive construction of the representative pat-
tern with the aid of a parametric dictionary, which in turn provides
an analytical representation of the data and the manifold. Exper-
imental results show that the patterns learned with the proposed
algorithm can efficiently capture the main characteristics of the in-
put data with high approximation accuracy, where the invariance to
the geometric transformations of the data is accomplished due to the
transformation manifold model.

Index Terms— Pattern transformation manifolds, manifold
learning, dimensionality reduction, matching pursuit, sparse repre-
sentations

1. INTRODUCTION

A set of signals that can be locally mapped to a lower dimen-
sional Euclidean space constitutes a manifold in the original high-
dimensional signal space. Specifically, a family of signals that are
globally definable by a small set of parameters is a signal manifold.
The recovery of the manifold structure underlying a set of data
has been a popular research topic of the recent years. In manifold
learning an efficient representation of the data with reduced dimen-
sionality is searched, which also helps understanding the structure
of the signal. It is possible to retrieve the manifold structure of data
in various ways, such as by describing a global parameterization
based on geodesic distances as in ISOMAP [1], or via locally linear
representations as in LLE [2].

In this work, we propose a method for building a pattern trans-
formation manifold (PTM) that fits a given set of observed data. The
transformation manifold of a visual pattern consists of images that
are geometrically transformed versions of the pattern. For instance,
the images obtained by the rotation and translation of a pattern form
a pattern transformation manifold. Given a set of observations of
a signal exposed to geometric transformations, we study the prob-
lem of learning a representative pattern whose transformation man-
ifold constitutes an accurate approximation of the observations. We
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build the pattern as a linear combination of some atoms in a para-
metric dictionary. The utilization of parametric atoms in the pattern
construction not only brings desirable properties such as differen-
tiability, but also provides compact data representations, which is
one of the main concerns in dimensionality reduction. Our solu-
tion is based on constructing the representative pattern progressively
by optimizing the atom selection at each step, where we use a lo-
cally linear approximation of the manifold. Experimental evalua-
tion of the proposed algorithm shows that the data approximation
error is minimized gradually with the refinement of the representa-
tive pattern, and the constructed pattern transformation manifold fits
the data well.

Since we select atoms in the construction of the representative
pattern in a greedy manner, our method bears a resemblance to
sparse approximation algorithms such as Matching Pursuit (MP)
[3] or Simultaneous Orthogonal Matching Pursuit (SOMP) [4]. Al-
though our problem is also related to sparse signal representations,
it is essentially different from these approaches in the following
sense. In SOMP, the simultaneous sparse approximation of a group
of signals is achieved by expressing signals as linear combinations
of selected dictionary atoms, where atom coefficients can be dif-
ferent for each signal. However, in our problem we would like to
approximate signals as transformed versions of the same represen-
tative pattern, where the atom coefficients in the construction of
the pattern are fixed and it is the transformation parameters that
varies among different signals. Hence, the solution of our problem
cannot be simply achieved by employing a simultaneous matching
pursuit algorithm with an input set enriched with transformations.
Instead, we propose a geometric solution to the problem through the
transformation manifold model, where we minimize the total dis-
tance of the data to the constructed manifold in atom and coefficient
optimization.

2. PROBLEM FORMULATION

We formulate here the transformation manifold learning problem.
Let p € R"™ be a visual pattern. A point on the transformation mani-
fold M,, of p is an image U, (p) that is obtained by applying the ge-
ometric transformation Uy to p, i.e., M, = {Ux(p), A € A} C R",
where ) is a parameter vector specifying the applied transformation,
and A is the domain of parameter vectors on which the manifold
is defined. For instance, if the transformation consists of a two di-
mensional translation of p in the image plane, the parameter vectors
are in the form A = (¢, ty), the parameter domain can be taken as
A = R?, and each manifold point is a translated version of p.

Let X = {z;}}.; C R" be a set of observations of a geo-
metrically transformed visual signal. We would like to describe the



observations {z;} by the transformations of a representative pattern
as accurately as possible. Hence, the problem consists in determin-
ing a representative pattern p such that each point z; is approximated
by a transformation of the pattern p as x; = U, (p) + e;. Here, the
term e; denotes the deviation of x; from the transformation mani-
fold M,, of p. We assume that the parameter domain A is known,
and given a parameter vector ), the transformation function Uy cor-
responding to A is available. However, the representative pattern p is
to be learned, as well as the parameter vectors {\; } corresponding
to the observations {x; }.

We construct p as a linear combination of atoms of a paramet-
ric dictionary D = {a;}}_,, where each atom is available in an
analytical form a; = ¢, as some geometrically transformed ver-
sion of a generating mother function ¢. The representative pattern
is expressed as p = Zle cjaj, where the vector c of coefficients
is a sparse vector, i.e., it has a small number S < K of nonzero
coefficients. In the selection of the atoms that build p, the objec-
tive is to approximate the observations X accurately. We represent
the approximation accuracy in terms of the distance of data points
to the transformation manifold M,. Therefore, we formulate the
problem as follows. Given N observations {x; }/—, and a dictionary
D = {a;}}<,, determine a coefficient vector ¢ € R* and transfor-

mation parameters {\;}7_, such that the total data approximation
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is minimized. The notation ||.|| stands for the l2-norm throughout
the text.

3. PTM APPROXIMATION ALGORITHM

In this section we describe an algorithm for building the repre-
sentative pattern that approximates the given observation set in a
transformation-invariant way. We construct the pattern progres-
sively by selecting atoms from the dictionary in a greedy manner,
where in each iteration we add a new atom and optimize the coef-
ficient of the selected atom such that the data approximation error
FE is minimized. In the minimization of the error, we use a locally
linear approximation of the manifold near each data point. For this
reason, we initialize the algorithm by assigning a tentative set of
parameter vectors {\; } to the data points {z; }. One possible way of
achieving the parameterization is to select a reference atom a € D
with a suitable coefficient o and then project the observations on the
transformation manifold of ca, where each data point x; is assigned
the parameter vector A; = arg minxea ||Ux(aa) — x;||. Following
this, we initialize the pattern p. Note that it is possible to initialize p
in several ways, such as a multiple of the reference atom as p = aa
or simply as p = 0. In the former case, the reference atom a can
be selected in a manner similar to an iteration of MP, for instance,
it can be chosen as the atom that has the highest correlation with an
average image of the data set. Since the learning procedure is based
on successive refinements of p, the initialization of the pattern is not
expected to affect its final structure much. However, it may have an
influence on the speed of convergence.

Let us now discuss the selection of a new atom in the construc-
tion of p. Let p; denote the pattern that consists of [ atoms after the
1th iteration. In the [*" iteration, we would like to choose an atom
a; € D and a coefficient ¢; # 0 such that the approximation error
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is minimized, where p; = p;—1 + c;a;, and the notation d(x, M)
denotes the distance between a point x and a manifold M. Notice
that the current assignment of the parameter vectors {\;} to {x;}
does not necessarily correspond to the points of projection on the
transformation manifold of the new pattern p; after the update, i.e.,
|z — Ux, (m)]| # d(xi, Mp,) in general. In the minimization of
the error E in (2), it is not easy to formulate analytically and com-
pute the exact distance between an observation x; and the manifold
My, . Therefore, in order to minimize £ we make use of a linear ap-
proximation of the manifold near each observation, which is based
on the transformation parameters of the previous iteration. Let d be
the dimension of the manifold, i.e., the number of transformation pa-
rameters that define the PTM. The first order approximation of the
manifold M,,, around the manifold point Uy, (p:) is given by

My, = Sp, = {Ux,(p) + T 3: B € R}, 3)

where T3; is an n x d matrix consisting of tangent vectors. The
kt* column of T;; is the tangent vector 9/0y Ux,(p:), which
is the derivative of the manifold point Uy, (p;) with respect to
the k" transformation parameter. We approximate the exact
manifold distance d(x;, Mp,) by the distance between z; and
Sp,- The orthogonal projection of x; on Sp, is given by &; =
Ux, (p1) +T3; 87, where the coefficient vector 3 of the projection is
g = (Tg i)~ " TZE (xi — Ux,(p1))- Hence, the difference vector
é; between x; and Z; is

éi=T; — i =T — UM(PL)
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= T3y (T Tig) ™" Tij (i = Ux, (1)), @
which gives an approximation of the error term in (2) as £ ~ E=
Zf\;l |lé:||>. In order to minimize the error, we propose the follow-
ing. For each atom a; € D, we compute the minimum value of the
error B optimized over the coefficient c; of the atom. Then, we pick
the atom that provides the highest reduction in the error. Now, for an
atom aj, let us discuss the determination of the optimal coefficient
¢;. In order to analyze the dependency of E on ¢;, first notice that
Ux;(p1) = Ux; (pi-1+¢ja5) = Ux; (pi-1) +¢;U, (), due to the
linearity of the 2D pattern transformations. The k" column of the
matrix 7;; is thus

0 0 0
Uy, = —Ux, (p- i=—Ux, (aj).
SN pn) = 5-U (prn) + ¢ 5-Us,(a)
This gives a decomposition of the matrix T;; as T3 = P; + ¢ Ayj,
where P; and A;; are respectively the matrices consisting of the tan-
gents to the manifolds My, _, and M, at the points Uy, (p;—1) and

Uy, (a;). Now, defining y; = 2; — Us, (pi—1), we arrange F as
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In equation (5), (TZE T;;)~! is a matrix whose entries are rational
functions of ¢;, and the other terms are polynomial in c;. There-
fore, the total error E is a rational function of ¢; of the form E =
Zfil fi(c;)/gi(c;), where fi(c;) and g;(c;) are polynomial func-
tions of ¢;, and the denominator g; (c;) is equal to the determinant of
the matrix TZ-E T3;, therefore it is positive. Since E is a sum of ratio-
nal functions with positive denominators, it is a DC function of c;,
i.e., it can be expressed as the difference of two convex functions [5].
The special form of DC functions allows their minimization via DC
solver algorithms. Although DC solvers are guaranteed to find the



global minimum of the function, in the experiments we have used a
descent-based optimization procedure, since it is simpler than a DC
solver and gives close results for this specific problem.

Once the new atom and the corresponding optimal coefficient is
determined, the pattern p is updated. However, due to the approx-
imation of the original manifold by a linear model, an update that
decreases F may not decrease the original error E. In this case, we
do not accept the update on p, and try the remaining atoms in the
order given by the amount of decrease that they yield in E. When-
ever a new atom is added to the pattern p, we recompute the projec-
tions of the points {x;} on the refined manifold M, and update the
parameter vectors {\;} such that they correspond to the new man-
ifold points of projection. We repeat this until convergence. Due
to the resemblance of the atom selection step to that of the Match-
ing Pursuit algorithm, we call this method Transformation-Invariant
Matching Pursuit (TIMP) and summarize it in Algorithm 1. Since
the error computation is repeated for all atoms and observations, the
complexity of the algorithm is O(K - N - P(d)), where P(d) is a
polynomial term in the dimension d of the manifold.

Algorithm 1 Transformation-Invariant Matching Pursuit

1: Input:
X = {z;}] 1 Set of observations
D = {a;}},: Dictionary
A: Feasible domain of parameter vectors
U': Mapping from parameter domain A to the manifold

2: Initialization:

3: Determine a set of parameter vectors {\;} by projecting {z;}
on the transformation manifold of a reference atom a € D.

4: 1 =0.

5: Initialize the representative pattern po.
Repeat 6-10 until convergence

6: l=101+1.

7: Determine the atom a; € D and the optimal coefficient c¢; that
minimizes the approximate total error Ein (5).

8: Update p; = pi—1 + cja;.

9: Update parameter vectors {\;} by projecting {z;} to the trans-
formation manifold M,, of p;.

10: Check if the update on p reduces the exact total error E. If not,
reject the update, remove the chosen atom a; from the current
list, and go back to 7.

11: Output:

p = pi: A representative pattern whose transformation manifold
M, fits the data X

4. EXPERIMENTAL RESULTS

We now present the experimental results obtained with the proposed
algorithm. In all experiments we use a dictionary

D = {¢, kK:/f U {p, }?:K/2+1a (6)

where the atoms {¢-, } and {¢., } are derived respectively from the
2D Gaussian function ¢(x,y) = +/2/mexp(—z? — y?) and the
AnR (anisotropic refinement) function ¢(z,y) = /2/(37) (42 —
2) exp(—2? —y?). Gaussian atoms represent smooth components of
images, whereas AnR atoms capture edge-like features. Dictionary
atoms are generated by applying random geometric transformations
{7&} to the mother functions ¢ and . These transformations are

composed of rotation, translation in horizontal and vertical direc-
tions, and anisotropic scale change in horizontal and vertical direc-
tions.

In all experiments we measure the approximation accuracy of
the learned representative pattern by the data approximation error,
which is the average squared distance of input data points to the
transformation manifold of the output pattern. The data approxima-
tion error in the plots is normalized with respect to the average norm
of input images.

First, we conduct experiments on transformation manifolds de-
fined by the rotation and translation of patterns. Given a pattern p,
we define its transformation manifold by

My ={Ux(p) : A = (0, 1z, ty) € A}, ©)

where 6 denotes the rotation and ¢, and ¢, are the translations in
x and y directions. As an initial experiment, we examine the ap-
proximation accuracy of the learned pattern with respect to the noise
level of the input data set. We form a synthetical pattern r that is
composed of randomly selected 5 Gaussian and 3 AnR type atoms.
Then we generate a data set X of 50 different patterns by applying
r random geometric transformations of the form (7). From X we
obtain several data sets of different noise levels by corrupting its im-
ages with additive Gaussian noise. Then for each data set we run
the TIMP algorithm and try to recover the representative pattern 7,
where the algorithm is terminated after 40 iterations in all runs. We
use a dictionary of K = 1000 atoms. In Fig. 1 the data approxima-
tion error is plotted with respect to the noise variance of the data set.
As the deviation of the input data from the transformation manifold
of r is controlled by the noise level, the total error E in (2) is linearly
proportional to the noise variance. The plot in Fig. 1 confirms that
the data approximation error has a linear dependence on the noise
variance.

Then, we conduct another experiment for the same type of pat-
tern transformation manifolds on a data set consisting of 200 top-
view images of two different objects captured under different orien-
tation and positions. The images are converted to greyscale, down-
sampled, and the background pixels are set to the intensity value of
0. Some example images from the data set are shown in Fig. 2(a).
A representative pattern is obtained with the TIMP algorithm that
consists of 20 atoms, where the dictionary consists of 2000 atoms.
The constructed pattern is shown in Fig. 2(b). In order to evaluate
the performance of the proposed algorithm, we compare it with two
other reference approaches. In the first one, we approximate the data
set images by the transformation manifold of an average pattern in
the data set, where the average pattern is chosen as the pattern that
has the smallest distance to the centroid of all images. In the second
approach, we construct a progressive approximation of this average
pattern with the MP algorithm, and compute the data approximation
error yielded by the transformation manifold of each intermediate
pattern in the approximation. In Fig. 2(c), the data approximation er-
ror is plotted with respect to the number of atoms in the construction
of the representative pattern with the TIMP algorithm and the MP
construction of the average pattern, where the error obtained with the
transformation manifold of the original average pattern is also indi-
cated. The figures show that the TIMP algorithm efficiently builds
a representative pattern whose transformation manifold provides a
model for the data, yielding higher representation accuracy than the
transformation manifold of the average pattern and its approxima-
tions. Interestingly, the approximations of the average pattern with
MP gives less error than the average pattern itself, which suggests
that the regularized approximations of a nonsmooth manifold may
perform better than itself in terms of data representation.
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Fig. 2. Results obtained on the object images data set

Finally, we test the proposed algorithm on a 4-dimensional
pattern transformation manifold, where we include also the scale
change in the transformations. Therefore, this time the transforma-
tion manifold of the pattern p is given by

My ={Ux(p) : A = (0, Lz, ty, 5) € A}, ®)

where s denotes the scale change in addition to the parameters of the
model in (7). For this experiment, we create a data set of 500 images
by applying random transformations of the form (8) to 500 randomly
selected images of the digit ‘5’ from the MNIST handwritten digits
database'. Some examples from the data set are shown in Fig. 3(a).
We use a dictionary consisting of 1000 atoms. The representative
pattern learned after 20 iterations is shown in Fig. 3(b). In Fig. 3(c)
the data approximation error is plotted with respect to the number of
atoms used in the construction of the pattern with the TIMP algo-
rithm and the construction of the average pattern of the data set with
the MP algorithm, together with the error given by the transforma-
tion manifold of the average pattern. The results are in agreement
with the results of the previous experiment. In spite of the challenge
caused by the diversity of the handwritten data, the main features
characterizing the digit ‘5 are well captured in the built pattern, and
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Fig. 3. Results obtained on the handwritten digits data set

the proposed method outperforms the other baseline approaches in
terms of representation accuracy.

5. CONCLUSIONS

We have proposed a method for generating a visual pattern such that
its transformation manifold forms an accurate model for a given set
of observed images. We build the representative pattern gradually
in terms of the atoms of a parametric dictionary, where we present
a geometric solution for the atom selection. Our method is general
and applicable to various kinds of 2D geometric pattern transforma-
tions. We demonstrate the performance of the proposed algorithm on
data sets conforming to transformation manifold models of different
dimensions. The experimental results show that the approximation
error is reduced efficiently during the progressive construction of the
representative pattern, and the learned pattern captures the input data
characteristics accurately.
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