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Abstract

This article describes a new approach to the macroscopiofatsr modeling and
simulation of traffic flow in complex urban road intersecgso he framework is
theoretically sound, operational, and comprises a largly bdmodels presented
so far in the literature.

Working within the generic node model class of Tampere df@thcoming), the
approach is developed in two steps. First, building on tleeeimental transfer
principle of Daganzo et al. (1997), an incremental node rhfmtegeneral road
intersections is developed. A limitation of this model (dghe original incre-
mental transfer principle) is that it does not capture situs where the increase
of one flow decreases another flow, e.g., due to conflicts. écarsl step, the new
model is therefore supplemented with the capability to descsuch situations.
A fixed-point formulation of the enhanced model is givenusioh existence and
uniqueness are investigated, and two solution algorithmsleveloped. The fea-
sibility and realism of the new approach is demonstratealtin both a synthetic
and a real case study.

1 Introduction

A traffic flow model describes vehicular dynamics given aaertraffic infras-
tructure and, if applicable, given additional route chaie®rmation. The in-
frastructure comprises the considered road (system) mstef geometry, speed
limits, and such. If a complete network is given, this alscudes intersection
properties such as turning move limitations, right-of-ueys, and signaling, and
it requires supplementary route choice information. THaadar dynamics may
be described at various levels of details, ranging fromlshvghicle interactions
("car-following models", e.g., Brackstone and McDonal@92; Pandawi and Dia,
2005), over partially aggregate (“mesoscopic”) modelg.(éstarita et al., 2001;
Ben-Akiva et al., 2001; De Palma and Marchal, 2002; Mahnmas2801; Nokel
and Schmidt, 2002), to fully macroscopic models that treqiaular traffic flows
as continuous streams. The latter model class is considertbds article. The
major advantage of macroscopic models is their tractabt&enaatical structure
and their low number of parameters.

Macroscopic models for traffic flow on a link have gone fromfilnedamental di-
agram (where density and velocity are uniquely related amd # a function
of either density or velocity (Greenshields, 1935)) via thehthill-Whitham-

Richards theory of kinematic waves (where the fundamenégrdm is inserted



into an equation of continuity (Lighthill and Witham, 195R8ichards, 1956)) to
second-order models (where a second equation introdued&ifPayne, 1971)).
This article concentrates on the kinematic wave model (K\Wbd}t it also adds
empirical evidence to the ongoing debate if more complexetsygeld a substan-
tial gain in expressive power (e.g., Lebacque and Leso@&9;1doogendoorn and
Bovy, 2001; Nagel and Nelson, 2005).

Instances of the KWM are collectively referred to as “firal@rmodels” because
they model velocity (first order information) but do not ggjfily specify an ac-
celeration/deceleration law (which would constitute setorder information).
Macroscopic first order models capture a bird’s view on wdftiw: They do not
distinguish individual vehicles, and they allow arbithaabrupt velocity changes;
both features are consistent with reality only if sufficlgmdérge space- and time-
scales are considered. These properties of the KWM apphovEkeway traffic
but are more difficult to associate with urban traffic, whisidominated by in-
tersection dynamics. Also, urban intersections can be taeromplex than the
simple three-legged junctions (merges and diverges) ooeuerters on freeways.
Furthermore, certain urban intersection conflicts can elyseesolved based on
right-of-way laws that go without signaling. Hence, the qukge modeling of ur-
ban traffic with the KWM requires to represent this type oémsections as well.
This is the objective of this article. It is achieved in twess.

First, theincremental transfer (IT) principlef Daganzo et al. (1997) is developed
further into a solution procedure for tigeneric node model (GNM)f Tampere
et al. (forthcoming). The original IT principle simulateuuti-lane multi-class
traffic flow. Although the problem of modeling the outflow of et ®f upstream
lanes into a set of downstream lanes bears clear simikwxitih the general in-
tersection modeling problem, no systematic effort to caéiney IT principle over
to general intersections has been reported in the litexatliherefore, amcre-
mental node model (INM}s developed that (i) inherits the intuitive appeal and
computational convenience of the IT principle, (ii) geriees the IT principle in
that it allows for flow transfer rates that vary continuouslying the transmission
(iii) is consistent with the GNM, and (iv) comprises a largadip of first order
intersection models presented so far in the literature.

Second, the disability of both the IT principle and the INMcepture situations
where the increase of one flow leads to the decrease of arftuiives overcome.
This situation occurs mainly when one traffic stream yielmsmnother, and an
increase in the high-priority stream decreases the thioutgbf the low-priority
stream. The INM is therefore extended with concredde supply constrainthat
capture such interactions. These constraints (i) allowetscdbe complex flow
interactions within the node, (ii) are still consistentlwihe GNM, and (iii) can
be conveniently included in the INM through a fixed point foation. More
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generally, these node supply constraints apply to a wideteindass than the
GNM; they are compatible with every node model that is phdasderms of the
KWM'’s demand/supply framework.

The resultingiNM with node supply constraints (INM@ investigated with re-
spect to solution existence and uniqueness, and two solpitacedures are devel-
oped. This analysis reveals that (i) flows in point-like nrstction models can be
non-unique even for simple three-armed topologies and(iihgrroblems of this
kind are likely to result from parameter misspecificatiansambination with the
limitations of the point-like modeling approach as suchrtfkermore, it is shown
that situations exist where any instance of the GNM resdhissambiguity by se-
lecting a solution that would result from cooperative iastef competitive driver
behavior. A modification of the GNM that overcomes this coarfirent is there-
fore proposed. Overall, this analysis indicates that s@etions beyond a certain
spatial complexity should indeed be modeled spatiallyeast by distinguishing
several point-like intersection elements. However, therowed modeling power
of the INMC it is clearly demonstrated through both a synthahd a real case
study.

The remainder of this article is organized as follows. Satises 1.1 and 1.2
review the demand/supply framework of the KWM and the GNMides to en-
able a self-contained presentation. Section 2 developditie puts it in relation
with the existing literature, and clarifies its basic wokkithrough an example.
Section 3 then enriches the INM with node supply constradisgusses solution
existence and uniqueness of the resulting INMC, and deselep solution pro-
cedures. Section 4 evaluates the new model both in termsyoithetic and a real
example. Finally, Section 5 concludes the article.

1.1 Demand/supply framework for the kinematic wave model

The KWM requires a minimal set of assumptions to model trélifiw on a linear
road. Denote by € R a location on that road and kyc R the continuous time.
p(x,t) is the local density (in vehicle units per length unit) offig q(x, t) is its
flow (in vehicle units per time unit), andx, t) is its velocity. These quantities
are related by the first constituent equation of the KWM:

q(x,t) =v(x, t)p(x, t). (1)

The second modeling assumption is that of vehicle conservadn smooth con-
ditions, it is expressed by the continuity equation
dp | 0q
Bk R ) 2
ot  ox 0 )
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Figure 1. Local demand and supply comprise a fundamentgtata
The demand functiom\(p) (solid) consists of an increasing part with its slope eqoal t
the free flow speed and is limited by the flow capadity The supply function:(p)
(dashed) is also limited by the flow capacity. The slope ofléslining part equals the
backward wave speed and intersects the abscissa at thesreassible density. The
minimum of both functions yields a fundamental diagram cBrése linearity is a typical
but not necessary property; the demand/supply framewgleszo all concave and non-
decreasing demand and supply functions.

Finally, local flow is specified as a function of local denstyly. This relation is
usually denoted as the fundamental diagram:

q(x,t) = Qlp(x,t),x). 3)

Since these specifications can still result in ambiguitesadditional condition
must be instrumented to select the physically relevanttisolu Given a con-

cave fundamental diagram, the principle of local demandsaqply provides a
convenient technigue to ensure uniqueness (Daganzo, 1998a,b; Lebacque,
1996; Nelson and Kumar, 2006). Denotey (x+) the location immediately
upstream (downstream) af For everyx, the local flowq(x, t) is then defined
as the minimum of locaflow demandA(p(x—,t),x—) and localflow supply

Z(p(x+,t),x+):

C](X, t) = mln{A(p(X_> t),X—), Z(p(X—}—, t)>X+)} (4)

Figure 1 illustrates this function.

Equation (4) reflects the self-evident constraint that litredfic flow is bounded
by the flow that can be dismissed from the immediate upstreaatibn and by the
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Figure 2: A general intersection wifhingoing and] outgoing links

flow that can be absorbed by the immediately downstreamittaturthermore,

the local flow is maximized subject to these constraintss phoperty enforces the
physically relevant solution of the KWM. Phenomenolodigal is a statement

of drivers’ ride impulse (Ansorge, 1990), which is equivdlg expressed by the
microsimulation rule for cellular automata “Drive as fast you can and stop
[only] if you have to!” (Chrobok et al., 2003; Daganzo, 2006)

Beyond its ability to uniquely capture traffic flow on a linkjg principle also ap-
plies to general intersections, cf. Figure 2. In such arggtgvery upstream link
provides a demand;(t) equal to its greatest possible inflow into the intersection,
and every downstream linkprovides a supply;(t) equal to the greatest possible
outflow it accepts from the intersection. Additional phemorological modeling

is facilitated since these boundaries alone are generatlgufficient to uniquely
define the intersection flows. However, every reasonableifsgsion must ad-
here to the principle of local flow maximization subject tbienomenological
constraints.

1.2 Generic macroscopic node model

Macroscopic node models that are based on constrained flewnization aim at
selecting the physically relevant solutions of the KWM wehicilitating further
phenomenological modeling through the constraints. Eatyglels along these
lines are described by Holden and Risebro (1995); Coclital.ef2005); Herty
and Klar (2003), who, however, resort to unrealistic asdionp about the turn-
ing behavior of drivers. Lebacque and Khoshyaran (2005ndefinode model



class that maximizes a concave function of the flow and caaprihe models of
Holden and Risebro (1995) and Coclite et al. (2005).

The GNM of Tampere et al. (forthcoming), on which this agibluilds, follows
a similar approach, yet with a simpler objective functionl amore detailed con-
straints. A node model belongs to this class if it solves tileding optimization
problem:

I

n
n;gx; q (5)
st.q>0 (6)
CIout — qun (7)
q"<A (8)
qOUt S Z (9)
g satisfies the invariance principle (20)
g satisfies a supply constraint interaction rule (11
optional: g satisfies node supply constraints (12)

where the vectog™ = (q™") collects thel node inflows from upstream, the vec-
tor g = (q%) collects the] node outflows towards downstream,= ( (?ta),

A = (A;) andX = (X;) are vectors of upstream demands and downstream sup-
plies, andB = (Py) is a matrix of non-negative turning fractions from upstream
arcsi to downstream arcswith Zj By = 1. There are no dynamics within the
node, and its spatial extension is neglected. (Lebacqu&4(1B003) offers dy-
namic node models.) The GNM is defined for a discrete time step single
point in continuous time; the time index is omitted here flondicity. The fol-
lowing presentation assumes discrete time due to its foousgperational model
implementations.

Equations (5)—(9) have straightforward interpretatiombe objective function
(5) calls for flow maximization. Equation (6) requires noegative flows. Vehicle
conservation within the node and compliance with the tigiiactions (which are
specified exogenously here but can be functions of the wgstfiew composition)
are required in (7). Equations (8) and (9) require that noflews and outflows
do not exceed the respective demands and supplies.

The invariance principle in (10) states the following (Legae and Khoshyaran,
2005):
A; — Cy  for all upstream with q; < A;

Y; — C;  forall downstrean with g; < Zj,
(13)

g is invariant with respect t{



whereC; (C;) is the flow capacity of upstream link(downstream link). Time-
discrete models that violate the invariance principlevalior waves that emanate
from the node while at the same time traveling towards theentitese solutions
are unstable when the time step size approaches zero.ielyithe invariance
principle can be phrased as follows: (i) increasing the gusze on a congested
upstream link has no effect on the node flows (because thédwks constrained
from downstream), and (ii) making more space available amaongested down-
stream link does not change the node flows (because the lwkigloonstrained
from upstream).

Equations (11) and (12) facilitate further phenomenolalgivodeling. Thesupply
constraint interaction rule (SCIRh (11) determines how a limited downstream
supply is shared among the upstream links in congested toomsli It is a neces-
sary element of every node model with more than one upstresdm The node
supply constraintg (12) capture additional effects that reduce the node flaws
particular signaling and conflicts inside the node. Theyatonal elements in
that it is possible to compute unique node flows even with@aensupply con-
straints.

2 Incremental node model

This section develops a new node model that is related tolthpihciple. This

principle was originally formulated as a discrete-time @lation procedure for
a freeway with special lanes and priority vehicles (Dagaetzal., 1997); see
Lawson et al. (1999) for a qualitatively validation of thedenlying model and
Zhang and Lin (2001) for a review. The IT principle computes per time step
by incrementally transferring flow elements from upstreandawnstream until
some termination criterion is met.

Daganzo et al. (1997) already conjecture a broader apjligadf the IT princi-
ple but do not develop this consideration further. Indeespde of its intuitive
appeal, the IT principle has never been systematicallysiiyated as a method to
compute traffic flow in a general intersectib.ebacque and Koshyaran (2002)
relate their lane assignment model to the multi-lane moaleks by the IT prin-
ciple, but they turn to different techniques when it comesdde modeling. Laval
and Daganzo (2006) deploy a variant of the IT principle whealyzing the ef-
fect of lane changing in traffic streams. They observe théaiity of their flow
transmission rules with some intersection models of Leba@nd Lesort (1999);

1This statement is supported by an inspection of all 19 adithat cite Daganzo et al. (1997)
up to December 3, 2010 according to the Scopus citation dsgafiElsevier, accessed 2010).



however, this observation is not further pursued. Also dland Daganzo (2006)
deploy a demand-proportional supply distribution logibjeh violates the invari-

ance principle. Their lane-changing model is picked up belCht al. (2009),

again deploying a demand-proportional supply distribusoheme.

The subsequently developed incremental node model (IN&tufes consistency
with the GNM, simple and intuitive parametrization, and gutational efficiency.

The latter property is crucial in every non-trivial netwarlodel, which may con-

sist of many thousand node instances. Furthermore, the iNlylgeneralizes all

instances of the GNM proposed so far in the literature.

2.1 Specification

The incremental transfer of flow occurs along a fictitiousetiime t, with the
transfer starting at = 0. The flow being transferred untilis written asq(t),
and the finally transmitted flow i = q(oco). The INM is specified in terms of a
stationary point of the following dynamical system:

q(t) = e(q(t)) (14)
s.t.q(0) = (15)
() >0 (16)

The differential equation (14) represents the incremdndalsfers, which start at
zero flows according to (15). The requirement (16) of nonatiggflow transfer
rates@(-) ensures that flows do not become negative, which satisfiesn@he
following, a set of (increasingly stringent) constraints @(-) that ensure full
consistency with the GNM is developed.

The constraint (7) is equivalent to
©*'(q) = Be™"(q) (17)

with @(-) = ((‘;’;ﬂf('.))). Equation (17) results from (7) by differentiation with
respect ta, and it uniquely implies (7) by integration because of (15).
To enforce the demand and supply constraints (8) and (9sehe

D(q) = {1‘ 1 <1< I (upstream): q" < Ay andfj | By > 0} € D(q) }

[ <1< 1I+] (downstream): ¢ < X and3i € D(q): Bu >0

(18)
is defined. It contains those upstream (downstream) ar¢sateanot demand
(supply) constrained. Furthermore,

o1(q) = 1(1 € D(q)) - d1(q) (19)
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wherel(-) is the indicator function and

wla) = (ofa) = ( Sdd) )= (§ )o"@w=0 @
$**(a) B

with | being thel x I identity matrix. This definition still fulfills (17). The st

positivity of ¢ (-) in combination with (18) and (19) guarantees that the temsf

process eventually attains a stationary point, at wiidck- {} must hold. Equa-

tions (18)—(20) implicitly define the SCIRs that can be egpesl with the INM

through an appropriate choice ¢f"(-).

The INM is by design consistent with the invariance prineipAt every solution

of the model,D is the empty set. Consider a solutigit < A;. The first part

of (18) implies that there is a downstream lijiwith 3;; > 0 and q;?“t = X, that
keepsi from sending more flow downstream. Increasivgdoes not change this
situation, and hence the first part of (13) is satisfied. Falati®n q;?“t < Zj, the
second part of (18) implies that there is no upstreamiitiat could send more
flow towardsj. Increasingz; does not change this situation, and hence the second

part of (13) is satisfied.

Finally, the stationary poingj(co) of the INM is flow maximizing: Every fea-
sible setting ofA, X, and ¢"(-) defines a unique incremental transfer path
{q(t)}s2,, which obeys the SCIR constraint. The objective functioniriéreases
monotonously along this path because of

(Y . gn .
(254 gla)) = X olia) =0 1)
D(gq(co)) = {} implies that all elements of(co) are either demand- or

supply-constrained. Demand-constrained inflows cannohdéreased. Supply-
constrained inflows can only be increased by reducing at l@@s competing
inflow, sayi. Denote byg™" < q"(oco) the accordingly reduced inflow. The mono-
tonicity of the SCIR path that led tg(oco) guarantees the existence of a transfer
time t with ¢"(t) = g", cf. (15) and (16). Howeveg"(t) < q™"(co) implies
¢©"(q(t)) > 0 and hencey"(t) < g, which is a contradiction. This means that
any reduction of an inflow component @ioco) is incompatible with the SCIR.
Hence,q(oo) is uniquely flow maximizing subject to the phenomenologaat-
straints.

2.2 Instances of the incremental node model

To specify a concrete instance of the INM, on]i;ii‘(-) > O needs to be defined. A
general approach is (i) to specify a parametpi(-; &) that captures the structure
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of the considered intersection and (ii) to calibrate theapwseter vectoix from
data. An appealing choice is a piecewise consiait-; «): In terms of calibra-
tion, this enables an intuitive procedure of incrementatlging thresholds tex
until a sufficient data fit is obtained. To give an example,utbeck and Kako
(1999) indicate that low-priority vehicles merge more aggively at high flows.
This can be modeled by assigning a relatively pWto the respective stream for
low q values and using a larger” if q exceeds an appropriate threshold. The
important computational advantage of this approach is pretewise constant
transfers allow to replace the integration of (14) by a fisiien.

The most extreme case of this specificationpi8(-;x) = « = (), which
assigns a constant inflow priority; to every upstream arc such that the ratios
of node inflows in perfectly over-saturated conditions édjue ratios of theirx
coefficients. To the best of the authors’ knowledge, allanses of the GNM
presented so far in the literature can be phrased as an INMd@¥it; &) = o
and a particular choice at. These models are enumerated in the following; the
according “proofs” of equivalence follow from a comparisohthe respective
simulation procedures with the basic INM solution algaritigiven in the next
subsection.

Not surprisingly, the first-in/first-out (FIFO) diverge liegof the INM coincides
with many other FIFO diverges, including those of DaganZ9gh), Lebacque
(1996), Adamo et al. (1999) Kuwahara and Akamatsu (2081).ebacque and
Koshyaran (2002), Jin and Zhang (2004), Gentile et al. (20Qi& et al. (2008),
Yperman et al. (2007), Bliemer (2007), and Nie et al. (2608)

The merge model of Ni and Leonard (2005) results from the INthw& single
downstream link and letting aft; equal to the respective upstream link flow ca-
pacities. The merge model of Daganzo (1995a) coincides twgéHNM for two
upstream links and one downstream link as long as all infloaripies are strictly
positive. Kuwahara and Akamatsu (2001) given an incommpeification of

a full merge model that could be made consistent with the IMMich would
essentially result in a model of the Ni and Leonard (2005¢typ

The unsignalized intersection model of Tampere et al.l{fmning) generalizes
the merge model of Ni and Leonard (2005). It also results fiteeriNM by setting

2Adamo et al. (1999) specify a FIFO condition in their Eq. (20t their solution (23) does
not exhibit this property. Their experimental results oobnsider a merge, hence it can only be
speculated that the model is indeed FIFO.

3The specification of Kuwahara and Akamatsu (2001) is reduiridahat the second constraint
in their Eq. (16) never binds.

4The “max” operator in (19) of Nie et al. (2008) should acty&i a “min” that creates a FIFO
diverge logic (Nie, 2010).
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the «; parameters equal to the upstream link flow capacities. 8itpjlthe signal-
ized intersection model of Tampere et al. (forthcoming)lmacaptured by scaling
the respectivex; parameters with the green time fractions of their upstreaks|

Many discrete-time merge and general node models in thiatitee are based on a
demand-proportional distribution of the downstream siggplAll of these models
violate the invariance principle (Lebacque and Khoshya?@05) and are hence
incompatible with both the GNM and the INM. This applies t@ ttmodels of
Buisson et al. (1995); Buisson, Lebacque and Lesort (19@%son, Lebacque,
Lesort and Mongeot (1996), Rubio-Ardanaz et al. (2001)adid Zhang (2003),
Jin and Zhang (2004), Bliemer (2007), Yperman et al. (200&h Hinsbergen
et al. (2008), Nie et al. (2008), and Kurzhanskiy and Var§}@10).

The general intersection models of Gentile et al. (2007)Asta@imo et al. (1999)
as well as the merge model of Lebacque (1996) are not flow maixig) the latter
also allows, without further correction, for solutions wie¢he flow exceeds the
supply. This also excludes them from the GNM and INM framdwor

2.3 Basic implementation of the incremental node model

In the following, a solution procedure for the most basi¢anse of the INM with
a constantp™(-) is described. This specification results in piecewise @omsiow
transfer rate (-), where changes occur when a new demand or supply constraint
become active, cf. (19). The flow transmissions are henceutaed in a multi-
stage process with stage index= 0. .. K. The flows at the beginning of stage

in(k)
are denoted by = ( C?OUt(k) ) and

q® =0 (22)

is let consistently with (15).

The paramete®® defines the length of stageon the fictitious time line of the
incremental transfer process, such that

g™ =g +8%(q") (23)

whereg(q¥) is defined through (18) and (19). Since stagaust end when the
first flow in D™ = D(q™) reaches a constraint,

o) _ min | (Ai—ar)/el (@) for Lupstream 24)
leD(*) (Zl—q?ut(k))/cp{’“‘(q(k)) for 1 downstream|
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Algorithm 1 Solution of a basic INM
1. k=0

2.99 =0
3. D =D(q?) according to (18)
4. while ©™ = {}), do
(@) computed™ according to (24)
(b) g+ = g™ + 8™ (q™) according to (23)

(c) DD = D(q*") according to (18)
(d) increase by one

5. K=k

The overall process is summarized in Algorithm 1. It ternsan stagk where
DX = [} and, equivalentlyp ™) = 0. This algorithm solves only the most basic
INM instance with a constap™ function. The general INM with a variabkp™
function can be solved by numerical integration of (14)-)(Ihe INM with a
piecewise constanp™ function is solved by a straightforward generalization of
Algorithm 1.

This algorithm reproduces all of the aforementioned FIF@dje models, the
merge model of Daganzo (1995a), the merge model of Ni and drelo§2005),

and the unsignalized intersection model of (Tampere dbathcoming). This can

be shown by walking through the computation steps desciibttese references
and comparing them to Algorithm 1, which establishes thiabfalhese models
are instances of the basic INM with a constéit function. The specification
given here is very compact and comes without the lengthyfprob Tampere

et al. (forthcoming) because its consistency with the GNBults immediately

from the fact that it is an instance of the INM. It should alsormoted that the
basic Algorithm 1 was first heuristically proposed by Fléittand Nagel (2005)
and later shown to be flow-maximizing by Flétterod (2008)e Tiext subsection
clarifies its working through an example.

In summary, this subsection demonstrates that, to the bé&s¢ @authors’ knowl-
edge, all instances of the GNM presented so far in the litezadre covered by the
basic INM. Beyond this, the presented framework renderfutuee specification
of much richer GNM instances through the INM with a varial€ function a
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technically straightforward exercise. However, the revimay presentation will be
in terms of the basic INM with a constagit” function only.

2.4 Example

The considered test network is shown in Figure 3. It will bagiéed in later parts
of this article, where the INM is compared to a detailed teaffiicrosimulator.
This section only demonstrates the workings of the basic [&Bvspecified in
Algorithm 1.

The network consists of a major street in north/south diwactwhich is inter-
sected by a minor one way street that runs from east to westreTdre three
upstream (predecessor) linkg, Pg, Py and three downstream (successor) links
SN, Sws Ss. Traffic coming from the south enters the intersection fraadpcessor
link Ps, traffic coming from the east enters it g, and traffic coming from the
north enters it vidPy. The linksSy, Sw, andSs represent the northbound, west-
bound, and southbound exit of the intersection, respdgtived percent of the
traffic coming fromPs turns left at the intersection, and 50 percent of the traffic
coming fromPy turns right at the intersection, both into successor figk The
traffic on the minor street only crosses the intersectiomi@arizing,fsy = 0.5,
Bsw = 0.5, Bew = 1, Banw = 0.5, andPBns = 0.5. The right-of-way laws at the
westbound merg8,y are modeled through the priority valueg = 10, s = 1,
and g = 0.1.The further parameters of this intersection are descriated in
Section 4.1, where they become relevant for the first time.

Consider first an uncongested scenario, where the downssepplies are suf-
ficient to absorb all upstream demands. In particular, teviing demand and
supply values are assumefly = 600 veh/h,Ag = 100 veh/h,Ay = 600 veh/h,
XN = 1400veh/h, Xy = 1400 veh/h, ands = 1400 veh/h. Table 1 details the
flow transmissions in these conditions. Every block of rowshis table corre-
sponds to one stage of the INM. All upstream demands are $diyed: The
simulated flow rates arg? = 600veh/h, q' = 100veh/h, i = 600 veh/h,
ay" = 300 veh/h, g3t = 700 veh/h, andq2" = 300 veh/h. All node inflows are
split proportionally to their respective turning fractsn

The following setting represents a congested scenakip= 600veh/h,Ag =
100veh/h, Ay = 600veh/h, £y = 1400veh/h, Ly = 400veh/h, andZs =
1400 veh/h. The total demand f&ky is BswAs + PewAe + PnwAn = 700 veh/h,
which exceeds its supply @00 veh/h. Table 2 details how this situation is sim-
ulated in the INM. In stage 0, no constraint binds, all nodws are increased
proportionally to their priorities, and all node outflowsancreased by inflows
that result from weighting the upstream inflows with the tngnfractions. The
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See Section 2.4 for a detailed description.
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Table 1: Uncongested flow transmissions

| [ Ps | Pe [Pu] Sn | Sw | Ss|

q©, cf. (15) 0] 0 |0 O 0 0
0O, cf. (19) 1] 01|10 05| 56 | 5
(A —q9)/¢© [ 600| 1000| 60 | 2800| 250 | 280
01, cf (24) 60

q™, cf. (23) 60 ] 6 |600] 30 | 336 |300
oM 1]/01]005| 06 |O
(A —qM) /@ | 540 940 | % | 2740] 1773.33] oo
o 540

q@ 600] 60 |600] 300 | 660 | 300
o 0 01| 0] O 01 | O
(A —q@)/e@ | % | 400 | % | co | 7400 | oo
0 400

q® 600 100 [ 600] 300 | 700 | 300
e 0| 0 |0 O 0 0

Every block of rows represents one flow transmission stade dlgorithm terminates
when all flow transmissions have ceased. The simulated fl@s eae given in the second
last row. @/= is to be read as “eithek or =".)
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Table 2: Congested flow transmissions

| | Ps | Pe [Pu] Sw | Sw [ Ss|

q© 0 0 0] O 0 0
@ 1 01 | 10| 05| 56 | 5
(As—q9)/@@ | 600 | 1000| 60 | 2800 | 71.43 | 280
900 60

qm 60 6 |600] 30 | 336 ]300
o 1 01| 0] 05| 06 | 0
(&t —qM)/e | 540 | 940 | % | 2740 106.67| oo
o 106.67

q@ 166.67] 16.67] 600] 83.34] 400 | 300
o7 0 0 |0 O 0 0

Every block of rows represents one flow transmission stagee dlgorithm terminates
when all flow transmissions have ceased. The simulated flt®s eae given in the second
last row.

inflow from Py, which has the highest priority and hence the highest teamate,
reaches its demand constraint most quickly. Next, the doveas supply oSy
is used up in stage 1. Since all upstream links have a nontaening fraction
towardsSyy, all flow transmissions cease in stage 2 such that the ahgortier-
minates. The simulated flow rates af§ = 166.67 veh/h, q" = 16.67 veh/h,
qll = 600 veh/h,qQ" = 83.34 veh/h,q3" = 400 veh/h, andg2" = 300 veh/h. The
node inflow fromPy is completely transmitted because its priority is high egiou
to reserve sufficient capacity 8. The remainder o8\,’s capacity is completely
used up byPs andPg, the flows of which are proportional to their priorities.

These experiments demonstrate how the basic INM simulateshplex intersec-
tion. However, this ability also introduces new difficutieConflicting streams
(in this example: the left- turning portion of the northbaduifow vs. the south-
bound flow and the minor flow vs. all major flows) are not yet actted for. The
following section shows how they can be consistently inooaited in the model.

3 Node supply constraints

The GNM's optional node supply constraints have so far besgiected. They
capture node capacity reductions that result from siggalmd/or conflicts inside
the node. See, e.g, Rouphail et al. (1999) for capacity ralsgnalized intersec-
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tions and Troutbeck and Brilon (1999) for unsignalized is¢etions. The INM
is now supplemented with generic node supply constraimtaitih an additional
fixed-point condition. This combines the computationalcegficy of the INM
with vastly increased modeling capabilities, and it alseldg some interesting
insights into the workings of the GNM. However, the propossatesentation of
node supply constraints is not limited to the GNM but appiiese generally to
any node model that is based on the KWM’s demand/supply frarie

Node supply constraints complicate the modeling substiymtiConsider, for ex-
ample, the case of an unsignalized intersection with cdimtjcstreams of dif-
ferent priorities. If a stream yields, the FIFO diverge geduces all node in-
flows from its upstream arc. This makes more space availaliteei downstream
merges, which in turn may allow other flows to increase. Tlileses may be of
sufficiently high priority such that again other flows may @aw yield to them.
These dependencies are complex and, possibly, even circula

Subsection 3.1 adds node supply constraints to the INM gireufixed point for-
mulation. Subsection 3.2 discusses specification and anegs issues. Finally,
Subsection 3.3 presents two solution algorithms of diffeseope and complexity.

3.1 Specification

The INM (14) — (20) is formally written as

q= ( ;’) — INM(A, Z), (25)

where the parameters of the underlyingg function are omitted for notational
simplicity. (Algorithm 1 could be used to solve this modal éoconstantp func-
tion; however, a more complex specification with a variabléunction is just as
feasible.)

The node supply constraints are implemented throudéraand constraint func-
tion A(q) that bounds the original demauX] given a flow patterm in the inter-
section. The suchlike constrained demandq) result from

A(q) = min{A, A(q)} (26)

where the min function applies element by element. The used#mand con-
straint function is no modeling confinement: Even thoughespply constraints
may apply to individual traffic streams, the streams fromheagstream arc are
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uniquely coupled through the FIFO rule, which allows to cameliheir node sup-
ply constraints into a single demand constraint function.

The INM with node supply constraints (INMC) thus requiresdentify flow rates
g that solve the fixed-point problem

q=INM(A(q), )

e (27)
= INM (min{A, A(q)}, X).

The equivalence of this equation with a GNM where the nodglsumnstraints
(12) are phrased ag" < A(q) strongly depends on the concrete specification of
the node model. For example, since (27) constitutes a nagessndition for the
GNM with node supply constraints, the existence and unigsef a solution of
(27) would also guarantee a unigue solution of the GNM. Haxeghe following
analysis shows that full consistency with the GNM is a dééigasue.

A solution of (27) is guaranteed to exist if the demand ccai\strfunctionﬁ(q)

is continuous and applies to evarypetweerD and é : The basic INM con-
stitutes a continuous mapping of demands on flows becaussutts from an
integration of the flow transfer rateg(-). For a continuous demand constraint
functionA(q), the combined function INMMIn{A, A(q)}, X) is therefore contin-

uous with respect tq as well. This function maps every flogvfrom the closed,
bounded, and convex set< q < ( L};‘ ) on this very set. That is, the model

(27) specifies a fixed point of a continuous mapping of a clobednded, and
convex set on itself. Brouwer’s fixed point theorem guarestat this mapping
has at least one fixed point (Sobolev, 2001). Subsectiors3i@voted to the less
obvious uniqueness analysis of (27).

The modeling of node supply constraints through demandi@nsfunctions has
been tentatively pursued by some authors. van Hinsberggn(2008, 2009) cap-
ture stream line interactions within an intersection bystoaining the respective
demand functions dependently on the demand for conflictowgsflof higher pri-
ority. That is, they replace the demand constraint funcﬁc@q) by a constraint
functionZ&(A) that does not depend on the actual flayis the intersection but on
the demandg\. There are simple situations where this approach fails ues

for example, an upstream demand that affects some other upstream demand

SFor example, assume that every stream from upstreanhiméownstream link is faced with
an individual node supply constraint, which is expresseteims of a stream-specific demand
constraint functiom;(g). These constraints can be combined through the FIFO rubeone

joint demand constraint functicfﬁi(q) = minj{&j (a)/Bi; -

18



A, via EZ(AQ. Now, consider any situation where the actually transmhiger-
tion of A; becomes arbitrarily small, e.g., because of a congestedstozam
arc or because of an interaction with another traffic streBmthe most extreme
case, nothing of\; is tranAsmitted at all such that its impact on the intersectio
effectively vanishes — but\,(A;) invariably creates the same effect as if all of
Aq actually entered the intersection. Lebacque (1984) mdlbsisdependent de-
mand constraints but solves the model linearly in that mutependencies are not
resolved. Yperman et al. (2007) also identify the need falytiow-dependent
demand constraints, but they neither specify nor solve aunbdel.

3.2 Uniqueness analysis

By incorporating node supply constraints in the INM, two ralscare connected:
The basic INM is designed to identify the unique solution cfudbclass of the
GNM. The demand constraint functiaAh(q) should be defined in a unigue man-
ner as well. However, without further assumptions thereigmarantee that the
combined model (27) also has a unique solution. In this@egiiis demonstrated
that non-uniqueness is likely to result from misspecifaadi that are intimately
related to the limitations of point-like intersection méslas such. It also is shown
that the flow maximizing approach of the GNM should be revisedause it se-
lects counter-intuitive results in certain situations vehéhe fixed-point model
allows for multiple solutions.

Consider the situation shown in Figure 4. This is a threeearmtersection, where
a fractionpw of flow glff, coming from the north, turns into the westbound link W
and the remainder continues southbound. A fracfign of flow g, coming from
the south, also turns into link W, while the remainder caméis northbound. The
left-turning share o yields to the southbound shareqdf. Traffic is single-lane

in every direction. This is a simplified version of the preywsty used test network,
where the minor stream coming from the east is removed fatgse clarity.

To begin with, the yielding of the left-turning flow is ighatand it is assumed that
the flow supplyx,y of the westbound link is the limiting factor of the interseats
throughput and that neither the demakgnor the demands can be fully served
such that

Bawdy + Bswdd = apv' = Zw. (28)

This relation is represented by line 1 in Figure 5. Given therfties oy and os
for the two ingoing streams, _

BSWCI'_Q _ Xs

PnwdN N

(29)
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out
dw

A
®

Vo oqb

Figure 4: Simplified test network
A three-armed intersection, where some of flg}', coming from the north, turns into
the westbound link and the remainder continues southboungbortion of flow g2,
coming from the south, also turns into the westbound linkjenthe remainder continues
northbound. The left-turning share g§“ yields to the southbound share ¢ff". Traffic
is single-lane in every direction.

holds furthermore in these conditions. An exemplary instaaf this relation
is given by line 2. Its intersection with line 1 at point A cditigtes the unique
solution of the unconstrained node model.

Now, let the left-turning portion ofi yield to the straight portion ofl. The ac-
cording demand constraint functicﬁg(qk}) is represented by curve 3 in Figure 5.
A feasible solution point must not be located above this euRoint A maintains
to be a feasible solution of the constrained model becawsedtv constraint is
not violated. However, an inspection of point B now revehks following prop-
erties: (i) given the transmitted flows, the constraint Bibdt is not violated, and
(if) an evaluation of the INM with an accordingly constraingemand reproduces
the flows.

That is, both A and B are fixed points of (27), and hence botvestblis intersec-
tion model. The cause of this ambiguity is the priority sfieation: Line 2 has a
very large slope ofts/a, which implies thaiqll precedes;! in the westbound
merge. On the other hand, the node supply constraint iretiche opposite: The
left-turning portion ofq yields to the southbound part af]. If the priorities

were selected such that line 2 was flat enough to intersece Gibefore reach-
ing line 1, then point B would be the unique solution. Furthere, if the slope
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Bswqg

Bnwdy
w
Figure 5: Ambiguous intersection flows
Given this constellation of the merge constraint 1, therjfiyiaconstraint 2, and the en-
dogenous flow constraint 3, there are two possible flow soistiA and B for the inter-
section of Figure 4.

of line 2 was so low that it intersected line 1 below point Berttonly this new
intersection point would solve the model.

The non-uniqueness in this example clearly results from sspeicified model.
This type of misspecification is not easy to identify autao@ly, which is
demonstrated by a slight modification of the setting. Cagrside modified ver-
sion of the previous example shown in Figure 6. The only céffiee is thay]
is now allowed to u-turn and merge into the northbound pardhf A realistic
priority rule for this setting would be that the the u-turgistream yields to the
straight stream. This can lead to a situation where the noplelyg constraint on
the left-turning portion ofqY becomes inactive because the u-turning stream is
held back such that it blocks thg] stream, which otherwise would constraj§.
This situation yields a flow diagram that looks qualitatyielentical to Figure 5,
only that line 1 now represents the merge constraint of thitham downstream
arc and line 2 represents the priorities at this merge. kdhse, point A repre-
sents indeed a plausible solution.

Unfortunately, returning from the fixed point model (27) teetoriginal GNM
does not help to resolve this ambiguity. A combination of)(@&h (29) shows
that point A is globally flow maximizing ifSnw < Bsw, point B is globally
flow maximizing if Bnw > PBsw, and both points yield the same global flows if
Bnw = PBsw. However, there is no reason why a change in the turningidrast
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an

out
dw

A
®

Vo oqb

Figure 6: Simplified test network with additional u-turn
The only difference to the intersection of Figure 4 is thattitaffic coming from the north
is now allowed to u-turn and merge into the straight northmabstream.

should favor one solution over the other, and hence the maatian of flows
can only be attributed to some kind of cooperative driveidvedr across different
streams.

This cooperative behavior results from the GNM’s maxim@abf onejoint ob-
jective function (5). An arguably more realistic approasha phrase the node
model as ad-player game where each inflow is one player, the continwalised
strategy set of a player is the amount of flow the player semidsthe intersec-
tion, and the individual-level objective function to be nraked by each player
is the amount of flow sent into the node. This would result iruytcompetitive
intersection model the flows of which would be in a Nash efuiilim.

The model (27) can be seen as a fixed-point formulation of sancbquilibrium.

This means that it is indeed behaviorally plausible thatfiked point model is
ambiguous where the GNM is not. This raises the questioneo&NM'’s scope.
The authors consider the GNM appropriate in situations wlilee INM is ap-

plicable as well, because solution uniqueness can be geathnHowever, the
introduction of node supply constraints seems to reachimhies! of the original

GNM. A fixed-point reformulation of the GNM appears to be ait@ad next step
in future research.

Considering the wealth of thinkable intersection moddi® generality of the
INMC reaches the limitations of what situations can be reabty modeled by
point-like intersections. If, for a very complex interseat the spatial arrange-
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Algorithm 2 Exact solution procedure
1.q(1)=INM(A,X)

2.A =A
3. fori=2...1, do:

(@) Al =min{Ay, Ai(q(i—1)))
(b) q(i) = INM(A’, X)

4.q=q(l)

ment of interactions contains information that is necegs$ar a unique model

specification, then this intersection should indeed be heddgpatially, e.g., by

linking several point-like intersection components. Heerethe question if well-

designed real intersections permit systematically andagulow patterns is yet
to be answered. It may be that the problems observed her@asequences of
pathological specifications that would not be consideredrgxperienced ana-
lyst. Still, all of these critical statements does not ildaie the observation that
the INMC advances the macroscopic first order modeling offderintersections

considerably.

3.3 Solution algorithms

In the following, two solution methods for the fixed point ptem (27) are de-
scribed. Both approaches terminate after a finite numbealotiations and are
experimentally tested in the next section. The first metheldly an exact solution
but requires an independence assumption to be satisfiedsédoad method is
universally applicable but may yield only an approximatiigon. For notational

simplicity, it is assumed that every node infléw= 1...1 is subject to a demand
constraint function that represents one or more node suplgtraints.

Exact solution procedure. Assume that the upstream arcs= 1...1 can be
ordered such that the node inflow fronis independent of all node inflowis+
1...Tin terms of both the INM and the node supply constraints. dndering
is not unique if there are mutually independent inflows.) Ti{&7) can be solved
in I steps by Algorithm 2.
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First, the basic INM is run without demand constraints, whygelds the flows
q(1). Based on this, the second highest ranking demaaa is reduced accord-

ing to the demand constraint functiaﬁ(q(l )). By assumption, this constraint
does not change in reaction to variations in the node infloasfi = 3...1.
Then, the basic INM is run again, using the constrained denoéi = 2, which
yields the flowsy(2). Because of the independence assumption, the constraint on
i = 2 binds exactly in this and all following iterations. Now, tiemand oft = 3

is constrained bys(q(2)), the INM is run again, and so forth. Aftérsteps, all
constraints are satisfied, and the simulated flows reproithese constraints.

Approximate solution procedure. If no ranking of the node inflows is possible
because of mutual dependencies, Algorithm 3 can be depldygiklds an ap-
proximate solution of (27) with only two evaluations of tié¢M, between which
it interpolates both the flows and the constraints. This @udace can also be de-
ployed as a building block in a more precise iterative solualgorithm, which,
however, is beyond the scope of this article.

The steps 1 and 2 identify the two working points A and B betwehich the
flows and the constraints are interpolated. Step 1 calalée unconstrained
flows A and the constraints A that result from these flows. 2tépen calculates
the flows B given the constraints A and identifies the new cairgs B that result
from the flows B. Step 3 solves the intersection model baselihearly inter-
polated flows and constraints. In particular, step 3a ifiestfor every upstream
link i the interpolation coefficienk} at whichi’s interpolated constraint binds.
If a constraint bind at either working point, flow A, which eétively ignores the
constraints, is assumed, which corresponds te- 1. OtherwiseA; results from
equating the linearized flow and its constraint, solvingXprand ensuring that
no extrapolation takes place by projectihgn the interval0, 1]. Step 3b then
ensures that all constraints are simultaneously satisfigtieinterpolated flows
calculated in step 3c.

The consideration only of truly interpolated flows and caaists, i.e., the limi-
tation of A* to [0, 1], is justified by the observation that both working points-con
stitute extreme cases of the model: Point A represents maxiffows because
no node supply constraints are applied. Assuming that &song the flows in an
intersection causes more mutual obstructions and henghataning of the node
supply constraints, point A also represents the tightessipée constraints. Vice
versa, point B, resulting from these tightest constrairgpresents particularly
small flows B, which in turn result in utmost weak constraiBts
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Algorithm 3 Approximate solution procedure

1. calculate working point A:

() o = INM(A, Z)
(b) A" = min{A, A(q?)}

2. calculate working point B:

(@) q® = INM(A" £)
(b) A° = min(A, A(gP))

3. solve linearized model witg(A) = ¢® + A(g* — qB) andA(\) = A° +

A(KA — 38):
(a) foralli =1...1, evaluate

1 if AA = g? andAB = B

A= AP — a7
)_

(AB—qB) — (AR — g

— [0, 1] otherwise

(b) A =mini_; 1A}
© a=q®+A"(q* —q®)

4 Experiments

This section tests the INMC in two settings. First, Subsect.1 compares the
model in a synthetic setting to a detailed traffic microsiatof. The objective of
this study is to investigate the model in a complex configarefior which no real
data is available. Second, Subsection 4.2 applies the modeteal intersection
and compares it to real data.

4.1 Synthetic experiment
The same network as used in Section 2.4 is considered, afrd-8) and all previ-

ous modeling assumptions are maintained. Beyond thisNNei$ now supple-
mented with two node supply constraints: One constraieicégfthe left-turning
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fraction of the northbound major stream because of the oimgpsouthbound ma-
jor stream, and one constraint affects the minor streang;hwtriosses both major
streams. The resulting INMC is compared to the detailedi¢raficrosimulator
AIMSUN NG 5.1.10 (TSS Transport Simulation Systems, 2006).

Link flows are captured here and in the following using a t@ikismission model
(CTM) (Daganzo, 1994) with a trapezoidal fundamental diagr The trapezoidal
CTM has found various applications, e.g., in freeway ramgenirgg, signal opti-
mization, and traffic state estimation (Friedrich and Alma006; Feldman and
Maher, 2002; Sun et al., 2003; Tampere and Immers, 2007 hantieen subject
to thorough experimental validations (e.g., Brockfeld &dagner, 2006; Munoz
etal., 2006, 2004). Early network implementations are NELIC(Cayford et al.,
1997), and the model of Lee (1996); Ziliaskopoulos and L&9T). The latter
allows for urban intersections but relies on a sole recoatimn of simple merge
and diverge building blocks and applies only to signalizedrisections.

The following parameters are obtained by manual calibnatigainst the mi-
crosimulator: All links but the minor street’s entry linkvea free flow speed of
50 km/h, a flow capacity of 2340 veh/h, a backward wave spedd &m/h, and
a maximum density of 200 veh/km. The minor street’s entrytap-sontrolled.
AIMSUN captures the effect of the stop sign by physically gliating a full stop
of every vehicle. The macroscopic model reflects this thihoaifjow capacity of
518 veh/h and a maximum velocity of 32.4 km/h (whereas the fieav speed in
AIMSUN is 50 km/h). The backward wave speed and the maximunsitieare
the same as for all other links.

The links of the major street are 150 m long; the links of th@anistreet have
a length of 100 m. All streets are modeled in AIMSUN as 1-lartgan roads
(volume delay function 38786: VDF 25). The AIMSUN traffic dand consists
of the vehicle type “car” only. For easy reproducibility] alicroscopic vehicle
parameters (e.g., maximum acceleration and deceleratimmnum distance be-
tween vehicles, etc.) are set to their AIMSUN default valu@e ability of the

INMC to reproduce real situations is demonstrated in the sglisection.)

The external demand inflow patterns are shown in Figure 7revine bold lines
represent macroscopic values in the INMC and the thin limegsla according
AIMSUN flows, which are averaged over 10 simulations butexhibits substan-
tial vehicle discretization noise. In AIMSUN, the inflow pertns are generated by
adding traffic light controlled links upstream of each ingpiink of the original
network (cycle time 90 s, major street: green time 24 s, migti@et: green time
95s). Inthe INMC, piecewise linear demand flow patterns avadoto reflect the
AIMSUN inflows well. The figure clearly reflects the 90 s cydimé of the up-
stream traffic lights, which all turn green towards the canintersection at the
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same time. Furthermore, the constellation of link lengthaximum velocities,
and stop sign-induced delay is such that all platoons reaelintersection after
approximately 11s.

The left-turning portion of the northbound stream yieldgshe straight portion
of the southbound stream. The demand constraint functiptudag this ef-

fect is obtained from the German Highway Capacity Manual ${BChapter

“Unsignalized Intersections” (ForschungsgesellschaftStrassen und Verkehr-
swesen, 2001). Its functional form is

~ 1 - t
Be(all = ;- o0 |~ (05— 5 (30

whereql is the node inflow rate of the southbound streagy is the minimum
time gap between two southbound vehicles that allows orgugafing vehicle
to enter the intersection, artdgs is the minimum follow-up time between two
left-turning vehicles, with a recommended value%éfg,s. These parameters are
identified by manual calibration against AIMSUN; s = 8.4s andt¢s = 5.2s.
Note that here and in the following, the HBS is used only eXenygan order to
obtain concrete node supply constraints. The INMC fram&usnot limited to
specifications from the HBS.

The minor road is stop-controlled and yields to the majagastrs. The effect of
having to stop at all is captured by choosing a relativelylsfitav capacity and
a small maximum velocity as described before. Beyond this,niinor stream
yields to the major streams. The according demand consfraigtion is again
obtained from Forschungsgesellschaft fir Strassen uncekeswesen (2001):

Aelaf. ol = 2% exp |18 + o) (e~ F)| )
fE

wheret, g andt¢g are again the minimum gap and the follow up tina&, and

gt are the conflicting major flows, ang s is the probability that the left-turning

traffic on the major street operates in a queue-free statainAthe parameters are

identified by manual calibratiorty g = 9S,pos = 0.15, andt¢g = 8 s according

to the recommendationy g = 5t .

The chosen setting is such that the capacity of the westbmange has no lim-
iting effect on the intersection’s throughput, which alkw explain all flow in-

teractions by the node supply constraints. This also esabt@mparison of the
exact and the approximate solution procedure for the INMCSection 3.3: The
constraints follow a hierarchical ordering (flow from thertmoprecedes all other
flows, flow from the south precedes flow from the east) suclthigegxact solution
procedure can be applied. The approximate solution methakvays applicable.
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Figure 7: Comparison of microscopic and macroscopic dermances
The figure contains three diagrams, one for each ingoingolittke intersection. The thin
noisy curve is the microscopic AIMSUN demand, and the rabpeéat smooth curve is
the macroscopic demand. The AIMSUN curve is averaged ovenri®of the microsim-
ulator but still exhibits substantial vehicle discretimatnoise.
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Figure 8 shows the simulation results for both AIMSUN andIti&IC. The fig-
ure contains three diagrams, one for each ingoing link’s fiiischarge into the
intersection. The thin noisy curve is the AIMSUN output, ahnis averaged over
10 simulations, and the respective thick smooth curve iginbt from the INMC
(where the exact and the approximate solution procedutd yisually identical
results).

Cars coming from the north traverse the intersection withioerruption. One
observes a shift of the respective demand profile by appmteiyn 11 s, which
is the time it takes the demand to travel from the networkyetdrthe central
node. The flow coming from the south is equally delayed, beteatreaches the
intersection, its left-turning portion is quickly suppses by the higher-ranking
southbound flow, which effectively holds up the entire nbaiind flow (remem-
ber that all roads have a single lane only). Only when therdmund flow ceases,
the northbound flow can continue, which it does at maximunaciy Finally,
the minor stream going from east to west is held up until badijomstreams have
passed the intersection. Some minor flow makes it througmwhee southbound
flow ceases and the northbound flow has not yet reached itstmaxivalue. All
queues recover within a 90 s cycle.

A comparison between AIMSUN and the INMC shows that the nsicopic traf-
fic phenomena (no interruption of the southbound flow; terapogueuing of
both other flows) are well captured by the macroscopic moide. uninterrupted
outflow from the north is somewhat wider in AIMSUN than in th@eroscopic
model because the latter does not capture platoon dispekgioch, however, is
not so much of an intersection modeling problem but rathénlagrent features of
all first order model$. The node supply constraints generate flow reductions that
are consistent with AIMSUN'’s representation of the respectehicle interac-
tions. The recovery of the southern queue is faster in theesaopic model than
in the microsimulator because the KWM postulates infiniteicle accelerations.
This, again, is an inherent feature of all first order models.

The visual impression of the flow curves presented abovepp@ted by a quan-
titative comparison of the average densities and delayd énla in the network.
The results are shown in Table 3 and exhibit a remarkableracguln particular,
the delay estimates of the macroscopic model (computed énamulative flow
curves) almost perfectly reproduce the outputs of the farencomplicated mi-
crosimulator. However, it should be noted that the defacdeeration values in

5Dispersion at the downstream end of a platoon could be caghtyy choosing a truly concave
flow demand functiom\. Dispersion at a platoon’s upstream end, however, cannoaptired
by a first order model: Flows at lower densities are never stdwan flows at higher densities
such that any platoon tail will eventually catch up with thatpon main body and transform into
a density discontinuity at its upstream end.
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Figure 8: Comparison of AIMSUN and ECTM simulation results
The figure contains three diagrams, one for each ingoingoiittke intersection. The thin
noisy curve is the AIMSUN output, and the respective fat stna@orve is obtained from
the ECTM. The AIMSUN curve is averaged over 10 runs of the asicnulator but still
exhibits substantial vehicle discretization noise.
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Table 3: Quantitative comparison of AIMSUN and INMC

density [veh/km] delay [s/veh]
link | AIM- | INMC | INMC || AIM- | INMC | INMC
SUN | (exact)| (approx.)|| SUN | (exact)| (approx.)
S, ingoing|| 28.6 | 31.7 31.6 23 23 23
E,ingoing| 24.5 | 29.3 29.2 59 57 56
N, ingoing| 11.7 | 10.1 10.1 3 0 0
N, outgoing| 4.5 4.9 4.9 1 0 0
W, outgoing| 14.5| 13.0 13.0 1 0 0
S, outgoing| 4.7 5.0 5.0 1 0 0

AIMSUN are quite high, which biases the comparison in fadhe KWM. The
next subsection provides more insight into this issue. Iinaalso is notewor-
thy that the exact and the approximate solution procedwiel yilmost identical
results.

4.2 Real experiment

This experiment considers a real intersection in Braunsaipwsermany, which
is shown in Figure 9 (left). The intersection consists of a-tane main road (Al-
tewiekring) in north/south direction and a minor one-laoa&d (Kastanienallee) in
east/west direction. All approaches have separate leftgackets. The intersec-
tion is fixed-time controlled with a two-phase signal seaqugeand a cycle length
of 85s. The first phase corresponds to a green time of 44 séantin road; the
second phase corresponds to a green time of 24 s for the naadr The inter-
green time is 9s between the first and second phase and 8 sebetfneesecond
and first phase, respectively.

The analysis focuses on the interaction of the north/sown raffic streams;
since they are decoupled from the minor streams throughigmalshg, an in-

corporation of the minor streams would not add complexityhi node model-
ing. Also, the turning pockets decouple the left-turningain from the straight
and right-turning stream of the same approach. The inferecof a single left-

turning stream with all of its conflicting streams can therefbe investigated in
isolation. In consequence, the considered setting is @ned to the left-turning
main stream coming from the north and the straight and igimting main streams
coming from the south. Figure 9 (right) shows how this sutesyss modeled.

The node model has three ingoing lanes and two outgoing,laresh are mod-
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Altewiekring

Figure 9: Braunschweig intersection Altewiekring/Kastaallee
Left: real intersection (from Google Maps). Right: modetedbset.

eled with the CTM. Five cells constitute boundaries to theen®\, represents the
left-turning stream coming from the nortlRs; represents the middle lane of the
northbound stream coming from the south;, represents the right lane coming
from the south, diverging north and ea®; and the northbound portion &%,
merge intoSy. The left-turning vehicles fronPy merge with the right-turning
flow from Ps; into Sg. The left-turning stream yields to the exit flow B§; and
Psz.

The model is manually calibrated against data from videondings of 25 cycles
during the evening peak hour of March 10, 2010. The link «gastr arrivals and
the node inflows are evaluated in 5 s intervals, which divilescycle duration of
85sinto 17 intervals.

The real link upstream arrivals are macroscopically apipnaked by constant in-
flow rates per cycle, starting (ending) 40 s before the gréms@ (red phase) for
thePs; andPs; lanes and starting (ending) 34 s before the green phasel{esa)p
for the Py lane. This yields realistic results for all but three cyaé®s; andPs,
where the respective inflows from upstream cease duringriéengperiod. This
is modeled through a piecewise constant inflow profile thapslito zero consis-
tently with the video footage. It should be noted that in amoek model these
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manually extracted boundary conditions would be defineduidjin upstream and
downstream node models.

The model is solved with Algorithm 2. The simulation timegstength is one sec-
ond. All cells have a free flow speed of 45 km/h (the local sgeei is 50 km/h,
but hardly a vehicle reaches this speed), a resulting asditteof 12.5m, and a
jam density of 175veh/km (estimated from video). Assumirtgangular fun-
damental diagram, the backward wave speed is 17.1 km/h. dWwecHipacity of
all cells butSg is 2160 veh/h (0.6 veh/s; this corresponds to the largesrobed
average flow per cycle). The flow capacity $f is 1200 veh/h (0.33 veh/s) be-
cause pedestrians frequently cr8gsn north/south direction. The video footage
reveals a turning fraction of 0.53 froRy, towardsSy and 0.47 towardSg. All
inflow priorities are set to one. This is plausible fég; and Ps, because they
merge coequally intSy. The priority value ofPy cannot be estimated from the
data because whenever there could have been a competitioRayifor Sg, the
flow from Py is already held back inside of the intersectiondgy and the straight
portion of Psy.’

The model is supplemented with one node supply constraattdaptures the
yielding of the left-turning flow fronPy. The according demand constraint func-
tion is modeled symmetrically to (30):

Aula) = oo |8 (1o~ )] @)
tny 2
with g€ = q&; + q&, and, like beforet¢y = 33tyn. The video footage reveals
that the discharge froy given a zero conflicting flowq is much higher during
phase one than during the inter-green phase after phasa otteerwise identical
conditions. A plausible explanation is that in the inteegnm time, when the ma-
jor stream already has red signaling, there are no vehiglpoaching from the
south that could close an existing gap such that the lefiirigrvehicles discharge
more calmly than during phase one. This effect is capturdia aviime- and flow-
dependent, y parameter, which is 7.2's in most cases, rapidly goes to 4f85s
q becomes zero during phase one, and to 11.63 s during the tE8 plaése one.
All values are higher than the standard recommendatior2e far German inter-
sections (Forschungsgesellschaft fir Strassen und Mesikeken, 2001) because
they also compensate for the unlimited vehicle acceleratidhe KWM.

"This reflects a general identifiability issue: If certain flimts (or signal settings) render the
occurrence of other conflicts a rare event, the parametsrsiiang the latter cannot be estimated
from data. However, such parameters also rarely take effebe model, such that the transferal
of guidelines from the literature that were developed farikir situations may yield satisfactory
solutions.
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Figure 10 shows the real and modeled intersection inflows fPg;, Ps,, and
Pn, all averaged in 5s time bins. The thin lines represent thkdata, and the
thick lines represent the model. One clearly recognizepthedic rhythm of
the intersection. The southern node inflogl and ql%, have a two-step shape in
most cycles: First, the respective queue discharges a@tecity limit. Once it
is dissipated, the flow rate drops to the exogenous upstrearalaate. The node
inflow from Py is delayed until the flows frorfis;, Ps, have ceased. The light gray
boxes between seconds 1461 and 1526 indicate a situatiae wpidback occurs
from the downstream end &f=. Modeling this effect by reducing the outflow
capacity ofSg accordingly affects botRs, andPy: The flow fromPy is held back
while the right-turning portion oPs, uses up up the remaining spaceSi such
that the node inflow fron®y drops to almost zero. Overall, the macroscopic flows
capture the trend of the real data very well.

Figure 11 compares the real and modeled queue oghiane. For this, the
number of all vehicles with a velocity of 6 km/h or less is cargd to the number
of queued vehicles in the video footage two times per cycleeat the beginning
of the green time of phase one and once when the last lefiaurehicle has
cleared the intersection. Again, the thin line represdmg¢al data and the thick
line represents the model. Both the build-up and the dissipaf the peak hour
queue are well captured. This is particularly meaningfabse théy approach
is over-saturated during much of the peak hour such thatewigtion between the
curves representscaimulationof flow modeling errors over several cycfegrom
the fact that the true and the modeled queue do not drift apaet can conclude
that there is no systematic bias the modeled flows. The aweeal queue size is
3.72 vehicles, compared to an average modeled queue siZ&3oféhicles, which
constitutes a minor under-estimation by less than half &ileh

Finally, Figure 12 shows the real and modeled travel timesxgerienced by
the left-turning vehicles when leavirfig. The real travel time is computed from
number plate recognition sensors, with the first sensorgokeicated at the up-
stream end oPy and the second sensor at the downstream er$¢.oft is again
represented by the thin solid line. A naive computation & thodeled travel
time by comparing the respective cumulative flow curvesltesa a systematic
underestimation of the travel time, for which two reasoresidentified: (i) the
point-like node model neglects the time it takes to crosdritersection; (ii) the

8At the beginning of phase one’s green time, two or threetlgfting vehicles enter the inter-
section, stop near its center, and wait for sufficiently Igags in the opposite right-of-way flow.
If there are no or only very few such gaps, these vehicles tmwait until the green time of the
major stream ends and can only then pass the intersectiantrdffic demand of the left-turning
flow during the peak hour is sometimes much higher than twhreetvehicles per cycle and some
vehicles wait up to 5 cycles only to enter the intersection.
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Figure 11: Real and modeled queue sizes

KWM neglects the finite acceleration of the left-turning wés when leaving
the intersection. This error is therefore corrected by aatng only the travel
time throughPy from the respective cumulative flows and then adding the-aver
age time it takes an otherwise unhindered vehicle to prooeé&tthe end of the
Se, which is 26 s. The result is represented by the thick curteard, it captures
the overall rhythm of the evening peak hour well, but it aksaes some room for
improvement. A more powerful correction than a constargedfivould be to re-
sort to a model that explicitly captures finite accelerati¢ag., Lebacque, 1984,
2003). However, it should also be noted that this examplaigqularly sensitive
to modeling imprecisions: Since the left-turning vehichest up to 5 cycles until
they enter the intersection, their travel time effectivielgorporates the modeling
errors during many cycles. The average real travel time &s16ompared to an
average modeled travel time of 161 s; this mild under-egtonas consistent with
the minor under-estimation of the queue size inRRdane.

In summary, these experiments clearly demonstrate thaN€ is able to cap-
ture the flows in a complex real intersection very well.

5 Summary

This article contributes to the modeling and simulation @inplex urban traffic
intersections from a methodological, computational, angieical point of view.
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Figure 12: Real and modeled travel times

Methodologically, there are two major contributions. Eitee incremental trans-
fer (IT) principle of Daganzo et al. (1997) is carried ovettie modeling of urban
intersections. The resulting incremental node model (INf#yers a rich sub-
set of the generic node model (GNM) class of Tampere et ath@oming) and
comprises many models proposed so far in the literatureor8e¢he INM is sup-
plemented with a fixed point condition that allows to incagde rich node supply
constraints that may result from signaling and/or confl{téVIC). An insight-
ful uniqueness analysis reveals the limitations of pake-and flow maximizing
node models.

Computationally, specifications of the INM are describeat tilow for very sim-
ple and efficient simulation procedures. Furthermore, tigorithms for the so-
lution of the more complex INMC are presented. The first metisoexact but
assumes that all intersection inflows can be ordered in soimetp-related man-
ner. The second method applies to arbitrary intersectiahsiay yield only ap-
proximate solutions. However, no significant differencensen the exact and the
approximate solution procedure is observed in the expetiaheesults.

Empirically, experiments with both synthetic and real dataconducted. The re-
sults demonstrate the correctness and practical releditice INMC. They show

that it is possible to capture complex flow interactions ibaur intersections with
macroscopic hode models. The comparison with real dataedsals that the in-

finite accelerations of the KWM constitute its major shondog when modeling

urban intersections.
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Important topics for future research comprise the follayitems:

e Exploitation of the general INM specification through namstant flow
transfer rates.

¢ Relaxation of the requirement of global flow maximizationtive GNM,
possibly through an alternative fixed point formulation.

¢ Relaxation of the FIFO assumption. This effort would likélgnefit from
the original IT principle for multi-lane traffic flow.

e Compensating for the infinite KWM accelerations inside thden

e Development of systematic calibration approaches and daliaction
strategies for the estimation of concrete INM(C) instances

e Collection of more empirical evidence and testing of new IGMstances.

Acknowledgments

Peter Wagner gave very helpful comments on an early ver$itsarticle. Bern-
hard Friedrich provided valuable support and technicaiggant for the experi-
ments.

References

Adamo, V., Astarita, V., Florian, M., Mahut, M. and Wu, J. @%. Modelling
the spill-back of congestion in link based dynamic netwar&ding models:
a simulation model with applicationg A. Ceder (ed.),Proceedings of the
14th International Symposium on Transportation and Trafieory Perga-
mon, Jerusalem, Israel, pp. 555-573.

Ansorge, R. (1990). What does the entropy condition mearaffid flow theory,
Transportation Research Part B4(2): 133—-143.

Astarita, V., Er-Rafia, K., Florian, M., Mahut, M. and Vel&,(2001). A compar-
ison of three methods for dynamic network loadifigansportation Research
Recordl771 179-190.

Ben-Akiva, M., Bierlaire, M., Burton, D., Koutsopoulos, ldnd Mishalani, R.
(2001). Network state estimation and prediction for realettransportation
management applicationdetworks and Spatial Economits293-318.

38



Bliemer, M. (2007). Dynamic queuing and spillback in an gtieal multiclass
dynamic network loading modeTransportation Research Recogd29 14—
21.

Brackstone, M. and McDonald, M. (1999). Car-following: atorical review,
Transportation Research PartE4): 181-196.

Brockfeld, E. and Wagner, P. (2006). Validating microscapaffic flow models,
Proceedings of the 9th IEEE Intelligent Transportationt8gs Conference
Toronto, Canada, pp. 1604-1608.

Buisson, C., Lebacque, J. and Lesort, J. (1996). STRADA.s&rdtized macro-
scopic model of vehicular traffic flow in complex networks éa®n the Go-
dunov scheme.Symposium on Modelling, Analysis and Simulation, held at
CESA 1996 IMACS Multiconferencéol. 2, Lille, France, pp. 976-981.

Buisson, C., Lebacque, J., Lesort, J. and Mongeot, H. (1996 STRADA
model for dynamic assignmerRyoceedings of the 1996 ITS ConferenCe-
lando, USA.

Buisson, C., Lesort, L. and Lebacque, J. (1995). Macrosaopidelling of traffic
flow and assignment in mixed networks,P. Pahl and H. Werner (ed€yom-
puting in Civil and Building EngineeringBalkema, Rotterdam, The Nether-
lands, pp. 1367-1374.

Cayford, R., Lin, W.-H. and Daganzo, C. (1997). The NETCElrhdation pack-
age: technical descriptio@alifornia PATH research report UCB-ITS-PRR-97-
23, University of California, Berkeley.

Cheu, R., Martinez, J. and Duran, C. (2009). A cell transimmssnodel with
lane changing and vehicle tracking for port of entry simolag, Transportation
Research Record124 241-248.

Chrobok, R., Pottmeier, A., Wahle, J. and Schreckenberg(2003). Traffic
forecast using a combination of on-line simulation anditafata,in M. Fukui,
Y. Sugiyama, M. Schreckenberg and D. Wolf (edsgffic and Granular Flow
'01, Springer, pp. 345-350.

Coclite, G., Garavello, M. and Piccoli, B. (2005). Trafficl@n a road network,
SIAM Journal on Mathematical Analys3§(6): 1862—1886.

Daganzo, C. (1994). The cell transmission model: a dynaepcesentation of
highway traffic consistent with the hydrodynamic thedFgansportation Re-
search Part B28(4): 269-287.

39



Daganzo, C. (1995a). The cell transmission model, paretwork traffic, Trans-
portation Research Part B9(2): 79-93.

Daganzo, C. (1995b). A finite difference approximation ¢ Kinematic wave
model of traffic flow,Transportation Research PartB(4): 261-276.

Daganzo, C. (2006). In traffic flow, cellular automata = kirs¢imwaves,Trans-
portation Research Part BO(5): 396—403.

Daganzo, C., Lin, W.-H. and del Castillo, J. (1997). A simplg/sical principle
for the simulation of freeways with special lanes and ptyovehicles, Trans-
portation Research Part B1(2): 103—-125.

De Palma, A. and Marchal, F. (2002). Real cases applicatibiinge fully dynamic
METROPOLIS tool-box: an advocacy for large-scale mesascwpnsporta-
tion systemsNetworks and Spatial Economi2s347-369.

Elsevier (accessed 2010). Scopus web site, http://wwpLscoom.

Feldman, O. and Maher, M. (2002). The optimisation of tradfgnals using a
cell transmission modeRroceedings of the 9th Meeting of the EURO Working
Group on TransportatioyBari, Italy, pp. 503-507.

Flotterod, G. (2008)Traffic State Estimation with Multi-Agent SimulatiopfhD
thesis, Berlin Institute of Technology, Berlin, Germany.

Flotterod, G. and Nagel, K. (2005). Some practical extersio the cell trans-
mission modelProceedings of the 8th IEEE Intelligent TransportationtSyss
ConferenceVienna, Austria, pp. 510-515.

Forschungsgesellschatt fir Strassen und Verkehrswe88a ). 2Handbuch fir die
Bemessung von Strassenverkehrsanlgg&&V Verlag GmbH, Koln.

Friedrich, B. and Almasri, E. (2006). A new method for offsgttimization in
urban road networksProceedings of the 11th Meeting of the Euro Working
Group TransportationBari, Italy.

Gentile, G., Meschini, L. and Papola, N. (2007). Spillbackgestion in dynamic
traffic assignment: a macroscopic flow model with time-vagybottlenecks,
Transportation Research Part4gl(10): 1114-1138.

Greenshields, B. (1935). A study of traffic capacRypceedings of the Annual
Meeting of the Highway Research Boaxl. 14, pp. 448-477.

40



Herty, M. and Klar, A. (2003). Modeling, simulation, and wpization of traffic
flow networks,SIAM Journal on Scientific Computir(3): 1066—1087.

Holden, H. and Risebro, N. (1995). A mathematical model affitr flow on
a network of unidirectional roadsSIAM Journal on Mathematical Analysis
26(4): 999-1017.

Hoogendoorn, S. and Bovy, P. (2001). State-of-the-art bfowdar traffic flow
modelling, Proceedings of the Institution of Mechanical Engineerstt Pa
Journal of Systems and Control Engineeriy(4): 283—-303.

Jin, W. and Zhang, H. (2003). On the distribution schemesl&ermining flows
through a mergelransportation Research Part8/(6): 521-540.

Jin, W. and Zhang, H. (2004). A multicommodity kinematic wasimulation
model of network traffic flowJransportation Research Recat883 59-67.

Kurzhanskiy, A. and Varaiya, P. (2010). Using Aurora roativoek modeler for
active traffic managemen®roceedings of the 2010 American Control Confer-
ence Baltimore, MD, USA.

Kuwahara, M. and Akamatsu, T. (2001). Dynamic user optirsgignment with
physical queues for a many-to-many OD pattdinansportation Research Part
B 35(5): 461-479.

Laval, J. and Daganzo, C. (2006). Lane-changing in traffeashs, Transporta-
tion Research Part B0(3): 251-264.

Lawson, T., Lin, W. and Cassidy, M. (1999). Validation of theremental trans-
fer model,California PATH working paper UCB-ITS-PWP-99-1l&stitute of
Transportation Studies, University of California, Beekel

Lebacque, J. (1984). Semi-macroscopic simulation of uttadfic, Proceedings
of the International AMSE Conference "Modelling & Simubatl, Vol. 4, Min-
neapolis, USA, pp. 273-292.

Lebacque, J. (1996). The Godunov scheme and what it mearfgsiborder
traffic flow modelsjn J.-B. Lesort (ed.)Proceedings of the 13th International
Symposium on Transportation and Traffic Thedtgrgamon, Lyon, France.

Lebacque, J. (2003). Intersection modeling, applicatiomacroscopic network
traffic flow models and traffic managemeRtpceedings of TFG’03 Traffic and
Granular Flow ConferenceDelft, The Netherlands.

41



Lebacque, J. and Khoshyaran, M. (2005). First—-order maopis traffic flow
models: intersection modeling, network modelimg,H. Mahmassani (ed.),
Proceedings of the 16th International Symposium on Trartapon and Traffic
Theory Elsevier, Maryland, USA, pp. 365-386.

Lebacque, J. and Koshyaran, M. (2002). First order macpist@ffic flow mod-
els for networks in the context of dynamic assignmemtM. Patrikson and
M. Labbé (eds)Transportation PlanningKluwer, pp. 119-139.

Lebacque, J. and Lesort, J. (1999). Macroscopic traffic flawdehs: a question
of order,in A. Ceder (ed.)Proceedings of the 14th International Symposium
on Transportation and Traffic ThegriPergamon, Jerusalem, Israel, pp. 3-25.

Lee, S. (1996). A cell transmission based assignment-siioal model for inte-
grated freeway/surface street systems, Master thesis, 8ate University.

Lighthill, M. and Witham, J. (1955). On kinematic waves lltreeory of traffic
flow on long crowded road®roceedings of the Royal Societ29 317-345.

Mahmassani, H. S. (2001). Dynamic network traffic assigrtraed simulation
methodology for advanced system management applicatidesyorks and
Spatial Economic4(3/4): 267-292.

Munoz, L., Sun, X., Horowitz, R. and Alvarez, L. (2006). A pavise-linearized
cell transmission model and parameter calibration metloggoProceedings
of the 85. Annual Meeting of the Transportation Researchr@d&/ashington,
DC, USA.

Munoz, L., Sun, X., Sun, D. and nd R. Horowitz, G. G. (2004).tivelological
calibration of the cell transmission modBkoceedings of the American Control
ConferenceDenver, Colorado, pp. 798—-803.

Nagel, K. and Nelson, P. (2005). A critical comparison of kiematic-wave
model with observational data H. Mahmassani (ed.)Proceedings of the
16th International Symposium on Transportation and Traffieory Elsevier,
Maryland, USA, pp. 145-163.

Nelson, P. and Kumar, N. (2006). Point constriction, irgeef and boundary con-
ditions for kinematic-wave modeTransportation Research Recot®65 60—
69.

Ni, D. and Leonard, J. (2005). A simplified kinematic wave relodt a merge
bottleneck Applied Mathematical Modelling9(11): 1054-1072.

42



Nie, Y. (2010). personal communication.

Nie, Y., Ma, J. and Zhang, H. (2008). A polymorphic dynamitwak loading
model,Computer-Aided Civil and Infrastructure Engineerigg2): 86—103.

Nokel, K. and Schmidt, M. (2002). Parallel DYNEMO: meso-sicaraffic flow
simulation on large networksletworks and Spatial Economi2gt): 387—403.

Pandawi, S. and Dia, H. (2005). Comparative evaluation afroscopic car-
following behavior,IEEE Transactions on Intelligent Transportation System
6(3): 314-325.

Payne, H. (1971). Models of freeway traffic and contkdgthematical Models of
Public Systems/ol. 1, Simulation Council, La Jolla, CA, USA, pp. 51-61.

Richards, P. (1956). Shock waves on highw&ygerations Researcih 42-51.

Rouphail, N., Tarko, A. and Li, J. (1999). Chapter 9: Traffawflat signalized in-
tersectionsin N. Gartner, C. Messer and A. Rathi (edglpnograph on Traffic
Flow Theory Oak Ridge National Laboratory, Federal Highway Admirastr
tion.

Rubio-Ardanaz, J., Wu, J. and Florian, M. (2001). A numéraelytical model
for the continuous dynamic network equilibrium problemtwlitmited capacity
and spill back,Proceedings of the 2001 IEEE Intelligent Transportatios-Sy
tems Confereng@®akland, USA.

Sobolev, V. (2001). Brouwer theoremm, M. Hazewinkel (ed.)Encyclopedia of
MathematicsKluwer.

Sun, X., Munoz, L. and Horowitz, R. (2003). Highway traffiat estimation us-
ing improved mixture Kalman filters for effective ramp metegrcontrol, Pro-
ceedings of the 42th IEEE Conference on Decision and Comtali, Hawalii,
USA, pp. 6333-6338.

Tampere, C., Corthout, R., Cattrysse, D. and Immers, LtH{émming). A generic
class of first order node models for dynamic macroscopic lsitiauns of traffic
flows, Transportation Research PartB(xx): Xx—xXx.

Tampere, C. and Immers, L. (2007). An extended Kalman filpgieation for
traffic state estimation using CTM with implicit mode switieh and dynamic
parametersProceedings of the 10th IEEE Intelligent TransportatiorstSyns
ConferenceSeattle, USA, pp. 209-216.

43



Troutbeck, R. and Brilon, W. (1999). Chapter 8: Unsignaliz®ersection the-
ory, in N. Gartner, C. Messer and A. Rathi (eds)onograph on Traffic Flow
Theory Oak Ridge National Laboratory, Federal Highway Admiragon.

Troutbeck, R. and Kako, S. (1999). Limited priority mergeiasignalized inter-
sections;Transportation Research Part28(3-4): 291-304.

TSS Transport Simulation Systems (2008JMSUN 5.1 Microsimulator User’s
Manual Version 5.1.4

van Hinsbergen, C., Tampere, C., van Lint, J. and van Zuyeri2009). Urban
intersections in first order models with the Godunov schepmeceedings of
mobil. TUM 2009 — International Scientific Conference on Mtband Trans-
port — ITS for large CitiesMunich, Germany.

van Hinsbergen, C., Zuurbier, F., van Lint, H. and van Zuyl¢n(2008). Macro-
scopic modelling of intersection delay with linearly dexsing turn capacities,
Proceedings of the International Symposium on Dynamicfitralssignment
Leuven, Belgium.

Yperman, |., Tampere, C. and Immers, B. (2007). A kinematwevdynamic
network loading model including intersection delaifspceedings of the 86.
Annual Meeting of the Transportation Research Boavdshington, DC, USA.

Zhang, H. and Lin, W. (2001). Some recent developments ffidiflow theory,
Proceedings of the IEEE Intelligent Transportation Syst&onferenceOak-
land (CA), USA, pp. 548-553.

Ziliaskopoulos, A. and Lee, S. (1997). A cell transmissi@sdd assignment
simulation model for integrated freeway/surface strestesys Proceedings of
the 76. Annual Meeting of the Transportation Research Bo#dshington,
DC, USA.

44



