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Abstract

This article describes a new approach to the macroscopic first order modeling and
simulation of traffic flow in complex urban road intersections. The framework is
theoretically sound, operational, and comprises a large body of models presented
so far in the literature.

Working within the generic node model class of Tampere et al.(forthcoming), the
approach is developed in two steps. First, building on the incremental transfer
principle of Daganzo et al. (1997), an incremental node model for general road
intersections is developed. A limitation of this model (as of the original incre-
mental transfer principle) is that it does not capture situations where the increase
of one flow decreases another flow, e.g., due to conflicts. In a second step, the new
model is therefore supplemented with the capability to describe such situations.
A fixed-point formulation of the enhanced model is given, solution existence and
uniqueness are investigated, and two solution algorithms are developed. The fea-
sibility and realism of the new approach is demonstrated through both a synthetic
and a real case study.

1 Introduction

A traffic flow model describes vehicular dynamics given a certain traffic infras-
tructure and, if applicable, given additional route choiceinformation. The in-
frastructure comprises the considered road (system) in terms of geometry, speed
limits, and such. If a complete network is given, this also includes intersection
properties such as turning move limitations, right-of-waylaws, and signaling, and
it requires supplementary route choice information. The vehicular dynamics may
be described at various levels of details, ranging from single-vehicle interactions
("car-following models", e.g., Brackstone and McDonald, 1999; Pandawi and Dia,
2005), over partially aggregate (“mesoscopic”) models (e.g., Astarita et al., 2001;
Ben-Akiva et al., 2001; De Palma and Marchal, 2002; Mahmassani, 2001; Nökel
and Schmidt, 2002), to fully macroscopic models that treat vehicular traffic flows
as continuous streams. The latter model class is consideredin this article. The
major advantage of macroscopic models is their tractable mathematical structure
and their low number of parameters.

Macroscopic models for traffic flow on a link have gone from thefundamental di-
agram (where density and velocity are uniquely related and flow is a function
of either density or velocity (Greenshields, 1935)) via theLighthill-Whitham-
Richards theory of kinematic waves (where the fundamental diagram is inserted
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into an equation of continuity (Lighthill and Witham, 1955;Richards, 1956)) to
second-order models (where a second equation introduces inertia (Payne, 1971)).
This article concentrates on the kinematic wave model (KWM), but it also adds
empirical evidence to the ongoing debate if more complex models yield a substan-
tial gain in expressive power (e.g., Lebacque and Lesort, 1999; Hoogendoorn and
Bovy, 2001; Nagel and Nelson, 2005).

Instances of the KWM are collectively referred to as “first order models” because
they model velocity (first order information) but do not explicitly specify an ac-
celeration/deceleration law (which would constitute second order information).
Macroscopic first order models capture a bird’s view on traffic flow: They do not
distinguish individual vehicles, and they allow arbitrarily abrupt velocity changes;
both features are consistent with reality only if sufficiently large space- and time-
scales are considered. These properties of the KWM apply well to freeway traffic
but are more difficult to associate with urban traffic, which is dominated by in-
tersection dynamics. Also, urban intersections can be far more complex than the
simple three-legged junctions (merges and diverges) one encounters on freeways.
Furthermore, certain urban intersection conflicts can be safely resolved based on
right-of-way laws that go without signaling. Hence, the adequate modeling of ur-
ban traffic with the KWM requires to represent this type of intersections as well.
This is the objective of this article. It is achieved in two steps.

First, theincremental transfer (IT) principleof Daganzo et al. (1997) is developed
further into a solution procedure for thegeneric node model (GNM)of Tampere
et al. (forthcoming). The original IT principle simulates multi-lane multi-class
traffic flow. Although the problem of modeling the outflow of a set of upstream
lanes into a set of downstream lanes bears clear similarities with the general in-
tersection modeling problem, no systematic effort to carrythe IT principle over
to general intersections has been reported in the literature. Therefore, anincre-
mental node model (INM)is developed that (i) inherits the intuitive appeal and
computational convenience of the IT principle, (ii) generalizes the IT principle in
that it allows for flow transfer rates that vary continuouslyduring the transmission
(iii) is consistent with the GNM, and (iv) comprises a large body of first order
intersection models presented so far in the literature.

Second, the disability of both the IT principle and the INM tocapture situations
where the increase of one flow leads to the decrease of anotherflow is overcome.
This situation occurs mainly when one traffic stream yields to another, and an
increase in the high-priority stream decreases the throughput of the low-priority
stream. The INM is therefore extended with concretenode supply constraintsthat
capture such interactions. These constraints (i) allow to describe complex flow
interactions within the node, (ii) are still consistent with the GNM, and (iii) can
be conveniently included in the INM through a fixed point formulation. More
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generally, these node supply constraints apply to a wider model class than the
GNM; they are compatible with every node model that is phrased in terms of the
KWM’s demand/supply framework.

The resultingINM with node supply constraints (INMC)is investigated with re-
spect to solution existence and uniqueness, and two solution procedures are devel-
oped. This analysis reveals that (i) flows in point-like intersection models can be
non-unique even for simple three-armed topologies and that(ii) problems of this
kind are likely to result from parameter misspecifications in combination with the
limitations of the point-like modeling approach as such. Furthermore, it is shown
that situations exist where any instance of the GNM resolvesthis ambiguity by se-
lecting a solution that would result from cooperative instead of competitive driver
behavior. A modification of the GNM that overcomes this confinement is there-
fore proposed. Overall, this analysis indicates that intersections beyond a certain
spatial complexity should indeed be modeled spatially, at least by distinguishing
several point-like intersection elements. However, the improved modeling power
of the INMC it is clearly demonstrated through both a synthetic and a real case
study.

The remainder of this article is organized as follows. Subsections 1.1 and 1.2
review the demand/supply framework of the KWM and the GNM in order to en-
able a self-contained presentation. Section 2 develops theINM, puts it in relation
with the existing literature, and clarifies its basic working through an example.
Section 3 then enriches the INM with node supply constraints, discusses solution
existence and uniqueness of the resulting INMC, and develops two solution pro-
cedures. Section 4 evaluates the new model both in terms of a synthetic and a real
example. Finally, Section 5 concludes the article.

1.1 Demand/supply framework for the kinematic wave model

The KWM requires a minimal set of assumptions to model trafficflow on a linear
road. Denote byx ∈ R a location on that road and byt ∈ R the continuous time.
ρ(x, t) is the local density (in vehicle units per length unit) of traffic, q(x, t) is its
flow (in vehicle units per time unit), andv(x, t) is its velocity. These quantities
are related by the first constituent equation of the KWM:

q(x, t) = v(x, t)ρ(x, t). (1)

The second modeling assumption is that of vehicle conservation. On smooth con-
ditions, it is expressed by the continuity equation

∂ρ

∂t
+

∂q

∂x
= 0. (2)
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q(ρ) = min{∆(ρ), Σ(ρ)}
ρ

q̂

∆(ρ)Σ(ρ)

ρ̂

Figure 1: Local demand and supply comprise a fundamental diagram
The demand function∆(ρ) (solid) consists of an increasing part with its slope equal to
the free flow speed and is limited by the flow capacityq̂. The supply functionΣ(ρ)

(dashed) is also limited by the flow capacity. The slope of itsdeclining part equals the
backward wave speed and intersects the abscissa at the greatest possible densitŷρ. The
minimum of both functions yields a fundamental diagram. Piecewise linearity is a typical
but not necessary property; the demand/supply framework applies to all concave and non-
decreasing demand and supply functions.

Finally, local flow is specified as a function of local densityonly. This relation is
usually denoted as the fundamental diagram:

q(x, t) = Q(ρ(x, t), x). (3)

Since these specifications can still result in ambiguities,an additional condition
must be instrumented to select the physically relevant solution. Given a con-
cave fundamental diagram, the principle of local demand andsupply provides a
convenient technique to ensure uniqueness (Daganzo, 1994,1995a,b; Lebacque,
1996; Nelson and Kumar, 2006). Denote byx− (x+) the location immediately
upstream (downstream) ofx. For everyx, the local flowq(x, t) is then defined
as the minimum of localflow demand∆(ρ(x−, t), x−) and localflow supply
Σ(ρ(x+, t), x+):

q(x, t) = min{∆(ρ(x−, t), x−), Σ(ρ(x+, t), x+)}. (4)

Figure 1 illustrates this function.

Equation (4) reflects the self-evident constraint that local traffic flow is bounded
by the flow that can be dismissed from the immediate upstream location and by the
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Figure 2: A general intersection withI ingoing andJ outgoing links

flow that can be absorbed by the immediately downstream location. Furthermore,
the local flow is maximized subject to these constraints. This property enforces the
physically relevant solution of the KWM. Phenomenologically, it is a statement
of drivers’ ride impulse (Ansorge, 1990), which is equivalently expressed by the
microsimulation rule for cellular automata “Drive as fast as you can and stop
[only] if you have to!” (Chrobok et al., 2003; Daganzo, 2006).

Beyond its ability to uniquely capture traffic flow on a link, this principle also ap-
plies to general intersections, cf. Figure 2. In such a setting, every upstream linki
provides a demand∆i(t) equal to its greatest possible inflow into the intersection,
and every downstream linkj provides a supplyΣj(t) equal to the greatest possible
outflow it accepts from the intersection. Additional phenomenological modeling
is facilitated since these boundaries alone are generally not sufficient to uniquely
define the intersection flows. However, every reasonable specification must ad-
here to the principle of local flow maximization subject to all phenomenological
constraints.

1.2 Generic macroscopic node model

Macroscopic node models that are based on constrained flow maximization aim at
selecting the physically relevant solutions of the KWM while facilitating further
phenomenological modeling through the constraints. Earlymodels along these
lines are described by Holden and Risebro (1995); Coclite etal. (2005); Herty
and Klar (2003), who, however, resort to unrealistic assumptions about the turn-
ing behavior of drivers. Lebacque and Khoshyaran (2005) define a node model
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class that maximizes a concave function of the flow and comprises the models of
Holden and Risebro (1995) and Coclite et al. (2005).

The GNM of Tampere et al. (forthcoming), on which this article builds, follows
a similar approach, yet with a simpler objective function and more detailed con-
straints. A node model belongs to this class if it solves the following optimization
problem:

max
qin

I∑

i=1

qin
i (5)

s.t.q ≥ 0 (6)

qout = Bqin (7)

qin ≤ ∆ (8)

qout ≤ Σ (9)

q satisfies the invariance principle (10)

q satisfies a supply constraint interaction rule (11)

optional:q satisfies node supply constraints (12)

where the vectorqin = (qin
i ) collects theI node inflows from upstream, the vec-

tor qout = (qout
j ) collects theJ node outflows towards downstream,q =

(
qin

qout

)
,

∆ = (∆i) andΣ = (Σj) are vectors of upstream demands and downstream sup-
plies, andB = (βij) is a matrix of non-negative turning fractions from upstream
arcsi to downstream arcsj with

∑
j βij = 1. There are no dynamics within the

node, and its spatial extension is neglected. (Lebacque (1984, 2003) offers dy-
namic node models.) The GNM is defined for a discrete time stepor a single
point in continuous time; the time index is omitted here for simplicity. The fol-
lowing presentation assumes discrete time due to its focus on operational model
implementations.

Equations (5) – (9) have straightforward interpretations:The objective function
(5) calls for flow maximization. Equation (6) requires non-negative flows. Vehicle
conservation within the node and compliance with the turning fractions (which are
specified exogenously here but can be functions of the upstream flow composition)
are required in (7). Equations (8) and (9) require that node inflows and outflows
do not exceed the respective demands and supplies.

The invariance principle in (10) states the following (Lebacque and Khoshyaran,
2005):

q is invariant with respect to

{
∆i → Ci for all upstreami with qi < ∆i

Σj → Cj for all downstreamj with qj < Σj,

(13)
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whereCi (Cj) is the flow capacity of upstream linki (downstream linkj). Time-
discrete models that violate the invariance principle allow for waves that emanate
from the node while at the same time traveling towards the node; these solutions
are unstable when the time step size approaches zero. Intuitively, the invariance
principle can be phrased as follows: (i) increasing the queue size on a congested
upstream link has no effect on the node flows (because the linkflow is constrained
from downstream), and (ii) making more space available on anuncongested down-
stream link does not change the node flows (because the link flow is constrained
from upstream).

Equations (11) and (12) facilitate further phenomenological modeling. Thesupply
constraint interaction rule (SCIR)in (11) determines how a limited downstream
supply is shared among the upstream links in congested conditions. It is a neces-
sary element of every node model with more than one upstream link. Thenode
supply constraintsin (12) capture additional effects that reduce the node flows, in
particular signaling and conflicts inside the node. They areoptional elements in
that it is possible to compute unique node flows even without node supply con-
straints.

2 Incremental node model

This section develops a new node model that is related to the IT principle. This
principle was originally formulated as a discrete-time simulation procedure for
a freeway with special lanes and priority vehicles (Daganzoet al., 1997); see
Lawson et al. (1999) for a qualitatively validation of the underlying model and
Zhang and Lin (2001) for a review. The IT principle computes flows per time step
by incrementally transferring flow elements from upstream to downstream until
some termination criterion is met.

Daganzo et al. (1997) already conjecture a broader applicability of the IT princi-
ple but do not develop this consideration further. Indeed, despite of its intuitive
appeal, the IT principle has never been systematically investigated as a method to
compute traffic flow in a general intersection.1 Lebacque and Koshyaran (2002)
relate their lane assignment model to the multi-lane model solved by the IT prin-
ciple, but they turn to different techniques when it comes tonode modeling. Laval
and Daganzo (2006) deploy a variant of the IT principle when analyzing the ef-
fect of lane changing in traffic streams. They observe the similarity of their flow
transmission rules with some intersection models of Lebacque and Lesort (1999);

1This statement is supported by an inspection of all 19 articles that cite Daganzo et al. (1997)
up to December 3, 2010 according to the Scopus citation database (Elsevier, accessed 2010).
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however, this observation is not further pursued. Also, Laval and Daganzo (2006)
deploy a demand-proportional supply distribution logic, which violates the invari-
ance principle. Their lane-changing model is picked up by Cheu et al. (2009),
again deploying a demand-proportional supply distribution scheme.

The subsequently developed incremental node model (INM) features consistency
with the GNM, simple and intuitive parametrization, and computational efficiency.
The latter property is crucial in every non-trivial networkmodel, which may con-
sist of many thousand node instances. Furthermore, the INM truly generalizes all
instances of the GNM proposed so far in the literature.

2.1 Specification

The incremental transfer of flow occurs along a fictitious time line t, with the
transfer starting att = 0. The flow being transferred untilt is written asq(t),
and the finally transmitted flow isq = q(∞). The INM is specified in terms of a
stationary point of the following dynamical system:

q̇(t) = ϕ(q(t)) (14)

s.t.q(0) = 0 (15)

ϕ(·) ≥ 0 (16)

The differential equation (14) represents the incrementaltransfers, which start at
zero flows according to (15). The requirement (16) of non-negativeflow transfer
ratesϕ(·) ensures that flows do not become negative, which satisfies (6). In the
following, a set of (increasingly stringent) constraints on ϕ(·) that ensure full
consistency with the GNM is developed.

The constraint (7) is equivalent to

ϕout(q) = Bϕin(q) (17)

with ϕ(·) =
(

ϕ
in(·)

ϕout(·)

)
. Equation (17) results from (7) by differentiation with

respect tot, and it uniquely implies (7) by integration because of (15).

To enforce the demand and supply constraints (8) and (9), theset

D(q) =

{

l

∣∣∣∣
1 ≤ l ≤ I (upstream): qin

l < ∆l and{j | βlj > 0} ⊆ D(q)

I < l ≤ I + J (downstream): qout
l < Σl and∃i ∈ D(q) : βil > 0

}

(18)
is defined. It contains those upstream (downstream) arcs that are not demand
(supply) constrained. Furthermore,

ϕl(q) = 1(l ∈ D(q)) · φl(q) (19)
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where1(·) is the indicator function and

φ(q) = (φl(q)) =

(
φin(q)

φout(q)

)
=

(
I
B

)
φin(q) > 0 (20)

with I being theI × I identity matrix. This definition still fulfills (17). The strict
positivity of φ(·) in combination with (18) and (19) guarantees that the transfer
process eventually attains a stationary point, at whichD = {} must hold. Equa-
tions (18) – (20) implicitly define the SCIRs that can be expressed with the INM
through an appropriate choice ofφin(·).

The INM is by design consistent with the invariance principle: At every solution
of the model,D is the empty set. Consider a solutionqin

i < ∆i. The first part
of (18) implies that there is a downstream linkj with βij > 0 andqout

j = Σj that
keepsi from sending more flow downstream. Increasing∆i does not change this
situation, and hence the first part of (13) is satisfied. For a solutionqout

j < Σj, the
second part of (18) implies that there is no upstream linki that could send more
flow towardsj. IncreasingΣj does not change this situation, and hence the second
part of (13) is satisfied.

Finally, the stationary pointq(∞) of the INM is flow maximizing: Every fea-
sible setting of∆, Σ, and φin(·) defines a unique incremental transfer path
{q(t)}∞t=0, which obeys the SCIR constraint. The objective function (5) increases
monotonously along this path because of

〈
∂(

∑
i q

in
i )

∂q
, ϕ(q)

〉
=

∑

i

ϕin
i (q) ≥ 0. (21)

D(q(∞)) = {} implies that all elements ofq(∞) are either demand- or
supply-constrained. Demand-constrained inflows cannot beincreased. Supply-
constrained inflows can only be increased by reducing at least one competing
inflow, sayi. Denote byq̃in

i < qin
i (∞) the accordingly reduced inflow. The mono-

tonicity of the SCIR path that led toq(∞) guarantees the existence of a transfer
time t̃ with qin

i (t̃) = q̃in
i , cf. (15) and (16). However,qin

i (t̃) < qin
i (∞) implies

ϕin
i (q(t̃)) > 0 and henceqin

i (t̃) < q̃in
i , which is a contradiction. This means that

any reduction of an inflow component inq(∞) is incompatible with the SCIR.
Hence,q(∞) is uniquely flow maximizing subject to the phenomenologicalcon-
straints.

2.2 Instances of the incremental node model

To specify a concrete instance of the INM, onlyφin(·) > 0 needs to be defined. A
general approach is (i) to specify a parametricφin(·; α) that captures the structure
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of the considered intersection and (ii) to calibrate the parameter vectorα from
data. An appealing choice is a piecewise constantφin(·; α): In terms of calibra-
tion, this enables an intuitive procedure of incrementallyadding thresholds toα
until a sufficient data fit is obtained. To give an example, Troutbeck and Kako
(1999) indicate that low-priority vehicles merge more aggressively at high flows.
This can be modeled by assigning a relatively lowφin to the respective stream for
low q values and using a largerφin if q exceeds an appropriate threshold. The
important computational advantage of this approach is thatpiecewise constant
transfers allow to replace the integration of (14) by a finitesum.

The most extreme case of this specification isφin(·; α) ≡ α = (αi), which
assigns a constant inflow priorityαi to every upstream arc such that the ratios
of node inflows in perfectly over-saturated conditions equal the ratios of theirα
coefficients. To the best of the authors’ knowledge, all instances of the GNM
presented so far in the literature can be phrased as an INM with φin(·; α) ≡ α

and a particular choice ofα. These models are enumerated in the following; the
according “proofs” of equivalence follow from a comparisonof the respective
simulation procedures with the basic INM solution algorithm given in the next
subsection.

Not surprisingly, the first-in/first-out (FIFO) diverge logic of the INM coincides
with many other FIFO diverges, including those of Daganzo (1995a), Lebacque
(1996), Adamo et al. (1999)2, Kuwahara and Akamatsu (2001)3, Lebacque and
Koshyaran (2002), Jin and Zhang (2004), Gentile et al. (2007), Nie et al. (2008),
Yperman et al. (2007), Bliemer (2007), and Nie et al. (2008)4.

The merge model of Ni and Leonard (2005) results from the INM with a single
downstream link and letting allαi equal to the respective upstream link flow ca-
pacities. The merge model of Daganzo (1995a) coincides withthe INM for two
upstream links and one downstream link as long as all inflow priorities are strictly
positive. Kuwahara and Akamatsu (2001) given an incompletespecification of
a full merge model that could be made consistent with the INM,which would
essentially result in a model of the Ni and Leonard (2005) type.

The unsignalized intersection model of Tampere et al. (forthcoming) generalizes
the merge model of Ni and Leonard (2005). It also results fromthe INM by setting

2Adamo et al. (1999) specify a FIFO condition in their Eq. (20), but their solution (23) does
not exhibit this property. Their experimental results onlyconsider a merge, hence it can only be
speculated that the model is indeed FIFO.

3The specification of Kuwahara and Akamatsu (2001) is redundant in that the second constraint
in their Eq. (16) never binds.

4The “max” operator in (19) of Nie et al. (2008) should actually be a “min” that creates a FIFO
diverge logic (Nie, 2010).
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theαi parameters equal to the upstream link flow capacities. Similarly, the signal-
ized intersection model of Tampere et al. (forthcoming) canbe captured by scaling
the respectiveαi parameters with the green time fractions of their upstream links.

Many discrete-time merge and general node models in the literature are based on a
demand-proportional distribution of the downstream supplies. All of these models
violate the invariance principle (Lebacque and Khoshyaran, 2005) and are hence
incompatible with both the GNM and the INM. This applies to the models of
Buisson et al. (1995); Buisson, Lebacque and Lesort (1996);Buisson, Lebacque,
Lesort and Mongeot (1996), Rubio-Ardanaz et al. (2001), Jinand Zhang (2003),
Jin and Zhang (2004), Bliemer (2007), Yperman et al. (2007),van Hinsbergen
et al. (2008), Nie et al. (2008), and Kurzhanskiy and Varaiya(2010).

The general intersection models of Gentile et al. (2007) andAdamo et al. (1999)
as well as the merge model of Lebacque (1996) are not flow maximizing; the latter
also allows, without further correction, for solutions where the flow exceeds the
supply. This also excludes them from the GNM and INM framework.

2.3 Basic implementation of the incremental node model

In the following, a solution procedure for the most basic instance of the INM with
a constantφin(·) is described. This specification results in piecewise constant flow
transfer ratesϕ(·), where changes occur when a new demand or supply constraint
become active, cf. (19). The flow transmissions are hence computed in a multi-
stage process with stage indexk = 0 . . . K. The flows at the beginning of stagek

are denoted byq(k) =

(
qin(k)

qout(k)

)
and

q(0) = 0 (22)

is let consistently with (15).

The parameterθ(k) defines the length of stagek on the fictitious time line of the
incremental transfer process, such that

q(k+1) = q(k) + θ(k)ϕ(q(k)) (23)

whereϕ(q(k)) is defined through (18) and (19). Since stagek must end when the
first flow in D(k) = D(q(k)) reaches a constraint,

θ(k) = min
l∈D(k)

{
(∆l − q

in(k)

l )/ϕin
l (q(k)) for l upstream

(Σl − q
out(k)

l )/ϕout
l (q(k)) for l downstream

}

. (24)
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Algorithm 1 Solution of a basic INM

1. k = 0

2. q(0) = 0

3. D(0) = D(q(0)) according to (18)

4. while (D(k) 6= {}), do

(a) computeθ(k) according to (24)

(b) q(k+1) = q(k) + θ(k)ϕ(q(k)) according to (23)

(c) D(k+1) = D(q(k+1)) according to (18)

(d) increasek by one

5. K = k

The overall process is summarized in Algorithm 1. It terminates in stageK where
D(K) = {} and, equivalently,ϕ(K) = 0. This algorithm solves only the most basic
INM instance with a constantφin function. The general INM with a variableφin

function can be solved by numerical integration of (14) – (16). The INM with a
piecewise constantφin function is solved by a straightforward generalization of
Algorithm 1.

This algorithm reproduces all of the aforementioned FIFO diverge models, the
merge model of Daganzo (1995a), the merge model of Ni and Leonard (2005),
and the unsignalized intersection model of (Tampere et al.,forthcoming). This can
be shown by walking through the computation steps describedin these references
and comparing them to Algorithm 1, which establishes that all of these models
are instances of the basic INM with a constantφin function. The specification
given here is very compact and comes without the lengthy proofs of Tampere
et al. (forthcoming) because its consistency with the GNM results immediately
from the fact that it is an instance of the INM. It should also be noted that the
basic Algorithm 1 was first heuristically proposed by Flötteröd and Nagel (2005)
and later shown to be flow-maximizing by Flötteröd (2008). The next subsection
clarifies its working through an example.

In summary, this subsection demonstrates that, to the best of the authors’ knowl-
edge, all instances of the GNM presented so far in the literature are covered by the
basic INM. Beyond this, the presented framework renders thefuture specification
of much richer GNM instances through the INM with a variableφin function a
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technically straightforward exercise. However, the remaining presentation will be
in terms of the basic INM with a constantφin function only.

2.4 Example

The considered test network is shown in Figure 3. It will be revisited in later parts
of this article, where the INM is compared to a detailed traffic microsimulator.
This section only demonstrates the workings of the basic INMas specified in
Algorithm 1.

The network consists of a major street in north/south direction, which is inter-
sected by a minor one way street that runs from east to west. There are three
upstream (predecessor) linksPS, PE, PN and three downstream (successor) links
SN, SW, SS. Traffic coming from the south enters the intersection from predecessor
link PS, traffic coming from the east enters it viaPE, and traffic coming from the
north enters it viaPN. The linksSN, SW, andSS represent the northbound, west-
bound, and southbound exit of the intersection, respectively. 50 percent of the
traffic coming fromPS turns left at the intersection, and 50 percent of the traffic
coming fromPN turns right at the intersection, both into successor linkSW. The
traffic on the minor street only crosses the intersection. Summarizing,βSN = 0.5,
βSW = 0.5, βEW = 1, βNW = 0.5, andβNS = 0.5. The right-of-way laws at the
westbound mergeSW are modeled through the priority valuesαN = 10, αS = 1,
andαE = 0.1.The further parameters of this intersection are describedlater in
Section 4.1, where they become relevant for the first time.

Consider first an uncongested scenario, where the downstream supplies are suf-
ficient to absorb all upstream demands. In particular, the following demand and
supply values are assumed:∆S = 600 veh/h,∆E = 100 veh/h,∆N = 600 veh/h,
ΣN = 1400 veh/h,ΣW = 1400 veh/h, andΣS = 1400 veh/h. Table 1 details the
flow transmissions in these conditions. Every block of rows in this table corre-
sponds to one stage of the INM. All upstream demands are fullyserved: The
simulated flow rates areqin

S = 600 veh/h, qin
E = 100 veh/h, qin

N = 600 veh/h,
qout

N = 300 veh/h,qout
W = 700 veh/h, andqout

S = 300 veh/h. All node inflows are
split proportionally to their respective turning fractions.

The following setting represents a congested scenario:∆S = 600 veh/h,∆E =

100 veh/h, ∆N = 600 veh/h, ΣN = 1400 veh/h, ΣW = 400 veh/h, andΣS =

1400 veh/h. The total demand forSW is βSW∆S + βEW∆E + βNW∆N = 700 veh/h,
which exceeds its supply of400 veh/h. Table 2 details how this situation is sim-
ulated in the INM. In stage 0, no constraint binds, all node inflows are increased
proportionally to their priorities, and all node outflows are increased by inflows
that result from weighting the upstream inflows with the turning fractions. The
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Figure 3: Test network
See Section 2.4 for a detailed description.

Table 1: Uncongested flow transmissions

PS PE PN SN SW SS

q(0), cf. (15) 0 0 0 0 0 0
ϕ(0), cf. (19) 1 0.1 10 0.5 5.6 5
(∆/Σ − q(0))/ϕ(0) 600 1000 60 2800 250 280
θ(0), cf (24) 60

q(1), cf. (23) 60 6 600 30 336 300
ϕ(1) 1 0.1 0 0.5 0.6 0
(∆/Σ − q(1))/ϕ(1) 540 940 % 2740 1773.33 ∞

θ(1) 540

q(2) 600 60 600 300 660 300
ϕ(2) 0 0.1 0 0 0.1 0
(∆/Σ − q(2))/ϕ(2) % 400 % ∞ 7400 ∞

θ(2) 400

q(3) 600 100 600 300 700 300
ϕ(3) 0 0 0 0 0 0

Every block of rows represents one flow transmission stage. The algorithm terminates
when all flow transmissions have ceased. The simulated flow rates are given in the second
last row. (∆/Σ is to be read as “either∆ or Σ”.)
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Table 2: Congested flow transmissions

PS PE PN SN SW SS

q(0) 0 0 0 0 0 0
ϕ(0) 1 0.1 10 0.5 5.6 5
(∆/Σ − q(0))/ϕ(0) 600 1000 60 2800 71.43 280
θ(0) 60

q(1) 60 6 600 30 336 300
ϕ(1) 1 0.1 0 0.5 0.6 0
(∆/Σ − q(1))/ϕ(1) 540 940 % 2740 106.67 ∞

θ(1) 106.67

q(2) 166.67 16.67 600 83.34 400 300
ϕ(2) 0 0 0 0 0 0

Every block of rows represents one flow transmission stage. The algorithm terminates
when all flow transmissions have ceased. The simulated flow rates are given in the second
last row.

inflow from PN, which has the highest priority and hence the highest transfer rate,
reaches its demand constraint most quickly. Next, the downstream supply ofSW

is used up in stage 1. Since all upstream links have a non-zeroturning fraction
towardsSW, all flow transmissions cease in stage 2 such that the algorithm ter-
minates. The simulated flow rates areqin

S = 166.67 veh/h,qin
E = 16.67 veh/h,

qin
N = 600 veh/h,qout

N = 83.34 veh/h,qout
W = 400 veh/h, andqout

S = 300 veh/h. The
node inflow fromPN is completely transmitted because its priority is high enough
to reserve sufficient capacity inSW. The remainder ofSW’s capacity is completely
used up byPS andPE, the flows of which are proportional to their priorities.

These experiments demonstrate how the basic INM simulates acomplex intersec-
tion. However, this ability also introduces new difficulties: Conflicting streams
(in this example: the left- turning portion of the northbound flow vs. the south-
bound flow and the minor flow vs. all major flows) are not yet accounted for. The
following section shows how they can be consistently incorporated in the model.

3 Node supply constraints

The GNM’s optional node supply constraints have so far been neglected. They
capture node capacity reductions that result from signaling and/or conflicts inside
the node. See, e.g, Rouphail et al. (1999) for capacity rulesin signalized intersec-
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tions and Troutbeck and Brilon (1999) for unsignalized intersections. The INM
is now supplemented with generic node supply constraints through an additional
fixed-point condition. This combines the computational efficiency of the INM
with vastly increased modeling capabilities, and it also yields some interesting
insights into the workings of the GNM. However, the proposedrepresentation of
node supply constraints is not limited to the GNM but appliesmore generally to
any node model that is based on the KWM’s demand/supply framework.

Node supply constraints complicate the modeling substantially. Consider, for ex-
ample, the case of an unsignalized intersection with conflicting streams of dif-
ferent priorities. If a stream yields, the FIFO diverge logic reduces all node in-
flows from its upstream arc. This makes more space available in the downstream
merges, which in turn may allow other flows to increase. Theseflows may be of
sufficiently high priority such that again other flows may have to yield to them.
These dependencies are complex and, possibly, even circular.

Subsection 3.1 adds node supply constraints to the INM through a fixed point for-
mulation. Subsection 3.2 discusses specification and uniqueness issues. Finally,
Subsection 3.3 presents two solution algorithms of different scope and complexity.

3.1 Specification

The INM (14) – (20) is formally written as

q =

(
qin

qout

)
= INM(∆, Σ), (25)

where the parametersα of the underlyingφ function are omitted for notational
simplicity. (Algorithm 1 could be used to solve this model for a constantφ func-
tion; however, a more complex specification with a variableφ function is just as
feasible.)

The node supply constraints are implemented through ademand constraint func-
tion ∆̂(q) that bounds the original demand∆, given a flow patternq in the inter-
section. The suchlike constrained demands∆(q) result from

∆(q) = min{∆, ∆̂(q)} (26)

where the min function applies element by element. The use ofa demand con-
straint function is no modeling confinement: Even though node supply constraints
may apply to individual traffic streams, the streams from each upstream arc are
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uniquely coupled through the FIFO rule, which allows to combine their node sup-
ply constraints into a single demand constraint function.5

The INM with node supply constraints (INMC) thus requires toidentify flow rates
q that solve the fixed-point problem

q = INM(∆(q), Σ)

= INM(min{∆, ∆̂(q)}, Σ).
(27)

The equivalence of this equation with a GNM where the node supply constraints
(12) are phrased asqin ≤ ∆(q) strongly depends on the concrete specification of
the node model. For example, since (27) constitutes a necessary condition for the
GNM with node supply constraints, the existence and uniqueness of a solution of
(27) would also guarantee a unique solution of the GNM. However, the following
analysis shows that full consistency with the GNM is a delicate issue.

A solution of (27) is guaranteed to exist if the demand constraint function∆̂(q)

is continuous and applies to everyq between0 and

(
∆

Σ

)
: The basic INM con-

stitutes a continuous mapping of demands on flows because it results from an
integration of the flow transfer ratesϕ(·). For a continuous demand constraint
function∆̂(q), the combined function INM(min{∆, ∆̂(q)}, Σ) is therefore contin-
uous with respect toq as well. This function maps every flowq from the closed,

bounded, and convex set0 ≤ q ≤

(
∆

Σ

)
on this very set. That is, the model

(27) specifies a fixed point of a continuous mapping of a closed, bounded, and
convex set on itself. Brouwer’s fixed point theorem guarantees that this mapping
has at least one fixed point (Sobolev, 2001). Subsection 3.2 is devoted to the less
obvious uniqueness analysis of (27).

The modeling of node supply constraints through demand constraint functions has
been tentatively pursued by some authors. van Hinsbergen etal. (2008, 2009) cap-
ture stream line interactions within an intersection by constraining the respective
demand functions dependently on the demand for conflicting flows of higher pri-
ority. That is, they replace the demand constraint function∆̂(q) by a constraint
function∆̂(∆) that does not depend on the actual flowsq in the intersection but on
the demands∆. There are simple situations where this approach fails. Assume,
for example, an upstream demand∆1 that affects some other upstream demand

5For example, assume that every stream from upstream linki to downstream linkj is faced with
an individual node supply constraint, which is expressed interms of a stream-specific demand
constraint function̂∆ij(q). These constraints can be combined through the FIFO rule into one
joint demand constraint function̂∆i(q) = minj{∆̂ij(q)/βij}.
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∆2 via ∆̂2(∆1). Now, consider any situation where the actually transmitted por-
tion of ∆1 becomes arbitrarily small, e.g., because of a congested downstream
arc or because of an interaction with another traffic stream.In the most extreme
case, nothing of∆1 is transmitted at all such that its impact on the intersection
effectively vanishes – but̂∆2(∆1) invariably creates the same effect as if all of
∆1 actually entered the intersection. Lebacque (1984) modelsflow-dependent de-
mand constraints but solves the model linearly in that mutual dependencies are not
resolved. Yperman et al. (2007) also identify the need for truly flow-dependent
demand constraints, but they neither specify nor solve sucha model.

3.2 Uniqueness analysis

By incorporating node supply constraints in the INM, two models are connected:
The basic INM is designed to identify the unique solution of asubclass of the
GNM. The demand constraint function̂∆(q) should be defined in a unique man-
ner as well. However, without further assumptions there is no guarantee that the
combined model (27) also has a unique solution. In this section, it is demonstrated
that non-uniqueness is likely to result from misspecifications that are intimately
related to the limitations of point-like intersection models as such. It also is shown
that the flow maximizing approach of the GNM should be revisedbecause it se-
lects counter-intuitive results in certain situations where the fixed-point model
allows for multiple solutions.

Consider the situation shown in Figure 4. This is a three-armed intersection, where
a fractionβNW of flow qin

N, coming from the north, turns into the westbound link W
and the remainder continues southbound. A fractionβSW of flow qin

S , coming from
the south, also turns into link W, while the remainder continues northbound. The
left-turning share ofqin

S yields to the southbound share ofqin
N. Traffic is single-lane

in every direction. This is a simplified version of the previously used test network,
where the minor stream coming from the east is removed for greatest clarity.

To begin with, the yielding of the left-turning flow is ignored and it is assumed that
the flow supplyΣW of the westbound link is the limiting factor of the intersection’s
throughput and that neither the demand∆N nor the demand∆S can be fully served
such that

βNWqin
N + βSWqin

S = qout
W = ΣW. (28)

This relation is represented by line 1 in Figure 5. Given the prioritiesαN andαS

for the two ingoing streams,
βSWqin

S

βNWqin
N

=
αS

αN
(29)
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Figure 4: Simplified test network
A three-armed intersection, where some of flowqout

N , coming from the north, turns into
the westbound link and the remainder continues southbound.A portion of flow qout

S ,
coming from the south, also turns into the westbound link, while the remainder continues
northbound. The left-turning share ofqout

S yields to the southbound share ofqout
N . Traffic

is single-lane in every direction.

holds furthermore in these conditions. An exemplary instance of this relation
is given by line 2. Its intersection with line 1 at point A constitutes the unique
solution of the unconstrained node model.

Now, let the left-turning portion ofqin
S yield to the straight portion ofqin

N. The ac-
cording demand constraint function̂∆S(q

in
N) is represented by curve 3 in Figure 5.

A feasible solution point must not be located above this curve. Point A maintains
to be a feasible solution of the constrained model because the new constraint is
not violated. However, an inspection of point B now reveals the following prop-
erties: (i) given the transmitted flows, the constraint binds but is not violated, and
(ii) an evaluation of the INM with an accordingly constrained demand reproduces
the flows.

That is, both A and B are fixed points of (27), and hence both solve this intersec-
tion model. The cause of this ambiguity is the priority specification: Line 2 has a
very large slope ofαS/αN, which implies thatqin

S precedesqin
N in the westbound

merge. On the other hand, the node supply constraint indicates the opposite: The
left-turning portion ofqin

S yields to the southbound part ofqin
N. If the priorities

were selected such that line 2 was flat enough to intersect curve 3 before reach-
ing line 1, then point B would be the unique solution. Furthermore, if the slope
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Figure 5: Ambiguous intersection flows
Given this constellation of the merge constraint 1, the priority constraint 2, and the en-
dogenous flow constraint 3, there are two possible flow solutions A and B for the inter-
section of Figure 4.

of line 2 was so low that it intersected line 1 below point B, then only this new
intersection point would solve the model.

The non-uniqueness in this example clearly results from a misspecified model.
This type of misspecification is not easy to identify automatically, which is
demonstrated by a slight modification of the setting. Consider the modified ver-
sion of the previous example shown in Figure 6. The only difference is thatqin

N

is now allowed to u-turn and merge into the northbound part ofqin
S . A realistic

priority rule for this setting would be that the the u-turning stream yields to the
straight stream. This can lead to a situation where the node supply constraint on
the left-turning portion ofqin

S becomes inactive because the u-turning stream is
held back such that it blocks theqin

N stream, which otherwise would constrainqin
S .

This situation yields a flow diagram that looks qualitatively identical to Figure 5,
only that line 1 now represents the merge constraint of the northern downstream
arc and line 2 represents the priorities at this merge. In this case, point A repre-
sents indeed a plausible solution.

Unfortunately, returning from the fixed point model (27) to the original GNM
does not help to resolve this ambiguity. A combination of (28) with (29) shows
that point A is globally flow maximizing ifβNW < βSW, point B is globally
flow maximizing if βNW > βSW, and both points yield the same global flows if
βNW = βSW. However, there is no reason why a change in the turning fractions
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Figure 6: Simplified test network with additional u-turn
The only difference to the intersection of Figure 4 is that the traffic coming from the north
is now allowed to u-turn and merge into the straight northbound stream.

should favor one solution over the other, and hence the maximization of flows
can only be attributed to some kind of cooperative driver behavior across different
streams.

This cooperative behavior results from the GNM’s maximization of onejoint ob-
jective function (5). An arguably more realistic approach is to phrase the node
model as anI-player game where each inflow is one player, the continuous-valued
strategy set of a player is the amount of flow the player sends into the intersec-
tion, and the individual-level objective function to be maximized by each player
is the amount of flow sent into the node. This would result in a truly competitive
intersection model the flows of which would be in a Nash equilibrium.

The model (27) can be seen as a fixed-point formulation of suchan equilibrium.
This means that it is indeed behaviorally plausible that thefixed point model is
ambiguous where the GNM is not. This raises the question of the GNM’s scope.
The authors consider the GNM appropriate in situations where the INM is ap-
plicable as well, because solution uniqueness can be guaranteed. However, the
introduction of node supply constraints seems to reach the limits of the original
GNM. A fixed-point reformulation of the GNM appears to be a logical next step
in future research.

Considering the wealth of thinkable intersection models, the generality of the
INMC reaches the limitations of what situations can be reasonably modeled by
point-like intersections. If, for a very complex intersection, the spatial arrange-
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Algorithm 2 Exact solution procedure

1. q(1) = INM(∆, Σ)

2. ∆ ′ = ∆

3. for i = 2 . . . I, do:

(a) ∆ ′

i = min{∆i, ∆̂i(q(i − 1))}

(b) q(i) = INM(∆ ′, Σ)

4. q = q(I)

ment of interactions contains information that is necessary for a unique model
specification, then this intersection should indeed be modeled spatially, e.g., by
linking several point-like intersection components. However, the question if well-
designed real intersections permit systematically ambiguous flow patterns is yet
to be answered. It may be that the problems observed here are consequences of
pathological specifications that would not be considered byan experienced ana-
lyst. Still, all of these critical statements does not invalidate the observation that
the INMC advances the macroscopic first order modeling of complex intersections
considerably.

3.3 Solution algorithms

In the following, two solution methods for the fixed point problem (27) are de-
scribed. Both approaches terminate after a finite number of calculations and are
experimentally tested in the next section. The first method yields an exact solution
but requires an independence assumption to be satisfied. Thesecond method is
universally applicable but may yield only an approximate solution. For notational
simplicity, it is assumed that every node inflowi = 1 . . . I is subject to a demand
constraint function that represents one or more node supplyconstraints.

Exact solution procedure. Assume that the upstream arcsi = 1 . . . I can be
ordered such that the node inflow fromi is independent of all node inflowsi +

1 . . . I in terms of both the INM and the node supply constraints. (This ordering
is not unique if there are mutually independent inflows.) Then, (27) can be solved
in I steps by Algorithm 2.
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First, the basic INM is run without demand constraints, which yields the flows
q(1). Based on this, the second highest ranking demandi = 2 is reduced accord-
ing to the demand constraint function̂∆2(q(1)). By assumption, this constraint
does not change in reaction to variations in the node inflows from i = 3 . . . I.
Then, the basic INM is run again, using the constrained demand of i = 2, which
yields the flowsq(2). Because of the independence assumption, the constraint on
i = 2 binds exactly in this and all following iterations. Now, thedemand ofi = 3

is constrained bŷ∆3(q(2)), the INM is run again, and so forth. AfterI steps, all
constraints are satisfied, and the simulated flows reproducethese constraints.

Approximate solution procedure. If no ranking of the node inflows is possible
because of mutual dependencies, Algorithm 3 can be deployed. It yields an ap-
proximate solution of (27) with only two evaluations of the INM, between which
it interpolates both the flows and the constraints. This procedure can also be de-
ployed as a building block in a more precise iterative solution algorithm, which,
however, is beyond the scope of this article.

The steps 1 and 2 identify the two working points A and B between which the
flows and the constraints are interpolated. Step 1 calculates the unconstrained
flows A and the constraints A that result from these flows. Step2 then calculates
the flows B given the constraints A and identifies the new constraints B that result
from the flows B. Step 3 solves the intersection model based onlinearly inter-
polated flows and constraints. In particular, step 3a identifies for every upstream
link i the interpolation coefficientλ∗

i at which i’s interpolated constraint binds.
If a constraint bind at either working point, flow A, which effectively ignores the
constraints, is assumed, which corresponds toλ∗

i = 1. Otherwise,λ∗

i results from
equating the linearized flow and its constraint, solving forλ∗

i , and ensuring that
no extrapolation takes place by projectingλ on the interval[0, 1]. Step 3b then
ensures that all constraints are simultaneously satisfied by the interpolated flows
calculated in step 3c.

The consideration only of truly interpolated flows and constraints, i.e., the limi-
tation ofλ∗ to [0, 1], is justified by the observation that both working points con-
stitute extreme cases of the model: Point A represents maximum flows because
no node supply constraints are applied. Assuming that increasing the flows in an
intersection causes more mutual obstructions and hence a tightening of the node
supply constraints, point A also represents the tightest possible constraints. Vice
versa, point B, resulting from these tightest constraints,represents particularly
small flows B, which in turn result in utmost weak constraintsB.
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Algorithm 3 Approximate solution procedure

1. calculate working point A:

(a) qA = INM(∆, Σ)

(b) ∆̂
A

= min{∆, ∆̂(qA)}

2. calculate working point B:

(a) qB = INM(∆̂
A
, Σ)

(b) ∆̂
B

= min{∆, ∆̂(qB)}

3. solve linearized model withq(λ) = qB + λ(qA − qB) and∆̂(λ) = ∆̂
B

+

λ(∆̂
A

− ∆̂
B
):

(a) for all i = 1 . . . I, evaluate

λ∗

i =






1 if ∆̂A
i = qA

i and∆̂B
i = qB

i

(∆̂B
i − qB

i )

(∆̂B
i − qB

i ) − (∆̂A
i − qA

i )
→ [0, 1] otherwise

(b) λ∗ = mini=1...I λ∗

i

(c) q = qB + λ
∗

(qA − qB)

4 Experiments

This section tests the INMC in two settings. First, Subsection 4.1 compares the
model in a synthetic setting to a detailed traffic microsimulator. The objective of
this study is to investigate the model in a complex configuration for which no real
data is available. Second, Subsection 4.2 applies the modelto a real intersection
and compares it to real data.

4.1 Synthetic experiment

The same network as used in Section 2.4 is considered, cf. Figure 3, and all previ-
ous modeling assumptions are maintained. Beyond this, the INM is now supple-
mented with two node supply constraints: One constraint affects the left-turning
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fraction of the northbound major stream because of the oncoming southbound ma-
jor stream, and one constraint affects the minor stream, which crosses both major
streams. The resulting INMC is compared to the detailed traffic microsimulator
AIMSUN NG 5.1.10 (TSS Transport Simulation Systems, 2006).

Link flows are captured here and in the following using a cell-transmission model
(CTM) (Daganzo, 1994) with a trapezoidal fundamental diagram. The trapezoidal
CTM has found various applications, e.g., in freeway ramp metering, signal opti-
mization, and traffic state estimation (Friedrich and Almasri, 2006; Feldman and
Maher, 2002; Sun et al., 2003; Tampere and Immers, 2007), andhas been subject
to thorough experimental validations (e.g., Brockfeld andWagner, 2006; Munoz
et al., 2006, 2004). Early network implementations are NETCELL (Cayford et al.,
1997), and the model of Lee (1996); Ziliaskopoulos and Lee (1997). The latter
allows for urban intersections but relies on a sole recombination of simple merge
and diverge building blocks and applies only to signalized intersections.

The following parameters are obtained by manual calibration against the mi-
crosimulator: All links but the minor street’s entry link have a free flow speed of
50 km/h, a flow capacity of 2340 veh/h, a backward wave speed of16 km/h, and
a maximum density of 200 veh/km. The minor street’s entry is stop-controlled.
AIMSUN captures the effect of the stop sign by physically simulating a full stop
of every vehicle. The macroscopic model reflects this through a flow capacity of
518 veh/h and a maximum velocity of 32.4 km/h (whereas the free flow speed in
AIMSUN is 50 km/h). The backward wave speed and the maximum density are
the same as for all other links.

The links of the major street are 150 m long; the links of the minor street have
a length of 100 m. All streets are modeled in AIMSUN as 1-lane urban roads
(volume delay function 38786: VDF 25). The AIMSUN traffic demand consists
of the vehicle type “car” only. For easy reproducibility, all microscopic vehicle
parameters (e.g., maximum acceleration and deceleration,minimum distance be-
tween vehicles, etc.) are set to their AIMSUN default values. (The ability of the
INMC to reproduce real situations is demonstrated in the next subsection.)

The external demand inflow patterns are shown in Figure 7, where the bold lines
represent macroscopic values in the INMC and the thin lines are the according
AIMSUN flows, which are averaged over 10 simulations but still exhibits substan-
tial vehicle discretization noise. In AIMSUN, the inflow patterns are generated by
adding traffic light controlled links upstream of each ingoing link of the original
network (cycle time 90 s, major street: green time 24 s, minorstreet: green time
9 s). In the INMC, piecewise linear demand flow patterns are found to reflect the
AIMSUN inflows well. The figure clearly reflects the 90 s cycle time of the up-
stream traffic lights, which all turn green towards the central intersection at the
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same time. Furthermore, the constellation of link lengths,maximum velocities,
and stop sign-induced delay is such that all platoons reach the intersection after
approximately 11 s.

The left-turning portion of the northbound stream yields tothe straight portion
of the southbound stream. The demand constraint function capturing this ef-
fect is obtained from the German Highway Capacity Manual (HBS), Chapter
“Unsignalized Intersections” (Forschungsgesellschaft für Strassen und Verkehr-
swesen, 2001). Its functional form is

∆̂S(q
in
N) =

1

tf,S
exp

[
−qin

N

(
tg,S −

tf,S

2

)]
(30)

whereqin
N is the node inflow rate of the southbound stream,tg,S is the minimum

time gap between two southbound vehicles that allows one left-turning vehicle
to enter the intersection, andtf,S is the minimum follow-up time between two
left-turning vehicles, with a recommended value of13

21
tg,S. These parameters are

identified by manual calibration against AIMSUN:tg,S = 8.4 s andtf,S = 5.2 s.
Note that here and in the following, the HBS is used only exemplary in order to
obtain concrete node supply constraints. The INMC framework is not limited to
specifications from the HBS.

The minor road is stop-controlled and yields to the major streams. The effect of
having to stop at all is captured by choosing a relatively small flow capacity and
a small maximum velocity as described before. Beyond this, the minor stream
yields to the major streams. The according demand constraint function is again
obtained from Forschungsgesellschaft für Strassen und Verkehrswesen (2001):

∆̂E(q
in
S , qin

N) =
p0,S

tf,E
exp

[
−(qin

S + qin
N)

(
tg,E −

tf,E

2

)]
(31)

wheretg,E andtf,E are again the minimum gap and the follow up time,qin
S and

qin
N are the conflicting major flows, andp0,S is the probability that the left-turning

traffic on the major street operates in a queue-free state. Again, the parameters are
identified by manual calibration:tg,E = 9 s,p0,S = 0.15, andtf,E = 8 s according
to the recommendationtf,E = 8

9
tg,E.

The chosen setting is such that the capacity of the westboundmerge has no lim-
iting effect on the intersection’s throughput, which allows to explain all flow in-
teractions by the node supply constraints. This also enables a comparison of the
exact and the approximate solution procedure for the INMC, cf. Section 3.3: The
constraints follow a hierarchical ordering (flow from the north precedes all other
flows, flow from the south precedes flow from the east) such thatthe exact solution
procedure can be applied. The approximate solution method is always applicable.
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Figure 7: Comparison of microscopic and macroscopic demandcurves
The figure contains three diagrams, one for each ingoing linkof the intersection. The thin
noisy curve is the microscopic AIMSUN demand, and the respective fat smooth curve is
the macroscopic demand. The AIMSUN curve is averaged over 10runs of the microsim-
ulator but still exhibits substantial vehicle discretization noise.
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Figure 8 shows the simulation results for both AIMSUN and theINMC. The fig-
ure contains three diagrams, one for each ingoing link’s flowdischarge into the
intersection. The thin noisy curve is the AIMSUN output, which is averaged over
10 simulations, and the respective thick smooth curve is obtained from the INMC
(where the exact and the approximate solution procedure yield visually identical
results).

Cars coming from the north traverse the intersection without interruption. One
observes a shift of the respective demand profile by approximately 11 s, which
is the time it takes the demand to travel from the network entry to the central
node. The flow coming from the south is equally delayed, but once it reaches the
intersection, its left-turning portion is quickly suppressed by the higher-ranking
southbound flow, which effectively holds up the entire northbound flow (remem-
ber that all roads have a single lane only). Only when the southbound flow ceases,
the northbound flow can continue, which it does at maximum capacity. Finally,
the minor stream going from east to west is held up until both major streams have
passed the intersection. Some minor flow makes it through when the southbound
flow ceases and the northbound flow has not yet reached its maximum value. All
queues recover within a 90 s cycle.

A comparison between AIMSUN and the INMC shows that the microscopic traf-
fic phenomena (no interruption of the southbound flow; temporary queuing of
both other flows) are well captured by the macroscopic model.The uninterrupted
outflow from the north is somewhat wider in AIMSUN than in the macroscopic
model because the latter does not capture platoon dispersion, which, however, is
not so much of an intersection modeling problem but rather aninherent features of
all first order models.6 The node supply constraints generate flow reductions that
are consistent with AIMSUN’s representation of the respective vehicle interac-
tions. The recovery of the southern queue is faster in the macroscopic model than
in the microsimulator because the KWM postulates infinite vehicle accelerations.
This, again, is an inherent feature of all first order models.

The visual impression of the flow curves presented above is supported by a quan-
titative comparison of the average densities and delays on all links in the network.
The results are shown in Table 3 and exhibit a remarkable accuracy. In particular,
the delay estimates of the macroscopic model (computed fromcumulative flow
curves) almost perfectly reproduce the outputs of the far more complicated mi-
crosimulator. However, it should be noted that the default acceleration values in

6Dispersion at the downstream end of a platoon could be captured by choosing a truly concave
flow demand function∆. Dispersion at a platoon’s upstream end, however, cannot becaptured
by a first order model: Flows at lower densities are never slower than flows at higher densities
such that any platoon tail will eventually catch up with the platoon main body and transform into
a density discontinuity at its upstream end.
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Figure 8: Comparison of AIMSUN and ECTM simulation results
The figure contains three diagrams, one for each ingoing linkof the intersection. The thin
noisy curve is the AIMSUN output, and the respective fat smooth curve is obtained from
the ECTM. The AIMSUN curve is averaged over 10 runs of the microsimulator but still
exhibits substantial vehicle discretization noise.
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Table 3: Quantitative comparison of AIMSUN and INMC

density [veh/km] delay [s/veh]
link AIM- INMC INMC AIM- INMC INMC

SUN (exact) (approx.) SUN (exact) (approx.)

S, ingoing 28.6 31.7 31.6 23 23 23
E, ingoing 24.5 29.3 29.2 59 57 56
N, ingoing 11.7 10.1 10.1 3 0 0

N, outgoing 4.5 4.9 4.9 1 0 0
W, outgoing 14.5 13.0 13.0 1 0 0
S, outgoing 4.7 5.0 5.0 1 0 0

AIMSUN are quite high, which biases the comparison in favor of the KWM. The
next subsection provides more insight into this issue. Finally, it also is notewor-
thy that the exact and the approximate solution procedure yield almost identical
results.

4.2 Real experiment

This experiment considers a real intersection in Braunschweig, Germany, which
is shown in Figure 9 (left). The intersection consists of a two-lane main road (Al-
tewiekring) in north/south direction and a minor one-lane road (Kastanienallee) in
east/west direction. All approaches have separate left-turn pockets. The intersec-
tion is fixed-time controlled with a two-phase signal sequence and a cycle length
of 85 s. The first phase corresponds to a green time of 44 s for the main road; the
second phase corresponds to a green time of 24 s for the minor road. The inter-
green time is 9 s between the first and second phase and 8 s between the second
and first phase, respectively.

The analysis focuses on the interaction of the north/south main traffic streams;
since they are decoupled from the minor streams through the signaling, an in-
corporation of the minor streams would not add complexity tothe node model-
ing. Also, the turning pockets decouple the left-turning stream from the straight
and right-turning stream of the same approach. The interactions of a single left-
turning stream with all of its conflicting streams can therefore be investigated in
isolation. In consequence, the considered setting is constrained to the left-turning
main stream coming from the north and the straight and right-turning main streams
coming from the south. Figure 9 (right) shows how this subsystem is modeled.

The node model has three ingoing lanes and two outgoing lanes, which are mod-
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Figure 9: Braunschweig intersection Altewiekring/Kastanienallee
Left: real intersection (from Google Maps). Right: modeledsubset.

eled with the CTM. Five cells constitute boundaries to the node:PN represents the
left-turning stream coming from the north.PS1 represents the middle lane of the
northbound stream coming from the south.PS2 represents the right lane coming
from the south, diverging north and east.PS1 and the northbound portion ofPS2

merge intoSN. The left-turning vehicles fromPN merge with the right-turning
flow from PS2 into SE. The left-turning stream yields to the exit flow ofPS1 and
PS2.

The model is manually calibrated against data from video recordings of 25 cycles
during the evening peak hour of March 10, 2010. The link upstream arrivals and
the node inflows are evaluated in 5 s intervals, which dividesthe cycle duration of
85 s into 17 intervals.

The real link upstream arrivals are macroscopically approximated by constant in-
flow rates per cycle, starting (ending) 40 s before the green phase (red phase) for
thePS1 andPS2 lanes and starting (ending) 34 s before the green phase (red phase)
for thePN lane. This yields realistic results for all but three cyclesof PS1 andPS2,
where the respective inflows from upstream cease during the green period. This
is modeled through a piecewise constant inflow profile that drops to zero consis-
tently with the video footage. It should be noted that in a network model these
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manually extracted boundary conditions would be defined through upstream and
downstream node models.

The model is solved with Algorithm 2. The simulation time step length is one sec-
ond. All cells have a free flow speed of 45 km/h (the local speedlimit is 50 km/h,
but hardly a vehicle reaches this speed), a resulting cell length of 12.5 m, and a
jam density of 175 veh/km (estimated from video). Assuming atriangular fun-
damental diagram, the backward wave speed is 17.1 km/h. The flow capacity of
all cells butSE is 2160 veh/h (0.6 veh/s; this corresponds to the largest observed
average flow per cycle). The flow capacity ofSE is 1200 veh/h (0.33 veh/s) be-
cause pedestrians frequently crossSE in north/south direction. The video footage
reveals a turning fraction of 0.53 fromPS2 towardsSN and 0.47 towardsSE. All
inflow priorities are set to one. This is plausible forPS1 andPS2 because they
merge coequally intoSN. The priority value ofPN cannot be estimated from the
data because whenever there could have been a competition with PS2 for SE, the
flow from PN is already held back inside of the intersection byPS1 and the straight
portion ofPS2.7

The model is supplemented with one node supply constraint that captures the
yielding of the left-turning flow fromPN. The according demand constraint func-
tion is modeled symmetrically to (30):

∆̂N(qin
S ) =

1

tf,N
exp

[
−qin

S

(
tg,N −

tf,N

2

)]
(32)

with qin
S = qin

S1 + qin
S2 and, like before,tf,N = 13

21
tg,N. The video footage reveals

that the discharge fromPN given a zero conflicting flowqin
S is much higher during

phase one than during the inter-green phase after phase one in otherwise identical
conditions. A plausible explanation is that in the inter-green time, when the ma-
jor stream already has red signaling, there are no vehicles approaching from the
south that could close an existing gap such that the left-turning vehicles discharge
more calmly than during phase one. This effect is captured with a time- and flow-
dependenttg,N parameter, which is 7.2 s in most cases, rapidly goes to 4.85 sif
qin

S becomes zero during phase one, and to 11.63 s during the 18 s after phase one.
All values are higher than the standard recommendation of 4.2 s for German inter-
sections (Forschungsgesellschaft für Strassen und Verkehrswesen, 2001) because
they also compensate for the unlimited vehicle acceleration in the KWM.

7This reflects a general identifiability issue: If certain conflicts (or signal settings) render the
occurrence of other conflicts a rare event, the parameters describing the latter cannot be estimated
from data. However, such parameters also rarely take effectin the model, such that the transferal
of guidelines from the literature that were developed for similar situations may yield satisfactory
solutions.
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Figure 10 shows the real and modeled intersection inflows from PS1, PS2, and
PN, all averaged in 5 s time bins. The thin lines represent the real data, and the
thick lines represent the model. One clearly recognizes theperiodic rhythm of
the intersection. The southern node inflowsqin

S1 andqin
S2 have a two-step shape in

most cycles: First, the respective queue discharges at the capacity limit. Once it
is dissipated, the flow rate drops to the exogenous upstream arrival rate. The node
inflow fromPN is delayed until the flows fromPS1, PS2 have ceased. The light gray
boxes between seconds 1461 and 1526 indicate a situation where spillback occurs
from the downstream end ofSE. Modeling this effect by reducing the outflow
capacity ofSE accordingly affects bothPS2 andPN: The flow fromPN is held back
while the right-turning portion ofPS2 uses up up the remaining space inSE, such
that the node inflow fromPN drops to almost zero. Overall, the macroscopic flows
capture the trend of the real data very well.

Figure 11 compares the real and modeled queue on thePN lane. For this, the
number of all vehicles with a velocity of 6 km/h or less is compared to the number
of queued vehicles in the video footage two times per cycle, once at the beginning
of the green time of phase one and once when the last left-turning vehicle has
cleared the intersection. Again, the thin line represents the real data and the thick
line represents the model. Both the build-up and the dissipation of the peak hour
queue are well captured. This is particularly meaningful because thePN approach
is over-saturated during much of the peak hour such that any deviation between the
curves represents acumulationof flow modeling errors over several cycles.8 From
the fact that the true and the modeled queue do not drift apart, one can conclude
that there is no systematic bias the modeled flows. The average real queue size is
3.72 vehicles, compared to an average modeled queue size of 3.33 vehicles, which
constitutes a minor under-estimation by less than half a vehicle.

Finally, Figure 12 shows the real and modeled travel times asexperienced by
the left-turning vehicles when leavingSE. The real travel time is computed from
number plate recognition sensors, with the first sensor being located at the up-
stream end ofPN and the second sensor at the downstream end ofSE. It is again
represented by the thin solid line. A naive computation of the modeled travel
time by comparing the respective cumulative flow curves results in a systematic
underestimation of the travel time, for which two reasons are identified: (i) the
point-like node model neglects the time it takes to cross theintersection; (ii) the

8At the beginning of phase one’s green time, two or three left-turning vehicles enter the inter-
section, stop near its center, and wait for sufficiently longgaps in the opposite right-of-way flow.
If there are no or only very few such gaps, these vehicles haveto wait until the green time of the
major stream ends and can only then pass the intersection. The traffic demand of the left-turning
flow during the peak hour is sometimes much higher than two or three vehicles per cycle and some
vehicles wait up to 5 cycles only to enter the intersection.
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Figure 11: Real and modeled queue sizes

KWM neglects the finite acceleration of the left-turning vehicles when leaving
the intersection. This error is therefore corrected by computing only the travel
time throughPN from the respective cumulative flows and then adding the aver-
age time it takes an otherwise unhindered vehicle to proceeduntil the end of the
SE, which is 26 s. The result is represented by the thick curve. Clearly, it captures
the overall rhythm of the evening peak hour well, but it also leaves some room for
improvement. A more powerful correction than a constant offset would be to re-
sort to a model that explicitly captures finite accelerations (e.g., Lebacque, 1984,
2003). However, it should also be noted that this example is particularly sensitive
to modeling imprecisions: Since the left-turning vehicleswait up to 5 cycles until
they enter the intersection, their travel time effectivelyincorporates the modeling
errors during many cycles. The average real travel time is 168 s, compared to an
average modeled travel time of 161 s; this mild under-estimation is consistent with
the minor under-estimation of the queue size in thePN lane.

In summary, these experiments clearly demonstrate that theINMC is able to cap-
ture the flows in a complex real intersection very well.

5 Summary

This article contributes to the modeling and simulation of complex urban traffic
intersections from a methodological, computational, and empirical point of view.
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Figure 12: Real and modeled travel times

Methodologically, there are two major contributions. First, the incremental trans-
fer (IT) principle of Daganzo et al. (1997) is carried over tothe modeling of urban
intersections. The resulting incremental node model (INM)covers a rich sub-
set of the generic node model (GNM) class of Tampere et al. (forthcoming) and
comprises many models proposed so far in the literature. Second, the INM is sup-
plemented with a fixed point condition that allows to incorporate rich node supply
constraints that may result from signaling and/or conflicts(INMC). An insight-
ful uniqueness analysis reveals the limitations of point-like and flow maximizing
node models.

Computationally, specifications of the INM are described that allow for very sim-
ple and efficient simulation procedures. Furthermore, two algorithms for the so-
lution of the more complex INMC are presented. The first method is exact but
assumes that all intersection inflows can be ordered in some priority-related man-
ner. The second method applies to arbitrary intersections but may yield only ap-
proximate solutions. However, no significant difference between the exact and the
approximate solution procedure is observed in the experimental results.

Empirically, experiments with both synthetic and real dataare conducted. The re-
sults demonstrate the correctness and practical relevanceof the INMC. They show
that it is possible to capture complex flow interactions in urban intersections with
macroscopic node models. The comparison with real data alsoreveals that the in-
finite accelerations of the KWM constitute its major shortcoming when modeling
urban intersections.
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Important topics for future research comprise the following items:

• Exploitation of the general INM specification through non-constant flow
transfer rates.

• Relaxation of the requirement of global flow maximization inthe GNM,
possibly through an alternative fixed point formulation.

• Relaxation of the FIFO assumption. This effort would likelybenefit from
the original IT principle for multi-lane traffic flow.

• Compensating for the infinite KWM accelerations inside the node.

• Development of systematic calibration approaches and datacollection
strategies for the estimation of concrete INM(C) instances.

• Collection of more empirical evidence and testing of new INMC instances.

Acknowledgments

Peter Wagner gave very helpful comments on an early version of this article. Bern-
hard Friedrich provided valuable support and technical equipment for the experi-
ments.

References

Adamo, V., Astarita, V., Florian, M., Mahut, M. and Wu, J. (1999). Modelling
the spill-back of congestion in link based dynamic network loading models:
a simulation model with applications,in A. Ceder (ed.),Proceedings of the
14th International Symposium on Transportation and TrafficTheory, Perga-
mon, Jerusalem, Israel, pp. 555–573.

Ansorge, R. (1990). What does the entropy condition mean in traffic flow theory,
Transportation Research Part B24(2): 133–143.

Astarita, V., Er-Rafia, K., Florian, M., Mahut, M. and Velan,S. (2001). A compar-
ison of three methods for dynamic network loading,Transportation Research
Record1771: 179–190.

Ben-Akiva, M., Bierlaire, M., Burton, D., Koutsopoulos, H.and Mishalani, R.
(2001). Network state estimation and prediction for real–time transportation
management applications,Networks and Spatial Economics1: 293–318.

38



Bliemer, M. (2007). Dynamic queuing and spillback in an analytical multiclass
dynamic network loading model,Transportation Research Record2029: 14–
21.

Brackstone, M. and McDonald, M. (1999). Car-following: a historical review,
Transportation Research Part F2(4): 181–196.

Brockfeld, E. and Wagner, P. (2006). Validating microscopic traffic flow models,
Proceedings of the 9th IEEE Intelligent Transportation Systems Conference,
Toronto, Canada, pp. 1604–1608.

Buisson, C., Lebacque, J. and Lesort, J. (1996). STRADA. A discretized macro-
scopic model of vehicular traffic flow in complex networks based on the Go-
dunov scheme.,Symposium on Modelling, Analysis and Simulation, held at
CESA 1996 IMACS Multiconference, Vol. 2, Lille, France, pp. 976–981.

Buisson, C., Lebacque, J., Lesort, J. and Mongeot, H. (1996). The STRADA
model for dynamic assignment,Proceedings of the 1996 ITS Conference, Or-
lando, USA.

Buisson, C., Lesort, L. and Lebacque, J. (1995). Macroscopic modelling of traffic
flow and assignment in mixed networks,in P. Pahl and H. Werner (eds),Com-
puting in Civil and Building Engineering, Balkema, Rotterdam, The Nether-
lands, pp. 1367–1374.

Cayford, R., Lin, W.-H. and Daganzo, C. (1997). The NETCELL simulation pack-
age: technical description,California PATH research report UCB-ITS-PRR-97-
23, University of California, Berkeley.

Cheu, R., Martinez, J. and Duran, C. (2009). A cell transmission model with
lane changing and vehicle tracking for port of entry simulations,Transportation
Research Record2124: 241–248.

Chrobok, R., Pottmeier, A., Wahle, J. and Schreckenberg, M.(2003). Traffic
forecast using a combination of on-line simulation and traffic data,in M. Fukui,
Y. Sugiyama, M. Schreckenberg and D. Wolf (eds),Traffic and Granular Flow
’01, Springer, pp. 345–350.

Coclite, G., Garavello, M. and Piccoli, B. (2005). Traffic flow on a road network,
SIAM Journal on Mathematical Analysis36(6): 1862–1886.

Daganzo, C. (1994). The cell transmission model: a dynamic representation of
highway traffic consistent with the hydrodynamic theory,Transportation Re-
search Part B28(4): 269–287.

39



Daganzo, C. (1995a). The cell transmission model, part II: network traffic,Trans-
portation Research Part B29(2): 79–93.

Daganzo, C. (1995b). A finite difference approximation of the kinematic wave
model of traffic flow,Transportation Research Part B29(4): 261–276.

Daganzo, C. (2006). In traffic flow, cellular automata = kinematic waves,Trans-
portation Research Part B40(5): 396–403.

Daganzo, C., Lin, W.-H. and del Castillo, J. (1997). A simplephysical principle
for the simulation of freeways with special lanes and priority vehicles,Trans-
portation Research Part B31(2): 103–125.

De Palma, A. and Marchal, F. (2002). Real cases applicationsof the fully dynamic
METROPOLIS tool-box: an advocacy for large-scale mesoscopic transporta-
tion systems,Networks and Spatial Economics2: 347–369.

Elsevier (accessed 2010). Scopus web site, http://www.scopus.com.

Feldman, O. and Maher, M. (2002). The optimisation of trafficsignals using a
cell transmission model,Proceedings of the 9th Meeting of the EURO Working
Group on Transportation, Bari, Italy, pp. 503–507.

Flötteröd, G. (2008).Traffic State Estimation with Multi-Agent Simulations, PhD
thesis, Berlin Institute of Technology, Berlin, Germany.

Flötteröd, G. and Nagel, K. (2005). Some practical extensions to the cell trans-
mission model,Proceedings of the 8th IEEE Intelligent Transportation Systems
Conference, Vienna, Austria, pp. 510–515.

Forschungsgesellschaft für Strassen und Verkehrswesen (2001).Handbuch für die
Bemessung von Strassenverkehrsanlagen, FSGV Verlag GmbH, Köln.

Friedrich, B. and Almasri, E. (2006). A new method for offsetoptimization in
urban road networks,Proceedings of the 11th Meeting of the Euro Working
Group Transportation, Bari, Italy.

Gentile, G., Meschini, L. and Papola, N. (2007). Spillback congestion in dynamic
traffic assignment: a macroscopic flow model with time-varying bottlenecks,
Transportation Research Part B41(10): 1114–1138.

Greenshields, B. (1935). A study of traffic capacity,Proceedings of the Annual
Meeting of the Highway Research Board, Vol. 14, pp. 448–477.

40



Herty, M. and Klar, A. (2003). Modeling, simulation, and optimization of traffic
flow networks,SIAM Journal on Scientific Computing25(3): 1066–1087.

Holden, H. and Risebro, N. (1995). A mathematical model of traffic flow on
a network of unidirectional roads,SIAM Journal on Mathematical Analysis
26(4): 999–1017.

Hoogendoorn, S. and Bovy, P. (2001). State-of-the-art of vehicular traffic flow
modelling, Proceedings of the Institution of Mechanical Engineers. Part I:
Journal of Systems and Control Engineering215(4): 283–303.

Jin, W. and Zhang, H. (2003). On the distribution schemes fordetermining flows
through a merge,Transportation Research Part B37(6): 521–540.

Jin, W. and Zhang, H. (2004). A multicommodity kinematic wave simulation
model of network traffic flow,Transportation Research Record1883: 59–67.

Kurzhanskiy, A. and Varaiya, P. (2010). Using Aurora road network modeler for
active traffic management,Proceedings of the 2010 American Control Confer-
ence, Baltimore, MD, USA.

Kuwahara, M. and Akamatsu, T. (2001). Dynamic user optimal assignment with
physical queues for a many-to-many OD pattern,Transportation Research Part
B 35(5): 461–479.

Laval, J. and Daganzo, C. (2006). Lane-changing in traffic streams,Transporta-
tion Research Part B40(3): 251–264.

Lawson, T., Lin, W. and Cassidy, M. (1999). Validation of theincremental trans-
fer model,California PATH working paper UCB-ITS-PWP-99-16, Institute of
Transportation Studies, University of California, Berkeley.

Lebacque, J. (1984). Semi-macroscopic simulation of urbantraffic, Proceedings
of the International AMSE Conference "Modelling & Simulation", Vol. 4, Min-
neapolis, USA, pp. 273–292.

Lebacque, J. (1996). The Godunov scheme and what it means forfirst order
traffic flow models,in J.-B. Lesort (ed.),Proceedings of the 13th International
Symposium on Transportation and Traffic Theory, Pergamon, Lyon, France.

Lebacque, J. (2003). Intersection modeling, application to macroscopic network
traffic flow models and traffic management,Proceedings of TFG’03 Traffic and
Granular Flow Conference, Delft, The Netherlands.

41



Lebacque, J. and Khoshyaran, M. (2005). First–order macroscopic traffic flow
models: intersection modeling, network modeling,in H. Mahmassani (ed.),
Proceedings of the 16th International Symposium on Transportation and Traffic
Theory, Elsevier, Maryland, USA, pp. 365–386.

Lebacque, J. and Koshyaran, M. (2002). First order macroscopic traffic flow mod-
els for networks in the context of dynamic assignment,in M. Patrikson and
M. Labbé (eds),Transportation Planning, Kluwer, pp. 119–139.

Lebacque, J. and Lesort, J. (1999). Macroscopic traffic flow models: a question
of order, in A. Ceder (ed.),Proceedings of the 14th International Symposium
on Transportation and Traffic Theory, Pergamon, Jerusalem, Israel, pp. 3–25.

Lee, S. (1996). A cell transmission based assignment-simulation model for inte-
grated freeway/surface street systems, Master thesis, Ohio State University.

Lighthill, M. and Witham, J. (1955). On kinematic waves II. atheory of traffic
flow on long crowded roads,Proceedings of the Royal Society A229: 317–345.

Mahmassani, H. S. (2001). Dynamic network traffic assignment and simulation
methodology for advanced system management applications,Networks and
Spatial Economics1(3/4): 267–292.

Munoz, L., Sun, X., Horowitz, R. and Alvarez, L. (2006). A piecewise-linearized
cell transmission model and parameter calibration methodology, Proceedings
of the 85. Annual Meeting of the Transportation Research Board, Washington,
DC, USA.

Munoz, L., Sun, X., Sun, D. and nd R. Horowitz, G. G. (2004). Methodological
calibration of the cell transmission model,Proceedings of the American Control
Conference, Denver, Colorado, pp. 798–803.

Nagel, K. and Nelson, P. (2005). A critical comparison of thekinematic-wave
model with observational data,in H. Mahmassani (ed.),Proceedings of the
16th International Symposium on Transportation and TrafficTheory, Elsevier,
Maryland, USA, pp. 145–163.

Nelson, P. and Kumar, N. (2006). Point constriction, interface, and boundary con-
ditions for kinematic-wave model,Transportation Research Record1965: 60–
69.

Ni, D. and Leonard, J. (2005). A simplified kinematic wave model at a merge
bottleneck,Applied Mathematical Modelling29(11): 1054–1072.

42



Nie, Y. (2010). personal communication.

Nie, Y., Ma, J. and Zhang, H. (2008). A polymorphic dynamic network loading
model,Computer-Aided Civil and Infrastructure Engineering23(2): 86–103.

Nökel, K. and Schmidt, M. (2002). Parallel DYNEMO: meso-scopic traffic flow
simulation on large networks,Networks and Spatial Economics2(4): 387–403.

Pandawi, S. and Dia, H. (2005). Comparative evaluation of microscopic car-
following behavior,IEEE Transactions on Intelligent Transportation System
6(3): 314–325.

Payne, H. (1971). Models of freeway traffic and control,Mathematical Models of
Public Systems, Vol. 1, Simulation Council, La Jolla, CA, USA, pp. 51–61.

Richards, P. (1956). Shock waves on highways,Operations Research4: 42–51.

Rouphail, N., Tarko, A. and Li, J. (1999). Chapter 9: Traffic flow at signalized in-
tersections,in N. Gartner, C. Messer and A. Rathi (eds),Monograph on Traffic
Flow Theory, Oak Ridge National Laboratory, Federal Highway Administra-
tion.

Rubio-Ardanaz, J., Wu, J. and Florian, M. (2001). A numerical analytical model
for the continuous dynamic network equilibrium problem with limited capacity
and spill back,Proceedings of the 2001 IEEE Intelligent Transportation Sys-
tems Conference, Oakland, USA.

Sobolev, V. (2001). Brouwer theorem,in M. Hazewinkel (ed.),Encyclopedia of
Mathematics, Kluwer.

Sun, X., Munoz, L. and Horowitz, R. (2003). Highway traffic state estimation us-
ing improved mixture Kalman filters for effective ramp metering control,Pro-
ceedings of the 42th IEEE Conference on Decision and Control, Maui, Hawaii,
USA, pp. 6333–6338.

Tampere, C., Corthout, R., Cattrysse, D. and Immers, L. (forthcoming). A generic
class of first order node models for dynamic macroscopic simulations of traffic
flows,Transportation Research Part Bxx(xx): xx–xx.

Tampere, C. and Immers, L. (2007). An extended Kalman filter application for
traffic state estimation using CTM with implicit mode switching and dynamic
parameters,Proceedings of the 10th IEEE Intelligent Transportation Systems
Conference, Seattle, USA, pp. 209–216.

43



Troutbeck, R. and Brilon, W. (1999). Chapter 8: Unsignalized intersection the-
ory, in N. Gartner, C. Messer and A. Rathi (eds),Monograph on Traffic Flow
Theory, Oak Ridge National Laboratory, Federal Highway Administration.

Troutbeck, R. and Kako, S. (1999). Limited priority merge atunsignalized inter-
sections,Transportation Research Part A33(3-4): 291–304.

TSS Transport Simulation Systems (2006).AIMSUN 5.1 Microsimulator User’s
Manual Version 5.1.4.

van Hinsbergen, C., Tampere, C., van Lint, J. and van Zuylen,H. (2009). Urban
intersections in first order models with the Godunov scheme,Proceedings of
mobil.TUM 2009 – International Scientific Conference on Mobility and Trans-
port – ITS for large Cities, Munich, Germany.

van Hinsbergen, C., Zuurbier, F., van Lint, H. and van Zuylen, H. (2008). Macro-
scopic modelling of intersection delay with linearly decreasing turn capacities,
Proceedings of the International Symposium on Dynamic Traffic Assignment,
Leuven, Belgium.

Yperman, I., Tampere, C. and Immers, B. (2007). A kinematic wave dynamic
network loading model including intersection delays,Proceedings of the 86.
Annual Meeting of the Transportation Research Board, Washington, DC, USA.

Zhang, H. and Lin, W. (2001). Some recent developments in traffic flow theory,
Proceedings of the IEEE Intelligent Transportation Systems Conference, Oak-
land (CA), USA, pp. 548–553.

Ziliaskopoulos, A. and Lee, S. (1997). A cell transmission based assignment
simulation model for integrated freeway/surface street systems,Proceedings of
the 76. Annual Meeting of the Transportation Research Board, Washington,
DC, USA.

44


