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Abstract

This article reports on the calibration and analysis of §fdisaggregate (agent-
based) transport simulation for the metropolitan area afchiu The agent-based
simulation goes beyond traditional transport models im ithequilibrates not only
route choice but all-day travel behavior, including departime choice and mode
choice. Previous work has shown that the application of @&hcalibration tech-
nique that adjusts all choice dimensions at once from traffients yields cross-
validation results that are competitive with any statahaf-art four-step model.
While the previous study aims at a methodological illustraiof the calibration
method, this work focuses on the real-world scenario, aathbborates on the use-
fulness of the obtained results for further demand anatysiposes.

1 Introduction

The well-known four-step process, consisting of trip gatien, trip distribution (=
destination choice), mode choice, and route assignmenbdethemodeling tool
in urban transportation planning for many decades (OrtamdiWillumsen, 2004).
However, the four-step process, at least in its traditidmah, has many problems
with modern issues, such as time-dependent effects, monplmated decisions
that depend on the individual, or spatial effects at the onfoeighborhood) scale
(Vovsha et al., 2004).

An alternative is to use a microscopic approach, where evavgler is modeled
individually. One way to achieve this is to start with the thgtic population and
then work the way “down” towards the network assignment. sTtgpically re-
sults in activity-based demand models (ABDM), e.g, (Bhailet2004; Bowman
et al., 1998; Jonnalagadda et al., 2001; Pendyala, 2004¢hwbmetimes do and
sometimes do not include the mode choice, but typically eitd time-dependent
origin-destination (OD) matrices, which are then fed tozasate route assignment
package. The assignment package computes a (typicallymdgheoute equilib-
rium and feeds the result back as time-dependent zonen®-+izavel impedances.
When feedback is implemented, then the activity-based ddmeodel recomputes
some or all of its choices based on those travel impedanée(lal., 2008).

This type of coupling between the ABDM and the traffic assignitrleaves room
for improvement (Balmer et al., 2004; Rieser et al., 200m)particular, it can be
argued that route choice is also a behavioral aspect, anshsequence the deci-
sion to include route choice into the assignment model ratfam into the demand
model is arbitrary. Problems immediately show up if onemaftis to base a route
choice model in a toll situation on demographic charadiess- the demographic
characteristics, albeit present in the ABDM, are no longailable at the level of
the assignment. Similarly, in all types of intelligent tsgort system (ITS) simula-



tions, any modification of the individuals’ decisions begtanute choice becomes
awkward or impossible to implement.

An alternative is to split the assignment into a route chomlel and a network
loading model and to add the route choice to the ABDM, whicvés the net-
work loading as the sole non-behavioral model componeitidimplemented as
a traffic flow microsimulation, then the integrity of the silaied travelers can be
maintained throughout the entire modeling process. Thedimafollowing advan-
tages:

e Both the route choice and the network loading can be relatélet charac-
teristics of the synthetic person. For example, toll avo@acan be based on
income, or emission calculations can be based on the typehithe (com-
puted in an upstream car-ownership model).

¢ Additional choice dimensions besides route choice can bleided in the
iterative procedure of assignment (also see (de Palma amchisla2002;
Zhou et al., 2007; Nagel and Flétteréd, 2009)).

e The fully disaggregate approach enablesampostanalysis of arbitrary de-
mand segments. This is an important advantage over anyatiomlbased
on OD matrices, where the aggregation is dprier to the simulation.

This implies that, at least in principle, all choice dimems of the ABDM can react

to the network conditions, but it also requires to build meds# this feedback for

all affected choice dimensions. While, for example, rodteice only looks at the

generalized cost of the trip, departure time choice aldad®s schedule delay cost,
mode choice compares the generalized costs between differedes, location

choice includes the attractiveness of the possible détisa etc. This brings

along a vast increase in modeling opportunities, but it aéspires substantially

more modeling efforts.

In this article, we report on how such an approach can be imgreed, calibrated,
and analyzed, using the metropolitan area of Zurich as amjghea(as a sub-region
of an “all-of-Switzerland” scenario (Meister et al., 20R8n previous work (FI6t-

terdd et al., 2009, forthcoming), the results of the catdmlasimulation are com-
pared to 161 counting stations in the Zurich metropolit@aabDespite of the vastly
increased scope of the model when compared to a four-stepaqhp we are able
to reproduce traffic counts with an error of 10% to 15 % thraughthe entire

analysis period. Qualitatively, these results are cortipetith any state-of-the
art four-step model, but they come along with entirely newdalimg perspectives.
While the previously published results aimed at an illugiraof the deployed cal-
ibration method, this work gives a detailed analysis of &ed-tvorld scenario and
the calibration results, and it elaborates on the usefalogthese results for further
demand analysis purposes. Specifically, we investigatedsot@in characteristic



numbers generated by the calibration can be behaviordéypreted, and how this
interpretation facilitates further demand analysis pagoin terms of trip gen-
eration/attraction analysis and the identification of dweder-estimated demand
segments.

The quality of the presented real-world results is to a lageent due to new

methodological advances on the calibration side: Untiéndly, the 4-step-process
was ahead of our approach in this regard because its simpifeematical structure

allowed for the development of a broad variety of (more os lstomated) demand
calibration procedures. In this article, however, we dgploovel methodology for

the calibration of demand microsimulations from networkdaitions such as traffic

counts. The theory for this was developed over the last eocofyears (Flotterod

et al., forthcoming; Fl6tterdd, 2008).

The remainder of this article is organized as follows. ®&&ti2 and 3 introduce
the used microsimulation and the deployed calibrationesyst The field study
is described in Section 4. Section 5 details the mechanibnasigh which the
calibration takes effect and elaborates on the further deraaalysis opportunities
this brings along. Finally, Section 6 summarizes the artahd indicates future
research opportunities.

2 Transport microsimulation

The MATSIim (“Multi-agent transport simulation toolkit” MATSIM www page,
accessed 2009; Raney and Nagel, 2006)) transport micrzioruis used for the
purposes of this study. This simulation is constructed rddahe notion ofagents
that make independent decisions about their actions. Eaeglér of the real sys-
tem is modeled as an individual agent. The simulation ctsyeftwo major build-
ing blocks, which are mutually coupled:

¢ On the demand side, each agent independently generatesafiesbplan,
which encodes its intentions during a certain time perigdictlly a day.
The plan is an output of an activity-based model that coraprizut is not
constrained to route choice, and its generation dependseanetwork con-
ditions expected by the agent.

e On the supply side, the plans of all agents are simultang@xslcuted in a
simulation of the physical system. This is also calledtthfic flow simu-
lation or mobility simulation.

The mutual coupling of demand and supply is iteratively kesahy which can be
seen as a mechanism that allows agentsdm. The simulation iterates between
plan generation and traffic flow simulation. It remembersesaivplans per agent



and evaluates the performance of each plan. Agents normpifer plans with
good performance, but they sometimes re-evaluate infptéors, and they some-
times obtain new plans by modifying copies of existing plans

The following subsections explain these items in great&ailde

2.1 Choice set generation

A plan contains the itinerary of activities the agent waatgdrform during the day,
plus the intervening trip legs the agent must take to traeélvben activities. An
agent’s plan details the order, type, location, duratich @ther time constraints of
each activity, and the mode, route and expected departdré&rarel time of each

leg.

A specification of the plan choice set for every agent befoeeiterations is com-
putationally extremely cumbersome because of the sheeb@uofi possible alter-
natives (Bowman and Ben-Akiva, 1998). Such an approachigalsonceptually
guestionable because the accessibility measures that #féeinclusion of a plan
in the choice set are an outcome of the iterations, and héwmgeare a priori un-
known. Therefore, the choice set is continuously updatethguhe iterations.
Speaking in the technical terms of MATSIim, a plan can be medlifiy various
modules This paper makes use of the following modules.

e The activity times generator randomly changes the timing of an agent’s
plan. In every iteration, there is a 10 % chance that this rfeoduused to
generate a new plan.

e Therouter is implemented as a time-dependent Dijkstra algorithmriiad
based on link travel times obtained from the mobility sintiola In every
iteration, there is a 10 % chance that this module is usedriergée a new
plan.

e Mode choiceis enabled by ensuring that the choice set of every agent con-
tains at least one “car” and one “non-car” plan.

These modules are used in the following way. In every itemateach agent selects
one plan for execution. With a 10 % probability, this planmformly selected, the
activity times generator is applied, and then the modifiesh @ executed. Like-
wise, there is a 10 % probability to uniformly select a plawtuich the router is
applied before the plan is executed. With the remaining 8@8bability, no plan-
changing module is used, and an existing plan is selecteekfrution according
to the choice model described in the next subsection.

The choice set generation is turned off after a pre-specifiedber of iterations
such that the agents select from a stable choice set usingilingbased choice



model described next. This choice model is also appliedndutine choice set
generation in order to drive the system towards a plausitalee Srom the very
beginning.

2.2 Choice

In order to compare plans, it is useful to assign a quantgdacore to the per-
formance of each plan. In principle, arbitrary scoring sohe can be used, e.g.,
prospect theory (Avineri and Prashker, 2003). In this warkjmple utility-based
approach is used. The elements of the approach are as follows

e The total score of a plan is computed as the sum of individaatributions
consisting of positive contributions for performing aniaty and negative
contributions for traveling.

e A logarithmic form is used for the positive utility earned pgrforming an
activity a, which essentially has the following form:

Vperf(a) = Bperf ' tz “In Jcperf,a (1)

wheret, .. o IS the actually performed duration of the activity,is the “typ-
ical” duration of the activity, an@..¢ is the marginal utility of an activity
at its typical duration. These durations are sampled fromiecal distribu-
tions that are extracted from census data (SFSO, 2(&); is the same for
all activities since in equilibrium all activities at thdiypical duration need
to have the same marginal utility. As long as activity draygpor activity
insertion are not allowed, a minimal duration, sometimesius other pub-
lications, has no effect. Concrete values for the pararmeter given later in
the description of the case study.

e The (dis)utility Viraver(1) Of traveling along a led is assumed to be linear
in the travel time with different valuations of the time fdffdrent transport
modes. Again, concrete parameter values are given later on.

The total utility of a plan. can thus be written as
V(i) = Z Vperf(a) + Z Viravet(l). (2
aci lei

Itis important to note that the score thus takes into accthwntomplete daily plan.
More details can be found in (Raney and Nagel, 2006; ChaipaiNagel, 2005).

The plan choice is modeled with a multinomial logit model {g¥hclearly calls for
enhancements in the future) (Ben-Akiva and Lerman, 198%)weéver, as stated
before, it may happen that an agent receives a newly gedeptaie from one of the
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aforementioned plan generation modules, which then isezhfis execution with-
out further evaluation. This is necessary because théyutilia plan is determined
from its execution, and hence it is not available for newlgerated plans.

Summarizing, the probabilit®,, (i) that agent chooses planis

®)

P.(Q) =1 if iis newly generated
"7 1~ exp(V(i)) otherwise

where the normalization of the logit model is omitted foratainal simplicity.

2.3 Traffic flow simulation

The traffic flow simulation executes the plans of all agentsuianeously on the
network and provides output describing what happened tb #alividual agent

during the execution of its plan. The traffic flow simulatianimplemented as
a queue simulation, which means that each street (link)pgesented as a FIFO
(first-in first-out) queue with three restrictions (Cetirakt 2003; Gawron, 1998):
First, each agent has to remain for a certain time on the tokiesponding to

the free speed travel time. Second, the outflow rate of a frdonstrained by its
flow capacity. Third, a link storage capacity is defined, wHimits the number of

agents on the link. If it is filled up, no more agents can eifterdink, and spillback

may occur.

3 Calibration system

The previous section describes a simulation that prediesperformance of a
transportation system through an iterative process thgiles complex behavioral
and physical models. Notably, some aspects of the simulatie what one may
call “procedurally modeled” in that there is no explicit mainatical specification
of the respective sub-model but rather a sequence of pingesteps that build the
model output.

This lack of a comprehensive mathematical perspective ersithulation and its
outputs has, until recently, rendered the calibration efdiistem a task based on
intuition and, unfortunately, the arbitrariness this baralong. This section out-
lines the Cadyts (“Calibration of dynamic traffic simulatg3 (Fl6tteréd, accessed
2010a, 2009)) calibration tool. Because it allows to calibrarbitrary choice di-
mensions from traffic counts in a fully disaggregate manitéends itself to an
application in the Zurich case studly.

ICadyts is not constrained to the MATSim microsimulationibutesigned to be compatible with
a wide variety of transport simulation systems.



3.1 Basic functioning

Cadyts makes no assumptions about the form of the plan cllstebution or
about the choice dimensions it represents. It combinesritbeghoice distribution
P.(1) with the available traffic countginto a posterior choice distributioPy, (ily)
in a Bayesian manner. The resulting posterior distributgyressentially, of the
following form (Fl6tterdd et al., forthcoming):

Paiy) ~ xp( S ) P @

whereL(y) is the log-likelihood function of the sensor data

Some intuition into the workings of this quite general fotation can be obtained
by adopting a simplified perspective where congestion israsd to be light and
the traffic counts are independently and normally distgetutin this setting, the
above formula simplifies info

Paliy) ~ [T exp(M> Pald) ©)

2
akei Ga(k)

wherey (k) is the available traffic count on link in simulation time stef, qq(k)

is its simulated counterpart, an@(k) is the variance of the respective traffic count.
The product runs over all links and time stepg that (i) are contained in plainin
that the plan schedules to cross that link in the given tirp anhd (ii) are equipped
with a sensor. (The calibration functions with arbitrarmser configurations.)

Intuitively, this works like a controller that steers theeats towards a reason-
able fulfillment of the measurements: For any sensor-egadipipk, the according
exp(-) factor is larger than one if the measured flow is higher thansimulated
flow such that the choice probabilities of plans that crosslthk are scaled up.
Vice versa, if the measured flow is lower than the simulated,ftbe according
factor is smaller than one such that plans that cross thisalie penalized.

What is described here is a calibration of the individuaklechoice distributions
in the agent population that does not change the paramdténe choice model
that generates the prior choice probabilitiegi). On the one hand, this is a quite
general result in that it ilmdependenof the specification of the choice model. On
the other hand, this also implies that, without further rfiodtions, rather an im-
proved picture of the current status quo is obtained thdiestmrameter estimates
that could be used for forecast and scenario analysis. Hawev

2The probability of a measuremengq(k) would be p(ya(k)) ~ exp—(ya(k) —
da(k))?/(20%(k))]. Because of independence, the probability of a measuresent would
be the product of this, i.ep(y) ~ [, exXp—(ya(k) — qa(k))*/(20%(k))]. From there,
T = SpEE ~ Y e Lottt where the sum now goes over alk that are used
by plani; since plan choice probab?lities translate in uncongestediitions on average into vehicle
counts on links contained in the respective plans, the aévarof g, (k) with respect td, (1) is one
if ak € i and zero otherwise.




e other work demonstrates that it also is possible to estipate@meters of the
demand model Flotterdd (2010b), based on a straightforgangralization
of (4);

e it is demonstrated in Section 5 that structural demand pit@secan be in-
ferred even from a calibration of the choice probabilities/o

3.2 Application to MATSIim

Apart from the immediate execution of newly generated plahe behavioral
model of MATSIim is of the multinomial logit fornP,,(i) ~ exp(V(i)). Substi-
tuting this into the posterior choice model (4) yields

0L(y) >
P, (1)

Palily) ~ exp V(i) + ©)
That is, an implementation of the posterior choice distrdsurequires nothing but
to add a plan-specific utility correction to every considepéan.

For independently distributed traffic count errors witty) = >, L(yaq(k)), @an
assumption that is maintained in the following, the abovelmwritten as

P.(ily) ~ exp (vm + 3 M) —: exp (V(i) + 3 AVa(k)> ()

akei 0P () akei

Here, the plan-specific utility corrections are composelingf and time-additive
correction termdV, (k). These terms are computed per sensor location and -time,
but independently of which plan they affect. The utility i@mtion of a full plan
results from summing up al/,(k) that are covered by the respective plan.

Returning to the intuitive example given in the previoussadbion, the correc-
tion terms would be of the formV,(k) = (ya(k) — qa(k))/02(k). Again, the
functioning of the calibration can be interpreted as a abletr in that the utility
of plans that improve the measurement reproduction is &sem@ and the utility of
plans that impair the measurement reproduction is dealease

As described in Section 2, MATSim functions in two phasesgrgtthe first phase
builds the choice sets and the second phase simulates tleeshased on fixed
choice sets. Important from a calibration perspectivenplkaat are newly gener-
ated during the first phase are immediately chosen for eixecit the mobility
simulation in order to assess their performance. Theytilitven estimator (7) is
applied in either phase in the following way:

e During the first phase, a newly generated plan is always teeletf no new
plan is generated, then an available plan is selected angal (7).



e During the second phase, no new plans are generated andlithated
choice distribution (7) is always employed.

This means that the calibration takes full effect only affter choice set generation
is turned off.

4 Zurich field study

This section describes a real-world case study for the d¢igunich. The setting

of the test case is presented and some selected calibrasalisrfrom a previous
study are recalled Flottertd et al. (forthcoming, 2009)e Titility offsets obtained

from this calibration are analyzed in the next Section 5sTivel analysis shows
that the utility corrections, which originally result froenformal solution of the

calibration problem, have not only an intuitive meaning blgo enable further
demand analyses and calibrations.

We consider the Greater Zurich region in Switzerland; theeesudy network con-
sists of a subset of an all-of Switzerland network with mbaant60 000 links (Chen
et al., 2008). Figure 1 shows the analysis zone. The synthepulation gener-
ated for the study region consists of more than 187 000 ag&hish constitutes a
random 10 % sample of the full population that travels, attang during the con-
sidered 24 h period, within a 30 km circle around the centéhettudy region. All
travelers have complete daily activity patterns based amwaoéensus information
(SFSO, 2006). Such activity patterns can include actwitétypehome work,
education shopping andleisure The typical durations for those activities are de-
rived from the microcensus data and are specified indivigifial each member of
the synthetic population.

The choice dimensions of all agents are route choice, degatime choice, and
mode choice. Table 1 shows the parameters used in the szefativity locations
are given opening and closing times in order to keep the agettiin some timely
limit. The opening and closing times are classified by aigtityipe, i.e., the opening
and closing times are distinguished for home, work, edanashop, and leisure
activities. There is not yet any distinction based on thation of an activity.
For simplicity, a physical network simulation of public tisport is replaced by a
“teleportation mode” that moves travelers on public tramsgips at half the speed
of a car in uncongested conditions (Grether et al., 200%diet al., 2009). This
fairly simplistic approach was chosen due to the lack of @@rgublic transport
simulation in MATSim, which, however, will be available ind near future Rieser
(2010).

For calibration purposes, traffic counts from 161 inductdegp sensor stations are
available. This data is used in the following way. First, ftenario is simulated
with MATSim alone, without using the traffic counts. The réswf this “base
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Table 1: Simulation parameters.

\ parameter| value \

Bpers (activity coefficient in (1))| +12 Eur/h
Bcar (cost of car travel)] —12 Eur/h
Bron_car (cost of non-car travel) —6 Eur/h
size of plan choice set 4
total number of iterations 500
iterations for choice set generatior300
min. / avg. / max. home duration0.5/14.7 / 23.0
min. / avg. / max. work duration 0.5/6.1/20.0
min. / avg. / max. education duratign0.5/5.8/20.0
min. / avg. / max. shop duration0.5/1.7/12.0
min. / avg. / max. leisure duration0.5/2.6/20.0
home opening / closing time 00:00 / 24:00
work opening / closing time 07:00 / 18:00
education opening / closing time07:00 / 18:00
shop opening / closing time 08:00 / 20:00
leisure opening / closing time 00:00 / 24:00

case” simulation are then compared to the traffic countsof@8dVATSim is run
jointly with the calibration in different settings that usee subset of the traffic
counts for calibration and the remaining counts for valatat Table 2 gives an
overview of the results, which are described below.

The first data column of Table 2 (“reproduction MWSE”) congmthe measure-
ment data fit of a plain simulation without calibration tottb&a simulation where
the calibration uses all available measurements at on@MWISE (“mean weighted
square error”) shown here is the average quadratic dewiditween simulated
and observed counts at all sensor stations and in all tinps.s#ll terms in this
sum are weighted with one over two times the measured vahigcorresponds
to the assumption of independently normally distributechsaeements with vari-

Table 2: Simulation and estimation results.

reproduction| validation
MWSE MWSE

plain simulation 103.6 103.6
calibrated simulation 20.9 75.1
relative difference -80% -28%
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ances equal to the measurements. Table 2 shows that theluepom MWSE is
reduced by 80% through the calibration, which indicates>aelent adjustment
to the data.

The second data column of Table 2 shows cross-validatiantsethat were ob-
tained by (i) splitting the sensors in ten disjoint subs@js;unning ten calibrations
based on the data from nine subsets each, and (iii) compeairigcalibration result
to the unused sensor data set. A global improvement of alg@8stis obtained.

We stress that the fact that the validation improvement 66 28 lower than the
reproduction improvement of 80% ot a sign of overfitting: The calibration ad-
justs directly only the behavior of those agents that mayetracross sensors. The
behavior of all other agents is implicitly changed througteractions with the im-
mediately adjusted agents in the network (congestion feddb Having a lower
validation improvement than reproduction improvementdates that the num-
ber of sensor locations is insufficient to “reach” the enéigent population in the
calibration — some agents travel simply too far away fromsesors to be mean-
ingfully adjusted. (The same observation holds for OD magstimators, which
adjust only those OD flows directly that go across sensansyitnmary, rather than
pulling only the simulated flows at the sensor locations tolwdhe measurements
while ignoring everything else, the calibration pulls thbole systentowards a
more realistic state.

5 Analysis of plan utility offsets

The ability of the Cadyts calibration system to adjust sated behavior at the
level of individual travelers enables an analysis at thiy filisaggregate level. This
section demonstrates how the utility corrections gendrhyeCadyts can be used
for the further analysis of virtually arbitrary demand segts. The important
advantage of this approach over what one could do based on &fices is that
the definition of a demand segment can be nefthr the simulation/calibration is
conducted. This flexibility inevitably gets lost in any appch that aggregates the
demandprior to the simulation/calibration.

5.1 Direct inspection of utility offsets

One can plot the link- and time-additive correction tefg, (k) from (7); results
look like in Figure 1. From such plots, investigated ovehallirly time slices, one
obtains the following insights:

e Cadyts compensates for overall bias; i.e., it adjusts tiighnh of daily de-
mand to the counts: Figure 2 shows the average hourly brasiigied minus
measured counts) over all sensors before the calibratieravierage effect of

12
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Figure 1: Spatial layout of the link-based utility offsets8am—9 am. Red: Counts
are too high, negative utility offsets try to discouragdfita Green: Counts are too
low, positive utility offsets try to encourage additioneaffic. Width corresponds
to the magnitude of the utility offset.

the calibration over all sensor links (all other links haeeczutility offsets),

and the hourly bias after the calibration. Clearly, thelralion counteracts
the bias: The utility corrections are the more positive (e@couraging traf-
fic) the more negative the bias is (i.e., the simulated coargdower than
the measured counts).

In contrast to other approaches, demand is not considerédla®lastic,
but it can be moved between time slices. This is possible batause in
MATSim, travelers possess different plans with differémigt structuresand
Cadyts is designed to take advantage of that feature. Howethee demand
was elastic, e.g., in that there was a “stay-at-home” plaam this elasticity
would be exploited by Cadyts as well.

e Cadyts compensates for a directional bias; i.e., it reduegagdar commuting
and increases reverse commuting. This is already visiblegare 1, but it
will become more evident in the subsequent analysis.

e Cadyts attempts to compensate for a systematic over-pi@dio an east-
west corridor at the lake (orange circle in Figure 1). Thistdee is visible
across all time slots. It is, presumably, a network errohgdense that the
links possess too much capacity in the simulation.

This is likely to bias the demand estimation results in that demand is
adjusted in an attempt to correct for a supply error. Thigtgperror can
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Figure 2: Mean counts bias and utility correction as a fumctf time. The counts
bias is computed as the mean value of simulated minus mehsorats at all
sensor locations.

be avoided by jointly estimating the demand side and thelgwgige of the
simulation; this is an important topic of future research.

e As a tendency, the corrective signal is the stronger therde=density of
counting stations. This is plausible since with a high dgnsf counting
stations several counting stations can collaborate teecbtraffic into the
desired direction.

5.2 Trip generation/attraction maps

Equation (7) maps the link-based utility corrections ondaly travel plans. This
allows to analyze the effect of the calibration on arbitrdgmmand segments (by
considering only the respective subsets of the populatomn arbitrary demand
dimensions (e.g., only route choice between two certaifonsgwithin a certain
time interval.)

We first adopt a trip-based perspective in that we extragh ftbe agent-based
demand model only the trips that fall into the morning ruskirhd=or each trip,

we compute the utility correction according to (7). We thdot phe resulting

information in two ways on a map of Zurich, cf. Figures 3 and 4.

Both plots are generated by putting a 1 km times 1 km grid dwveabalysis region.
In Figure 3, the colors of the cells represent the averadigyutorrections of all
trips starting between 8 am and 9 am in the respective ceélr@ds in Figure 4 this
color corresponds to the average utility correction ofrghistending between 8 am
and 9 am in the respective cell.
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Figure 3: Spatial distribution of utility corrections faifds generated between 8 am
and 9 am. Only gridcells with at least 50 generated trips laogva.
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and 9 am. Only gridcells with at least 50 attracted trips am\s.
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Figure 5: Spatial distribution of utility corrections folt-day travel plans that have
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have each at least one trip attracted between 8 am and 9 amgfdells with at

least 50 attracted trips are shown.
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Figure 3 (trip generation) shows positive trip utility adfs for trips originating in
the city center, and negative trip utility offsets for tripgginating in the surround-
ings. This can be interpreted as having not enough trip géinarbetween 8 am
and 9am in the city center, and having too much trip genaraticdhe surround-
ings.

Figure 4 (trip attraction) shows negative trip utility adts for trips arriving in most
of the center, while a small area has positive offsets. Tigia aontains the histori-
cal city center, the train station, and important parts af tmiversities. Offsets in
some of the far-away surroundings are positive again. Tduisbe interpreted as
having too many trips arriving in most of the city center, lgtihere are not enough
arrivals in the indicated small area. At the same time, thesenot enough arrivals
in parts of the surroundings.

Now we turn to the exploitation of a feature that is unavddab a purely trip-
based (OD matrix driven) traffic simulation: We analyze #tleday utility offsets
of theall-day plans that correspond to the previously described trips.

Figure 5 shows the plan-based counterpart of Figure 3theytility offsets of the

entire plans that contain a trip that starts between 8 am amd @& the depicted
gridcells. One observes a qualitatively similar patterthvd somewhat higher
overall level of the corrections, which results from thet @t the corrections are
now summed up along a whole day (and not just one hour). Qyvtiralplan-based
perspective confirms the trip-based analysis.

Figure 6 shows the plan-based counterpart of Figure 4,the.utility offsets of
the entire plans that contain a trip that ends between 8 am® andin the depicted
gridcells. Here, a striking difference between the plasedoband the trip-based
perspective can be observed. Most importantly, the negatility offsets in the
trip-based perspective that discourage travel towardsitheenter turn into pos-
itive utility offsets in the plan-based perspective thatarrage travel. Also, the
slightly negative trip utility offsets in the city surroumgs turn into mostly clearly
positive values in the plan based perspective. This diffegds explained in the
following.

The analysis of all-day plans instead of separate tripsvallto account for the
dynamical constraints that guide real travel: Behavigratlis well known that
travelers choose between trip sequences and not betwegiirad trips. Physi-
cally, the mass conservation of persons and vehicles mustdminted for. A first
conlusion of the comparison between Figures 4 and 6 is teatdbligence of these
constraints can lead to drastic misinterpretations.

Regarding the concrete values shown in Figures 4 and 6, eneocelude that the
trips ending in the city center between 8 am and 9 am are not thel idsan over-

all demand surplus, but only the result of a demand mis-afion, possibly due to
imprecise destination or departure time choice modelieg {®low): the calibra-
tion actually encouraggslansthat end in the city center between 8am and 9 am,
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which is consistent with the general demand underestimatiadhe simulation as
shown in Figure 2.

The completely different picture in the trip-based pertipecmay be due to (i)
errors in the choice model specification and (i) errors mattributes fed into the
choice model.

e Choice model specification errors are very likely to be pregethe given
scenario: The simple multinomial logit plan choice modeidges corre-
lation across alternatives. The choice model coefficierdsnat estimated
from data but inferred on a trial-and-error basis. (Ongoimgk indicates
that this error source will soon be removed in that the calibn also ad-
justs choice model parameters (Flotteréd, 2010b)).

e Errors in the attributes fed into the choice models areyikelexist as well.
Perhaps most noteworthy is the assumption of identicaliogeand closing
times for all facility types, cf. Table 1. This is likely toselt in an unrealistic
morning peak concentration that would be smoothed out b mistributed
starting times of, in particular, the work activity.

A more detailed analysis of these maps is the topic of ongmesgarch and sce-
nario refinements for the city of Zurich. The analysis givemehalready demon-
strates clearly that (i) utility offsets computed from fi@Eounts can be used for an
insightful spatio-temporal demand analysis and that i{i§) new approach of cali-
brating a fully disaggregate demand of individual traveleain lead to completely
different (and structurally far more meaningful) resuliart what an estimation of
independent OD matrices per time slice suggests.

5.3 Identification of underestimated demand segments

This subsection presents an exemplary analysis of how ilitg aorrections gen-
erated by Cadyts can be used to identify demand segmentarthdikely to be
corrupted by modeling errors.

For this, we analyze the travel demand by purpose, where stiagliish trips that

head for work, education, shopping, leisure or home, orrzeko the “border-

crossing” demand segment. Figure 7 shows histograms offbeto by purpose,

with a uniform histogram bin size of 0.25 and accounting dolysuch trips that

cross a sensor at least once (all other trips would do nothingdd a peak at a
zero utility correction to the histogram).

The histograms reveal a striking difference between tips fior border-crossing
and all other travel purposes. While all other trips areggsytmmetrically centered
around an almost zero utility offset, the border-crossiipgtare much more widely
scattered around a mean of approximately +10 utility units.
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Figure 7: Historgram of trip utility offsets by purpose

This means that Cadyts strongly encourages border-cgpssifiic but is on aver-
age almost indifferent with respect to the other demand setgn This indicates
that the border-crossing demand is substantially underatd in the synthetic
population of the Zurich scenario. This observation madidaa re-examination
of the demand modeling of this scenario, which indeed rexkah inconsistency:
The initial demand contains, statistically, all trips gexted by persons living in
Switzerland, plus all trips generated by vehicles crossimgborders of Switzer-
land. As aresult, all border-crossing traffic by Swiss dsvs, statistically, counted
twice, while non-border-crossing traffic by non-Swiss dr&vis missing. Itis plau-
sible to assume that, 50 km away from the border, the secayiese is larger
than the first, and that the second segment mostly compris#saugh traffic,
which looks somewhat similar to the border-crossing trafflere, the calibration
has revealed a structural incompleteness in the demandlimgpdeat should be
corrected for in future work.

The wide histogram scatter of the utility corrections fordey-crossing traffic can
in part be explained with the relatively low total number ofdber-crossing travel-
ers simulated, which naturally leads to a higher varigpititthe histogram. How-
ever, the wide scatter of utility values may also indicata #nfurther disaggrega-
tion of this demand segment is neccessary. This is quitesiplieugiven the above
observation that the initial demand modeling in some sepsgensates for one
demand segment through another. We leave the further @nalythese details to
future studies.

In summary, this section demonstrates that the utility emirons computed by
Cadyts for every single synthetic traveler can be utilizedan ex post analysis
of the simulation system in various ways. It needs to be stgkshat the man-
ual/visual inspection conducted here has by no means pukisedpproach to its
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limits: a logical next step is to utilize the utility corréahs not only for the cali-
bration of the plan choice patterns in a given populationatad for an adjustment
of the size of the different demand segments within that [adjoun.

6 Discussion and Summary

A standard question in conjunction with calibration is inshfar the results are
useful for prediction. Based on the results of the last eastione can argue that
the results are useful for short-term prediction: both irea-time setting or for
a short-term policy measure, the link offsets could be fncaed then used in the
prediction. As discussed in Flotteréd (2008), care neetie taken that the offsets
are only used for choice and not for choice set generatien,not for routing.

Clearly, this approach runs into problems when anythindnéndystem that is pre-
sumably related to the link offsets changes. A simple exammuld be the ad-
dition of a lane to such a link. For such situations, a catibraof “higher level”

behavioral parameters is necessary. We are currentlytigaéing two approaches:

e Calibration of the parameters of the utility function, s@dBon_car, from
traffic counts and supplementary observations (Fl6tte26dQb).

e Calibration of location choice, in particular “secondargttivity location
choice. This would directly correspond to OD matrix estiim@in the four-
step procedure, except that it would calibrate full dailgnd.

Apart from the calibration of utility functions, an analgsf the utility offsets re-
veals further calibration opportunities. Since the plpaesfic utility offsets can be
interpreted as encouragements (when positive) or disearagts (when negative)
of the respective travel behavior, the total levels of aalpjt demand segments can
be analysed in hindsight. While this article only indicates opportunity through
the analysis of selected demand segements in a single &;dhappears feasible
to develop a calibration method that also corrects suchsistencies in a statisti-
cally consistent manner.

In summary, this article demonstrates that a fully disag@te transport microsim-
ulation that represents travel demand at the level of iddiai persons can be ap-
plied to the realistic simulation of large metropolitan teyss. The agent-based
simulation goes beyond traditional transport models initrequilibrates not only
route choice but all-day travel behavior, including departime choice and mode
choice. A novel calibration method is applied to the calilraof the microscopic
travel demand from traffic counts. The method does not oniegee a clear im-
provement in measurement and validation data fit, it alsostslthe demand in a
behaviorally interpretable way. It does so by computintityttorrections to which
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the utility-driven travel demand simulator reacts with magalistic behavior. A de-
tailed analysis of these utility corrections clarifies thathavioral interpretation,
shows ways in which they can be applied for demand analysdsjralicates pos-
sibilities for their further exploitation in the automatalibration of disaggregate
travel demand models.
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