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Abstract—In this paper, we propose a new approach for the 

automatic time skew detection and correction for multisource 

audiovisual data, recorded by different cameras/recorders 

during the same event. All recorded data are successfully 

tested for potential time skew problem and corrected based on 

ASR-related features. The core of the algorithm is based on 

perceptual time-quefrency analysis with a precision of 10 ms. 

The results show correct time skew detection and elimination 

in 100% of cases for a real life dataset of 32 broken sessions 

and surpass the performance of fast cross correlation while 

keeping lower system requirements. 
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I.  INTRODUCTION 

The TA2 project (Together Anywhere, Together 
Anytime) [1] is concerned with investigation of how 
multimedia devices can be introduced into a family scenario 
to break down technology and distance barriers. Technically, 
the TA2 project tries to improve group-to-group 
communication by making it more natural and by giving the 
users the means to easily participate in shared activities. In 
this sense, we are interested in the use of consumer level 
multimedia devices in novel application scenarios. 

Several generic scenarios (e.g., remote playing of a 
family game, my videos, etc) involve the use of multisource 
multimodal algorithms. The corresponding algorithms by-
turn require data to be in sync. During recording of 
multisource multimodal database [2], we have experienced 
several times, that the recorded material was neither 
synchronised, nor having the same clock (there was positive 
or negative time skew). While several people proposed “to 
redo the recordings” as the easiest and “only feasible” 
solution, we decided to run few experiments to prove that the 
problem can be resolved on algorithmic level as well, 
regardless the fact it was decided not to include these 
recordings into mentioned database. 

The time skew can be caused by several factors: due 
limited carrying capacity during the data capture or, more 
often, due to unsynchronised clocking of different devices. 
Unsynchronised clocking in-turn can be caused by many 
physical level issues, such as temperature variations, 
variation in intermediate devices, capacitive coupling, 
material imperfections, etc. As consequence, the clock can 
travel more slowly for one capturing device and faster for 
other capturing devices. This, in consequence, can destroy 
the integrity of the set of the recordings, even if the separate 
recordings would never be considered as problematic. 

 
Figure 1.  Time skew annotations for experimential dataset of 32 sessions. 

In a professional setup, one might expect to be able to 
use multiple capture devices, and for them all to be 
synchronised via a common clock or similar [3]. On a 
network level, a number of protocols (e.g., Network Time 
Protocol [4]) have been designed to reduce time skew, and 
produce more stable functions. Some applications (such as 
game servers) may also use their own synchronisation 
mechanism to avoid reliability problems due to time skew. 

Consumer level devices, however, do not normally 
provide such capabilities. In our previous work [5] we have 
shown that an initial shift for the data without time skew 
issue can be easily resolved by automatic temporal alignment 
algorithm. Nevertheless in the presence of time skew issue, 
the data become continuously misaligned during the timeline 
of the event even it is in perfect sync in the beginning of the 
data. Further, due different setup of recording devices, we 
cannot rely in any predictable sense on the video signal. This 
leaves us with the audio signal from which to infer time 
skew information. 

In this study, we were provided with a real life dataset of 
32 broken sessions (see Fig. 1), in which two signals from 
fixed cameras with different clocks were recording the whole 
session. If we could show that the time skew could be 
eliminated reliably, then the project could profit from 
automatically fixed dataset. If it was too error-prone or 
computationally onerous, then the dataset would have to be 
re-recorded with a common clock or similar. 



II. EXPERIMENTAL DATASET 

All results presented in this paper were achieved on a real 
life dataset of 64 recordings (32 sessions x 2 desynchronized 
recordings of 4.5-5.5 min each), containing high quality 
1080p25 video and high quality PCM 48 kHz stereo / PCM 
44.1 kHz quadro audio. Different sessions were recorded 
with the same set of hardware. The content consists of a 
gaming sessions with enabled video chat of socially 
connected but spatially separated people. All corresponding 
audio tracks were extracted and converted to 16 kHz mono 
PCM files with FFMPEG software [6]. 

Experiments were conducted on a closed set (i.e. we did 
not consider a rejection mechanism for the recordings that 
did not correspond to the same session). Nevertheless 
according to our previous studies on a rejection mechanism 
[7], the proposed approach can be successfully extended to 
an open set. 

III. TIME SKEW DETECTION 

Time skew detection corresponds to estimation whether 
all recordings in the same session have the same absolute 
time velocity or not (see Fig. 1). Therefore it is enough to 
answer the question whether the relative time velocity ratio 
between the recordings from the same session equals to 1.0 
or not. Nevertheless to be able to perform time skew 
correction the relative time velocity ratio has to be estimated 
precisely. 

We define time-quefrency signatures as time-quefrency 
matrices based on normalised truncated mel-cepstral vectors 
in steps of 10 ms. A 256 point Discrete Fourier Transform 
(DFT) is performed on overlapping audio frames of 16 ms in 
steps of 10 ms and squared to give the power spectrum. The 
resulting 129 unique bins are then decimated using a filter-
bank of 23 overlapping triangular filters equally spaced on 
the mel-scale. The mel-scale corresponds roughly to the 
response of the human ear. A logarithm and DFT then yield 
the mel-cepstrum [8], which is truncated, retaining the lower 
12 dimensions except energy. This truncation retains spectral 
shape and discards excitation frequency. Next, Cepstral 
Mean Normalisation (CMN) is performed by subtracting 
from each cepstral vector the mean of the vectors of the 
preceding (approximately) half second. This has the effect of 
removing convolutional channel effects. Finally, if the norm 
of a vector of the 12 mean normalised cepstral coefficients is 
higher than 1, then the vector is normalised in Euclidean 
space. This gives us the reduced variance of the search 
distance space. 

If hi and gi are desynchronised signals from the session i, 
and it is known that the signal hi is located within the signal 
gi, then rh

g
, the relative time velocity ratio, is given by: 
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where d is Euclidean metric. 
The initial shift tb of the signal hi within the signal gi is 

given then by: 
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where ls
h
 is the length of the signature for the signal hi. 

The achieved precision (the number of correctly aligned 
signatures divided by the total number of signatures) of the 
gravity point temporal alignment resulted in 100% on 
described dataset. Fig. 2 illustrates estimated instant time 
offsets in respect to the reference signals not only at defined 
gravity points, but along all intersection periods. The graph 
is plotted based on time-quefrency signatures of 10 s. 
Intersection periods are calculated automatically [7] based on 
confidence value of temporal alignment (with fixed 
confidence threshold at 50%). 

 
Figure 2.  Estimated time skew trajectories. 

It is clearly visible that the estimated instant time offsets 
in general follow the annotations, though a bit less smooth 
than the annotations. Corresponding standard deviations and 
other observations from time skew impact are discussed in 
details in the following chapter. 

In addition to defined time-quefrency signatures we 
compared the results with and without energy component 
and with well-known fast cross correlation. The 
corresponding results on gravity point estimation are shown 
in the table I. 



TABLE I.  PRECISION OF GRAVITY POINT ESTIMATION 

Algorithm Precision 

Time-quefrency signatures of 10 s 100% 

Time-quefrency with energy signatures of 10 s 100% 

Cross correlation (10 s) 48.4% 

Cross correlation (30 s) 65.6% 

 

After application of the relative time velocity ratio and 
initial shift, we were able to confirm 100% precision of time 
skew correction on described dataset as well. Comparison to 
other methods is shown in the table II. 

TABLE II.  PRECISION OF TIME SKEW CORRECTION 

Algorithm Precision 

Time-quefrency signatures of 10 s 100% 

Time-quefrency with energy signatures of 10 s 100% 

Cross correlation (10 s) 21.9% 

Cross correlation (30 s) 50.0% 

 

Processing time (on an Intel Core 2 CPU 6700 2.66GHz) 
for the proposed algorithm without multi-core optimisation 
was 5.4 seconds for automatic temporal skew detection 
within a session of 5 min with two recordings. It was 
noticeably faster than time required by fast cross-correlation. 
We have to notice as well that processing time for the 
proposed algorithm is directly proportional to the length of 
the signature and to the length of the session. Memory 
requirement for the proposed algorithm was 1.5 MB per 5 
min session, which is also much lower than required by fast 
cross-correlation. 

IV. TIME SKEW IMPACT ON TEMPORAL ALIGNMENT 

The results shown in the table I prove generalisation of 
time-quefrency based temporal alignment to the case of time 
skew presence. The results based on cross-correlation have 
much higher impact from time skew presence (the difference 
between the precision of these approaches varies up to 52% 
in time skew presence case versus up to 20% in its absence). 

According to the definition of time-quefrency signatures 
we observe very good precision due to information taken 
from both domains: temporal and cepstral. In our previous 
work [5] we have shown that the precision and automatically 
estimated confidence increase continuously with increasing 
the length of the signatures in the case of time skew absence. 
Due the presence of the time skew issue the temporal 
information does not match precisely anymore. Therefore the 
longer signatures after a certain point should results in lower 
precision and, accordingly, in lower confidence. 

In Fig. 3 we illustrate how the length of the signature 
influences the confidence measure on the described dataset. 
The confidence measures were estimated as a measure of 
relative variance of the search space via standard deviation 
for fast cross-correlation and via global maximum for time-
quefrency signatures [5]. 

 
Figure 3.  Confidence versus signature / test segment length. 

It is clearly visible that the confidence measure of 
defined time-quefrency signature increases with increasing 
the length of the signature for the first 9 seconds, keeps its 
average maximum during the following 15 seconds and start 
to decrease afterwards (dash dot line). However, the 
confidence measure of time-quefrency signature is lower 
when the energy is considered (long dash dot line). Further 
investigations have proved good robustness of time-
quefrency based confidence measure in the case of the time 
skew presence and resulted in 100% of confidence precision 
for any data with the confidence higher than 50%. In this 
sense, confidence estimates for time-quefrency signatures 
were much more reliable than confidence estimates for cross 
correlation – we were not able to achieve 100% of 
confidence precision even for much higher cross-correlation 
confidence thresholds.  

In addition, we have found that longer signatures slightly 
decrease the smoothness of the estimated instant time skew 
trajectories. The corresponding standard deviations from 
expectation on described dataset are shown in the table III. 

TABLE III.  STANDARD DEVIATION OF TIME SKEW CORRECTION 

Algorithm  

Time-quefrency signatures of 10 s 1.3% 

Time-quefrency signatures of 20 s 2.1% 

Time-quefrency signatures of 30 s 3.2% 

 – standard deviation 

From the table III we can see that the standard deviation 
improves with shortening of the signatures (smaller values 
are better). While on described dataset the optimal estimated 
length of the signature was 10 s, it is worth mentioning that 
estimated confidence distribution and standard deviation 
values are dependent on relative time velocity ratio and 
could be different on other datasets. 



V. TIME SKEW CORRECTION 

Time skew correction based on estimated relative time 
velocity ratio can be achieved by different ways: lossy data 
correction, lossy metadata correction, lossless correction. 
First two approaches modify original files, therefore the 
multisource recordings can be analysed directly and replayed 
with most of the players. Nevertheless it is impossible to say 
which of several absolute time velocities is correct and 
which is "broken", we can detect and correct only relative 
time skew issue. Lossless correction is based on creation of a 
wrapper for the post-processing software / player and 
therefore does not affect the initial multisource recordings. 
The main drawback of the third approach – wrappers are 
normally compatible only with limited set of multisource 
players / analysis software. The main advantage of the third 
approach – it retains initial data and gives a flexibility to 
change a reference time velocity without lossy impact on the 
data or metadata. 

A. Lossy data correction 

Lossy video data correction of time skew issue can be 
achieved with motion compensated frame rate conversion 
techniques [9], [10]. The video frame rate conversion is also 
available in many commercial and open source video editing 
tools (e.g., VirtualDub software [11]). The mentioned open 
source video editing tool can be used for lossy audio data 
time skew correction as well via audio sample rate 
conversion. Lossy data correction allows to keep initial 
metadata about video fps and audio sample rate in the 
header, though the quality of the media data slightly 
degrades each time the correction is applied. 

B. Lossy metadata correction 

Another solution is to keep initial media data and to 
change only the metadata in the header. This can be achieved 
via source rate adjustment inside many video editing tools 
(e.g., VirtualDub software [11] for video metadata 
correction) or direct hex editing of the header (valid for both 
audio and video). Most of post-processing algorithms and 
media players, which rely on metadata information, correctly 
treat the data regardless “non-standard” values. Nevertheless 
some compatibility issues can appear in the case a player 
tries to initialise audio hardware to unsupported sampling 
rate output.   

C. Lossless correction 

There are many ways to achieve lossless correction via 
wrapper creation. In this section, we would like to stress 
most generic solutions from our point of view. One of the 
solutions would be to use of the native support of audio and 
video playback in HTML5 web pages [12] to store the 
information about initial offset and relative time velocity 
ratio within associated media element attributes “startTime” 
and “defaultPlaybackRate” for corresponding recordings. 
Another solution would be to use Time Manipulation module 
within XHTML+SMIL profile [13] for application of the 
relative time velocity ratio and Timing module within the 
same profile for initial offset.  

VI. CONCLUSION 

We have shown that the time skew within multisource 
audiovisual data can be detected and eliminated reliably 
using audio features typical of ASR applications. We have 
proved experimentally the generalization of temporal 
alignment and corresponding confidence estimation to the 
case of time skew presence. We found that good results can 
be inferred from relatively short time-quefrency signatures. 
The corresponding results surpass the performance of fast 
cross correlation, while require less resources. We hope that 
this work might be useful for the research community as a 
fast and reliable approach for automatic time skew detection 
and correction within multisource media datasets.  
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