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On Improving Face Detection Performance by
Modelling Contextual Information
Cosmin Atanasoaei, Chris McCool, Member, IEEE, and Sébastien Marcel

Abstract—In this paper we present a new method to enhance
object detection by removing false alarms and merging multiple
detections in a principled way with few parameters. The method
models the output of an object classifier which we consider as
the context. A hierarchical model is built using the detection
distribution around a target sub-window to discriminate between
false alarms and true detections. Next the context is used
to iteratively refine the detections. Finally the detections are
clustered using the Adaptive Mean Shift algorithm.

The specific case of face detection is chosen for this work as it
is a mature field of research. We report better results than several
baseline methods on the MIT+CMU, WEB and CINEMA face
databases. We significantly reduce the number of false alarms
while keeping the detection rate at approximately the same level
and in certain conditions we recover misaligned detections.

Index Terms—Context Modelling, Face Detection, Multiple
Detections.

I. INTRODUCTION

A variety of applications like video surveillance, biometric
recognition and human-machine interface systems de-

pend on robust face detection algorithms. In the last decade
there has been an increasing interest in real-time systems
with high accuracy and many successful methods have been
proposed. Despite this, face detection remains a challenging
problem and there are improvements to be made.

The task of face detection is a specific case of object
detection. Object detection can be described as the task of
finding all instances of an object (for instance the face) in
an image. Research to date has dealt mainly with the issue
of building a robust and accurate object classifier. An object
classifier tells if an object is found at a specific position
and scale (referred to as a sub-window) in an image. For
instance work by Froba et al. [1] and Viola and Jones [2] has
provided significantly improved face classifiers, more details
are provided in Section II-A.

There are many ways to obtain the sub-windows from an
image. A sliding window approach [3] is usually used to
find all the object instances in the image often referred as
scanning the image (see Section II-B). This can result in
multiple detections and false alarms as shown in Fig. 1. A
merging and pruning heuristic algorithm is then typically used
to output the final detections (see Section II-C).

Recent work has been done to overcome the limitations of
the sliding window approach by using a branch-and-bound
technique to evaluate all possible sub-windows in an efficient
way [4]. The authors build a model that also predicts the
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location of the object [5]. However, it is not clear how to use
this method for different classifiers or feature types (because of
the upper bound needed by the branch-and-bound algorithm)
or to detect multiple objects.

We propose a more principled method with less parameters.
We learn a model that uses the output of the object classifier
which we consider as the context to distinguish between false
alarms and true detections (see Section IV). Our approach is
inspired by the work of [6] and [7], but there are many signif-
icant differences. These are: i) we use more features than just
the model score, computed on various location and scale axis
combinations to better describe the detection distribution and
we propose a different model following a more discriminative
approach, ii) we use this contextual information to iteratively
refine the object detections which leads to significantly more
accurate detections (see Section V-A), and iii) we cluster the
refined detections using the Adaptive Mean Shift algorithm
described in Section V-B. The experimental procedure is
described in Section VI and the results obtained on several face
databases and using a popular face classifier are presented in
Section VII. Conclusions and future work directions are given
in Section VIII.

II. BACKGROUND LITERATURE

This section presents a short review of the two usual
components of a face detection system: a face classifier and
a scanning procedure. First we present some of the most well
known face classifiers trained to verify if a particular sub-
window is a face. Next we show how a typical scanning
procedure is used to detect faces in images in conjunction with
such a face classifier. Finally we expose some of the problems
that may appear such as multiple detections and false alarms
and we present some methods to overcome them.

A. Face classifiers
Most of the state of the art face detection methods are

based on a cascade of boosted classifiers that provide real-
time performance with high accuracy. They combine weak
classifiers that are slightly better than random using a linear
method with weights proportional to their accuracy [8]–[10].
Usually the weak classifiers are associated to a specific feature.
The boosting process can be seen as a feature selection method
that uses the selected features to build a strong classifier with
arbitrary accuracy. Different approaches are based on Neural
networks such as the pioneering work from Rowley et al. [3],
but also [11] and [12].

The first real-time face detector was developed by Viola and
Jones [2]. Its speed was achieved by a cascade of increasingly
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complex boosted classifiers designed to reject at the very
first stages most of the negative samples. In this cascade the
weak classifiers were based on Haar-like features that were
computed very efficiently at any position and scale using an
integral image. Each stage of the cascade was trained using
the Adaboost algorithm. This system had the same accuracy
as previous state of the art methods, but it was much faster.
Following this work rotated Haar-like features were introduced
in [13] and three boosting algorithms (Discrete, Real and
Gentle Adaboost) were evaluated. The authors have shown
experimentally that Gentleboost performs better than the rest
with a lower computational complexity.

Recently the Modified Census Transform (MCT) [1] and
the Local Binary Patterns (LBP) [14] have become a more
popular choice than Haar-like features for face detection. They
present several advantages such as: low computational cost at
any position and scale and illumination invariance (very useful
in uncontrolled environments).

Different boosting algorithms were proposed to reduce the
number of weak classifiers needed to achieve better accuracy
than Adaboost. The FloatBoost learning algorithm [15], for
instance, backtracks and deletes the weak classifiers that
are ineffective. A novel cascade learning algorithm is also
proposed in [16] that is based on forward feature selection.
It achieves two orders of magnitude faster training time than
Viola-Jones approach and yields a classifier of equivalent
quality. Chang Huang et al. [17] proposed a nested cascade
detector in which the confidence of the strong classifier from
the previous layer is used as input along with other weak
classifiers to the next layer. This reduces the number of layers
and the number of features used to reach the same detection
and false alarm rate.

B. Object detection

To detect objects one usually proceeds by scanning the
image at different positions and scales. At each position and
scale a sub-window is formed and tested against a classifier
previously trained with geometric normalized samples of size
Sc = (Wc, Hc). This is often referred to as a sliding window
approach.

There are two main sliding window (scanning) methods:
the multiscale and the pyramid [18]. The multiscale approach
varies the size of the scanning sub-window and the classifier
has to interpolate its content to Sc in order to decide if the
sub-window contains the object or not. The pyramid approach
computes a set of scaled images, from the original image,
and for each one varies the position of a Sc fixed size sub-
window. No interpolation is needed for this approach (the sub-
window and the classifier’s input dimension have the same
size) but the image pyramid must be computed first. It can be
shown that both methods test the same number of sub-windows
and experimental results have shown that they produce similar
results.

The choice of sliding window approach is dependent on the
feature type or the classifier used. For example the MCT [1] or
Haar-like [2] features can be computed very efficiently at any
position and scale using integral images and this means that

the multiscale approach is more efficient in terms of speed.
However, the Neural Network based face classifier proposed
by Rowley et al. [3] was evaluated using the pyramid approach.
A modified version of the pyramid approach is presented in
[19], where the authors use a coarse to fine grid search for each
scale, thus refining the search in the areas where a detection
had occur at a coarser grid.

For the sliding window approaches the total number of sub-
windows to classify is quadratic to the number of pixels. This
is because every position in the image must be matched at
every possible scale. Therefore, there can be billions of sub-
windows even for small images and thus it is inefficient to do
an exhaustive search. Typically one uses some heuristics that
reduce this number to practical values by limiting the number
of scales or searching every N pixels (by having an offset
of N pixels between subsequent sub-windows) [2]. Real-time
performance can be achieved by limiting the number of sub-
windows to process but at the cost of missing some objects.

Usually applying the sliding window approach with any face
detector will result in multiple detections and false alarms (see
Fig. 1). These detections must be further processed. This is
often referred to as pruning false alarms and merging multiple
detections [18].

Fig. 1. Typical face detections using the multiscale approach and the
MCT boosting cascade classifier described in [1] (without clustering multiple
detections and removing false alarms).

Since the true location and the number of objects is not
known it is preferred to have a finer scanning than to miss
any object or miss predict its location too much. However
this will also increase the number of false alarms because a
larger number of sub-windows has to be explored. This is
because even a state of the art classifier has a false alarm
rate (FAR), also called false acceptance rate, that is not zero,
usually of the order of 0.1% to achieve good performance.
Another reason is that the sliding window approaches test
multiple sub-windows that significantly overlap with the true
face. This implies that the face classifier fires many times
around the true face which results in multiple detections. A
coarser scanning will reduce their number but at the cost of
missing some faces and producing less accurate detections.

Note that the object classifiers are usually trained only with
samples that completely show the face or not at all. During
testing a significant number of sub-windows will overlap
differently with the true object, for which case there is no
guarantee of the classifier output [5]. Still most classifiers will
correctly recognize the objects even in these situations.
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C. Multiple detections
The most common approach to solve the multiple detection

problem is to heuristically merge the ones that form clusters
based on the overlapping percentage. Below we present the
heuristic methods that have been presented in the literature.

In [2] detections are partitioned into disjoint subsets, by
associating two detections to the same one if they overlap. The
final step consists of composing for each subset just one sub-
window having the average coordinates of all sub-windows in
that subset. Some restrictions can be further imposed on the
partitioning: two detections are considered in the same subset
if they overlap more than a threshold (typically 60% of the
area of the biggest detection) and a detection is removed if it is
contained by another one. The selection of the best detections
(one per subset typically) is done iteratively. At each step
the most overlapping detections are merged (typically using
non-maxima suppression, averaging or confidence weighting)
and then the subsets are computed again. Some variations are
implemented in face detection libraries like OpenCV 1 and
Torch3vision 2. Our experiments (see Section VII-B) have
shown that this method is sensitive to the scanning parameters.
When too coarse, the true detections can be isolated and
considered as false alarms and when too fine, false alarms
appear in clusters and are usually considered to be a detected
face.

A similar heuristic approach was proposed by Rowley et
al. [3]. They preserve the detections with higher number
of overlapping detections within a small neighbourhood and
eliminate the other ones. The final output is given by the
centroids of the preserved detections.

A more principled approach was recently proposed in [6]
and [7] where the authors study the score distribution in
both location and scale space. Their experimental results have
shown that the score distribution is significantly different
around a true object location than around a false alarm
location, thus making it possible to build a model to better dis-
tinguish the false alarms and enhance detection. This approach
is motivated by the fact that the object classifier is usually
trained with geometric normalized positive samples and it
does not process the context (area around given samples).
Also, some false alarm sub-windows may have a higher score
than a true detection nearby and may be selected as the final
detections using an heuristic merging technique.

III. OUR APPROACH

We propose a new post-processing technique for object
detection that makes use of the contextual information. We
plan to address some problems of the previous methods such
as: multiple detections, false alarms and sensitivity to scanning
parameters (it should work equally well for fine or coarse face
scanning). Our goal is to improve object detection algorithms
in general by addressing the specific problem of face detection
and in doing so we make the following contributions:

i) A context-based model for pruning false alarms is
presented in Section IV. We define the context as the detection

1http://sourceforge.net/projects/opencvlibrary/
2http://torch3vision.idiap.ch/

distribution around a target sub-window, by varying its scale
and position and checking it against a classifier. The context
is described using multiple features such as its density, the
geometric distribution for scale and position axis and some
score statistics. Our model automatically selects the best
features from the contextual information and optimizes its
internal parameters.

ii) Object detection refinement is performed using this
contextual information to improve the accuracy of detections
and to make the job of the merging (clustering) algorithm
easier. We argue that we can estimate from the context the
direction where an object is more likely to reside and we use
this idea in a greedy way in the algorithm presented in Section
V-A.

iii) The Adaptive Mean Shift (AMS) algorithm is used to
solve the problem of clustering multiple detections. We favour
it against other methods (e.g. average, score weighting, non-
maxima suppression) because it uses practically no parameters,
the number of clusters does not need to be known a priori and
its properties are theoretically established. More details are
provided in Section V-B.

Fig. 2. Context-based face (object) detection method consisting of the
following blocks: i) CtxModel - the context-based model to discriminate and
remove false alarms (see Section IV-C), initialized with the multiscale or
pyramid scanning (MS/PR) and ii) DetRefine - one step of the method to
refine detections (see Section V-A). The final block is the AMS clustering
algorithm to process the converged collection of sub-windows (SWs) (see
Section V-B).

The proposed context-based face detection method is pre-
sented in Fig. 2. The first step is to run the multiscale or
the pyramid (MS/PR) scanning over the input image using
a face (object) classifier. The detections (SWs) are checked
against the context-based model (CtxModel) to remove false
alarms (see Section IV). These are further refined using the
method proposed in Section V-A and a new collection of sub-
windows is generated. If the refinement has not converged,
the sub-windows are again checked against the context-based
model. Otherwise they are clustered using the AMS algorithm
presented in Section V-B to merge the detections that were
converged closely.

IV. CONTEXT-BASED MODEL

In this section we present a model to discriminate false
alarms from true detections. First we describe how we sample
around a target sub-window to build its context. Then we
present the features we extract from the context and finally the
classifier that uses these features to discriminate false alarms.
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A. Sampling
We sample in the 3D space of location (x, y) and scale (s) to

collect detections around a target sub-window Tsw = (x, y, s).
For this we vary its position and scale in all directions (left,
right, up, down, smaller and bigger) and we form new sub-
windows. Those sub-windows that pass the object classifier are
gathered with their associated classifier output ms, referred to
as the model score in this paper. The context of the target
sub-window Tsw is defined as the collection of 4D points
C(Tsw) = (xi, yi, si,msi) obtained as explained.

The goal is to use these points to extract some features from
them and to build a classifier that distinguishes between a true
object detection and a false alarm. It is important to note that
the number of 4D points can vary from one target sub-window
to another. For instance a false alarm is supposed to have fewer
detections around it than a true object location.

Before we continue, we will define the notations needed
to formalize the context sampling. Let Nx, Ny , Ns be the
number of points to be considered on each axis (location and
scale) along the positive direction. The sampling factors for
each axis are defined as dx, dy and ds respectively.

We have used two strategies for context sampling: full and
axis. The full strategy consists of sampling by varying the
location and scale at the same time. First we vary the scale
Ns times by multiplying the precedent with 1 + ds for larger
scales and Ns times by multiplying the precedent with 1− ds

for smaller scales. Second we vary, for each scale, the spatial
position of the sub-window (left, right, up and down) with
constant increments as dx and dy factors of the current width
and height. In this case the context can have at most Nfull =
(2Nx + 1)×(2Ny + 1)×(2Ns + 1) points. In the axis strategy
the sampling is done just along one axis at a time. This reduces
the maximum size of the context to Naxis = (2Nx + 1) +
(2Ny + 1) + (2Ns + 1) points.

In our experiments we have used dx = dy = ds = 0.05
which corresponds to 5% increments both in scale and position
and Nx = Ny = 6 and Ns = 5 3. This makes Naxis (at most
37 points) approximately 50 times smaller than Nfull (at most
1859 points). The axis sampling approach is better suited for
real time applications where building the full context may be
too expensive.

B. Feature vectors
In the next step we extract a fixed number of low dimen-

sional feature vectors from C(Tsw). There are two stages for
forming the feature vectors: i) the attribute(s) and ii) the axis
(and axes) used to obtain the attribute(s).

We use three types of attributes: counts, hits and scores. An
overview of the attributes is provided in Table I and a detailed
description of each attribute is provided below:

• Counts provide a global description of C(Tsw) by count-
ing detections on some axis combination.

• Score standard deviation and amplitude describe the
classifier confidence variation across position and/or scale

3For example, the context for a detection of size 100x100 pixels is obtained
by sampling sub-windows from approximately 77x77 to 127x127 pixels and
translated by at most 38 pixels.

Attributes Type Dimensions
Counts global 1
Score standard deviation confidence 1
Score amplitude confidence 1
Hits standard deviation geometry 1 - 3
Hits amplitude geometry 1 - 3

TABLE I
ATTRIBUTES EXTRACTED FROM THE CONTEXT FOR EACH AXIS

COMBINATION.

changes. If no detection or just a single detection for
the standard deviation case, which happens mostly in the
case of the false alarms, the default value is 0.0 that
accurately reflects no confidence variation. In the case
of true detections this variation is experimentally found
to be significantly higher.

• Hits standard deviation and amplitude describe the
geometrical properties of the context. More precise these
features capture, independently for each axis in a combi-
nation, the width of the maximum extent where detections
still occur. For example for the x-axis case we vary
x with Nx positions to the left (indexed as −Nx to
−1) and with Nx positions to the right (indexed as
1 to Nx). This gives the detections along x-axis as a
collection of indices ∈ [−Nx, Nx] (which we call hits)
on which we can compute the amplitude and standard
deviation. Up to three dimensional feature vectors are
obtained by concatenating such values for all the axis in
the combination.

Each feature vector is computed using an attribute and some
axis combination (x, y and scale - which gives 7 possible axis
combinations). For example we build sub-windows by varying
all axes, just two of them (like keeping the scale constant and
varying only the x and y sub-window’s coordinates) or just
one of them (like keeping the x and scale fixed and moving
the sub-window up and down).

There are some restrictions when designing these feature
vectors. First we need feature vectors that have a meaning
even when there is no detection for some axis combination
(which implies that no 4D points are generated). This happens
especially around false alarms, when the number of detections
by varying all axes is well above zero but becomes close to
zero when varying just the scale for example. Second, because
of the variable number of detections in the contextual area, we
want just a single vector of fixed dimensionality to be extracted
as a feature.

We have investigated if the above features provide enough
information to discriminate between the two cases of contexts.
For preliminary experiments we have used the annotated
XM2VTS [20] database that provides clean face images and
we split it using the Lausanne protocol I in training, validation
and testing subsets. On the training subset we applied the
MCT-based face detector [1] implemented with Torch3vision
and we extracted and plot some of these context features as
shown in Fig. 3.

To assign a detection (and its context) to the positive
or negative class we have used the Jesorsky measure [21]
(see Section VI-B for more details) with a relaxed threshold
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Fig. 3. Distributions of various features using the full versus axis sampling
on XM2VTS training dataset (negative - red, positive - blue, ground truth -
green). We have used the multiscale approach and the MCT boosting cascade
classifier described in [1] and implemented with Torch3vision. Cumulative
histogram of counts for two axes (y, scale) using axis sampling (a) and full
sampling (b). Cloud points of score standard deviation for 3 axis (x, y, scale)
using axis sampling (c) and full sampling (d).

�J = 0.5. This value is much higher than the reported
�J = 0.25 value used for evaluating face detections, allowing
the detections that do not overlap much with the ground truth
to be considered as positive detections too. This allows the
detections that are outside the Jesorsky distance from the
ground truth to be moved to within the Jesorsky distance using
the proposed method described in Section V-A. We refer to
this as recovering misaligned detections.

As it can be seen from Fig. 3, there is a significant difference
between the negative and the positive contexts that support
our intuition: around a true detection many more detections
are generated than around a false alarm. This implies that
just by counting detections good discriminative information
is obtained. For example in Fig. 3 (a, b) more than 95% of
the negative contexts have the count less than 95% of the
positive ones. Also, fewer detections implies much less score
variation (see Fig. 3 (c, d)) for negative samples. It can be
noticed that negative contexts are more compact around the
center, while the positive are much more spread having the
standard deviation much higher for the combination of two
axes (and others).

The full sampling method provides more discriminative
information than the axis sampling (see Fig. 3 - (a) versus
(b), (c) versus d). This was confirmed by our experiments
where it was found that the full sampling context-based model
outperformed the axis sampling context-based model.

C. Classifier
The context features computed as described in the previous

section are used to train a classifier to distinguish between

false alarms and true detections based on their context. We
build a linear classifier for each context feature (described in
Section IV-C1) and then we combine them to produce the final
result (described in Section IV-C2).

Our aim is to automatically select the best features and
axes that are more discriminant. This makes the context-based
model independent of the specific geometric properties of the
object to detect, the type of the object classifier or the scanning
procedure. This way our method becomes general enough to
be applied to a variety of object detection problems.

1) Context classifiers: The contextual information is used
to form 35 different context features: there are n = 5 types (as
discussed in Section IV-B) computed for each of the m = 7
axis combinations. For each feature we build a logistic linear
model which we denote as M(x,w), where the x is the d-
dimensional (1 ≤ d ≤ 3, depending on the attribute type)
sample feature vector and w is the d+1-dimensional parameter
value. The model output is:

M (x,w) =
1

1 + exp

�
−w0 +

�d
i=1 xiwi

� , (1)

where w0 is sometimes called the bias term and the wi terms
are the weights of the inputs.

Training the model is done by minimizing a specified error
function. The error function for logistic models is usually the
negative of the likelihood of the model output being generated
from the input data. Additional L1 and L2 norm regularization
terms are added, as described in [22], to make the model more
robust. Following [23], our function to optimize is:

E (w,λ1,λ2) =

�
l (w, x+)

N+
+ β

�
l (w, x−)

N− + (2)

λ1

n�

i=1

|wi|
� �� �

L1

+λ2

n�

i=1

|wi|2

� �� �
L2

, (3)

where l (w, x) = −y log(M(x,w))−(1−y) log(1−M(x,w))
is the negative log likelihood of the sample x using the model
weights w; obviously y relates to the label of interest so it
represents the positive class for the case of l (w, x+) and the
negative class for l (w, x−). The log likelihoods are averaged
separately over the N

+ positive samples and the N
− negative

samples respectively. λ1 and λ2 are priors for the L1 and
L2 norms. The purpose of the L2 norm regularization term
is to avoid over fitting, while the L1 one is to keep the
model sparse hopefully by automatically selecting the most
informative features.

The weight β represents the relative importance attributed
to the error caused by the negative samples relative to the
one caused by the positive samples. In the case of object
detection (in particular face detection) it is preferred to have
higher false alarms than to miss objects. This implies that β
needs to penalize false rejections more than false alarms which
corresponds to β < 1. Several preliminary experiments were
performed on a small sub-set of the training data and β = 0.3
was chosen as the optimal value.
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It is rather unusual that the error function E (w,λ1,λ2) is
split in two normalized parts for the positive and the negative
samples. The motivation for doing this is the unbalanced
nature of the training samples. Many more negative samples
are generated than the positive samples when the threshold of
the face classifier is low and vice versa when the threshold is
high. This makes training very hard and the results would be
biased towards the category with more samples. By using the
category-based error normalization as proposed we enforce
each category to have the same relative importance no matter
how many samples are provided for each one. In our prelim-
inary tests this approach proved much more robust (to biased
training data either towards positive or negative samples) than
the usual error formulation.

There are some robust methods to optimize the non-
continuously differentiable function E (w,λ1,λ2) (for a re-
view see [22]). We have used a simple method called grafting
described in [23]. This method integrates well with standard
convex optimization algorithms and it uses an incremental
approach to feature selection that suits our needs. Jorge
Nocedal’s L-BFGS library [24] was used for the optimization
of the error function at each step of the grafting algorithm.

Another related problem we need to solve is the choice of
the λ1 and λ2 prior terms. For this we use a cross-validation
technique on two datasets, one for training and one for tuning,
as specified by each database’s protocol. We first optimize
the λ1 prior term using a logarithmic scale keeping λ2 = 0
and second we optimize the λ2 prior term using the same
logarithmic scale and keeping the already estimated λ1 value.

The criterion to choose the best (λ1,λ2) configuration is
the Weighted Error Rate (WER) defined as:

WER (β, τ) =
β × FAR+ FRR

β + 1
, (4)

where FAR is the False Acceptance Rate and FRR is the
False Rejection Rate computed as FRR = 1−TAR; TAR is
the True Acceptance Rate also referred to as Detection Rate
(DR). The same weight β was used as in Equation 3. The
WER is optimized by choosing an appropiate threshold 0 <

τ < 1 of the model (steps 4 and 11 in Algorithm 1). The
minimum WER value specifies the best the model can perform
and we consider it is a good estimation of the performance of
the (λ1,λ2) configuration.

We summarize the training in Algorithm 1. In our case the
features have low dimensionality (see Table I). This implies
that no L1 norm regularization term is needed and we set
λ1 = 0 and no λ1 tuning was performed. However, this term
will be used for the combined classifier as shown in the next
section.

2) Combined classifier: Each feature classifier can be con-
sidered as an expert. By combining them two benefits can be
obtained: first the combined classifier should perform better
and second only some (the best) experts are combined which
implies that some irrelevant features can be (automatically)
discarded. The combined model uses the same logistic linear
model as for the context classifiers. This makes the proposed
hierarchical model a non-linear mapping of the inputs, while
each context classifier is kept very simple and linear.

Algorithm 1 Feature/Combined classifier training
1: WER

∗ = 1,λ∗
1 = 0,λ∗

2 = 0,β = 0.3
2: for λ1 ∈ {10z�z ∈ Z} do
3: minimize E(w,λ1, 0) using grafting and L-BFGS
4: minimize WER (β, τ)
5: if WER (β, τ) < WER

∗ then
6: λ

∗
1 = λ1, w

∗ = w,WER
∗ = WER (β, τ)

7: end if
8: end for
9: for λ2 ∈ {10z�z ∈ Z} do

10: minimize E(w,λ∗
1,λ2) using grafting and L-BFGS

11: minimize WER (β, τ)
12: if WER (β, τ) < WER

∗ then
13: λ

∗
2 = λ2, w

∗ = w,WER
∗ = WER (β, τ)

14: end if
15: end for
16: return weights w

∗ for the logistic regression

The inputs to the combined classifier are the normalized
outputs of the context classifiers. Let us define the context
classifiers as Mk,l(x,w), where k indicates the attribute type
(k = 1..n, n = 5) and l corresponds to the axis combination
(l = 1..m,m = 7). Let τk,l be the optimum threshold value
of the Mk,l model. Then the value forwarded to the combined
classifier is xk,l = Mk,l(x,w)− τk,l.

This normalization has two benefits. First, the sign indicates
the decision of the Mk,l model: positive for true detections
and negative for false alarms. Second, the absolute value is
(empirically) proportional to the confidence of the Mk,l model
in its decision.

The combined classifier is trained like the small classifiers
as shown in Algorithm 1 with the difference that the L1 norm
regularization term is used in this case. This way only the most
informative features are automatically selected and combined.

V. CONTEXT-BASED CLUSTERING

In this section we propose a new method to cluster multiple
detections in two steps. First we refine detections using the
same contextual information as described in Section IV and
second we cluster multiple detections using the Adaptive Mean
Shift algorithm.

A. Refinement of detections
In this section we describe our method for refining the object

detections obtained with a generic classifier. We make use
of the contextual information as described in Section IV. We
argue that the context - the C(Tsw) collection of 4-dimensional
points, provides enough information to assess where the true
object location may reside.

Intuitively if some detection slightly overlaps with a true
location, but it is translated or covers also some background,
its context should contain more detections on the side that
covers better the true location. The current detection should
therefore be moved more to that specific side, which is given
by clustering the context positions where detections occur.
This method is presented in Algorithm 2.
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Algorithm 2 Context-based detection refining
Require: context-based model CM

Require: D = Tsw - the list of detections
1: R = ∅
2: for Tsw ∈ D do
3: T

0
sw = Tsw, t = 0, valid = true

4: while �T t+1
sw , T

t
sw� < �, t < T, valid do

5: build C(T t
sw)

6: apply CM on C(T t
sw)

7: if T t
sw is not a false alarm then

8: T
t+1
sw = Predict(C(T t

sw))
9: t = t+ 1

10: else
11: valid = false

12: end if
13: end while
14: if valid then
15: R = R ∪ T

t
sw

16: end if
17: end for
18: return R

The algorithm is initialized with a context-based model
CM and a set of detections D, for instance built using
the multiscale sliding window approach and the same object
classifier used to train CM . The output is a new set of
detections R that should not contain false alarms but only
improved object locations.

Each detection Tsw from D is verified against CM . If
it is validated, the Predict method applied on its context
provides a new location where to iteratively move Tsw. In
our experiments we have used a very simple Predict function
as the average of the (xi, yi, si) components of C(Tsw). The
algorithm is stopped when: i) Tsw converges (no significant
displacement in the sub-window location and scale between
two consecutive iterations) or ii) the maximum number of
iterations is reached or iii) it is invalidated by CM .

Fig. 4 presents some results of our method on an image in
the MIT+CMU dataset. If no refinement is performed (Tsw

remains fixed), but only the false alarms are removed using
CM , we obtain the results in Fig. 4 (a). After refining the
detections for several iterations (Fig. 4 (b, c, d)) the detections
get closer and closer to the true face location and they converge
to almost the same position. Please note that the true detections
are all kept and they are only moved to a better position,
although they may seem pruned in this example.

Preliminary experiments have shown that the convergence
is very fast, in most cases just a couple of iterations. We have
set the maximum number of iterations as T = 10 in all our
experiments.

B. Clustering multiple detections

The previous section has shown that the detection refine-
ment method makes the problem of clustering multiple detec-
tions much easier (see Fig. 4 - d vs. a). This is very important
because the typical merging algorithms (e.g. Adaptive Mean

(a) (b)

(c) (d)

Fig. 4. An example of context-based detection refining using an image
in the MIT+CMU dataset. We have used the multiscale approach, the MCT
boosting cascade classifier described in [1] and the full context sampling.
(a) after running the context-based model. (b), (c), (d) - after 1, 2 and 10
iterations.

Shift, averaging, non-maxima suppression) processes just a list
of detections and their scores. There is no good metric to state
precisely what should be merged and what should be removed
using only this information. This is why some heuristics are
usually used such as: removing isolated detections or smaller
sub-window than an application specific constant or merging
together the ones overlapping more than a threshold. But our
context-based model and the detection refinement method do
not need these heuristics and they work well with any merging
algorithm.

Still we have chosen the (Adaptive) Mean Shift algorithm
for several reasons. First it is non-parametric and it does not
require the number of clusters (the number of objects) to be
known or properly initialized. Second the adaptive version
works well for clusters of significantly different sizes (in our
case objects of different sizes that appear in the same image).
The last reason is that from our knowledge this is the first
attempt to apply this method for clustering detections.

Here we shortly describe the Adaptive Mean Shift (AMS)
algorithm and the modifications required to process object
detections. It is a non-parametric estimator of density gradi-
ent with many applications such as (high-dimensional) data
clustering, edge preserving filtering, image segmentation and
tracking. For more details, consult [25]–[27].

Assuming a collection of data points xi ∈ R
d
, i = 1, ..., n,

each one having an associated bandwidth hi (giving the
adaptive property), the sample point estimator of the density
(of some unknown density function f ) at point x ∈ R

d is
given by:

f̂k(x) =
1

n

n�

i=1

1

h
d
i

k

�����
x− xi

hi

����
2
�
, (5)

where k is a non-negative kernel function radially symmetric
centred in zero and integrating to one. Let us define the
function g(x) = −k

� (x) where the derivative of the kernel
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exists.
Following [27], the mean shift vector for an Euclidean space

is defined as:

mG(x) =

�n
i=1

xi

hd+2
i

g

����x−xi
hi

���
2
�

�n
i=1

1
hd+2
i

g

����x−xi
hi

���
2
� − x. (6)

which gives the direction of maximum increase in the density.
This is the direction of the basin of attraction (cluster center),
where the density gradient becomes zero. Applying (6) itera-
tively for each point separately will make each one converge
to its cluster in a finite number of steps.

The bandwidths represent the area of influence of each
point. They must be estimated prior to the actual clustering,
usually by investigating each data point’s neighbourhood using
some distance metric. It is shown in [27] that the variable
bandwidth approach gives better results than the fixed band-
width variant.

The specific problem of AMS clustering of multiple de-
tections requires estimating the bandwidth for each detection.
We represent the detections as 4D points like (xi, yi, wi, hi) -
the top-left coordinates and the width and height of the sub-
window. Then the bandwidth is set as the distance between
a target sub-window and the farther sub-window that still
overlaps with it. If no sub-window is overlapping with the
target than its bandwidth is set to 0. This prevents the isolated
detections to be falsely removed and we rely on the context-
based classifier to prune such detections.

VI. EXPERIMENTAL PROCEDURE

The experimental procedure used in this paper is defined
by these aspects: the image databases, the associated protocol,
the face detection procedure and the method for evaluating the
detection performance.

A. Databases
We performed extensive experiments using multiple

databases: XM2VTS [20], BANCA [28], WEB [12], CIN-
EMA [12] and MIT+CMU [3]. The XM2VTS and BANCA
databases contain one large centered face in each image taken
in a controlled environment and are commonly used in face
verification experiments. The last three databases are consid-
ered the most difficult because they consist of images with
multiple, sometimes very small, degraded faces or without any
face, taken in different environments (indoor and outdoor).

The XM2VTS database is split using the Lausanne Protocol
I in training, validation and testing datasets, while the others
are used only for testing (see Table II). Each image is manually
annotated with the eye centers which is used for evaluating the
detection results.

B. Face detection
Our method was tested using a popular off-the-shelf face

classifier. The MCT-based boosted cascade face classifier [1]
implemented with the Torch3vision open-source library [18]
is used without any modifications.

Type Database #Images
Train XM2VTS 600
Validation XM2VTS 800
Test XM2VTS 960
Test BANCA (English) 6240
Test WEB 211
Test CINEMA 158
Test MIT + CMU 117

TABLE II
NUMBER OF IMAGES FOR EACH DATASET.

We alter the performance of the face classifier by varying
the threshold (θ) of the last stage of the cascade. This allows
us to understand if the performance of the classifier affects the
performance of the context models. For each θ two context-
based models have been trained: using both full and axis
context sampling methods.

Varying the threshold θ can lead to a severe miss-match
in the number of positive and negative samples. Setting the
threshold too high would output no face detections (or very
few) which gives no data to train the context-based model
with, while setting it too low makes the training dataset biased
towards the negative samples. We have chosen empirically the
threshold interval as to obtain at least hundreds of both positive
and negative training samples.

The detections (and contexts) are obtained using a standard
sliding-window approach. It should be noted that no sub-
window heuristic pruning was used during scanning. Indeed,
too smooth or too noisy sub-windows are typically rejected
before being tested with the face classifier so as to improve
the speed and sometimes decrease the number of false alarms.

In all our experiments we have used the multiscale sliding-
window approach. The scanning parameters used are: the scale
sampling coefficient ss > 1 that defines the relative sub-
window size increase between two scales and the position
sampling coefficients 0 < sx, sy < 1 relative to the current
sub-window size.

Three different configurations were experimented with: fine
(ss = 1.1 and sx = sy = 0.05), medium (ss = 1.1 and
sx = sy = 0.1) and coarse (ss = 1.2 and sx = sy = 0.2). The
purpose of using different scanning configurations is to test the
robustness of our method. Note that most applications usually
require a medium or coarse scanning configuration in order
to achieve real-time performance. The scanning parameters
influence the number of sub-windows to evaluate (see Table
III) and implicitly the speed of the detection.

Resolution Parameters No. sub-windows
fine ss = 1.1, sx = sy = 0.05 3091392
medium ss = 1.1, sx = sy = 0.1 685251
coarse ss = 1.2, sx = sy = 0.2 86475

TABLE III
NUMBER OF SUB-WINDOWS TO EVALUATE FOR EACH SCANNING

RESOLUTION ON A 800X600 IMAGE.

We have compared our method with the different multiple
detection merging and false alarms pruning methods imple-
mented with Torch3vision: Non-Maxima Suppression (NMS)
as the merging step of the algorithm described in Section II-C
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and Adaptive Mean Shift (AMS) as presented in Section V-B.
We also report results and normalize the evaluation measures
to the case of using no merging at all (NoMerge).

To label a detection as positive we used the Jesorsky
measure (see next paragraph) with the threshold �J = 0.25
[21]. Note that this is more restrictive than the usual condition
to register a positive detection: a minimum overlap of 50%
with the ground truth bounding box [2]. This implies that the
reported TAR values may be smaller than the latest reported
state-of-the-art results. But we are motivated into using the
Jesorsky measure because it provides a better alternative to
compare the accuracy of the detections obtained with different
methods (see Section VII-C).

Following [21] this measure defines how much both eye
detections vary from the ground truth relative to the distance
between the eyes. Let us define the detected eye positions as ld
and rd (left and right) and the ground truth positions as lg and
rg . The errors in pixels of each detection are EL = �ld, lg�
and ER = �rd, rg� and the distance between the eyes D.

Then the Jesorsky error is defined as: �J = max(EL,ER)
D ,

which linearly relates the maximum allowed eye distance error
with the distance between the eyes.

C. Detection performance evaluation
To present the face detection results we analysed the TAR

and the number of false alarms (FA). These performance
measures are parametrized by the threshold of the face clas-
sifier: TAR = TAR (θ) and FA = FA (θ) respectively.
We omit the threshold of the context-based classifier in this
parametrization because it is automatically optimized on the
tuning dataset (see Section IV-C) and it is not varied during
experiments.

The typical method of comparing different models is to
use a Receiver Operating Characteristic (ROC) curve that
describes the relation between the TAR and the FAR (or the
FA) by varying its discriminative threshold. The higher the
area under the curve is, the better a model performs which
corresponds to a high TAR with a low FAR (or FA) [29]. In our
case the threshold to vary is θ, which is not the discriminative
threshold. Indeed it just provides different context distributions
to train our context-based model.

A more appropriate evaluation method is the Expected
Performance Curve (EPC) [29]. The EPC provides unbiased
estimates of performance at various operating points and
it makes possible to compare our proposed method with
a baseline. It also eliminates the restriction that θ is the
discriminative threshold as required for the ROC curve.

Let us consider two measures V1 (θ) and V2 (θ)
parametrized by the same parameter θ, for example the FAR
and the FRR. In our case θ is the threshold of the last stage
of the face classifier. These two measures are usually linearly
combined in a single function that will make the comparison
easier:

C (α) = αV1 (θ) + (1− α)V2 (θ) . (7)

α ∈ {0, 1} is the trade-off coefficient that is task specific. It
has a similar meaning as the β coefficient use in Eq. 3 and Eq.
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(c) BANCA-FA-fine
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(d) BANCA-FAnorm-fine

Fig. 5. The effect of normalizing the TAR (top row) and the FA (bottom
row) on the BANCA dataset. NMS and AMS have very similar FA values,
but with significantly different TAR values. The default threshold point is
represented with dashed red vertical line.

4 and the following relation can be expressed: α = β
β+1 . A

small α favours the models with higher TAR and with arbitrary
FAR, while a large α favours the models with lower FAR and
with arbitrary TAR. In between, the models with a good trade-
off between TAR and FAR are considered better.

The EPC curve is built using the function C and varying the
trade-off coefficient α. For each α value the model parameter
that minimizes the function C is computed as:

θ = argmin
θ

C (V1 (θ) , V2 (θ) ,α), (8)

on a tuning dataset. Then on a different test dataset the C is
plotted against α, with the same θ computed on the tuning
dataset.

For the face detection case the V1 and V2 are naturally
chosen as the FAR and the FRR. This may be misleading be-
cause we compare in our paper multiple detections clustering
methods (context-based and baseline) and not face classifiers.
The aim of any multiple detection clustering algorithm is to
remove as few as possible true detections and remove as many
as possible false alarms.

This implies that the TAR obtained after clustering should
be linearly normalized to the TAR of the face classifier
without any merging. But we cannot proceed similarly with
the FAR because the denominator (the number of detections)
is changing for each θ. We use instead the logarithmically
normalized FA. This is because the FA obtained with our
method is much smaller than of the baseline method (Fig.
5 c) while the TAR has similar values (Fig. 5 a).

Let us define the TAR and the FA of the face classifier
without any merging (NoMerge as in Fig. 5) as TARn and
FAn respectively. Then the function C used for comparing
the models is defined as:
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C (α) =
α

log (2)
log

�
1 +

FA (θ)

FAn (θ)

�
+ (9)

(1− α)

�
1− TAR (θ)

TARn (θ)

�
. (10)

VII. RESULTS

This section presents the results obtained using our proposed
method on several popular face databases as described in
Section VI. We have evaluated the following aspects:

• the context-based model (see Section IV) - how well it
distinguishes false alarms from true detections,

• the face detection performance using the proposed
context-based system and

• the accuracy of the detections.

A. Context-based model evaluation
In the first set of the experiments we have evaluated how

well the context-based model distinguishes between false
alarms and true detections. For this we have computed and
plotted the TAR and the WER, as shown in Fig. 6, for
all scenarios using the fine scanning settings. Each row of
plots corresponds to one testing datasets (XM2VTS, BANCA,
MIT+CMU), with the plots on the left presenting the TAR and
the plots on the right presenting the WER evolution. The full
and axis sampling situations are plotted on the same graphic
to easily compare them.

The full sampling context-based model performs better than
the axis sampling one for the majority of different threshold
values. However, there it requires much bigger contexts (see
Section IV-A) which decreases the speed of the overall face
detection process. Even with the axis context sampling our
context-based model manages to distinguish well enough the
false alarms from true detections.

Both full and axis sampling models have a TAR higher
than 95% with a WER smaller than 5% for the XM2VTS and
BANCA scenarios - see Fig. 6 (a, b, c, d). The performance
decreases for the more challenging MIT+CMU scenario - see
Fig. 6 (e, f), but with at most 10% relative to XM2VTS and
BANCA. It is important to note that the training data becomes
very scarce for high θ and in these situations the context-based
model is expected to perform worse (higher WER).

These results are stable across multiple threshold values of
the face classifier and indicates that the features extracted from
the contexts are discriminative enough, although very simple
and low dimensional (see Section IV-B). We conclude that
the contextual information provides rich enough information
to accurately classify false alarms. In the next sections we
analyse how our model improves the face detection results.

B. Face detection evaluation
The face detection system represented in Fig. 2 was evalu-

ated in the next set of experiments. In these experiments we
studied the effect of: i) using either the Non-Maxima Sup-
pression (NMS) or the Adaptive Mean Shift (AMS) baseline
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(a) XM2VTS-TAR-fine
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(b) XM2VTS-WER-fine
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(c) BANCA-TAR-fine
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(e) MIT+CMU-TAR-fine

−0.15 −0.1 −0.05 0 0.05
0

0.05

0.1

0.15

0.2

0.25

θ

W
E

R

 

 

Context(Full)
Context(Axis)

(f) MIT+CMU-WER-fine

Fig. 6. Context-based model results (TAR and WER) on XM2VTS (a, b),
BANCA (c, d) and MIT+CMU (e, f) datasets using fine scanning. The default
threshold point of the face classifier is represented with dashed red color.

methods and ii) using the context-based system with (CtxFull)
full or axis (CtxAxis) sampling. To compare these methods
we have used the unbiased EPC as discussed in Section VI-C,
plotted as shown in Fig. 7.

As shown in Fig. 7 there is a significant performance
variation between the three methods across all the dataset and
with different scanning precisions. The full sampling context-
based model (CtxFull) consistently outperforms the others,
while the axis sampling variant (CtxAxis) performs on average
better than the baseline methods only for medium and coarse
scanning.

The coarse and medium scanning settings produces a signif-
icant number of misaligned detections (treated as false alarms,
because they are outside �J from the ground truth) which
cannot be recovered by the baseline methods. Instead our
context-based model refines these detections to become true
detections. This results in a significant decrease in the number
of false alarms, which implies that the error criteria C (See
Eq. 10) decreases accordingly for large values of the trade-off
parameter α (see Fig. 7 c, f, i): from C > 0.5 for the baseline
methods to C < 0.10− 0.15 for the context-based methods.

Some detection examples on the MIT+CMU database using
fine scanning are presented in Fig. 8. Our method successfully
removes the false alarms, while keeping all the true detections.
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(b) WEB-medium
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(c) WEB-coarse
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(d) CINEMA-fine
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(e) CINEMA-medium
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(f) CINEMA-coarse
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(g) MIT+CMU-fine
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(h) MIT+CMU-medium
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(i) MIT+CMU-coarse

Fig. 7. Unbiased EPC plots on WEB (a, b, c), CINEMA (d, e, f) and MIT+CMU (g, h, i) datasets using fine (left column) and medium (right column)
scanning. Low α value favourites models with higher TAR, while higher α - models with lower FAR. Mid-range α value are considered a good trade-off
between TAR and FA.

To better understand the effect of changing the scanning
resolution, we have also plotted the TAR variance for various
scanning settings (see Fig. 9). We argue that our method suc-
cessfully recovers misaligned detections by moving a wrong
detection (outside �J from the ground truth) to a better location
(within �J ). We dynamically sample around this detection to
assess, independently of other detections, if it is actually a
false alarm. In most situations the context-based model will
accept it and the detection refining algorithm will move it
closer to the ground truth (within �J ). This way in some cases
we report TAR even higher than using no merging at all, while
the baseline methods always decrease the TAR (see Fig. 9).

Another important aspect is that our method has a TAR that
decreases much slower with the scanning resolution than of the
baseline methods. For example the CtxFull method presents a
TAR decrease of approximately 10% at the default threshold
for the BANCA dataset from the fine to coarse resolution,
while the NMS and AMS methods decrease with 40% (see Fig.
9 b vs. f). An important speed-up can therefore be achieved:
it is possible to significantly decrease the scanning resolution,
thus processing fewer sub-windows, while maintaining the
same level of performance using the baseline methods but with

a finer scanning resolution.
On average our proposed method can be up to three times

slower than using NMS or AMS. This is because for each
detection, a fixed number of sub-windows have to be evalu-
ated. Still in most cases these sub-windows can be evaluated
multiple times (mainly because of detection refinement algo-
rithm). Our implementation does not use this fact, but it can be
improved by caching the already evaluated sub-windows. The
time difference can be further reduced using a lower scanning
resolution as previously discussed.

C. Accuracy evaluation

Next we have studied the precision of the face detections
to assess the impact of the clustering method presented in
Section V. For this we have plotted the normalized TAR
for various threshold values of the Jesorsky measure: small
values correspond to precise detections while large values to
imprecise detections. We have used increments of δ�J = 0.05
from �J = 0.10 to �J = 0.50.

The normalized TAR variation with the threshold of the
Jesorsky measure is represented in Fig. 10. The lines pass
through the median of the normalized TAR for all θ values at
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(b) XM2VTS-medium
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(c) XM2VTS-coarse
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(d) BANCA-fine
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(e) BANCA-medium
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(f) BANCA-coarse
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(g) MIT+CMU-fine
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(h) MIT+CMU-medium
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(i) MIT+CMU-coarse

Fig. 10. Normalized TAR for various Jesorsky thresholds on WEB (a, b, c), CINEMA (d, e, f) and MIT+CMU (g, h, i) datasets using fine, medium and coarse
scanning. The results using the NMS merging method are represented with dashed red, using the AMS with dashed magenta, while using the context-based
model with blue (full sampling) and with green (axis sampling). The horizontal axis represents the Jesorsky threshold, while the vertical axis the normalized
TAR.

a specific �J value, with the range of +/-25% from the median
being represented with a filled box.

The full sampling method (Fig. 10 - blue) consistently
outperforms the baseline (Fig. 10 - red) for all scenarios - it’s
TAR saturates faster. For example at the relative low Jesorsky
measure threshold of �J = 0.20, our method detects 10%, 50%
and 30% more detections on the MIT+CMU, XM2VTS and
BANCA scenarios respectively using the fine scanning. This
indicates that our context-based method generates significantly
more accurate detections. This is useful for face localization
and face verification algorithms as they need to be initialized
with as precise detections as possible.

The axis sampling method (Fig. 10 - green) is less accurate
than the full sampling version. Still it has a significantly
higher TAR than the baseline for both the XM2VTS and
BANCA datasets. On the more challenging MIT+CMU dataset
its performance slightly degrades with up to 5%.

We have also performed some face verification experiments
to further assess the improvement in detection accuracy. For
this, we have used a well-known face verification algorithm
[30] implemented using Torch3vision. The BANCA database

was split using the Protocol P [28] and the images with
no detected face were excluded, as it is commonly done
in automatic face verification experiments, independently for
each method.

The unbiased EPC curves are presented in Fig. 11 for
AMS, NMS, the two context-based models and the manual
annotation case (Manual). It can be noticed that the detections
obtained with our context-based method are significantly more
useful for face verification. The improvement is much more
prominent for the medium and coarse scanning, even for the
axis sampling variant. This result validates once more the
conclusion that our method is less sensitive to the scanning
resolution obtained in the previous section.

VIII. CONCLUSION

This paper has presented a new post-processing technique
for object detection that models the output (context) of an
object classifier. We focused on processing multiple detections
and false alarms in a more principled way and less sensitive
to the scanning resolution than the baseline methods.

Experiments on several popular face databases, using a
popular face classifier, have shown a significant increase in
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(a) BANCA-fine (b) BANCA-medium (c) BANCA-coarse

Fig. 11. Unbiased face verification EPC plots on BANCA dataset using fine, medium and coarse scanning. The results for manual annotation are represented
with dashed black line.

(a) NMS (b) CtxFull

(c) NMS (d) CtxFull

(e) NMS (f) CtxFull

Fig. 8. Detections on the MIT+CMU database using fine scanning: in the
left column using the NMS baseline method and in the right column using
the context-based model with full sampling. The ground truth bounding boxes
are represented with green, the true detections with blue and false alarms with
red.

performance (higher TAR, exponential lower FA, detections’
accuracy).

Our approach makes several contributions to the object
(face) classifier field. First we have shown that it is possible to
build a simple non-parametric model that learns to distinguish
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(c) XM2VTS-medium

−0.15 −0.1 −0.05 0 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ
T

A
R

 

 

NoMerge
NMS
AMS
Context(Full)
Context(Axis)

(d) BANCA-medium
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(e) XM2VTS-coarse
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(f) BANCA-coarse

Fig. 9. TAR on XM2VTS (a, c, e) and BANCA (b, d, f) scenarios using
fine (top row), medium (middle row) and coarse (bottom row) scanning.

between false alarms and true detections with high accuracy.
Second we have proposed an iterative method that uses the
contextual information to generate more accurate detections.
Finally we have used the Adaptive Mean Shift to cluster
multiple detections.

There are several additional advantages of using our method.
First it is more robust to the scanning accuracy - its per-
formance degrades much slower with the scanning resolu-
tion than the baseline methods. Second it makes the task
for the clustering algorithm much easier because multiple
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related detections are merged using our detection refinement
method to some very close positions and false alarms are
removed successfully. Third the more accurate detections we
obtained improve the performance of the face localization
and verification processes and allows us to recover some
imprecise detections. Finally our experiments have shown that
the context (checked successfully against the context-based
model) gives the right direction where to shift such detections
within the Jesorsky threshold. Another important advantage
is that our algorithm can be initialized with any sub-window
collection and it does not make any assumption on the face
classifier’s score values, its type or the features used.

Still further improvements can be made by: designing more
powerful possible higher dimensional context-based features,
using more powerful non-linear feature classifiers and design-
ing a more efficient sampling method.
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