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Abstract—We study a multichannel sampling scheme, where (%) T@ ] (1)
different channels observe scaled and shifted versions of a 18t — 1) c/b - Ly
S > X 1 1
common bandlimited signal. The channel gains and offsets ar
unknown a priori, and each channel samples at sub-Nyquist Ti
rates. This setup appears in many practical signal processg Yyo[n]
applications, including time-interleaved ADC with timing skews, ad(t — 72) C/ID Reconstruction
unsynchronized distributed sampling in sensor networks, ad
superresolution imaging. In this paper, we propose a new al-
gorithm to efficiently estimate the unknown channel gains ad . T@
offsets. Key to our algorithm is a novel linearization techique, yx[n]
which converts a system of trigonometric polynomial equatins of agd(t — TK) C/D

the unknown parameters to an overparameterized linear sysm.

;I'h? co.mputa';.lond Séeﬁ)s of tthefprop(t)ﬁedd.algoiltht.m b?:” dpwn Fig. 1. A multichannel sampling scheme, where each charbvegroes and
0 lorming a hixed data matrix from the discrete-ime Fourier uniformly samples a scaled and shifted version of a bantgnsignalz(t).

transforms of the observed channel samples and computing The channel gaingay } and offsets{, } are not knowna priori. Our goal
the singular value decomposition of that matrix. Numerical s to reconstructz(t) from its samplesyx[n] = apz(nT — 73), taken at

simulations verify the effectiveness, efficiency, and roksiness of sub-Nyquist rates.
the proposed algorithm in the presence of noise. In the highl$R
regime (40 dB and above), the proposed algorithm significantly

outperforms a previous method in the literature in terms of 0 can pe expensive in terms of hardware costs and power
estimation accuracy, at the same time being three orders of

magnitudes faster. consumption. An attractive alternative is to use a paraliedy
of lower-rate ADCs, working in a time-interleaved fashion

|. INTRODUCTION [7]. In an ideal time-interleaved ADC, the channel gains.

Consider a multichannel sampling scheme shown in Figak}szl in Figure 1) are uniform, and the offsets are

ure 1, where each channel takes uniform samples of a scaled E—1
and shifted version of a common signa(t). We assume Th =
that z(¢) is bandlimited, with its Fourier transform supported . . .

on [~o,0]. Each channel samples at sub-Nyquist rates, whereK is the total number of ADCs, ang'T is the sgmphng

1/T < o/x. rate at each channel. The samplgg.[n]} from different

When the channel gain{ixk}szl and offsets{m}?:l are channe_ls can then be dlrectl_y mulUpIexed into a _smgleaa_;nr,e
known, the problem of reconstructing the inputt) from emula_tlng the effect of a \_/lrtual single ADC with a higher
its samples{yk[n]}szl is linear. In fact, this task becomesSampling ratel/T'. In practice, however, mismatches among

a special case of the classical Papoulis generalized sagnpﬁhe ADQS lead to nonuniform channel gains as well as timing
scheme [1], whose extensions and variations have been-ex@ffWs:i-€. b1

sively studied in the literature (seeg, [2]—[6]). In this paper, Ty = ——
we consider the more challenging case where—in addition to

x(t)—the gains and offsets are also part of the unknown. for some unknown{d;.}. Consequently, in order to maintain
the performance of the ADC, it is necessary to first estimate

A. Motivations the unknown gains and offsets, and then to apply digital
The multichannel sampling setup described above appears@mpensation to the samples (seq, [8], [9]).

many practical signal processing applications, some otkvhi Example 2 (Distributed Sampling)fhe model in Figure 1

we highlight below. can also describe a distributed sampling scenario [10]yevhe
Example 1 (Time-Interleaved ADCspesigning a single we useK sensors to observe a common bandlimited source

analog-to-digital converter (ADC) with very high samplingsignal z(¢). In many applications€.g, sound recording in

T, 1)

T + 6k,



non-reverberant rooms, underwater acoustics, etc.), the in this work, we assume that (w) is bandlimited to a fixed
known channel from the source to each sensor can be walterval [—o, o] for somes > 0. The corresponding Nyquist
approximated by a one-tap filter,6(¢t — 7). The coefficient rate iso/7. We use|«| to denote the largest integer less than
aj and delayr, are determined by the relative distancer equal to a real numbex; similarly, [a] is the smallest
between the source and the sensor, as well as the physictdger greater than or equal t0
properties of the medium. The signals observed at different
sensors are highly correlated—after all, they are justréitte
versions of the same signal, albeit with unknown filter pa- Suppose that an input signa(t) is sampled by channels,
rameters. Therefore, intuitively, each sensor should He a@s in Figure 1. We denote by
to sample at a sub-Nyquist rate, but still allowing for petfe def
reconstruction at a central decoder. yeln] =
Example 3 (Superresolution Imagingk 2-D extension of the samples taken at thgh channel. Applying the standard
the sampling setup in Figure 1 serves as a fundamental moskainpling formula in the frequency domain, we calculate the
in super-resolution imaging, where one wants to reconstrucdiscrete-time Fourier transform gf,[n] as
higher-resolution image from a set of lower-resolution ges

Il. PRELIMINARIES

arx(nT — 11)

. . . . def —jnTw
that are slightly shifted with respect to each other. In tzise, Yi(w) £ yeln]e
the filter at each channel can be writtenaas)(t; — 7%, t2 — n€z _
&), where the coefficient, models the exposure differences = ay, Z x(nT — 7) e InTw
between images and, & the relative shifts of théth image nez
along the horizontal and vertical axes, respectively. _ % Z X (w + me) e—iwrme) i )
B. Contributions and Paper Outline meL

The main contribution of this paper is a new noniterativigherec % 2r/T is a constant that will appear in many of our
algorithm that can efficiently estimate the unknown channgler derivations.

gains and offsets. Our algorithm relies on a subspace-basegthe expression in (2) implies that),(w) is a periodic

rank condition derived in an earlier work of Vandewade function with periodc, since Yy (w) = Yi(w + ¢) for all w.

al. [11]. However, unlike in [11] where the unknown systentonsequently, we only need to focus Bp(w) within a single

parameters are estimated by exhaustively testing the ragéfiod of lengthe. In what follows, we shall always assume

condition, our algorithm exploits the rank condition muclhat the frequency variable falls within the interval

more efficiently, converting a nonlinear minimization plexin def

into a linear system of equations via overparameterization we€P=[-0,—0+c) 3)
Thg rest of_thls paper is organized as fpllows. In Secuonlll, Since X (w) has a finite support, the summation in (2)

we briefly review the multichannel sampling setup and de”‘fﬁvolves o

: ) _ oo e nly a finite number of nonzero terms. First, coesid
a matrix-vector model in the Fourier domain, linking the . def . . L
. . aépemal case wheh/ = 20/c is an integer. This implies
observed channel samples to the unknown input signal atn

system parameters. Based on this forward model, we show, hr?t lﬁ?set f:trggll:r:ﬁer?rt]e litseiaﬁgcgaarﬂ; t?l)i(semsﬂewtuth ?/:éhfan
Section 11l the minimum sampling rate each channel shou q P gnal(t). P:

use to ensure unique signal recoveries. The focus of thierpa%erlfy that (2) reduces to a finite sum of terms

is on Section 1V, where we first have a streamlined derivation a M-1 i(wime)
of the rank condition of [11] and then present a new estimatio Yilw) = - > X(w+me)e I @tmame 4)
algorithm based on a linearization technique. In particwie m=0

convert a system of trigpnometric polynomial equations d&6r w satisfying (3).

the unknown parameters derived from the rank condition toln general, wher2s/c is not an integer, the situation is
an overparameterized linear system. The computation stefightly more complicated. We demonstrate this through an
of the proposed algorithm then boil down to forming a&xample in Figure 2. It is clear from the visualization tha w
fixed data matrix from the discrete-time Fourier transform®eed to distinguish between two sub-intervals

of the observed channel samples and computing the singular _ 4e¢ def
value decomposition of that matrix. Numerical simulatioms ! = [~o,—o+7) and P2 =[-0+r—0c+c) ()

Section V verify the effectiveness, efficiency, and robasgof |, hare, % 9, _ 120/¢c|c is the remainder of the “floored

the proposed algorithm in the presence of noise. We concludi€ision” of 2o by ¢. As shown in the figure, whea € P,

in Section V1. up to[20/¢] spectral segments will be “aliased” on top of each

_ thations: We summarize below the ma_in notatiqns useiherin forming (2). When € P», the number of overlapping
in this paperX (w) denotes the continuous-time Founertranss-pectra| segments becomi/c|. Defining
form of z(t), defined as
def iy def | [20/c] forw e Py
X(w) = /RCU(L‘)@ tdt. Mw) = {po—/cj forwe Py’



Il. MINIMUM SAMPLING RATES FORUNIQUE
RECONSTRUCTIONS

In this section, we study the following question: For the
input z(t) to be uniquely determined by its samplgg.[n]},
how many channels do we need and how often should each

@) channel take samples? In particular, we are interested in
deriving minimum sampling rates which still allow for unigu
v reconstructions.
,HT| k(W) We start by considering the simple case where the channel
[ [ RN gainsa and offsetsr are known.
S~ Proposition 1: Supposed that the channel gains and
, ~L-7 Tjeee offsetsT are known. The input signal(¢) is uniquely specified
, i I by its samplesf and only if the following two conditions
-0 —o+c —0+2c w holds:
(0) 1) The sampling rate at each channel is lower bounded by
Fig. 2. lllustration of frequency aliasing (overlapping)edto downsampling. 1 o
(a) The continuous-time Fourier transfoti(w) of the input signal. (b) The - 2 = (8)
discrete-time Fourier transforr (w) of the sampled sequence according T K
to formula (2). For simplicity, we assume thai = 0. Intuitively, Y}, (w) :
consists of several overlapping spectral segment¥ @5). More specifically, 2) Among thek offsets {_Tk}’ _th?re e_XISt at IeasﬂZq/c]
for w € P1 = [—0,—0 + r), there are three (equal 2o /c]) spectral of them such that their pairwise differences satisfy
segments “folded” on top of each other. korc Py = [—0 + r,—0 + ¢),
the number of overlapping spectral segments is two (equédg'c|). (e —1)/T ¢ Z. (9)

Proof: We note that the unicity condition is equivalent to
we can combine the above two cases, and simplify (2) as the invertibility of the matrix-vector equation (7) linkgnthe

M(w)—1 unknownX (w) to the observation¥ (w). This, in turn, boils
Yi(w) = Ok X(w+me)ei@tmam (g down to checking whether the matm(_T(w_)AaVT in (7) has
T = full column rank for (almost) allv satisfying (3).

Sufficiency The bound (8) on sampling rates implies that
K > [20/c]. Consequently, the matriA,(w)A,V - always
has at least as many rows as its columns. Furthermore, for any
%, T¢ Satisfying (9),

Note that wher2o/c is an integer, the sub-interval is empty
and (6) reduces to (4).

LetY (w) E'[¥1(w), Ya(w),. .., Yi(w)]T be a vector of the
Fourier transforms of thé( channels, and let

X (w) Z'X (w), Xo(w + ¢), ..., X(w+ (M(w) — 1)e)]T

be an M (w)-dimensional vector formed fronX (w). The 1-€, e 7™ # 7™, Since we have at leaglo/c] offset

equality (6) can be written in a compact matrix-vector formvalues satisfying this pairwise condition, we can concltide
the Vandermond matri¥ - has full column rank. It follows

Y(w)=Ar(w) AoV, X (w), (") that A, (w)AaV - has full column rank as well, since the

where A, (w) def diag {efjwﬁc} and A, def diag {ay,/T} are diagonal matricesxT(w) and A, are always invertible.
Necessity If (8) does not hold, thenK' < [20/c]. In

eIk [eTICTe — e—I2m (T —70)/T £1,

two diagonal matrices, ) )
this case, and fow € P, the matrix A-(w)A,V - has

T more columns than rows, preventing it from having full
g |1 eI L emdeM@) =l column rank. Similarly, if we cannot finf2o /c] offset values
V= . . . : satisfying the pairwise condition (9), the Vandermonderinat
' ; ' o V- will not contain [20/c] linearly independent rows, and
1 oemdeme L erdeMW D thus it does not have full column rank. n
is a K x M(w) Vandermonde matrix, and def o, ak]T Remark 2:The requiremgnt in (9) is .intuitive. If we have
def T i two channels such that their offsets satisfy— 7, = NT, for
andr = [r,... ,_TK] denote the unknown channel gains angome integetV, then
offsets, respectively.
Remark 1:In (7), we could have combined .(w) and ye[n] = ag z(nT — 73)
A, into a single diagonal matrix. We choose to separate = (/o) g x(nT — NT — 1)

the two, because the former is a functionwfwhereas the .
. . . . : = (ag/ag) ye[n — NJ.

latter is a constant matrix. This property will be exploited

in the derivation of the proposed reconstruction algorihm In this case, the samples taken at #tk channel are merely

Section V. scaled and shifted versions of those taken at/thechannel,



and thus do not carry any additional information. The reguir IV. AN EFFICIENT RECONSTRUCTIONALGORITHM
ment in (9) is almost always satisfied in practice. In fact, 1&
we are to draw the offset valuds;} from some continuous "~
probability distributions €.g, uniform distributions), then (9)  In principle, given the forward model (7) of the multichan-
holds with probability one. nel sampling process, we can estimate the input signal and
Next, we consider the more challenging case where tH8known parameters as follows:
channel gains and offsets are unknown, which is the focus CEL A
: o X : z(t), o, T)
this work. To be clear, it is impossible to completely detigren

Subspace Condition for Parameter Estimation

the unknown signat(t) and parametersay, } and{r;} from = arg min / Y (w) = Ar(w) Aa Vi X (w)|*dw.
the channel samples. In fact, for any# 0 andr # 0, the (z(t),e,T)EX JwEP
following signal/parameter combinations ) ) o ) (1?) )
Solutions to this optimization problem are maximum likeli-
hood estimators of the unknown signal/parameters undegewhi
{z(t), an, 7, 1 <k < K} : . . .
Gaussian noise. We observe that (12) is a separable nonlinea
and least-squares problem [14]: If we knew the parameters,
a the corresponding optimal estimate oft)—given via its
{Oéf(t =), o Tk +71<k< K} equivalent frequency domain representati¥iw)—is
will generate the same channel outputs. To avoid this intiere X (W) = (Ar(w) Aa V)Y (),

ambiguity, we fix the gain and offset of the first channel toh i denotes the M P lized i f
a; = 1 and7 = 0 in our following discussions. where(-)T denotes the Moore—Penrose generalized inverse o

Let BL(o) represent the space of bandlimited functions witﬁ1 .”?atT'X- .On substituting this (w) into (12), the original
minimization problem becomes
frequency support—o, o]. Denote by

(a,T) = arg min/EPH(I —(Ar(w)Aa V)

Xd:efBL(O')X{QERK:Oq:l}X{TERK:le()} T
X (Ar (@) Ao V)Y (W) dw,
the combined set of all unknowns in our problem. Let (13)
where the unknown signaX (w) has been eliminated.
B dﬁf{(z(t),a,r) e X :3(z(t),a,T) € X s.t.x(t) # z(t) In practice, it is still challenging to solve the simpli-
— fied problem in (13). Local descent algorithms (such as
but Ar(w) Aa V- X(w) = A7(w)Ag V= X(w)}- the variable projection method [14]) are not useful in this

. _ . _ (10) particular problem, because the structure of the parametri
It consists of those instances of the input sign@), channel matrix A, (w) A V- lead to many local minima in the cost
gainsa and offsetsr that cannot be uniquely determined byfynctional.
the channel samples. In other words, we cannot distinguishin what follows, we further simplify the parameter estima-
between the channel output§(w) generated by{z(t), &, 7}  tion task by separatinge and =. Our derivation relies on a

and those by{z(t), &, 7}, for someZ(t) # x(t). subspace-based rank condition originally proposed in.[11]
Proposition 2: The “unrecoverable setB in (10) is a set | et A* (w) %' diag {ei7} denote the complex conjugate
of measure zerdf and only if of A, (w). Multiplying both sides of (7) byA (w), we get
1,7 (11) ALW)Y () = A Vi, X (w). (14)
T Kr
_ Whenw € P, as defined in (5)AoV - is a constantk x
We leave the proof of this result to [12]. |20/c| matrix. The equality (14) implies that
Remark 3:Comparing the above bound to the one in (8),
we see that each channel needs to be (slightly) oversampled, A (W)Y (w) e R(AaV L), (15)

when the channel gains and offsets are unknown. Intuitively

we need this redundancy (by oversampling) to compensate fgereR (AaV'-) denotes the range space ALV ;.
the parameter uncertainties. More generally, le{wq,ws,...,wn} C Py be a set ofN

Remark 4:Strictly speaking, we do not have the usuaflrequency points, and constructe x IV data matrix

notion of “measure zero” in Blo), as there is no analog def
of Lesbegue measure on infinite-dimensional Hilbert spacés™
A more rigorous statement of Proposition 2 should th

be based on the concept pfevalence[13], which extends e follows from (15) that
Lesbegue “almost everywhere” to infinite-dimensional gisac R(D;) CR(AaV ). (17)
More details about this technicality can be found in [12].

[AZ(w1)Y (w1), AZ(w2)Y (w2), ..., AZ(wn)Y (wn)] -
(16)



Proposition 3 (Rank Test [11])Suppose that the samplingand X (w) can be obtained by standard linear inversions. In
rate at each channel satisfies (11) and that— 7,)/T ¢ Z [11], the channel offsets are estimated by solving (21) in
forall 1 <k </¢<K.Then an exhaustive fashion, with very high computational cast. |
the following section, we propose a novel noniterative way t

rank (D-) < [20/c], (18) exploit the rank condition (18), which allows us to estimate
with equality holding when the “signal matrix” the unknown offsets in a single step.
g %f (X (w1), X (w2), ..., X (wy)] (19) B. A Noniterative Algorithm for Estimating the Channel Off-

. sets
is of full row rank.

Proof: It follows from (17) that For simplicity of exposition, we focus on a specific case

where we havd({ = 3 channels in the system. The sampling
rank (D;) <rank (AqV.). (20) ratel/T at each channel is chosen so thad/c| = 2. Under

L . these settings, we can write the ma defined in (16) as
Furthermore, when the matrix in (19) is of full row rank, 9 k- (16)

D, spans the full range space Af, V-, in which case (20) Y71 (w1) Y7 (w2) e Y1 (wn)
becomes an equality. In what follows, we just need to shoyy_ — Ya(w1)edr ™ Yy(wa)ed®2™ .. Ya(wy)el“nT
thatrank (Ao V ;) = [20/c|. Yg(wl)ejwﬂs Yg(wg)ej“’zﬁ” o YB(MN)ejsza

The condition (11) on sampling rate implies that >
oT/m = 20/c. This makesA,V - a “tall” matrix, having Since we set; = 0, we have omitted the termfe/»™ } in
more rows than columns. Meanwhile, the condition on offséie above expression.
values guarantees that, V- has full column rank, thanks to  To further simplify D.., we set the frequency poin{s,, }
the Vandermonde structure & .- (see the proof of Proposi- to be
tion 1 for a similar argument). | wn = Awn, (22)

In practice, we can choose the number of frequency points
N to be much greater thaif, and hence the data matr®,, for someAw > 0. Substituting (22) into the above formula
of size K x N, is a very “wide” matrix. Proposition 3 implies for D-, and writing

that D is rank deficient. This suggest that we can estimate def def jnwn def jAwr
the unknown offsets- by solving the following minimization Yin =Yi(wn), u=e , andv='e ’
problem [11] we can rewriteD., as
T =argmin ok (D,), (21)
T " Yia Yio ... Yin
whereo i (-) represents théth singular value of a matrix. D, = |Yo1u Yopu? ... Yoyul|. (23)
Once we obtairr from (21), we can subsequently estimate Yaiv Yiov? ... Yzyol

the channel gaingx as follows. Without loss of generality, o

we assume thak = [20/c] + 1. (If K > [20/c| + 1, The task of estimating the unknown channel offsts, 3 }
we then choose to work with the fir$2o/c| + 1 channels.) Pecomes that of estimating the two parameteend .
Under this setting, bottD.. and V. are of co-dimension one. From Proposition 3, the above x N matrix is of rank

T . .« .
Consequently, we can find two vectats, n. satisfying |20 /c| = 2. It follows thgt the null space @b is nontrivial,
and thus there must exist someandb such that

n{D,=0 and niV,=0,
1 —a b D;=0, (24)
which are unique up to scalar multiplications. o _
Recall thatD, = A,V .S, whereS is the signal matrix Combining (23) and (24) leads to the following set of equa-

defined in (19). It follows that tions

0=nTD,=nTA,V.S. Yipn=Ys,au" +Y3,00", forl<n<N, (25)

When S is of full row rank, the above equality implies thatand our goal is to estimate and v from the observations
(nTAy)V .- = 0. It follows from the unicity ofn, that {Yl,n,Yz,nJ%,n}fj:l-

The above setup is reminiscent of the classical harmonic
retrieval problem [15]. The challenging aspect is that, im o
for some unknown scalas. The channel gains are obtainedroblem, the unknown exponential sequenges and bv"
as oy = sTngx/n1k, With the uncertainty about resolved are “modulated” by two sequencks,, andYs ,,, respectively.
by the assumption that; = 1. We can also show [12] that This complication makes the classical algorithms for hatimo
n1 # 0 and thus the division operations are always feasibletrieval (such as the annihilation filter method [15]) iphp

It is clear from the above discussions that estimating tié@ble.
channel offsetsr is the key step in the reconstruction algo- In what follows, we propose a new algorithm for estimating
rithm. Once we obtain estimates of the other unknowns:  © andv, based on the idea of overparameterization.

anAa = 5ng,



Proposition 4: If the matrix D.. in (23) is rank deficient, unknowns by computing the SVD of a constant matrix of
then size(N —2) x K. It appears daunting that the computational
(YinsoVons1Ysn)t — (YinsoYonYani1)v complexity is combinatorial with respect Iﬁ: ngever, for

’ ’ ' Ty 9 relatively small values of (e.g, K < 6)—which is often the
~ Mt Yoni2¥an) 0™ + (YinYans2Vane) u'v case in many practical applications—the problem dimerssion
+ (Vi1 YanYang2) 02 — (YinYoni1Yans2) wv® =0, (61 = 720) is still well-within the capabilities of standard

numerical algorithms and computers.
foril<n<N-2.

Proof: It follows from the rank deficiency aD.. that any
three consecutive columns @, must be linearly dependent. V. NUMERICAL RESULTS
In other words, we have
In this section, we verify the performance of the proposed
algorithm through several numerical simulations. In alr ou
det | |Yonu™ Youpiu™h Youpou™™2| [ =0, experiments, we assume thit= 3 and1/T = o¢/(2x). This
Y3n 0" Y3pp1 0"t Y3, 00m12 corresponds to a sampling setup where we have three channels
each sampling at one-half of the Nyquist rate. The input
signal z(t) is randomly generated, with its Nyquist samples
drawn from an i.i.d. Gaussian distribution. We also add &vhit
Gaussian noise to the channel samp{gs[n]}, to emulate
Yin Yipt Y1 nto a wide range of signal-to-noise ratios (SNR). At each SNR
det | |Yon Yompiu Yoniou?| | =0. (27) Vvalue, we randomly choose the two unknown offsefsrs
’ ’ ’ from a uniform distribution or{0, T)>. We run the proposed
estimation algorithm oveb000 such realizations.

Expressing (27) by using the Leibniz formula [16] for matrix \We show in Figure 3 the mean absolute error in offset
determinants, we are done. B estimation as a function of SNR values (ranging from 5 dB
Note that (26) in Proposition 4 is a linear equality involvto 70 dB). An error ofl.0 corresponds to an entire sampling
ing six unknownsu, v,u?, u?v,v? and uv?. By varying the period7. For comparison, we also show the results obtained
frequency index: from 1 to V — 2, we can construct from py the rank-based method proposed in [11], which directly
(26) the following matrix equation solves the minimization problem (21) through an exhaustive

T search on a coarse grid followed by local refinements. We
A [u v out wlv o qu] =0, (28) observe from the figu?e that the propyosed algorithm achieves
where A is a matrix of size(N — 2) x 6 whose rows are a lower estimation error than the rank-based method, amtsten
formed by the constant coefficients in (26). to be more consistent.¢., with lower standard deviations).
When N > 7, we can show [12] thatank(A) = 5, except Figure 4 plots the success rate as a function of the SNR. We
for certain degenerate cases. This ensures that the nab gfa define successful estimation as those whose absolute areors
A has dimension one, and thus the unknown parameter vectoraller thar0.001. In medium to high SNR regimes (above
[u v ou? uwv v? UUQ]T can be uniquely determineddB), the proposed algorithm possesses superior success rat
(up to a scalar) by computing the singular value decompusitithan the rank-based method. At lower SNR values, the latter
(SVD) of A and picking its right singular vector living in the becomes better, mainly due to its exhaustive search syrateg
null space. Nonetheless, the performance of the proposed method remain
Remark 5:To be sure, the six unknown parameters he@ose.
(u, v, u?,u?v,v? and uwv?) are redundant. From a “parsimo- The proposed algorithm is noniterative. Its computation
nious” perspective, the expression in (28) should be in&teg  steps boil down to forming a fixed data matrix (as in (28)) from
as a system of trigonometric polynomial equations of vdeisb the frequency values of the channel samples and computing
u andv. However, numerically solving systems of polynomiathe SVD of that matrix. Consequently, its computational
equations is a challenging task. Existing techniques (stschcomplexity is much lower than that of the rank-based method
the Grobner basis method [17]) are highly sensitive to mismein [11], which contains an exhaustive search step. We have
cal precisions and noise in the data. In the proposed approamplemented both the proposed method and the rank-based
we treat the six parameters as if they were independent. Thisthod in MATLAB. In our experiments, the former is about
overparameterized perspective, albeit slightly reduhdaads 1600-times faster than the latter in terms of CPU time. At
to a linear problem formulation, for which many mature antbwer SNR regimesg.g, 35 dB or lower), we find it beneficial
robust numerical procedures.§, SVD) are available. to add a local refinement step (see [12]) to the proposed
Remark 6: The result of Proposition 4 can be extended tmethod. Even with the additional computational cost inedrr
arbitrary K channels [12]. In general, the rank condition iy this local refinement stage, the proposed method is still
Proposition 3 leads to a system of linear equations viith about30 to 40 times faster than the rank-based method, all the
unknowns. As long asV > K! + 1, we can solve these while delivering similar or superior estimation perforncas.

}/1.,71 }/1.,n+1 }/1,n+2

for 1 <n < N —2. Since|u| = |v| = 1, we can multiply
the above matrix on the left bgiag{1, v~ ™, v="} without
changing its determinant. It follows that

2
}/S,n }/3.,n+1'U }/3,n+2v
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Fig. 3. Mean absolute error in offset estimation as a functibthe SNR.
An error of 1.0 corresponds to an entire sampling periBdResults shown in
the figure are averaged ov&®00 simulations with randomly selected offsets. [9]
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Fig. 4. Success rate as a function of the SNR. An estimatiode@ned
successful if the absolute error in offset estimation islEn#an 0.001.

VI. CONCLUSION

This paper presents a detailed treatment of a multichannel
sampling problem, where the channel gains and offsets are
unknown. We derived the minimum sampling rates for unique
signal recovery and, as our main contribution, proposed a
novel algorithm that can efficiently estimate the unknown
gains and offsets. Our developments centered around ways to
efficiently exploit a subspace-based rank condition. Bygisi
a linearization technique, we convert the original nordine
problem to a system of linear equations, whose solutiorss lea
to the unknown system parameters. The proposed algorithm
has low computational complexity, and can be solved by
computing the SVD of a fixed data matrix. Numerical results
confirm the effectiveness, efficiency, and robustness of the
proposed algorithm in the presence of noise.
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