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Abstract—We study a multichannel sampling scheme, where
different channels observe scaled and shifted versions of a
common bandlimited signal. The channel gains and offsets are
unknown a priori, and each channel samples at sub-Nyquist
rates. This setup appears in many practical signal processing
applications, including time-interleaved ADC with timing skews,
unsynchronized distributed sampling in sensor networks, and
superresolution imaging. In this paper, we propose a new al-
gorithm to efficiently estimate the unknown channel gains and
offsets. Key to our algorithm is a novel linearization technique,
which converts a system of trigonometric polynomial equations of
the unknown parameters to an overparameterized linear system.
The computation steps of the proposed algorithm boil down
to forming a fixed data matrix from the discrete-time Fourier
transforms of the observed channel samples and computing
the singular value decomposition of that matrix. Numerical
simulations verify the effectiveness, efficiency, and robustness of
the proposed algorithm in the presence of noise. In the high SNR
regime (40 dB and above), the proposed algorithm significantly
outperforms a previous method in the literature in terms of
estimation accuracy, at the same time being three orders of
magnitudes faster.

I. I NTRODUCTION

Consider a multichannel sampling scheme shown in Fig-
ure 1, where each channel takes uniform samples of a scaled
and shifted version of a common signalx(t). We assume
that x(t) is bandlimited, with its Fourier transform supported
on [−σ, σ]. Each channel samples at sub-Nyquist rates,i.e.,
1/T < σ/π.

When the channel gains{αk}
K
k=1 and offsets{τk}

K
k=1 are

known, the problem of reconstructing the inputx(t) from
its samples{yk[n]}

K
k=1 is linear. In fact, this task becomes

a special case of the classical Papoulis generalized sampling
scheme [1], whose extensions and variations have been exten-
sively studied in the literature (see,e.g., [2]–[6]). In this paper,
we consider the more challenging case where—in addition to
x(t)—the gains and offsets are also part of the unknown.

A. Motivations

The multichannel sampling setup described above appears in
many practical signal processing applications, some of which
we highlight below.

Example 1 (Time-Interleaved ADCs):Designing a single
analog-to-digital converter (ADC) with very high sampling
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Fig. 1. A multichannel sampling scheme, where each channel observes and
uniformly samples a scaled and shifted version of a bandlimited signalx(t).
The channel gains{αk} and offsets{τk} are not knowna priori. Our goal
is to reconstructx(t) from its samplesyk[n] = αkx(nT − τk), taken at
sub-Nyquist rates.

rate can be expensive in terms of hardware costs and power
consumption. An attractive alternative is to use a parallelarray
of lower-rate ADCs, working in a time-interleaved fashion
[7]. In an ideal time-interleaved ADC, the channel gains (i.e.,
{αk}

K
k=1 in Figure 1) are uniform, and the offsets are

τk =
k − 1

K
T, (1)

whereK is the total number of ADCs, and1/T is the sampling
rate at each channel. The samples{yk[n]} from different
channels can then be directly multiplexed into a single stream,
emulating the effect of a virtual single ADC with a higher
sampling rateK/T . In practice, however, mismatches among
the ADCs lead to nonuniform channel gains as well as timing
skews,i.e.,

τk =
k − 1

K
T + δk,

for some unknown{δk}. Consequently, in order to maintain
the performance of the ADC, it is necessary to first estimate
the unknown gains and offsets, and then to apply digital
compensation to the samples (see,e.g., [8], [9]).

Example 2 (Distributed Sampling):The model in Figure 1
can also describe a distributed sampling scenario [10], where
we useK sensors to observe a common bandlimited source
signal x(t). In many applications (e.g., sound recording in



non-reverberant rooms, underwater acoustics, etc.), the un-
known channel from the source to each sensor can be well-
approximated by a one-tap filterαkδ(t − τk). The coefficient
αk and delay τk are determined by the relative distance
between the source and the sensor, as well as the physical
properties of the medium. The signals observed at different
sensors are highly correlated—after all, they are just filtered
versions of the same signal, albeit with unknown filter pa-
rameters. Therefore, intuitively, each sensor should be able
to sample at a sub-Nyquist rate, but still allowing for perfect
reconstruction at a central decoder.

Example 3 (Superresolution Imaging):A 2-D extension of
the sampling setup in Figure 1 serves as a fundamental model
in super-resolution imaging, where one wants to reconstruct a
higher-resolution image from a set of lower-resolution images
that are slightly shifted with respect to each other. In thiscase,
the filter at each channel can be written asαkδ(t1 − τk, t2 −
ξk), where the coefficientαk models the exposure differences
between images andτk, ξk the relative shifts of thekth image
along the horizontal and vertical axes, respectively.

B. Contributions and Paper Outline

The main contribution of this paper is a new noniterative
algorithm that can efficiently estimate the unknown channel
gains and offsets. Our algorithm relies on a subspace-based
rank condition derived in an earlier work of Vandewalleet
al. [11]. However, unlike in [11] where the unknown system
parameters are estimated by exhaustively testing the rank
condition, our algorithm exploits the rank condition much
more efficiently, converting a nonlinear minimization problem
into a linear system of equations via overparameterization.

The rest of this paper is organized as follows. In Section II,
we briefly review the multichannel sampling setup and derive
a matrix-vector model in the Fourier domain, linking the
observed channel samples to the unknown input signal and
system parameters. Based on this forward model, we show in
Section III the minimum sampling rate each channel should
use to ensure unique signal recoveries. The focus of this paper
is on Section IV, where we first have a streamlined derivation
of the rank condition of [11] and then present a new estimation
algorithm based on a linearization technique. In particular, we
convert a system of trigonometric polynomial equations of
the unknown parameters derived from the rank condition to
an overparameterized linear system. The computation steps
of the proposed algorithm then boil down to forming a
fixed data matrix from the discrete-time Fourier transforms
of the observed channel samples and computing the singular
value decomposition of that matrix. Numerical simulationsin
Section V verify the effectiveness, efficiency, and robustness of
the proposed algorithm in the presence of noise. We conclude
in Section VI.

Notations: We summarize below the main notations used
in this paper.X(ω) denotes the continuous-time Fourier trans-
form of x(t), defined as

X(ω)
def
=

∫

R

x(t) e−jωtdt.

In this work, we assume thatX(ω) is bandlimited to a fixed
interval [−σ, σ] for someσ > 0. The corresponding Nyquist
rate isσ/π. We use⌊α⌋ to denote the largest integer less than
or equal to a real numberα; similarly, ⌈α⌉ is the smallest
integer greater than or equal toα.

II. PRELIMINARIES

Suppose that an input signalx(t) is sampled byK channels,
as in Figure 1. We denote by

yk[n]
def
= αk x(nT − τk)

the samples taken at thekth channel. Applying the standard
sampling formula in the frequency domain, we calculate the
discrete-time Fourier transform ofyk[n] as

Yk(ω)
def
=

∑

n∈Z

yk[n] e−jnTω

= αk

∑

n∈Z

x(nT − τk) e−jnTω

=
αk

T

∑

m∈Z

X(ω + mc) e−j(ω+mc) τk , (2)

wherec
def
= 2π/T is a constant that will appear in many of our

later derivations.
The expression in (2) implies thatYk(ω) is a periodic

function with periodc, sinceYk(ω) = Yk(ω + c) for all ω.
Consequently, we only need to focus onYk(ω) within a single
period of lengthc. In what follows, we shall always assume
that the frequency variableω falls within the interval

ω ∈ P
def
= [−σ,−σ + c). (3)

Since X(ω) has a finite support, the summation in (2)
involves only a finite number of nonzero terms. First, consider
a special case whenM

def
= 2σ/c is an integer. This implies

that the sampling rate at each channel is exactly1/M th of the
Nyquist rate of the input signalx(t). Under this setup, we can
verify that (2) reduces to a finite sum ofM terms

Yk(ω) =
αk

T

M−1∑

m=0

X(ω + mc) e−j(ω+mc) τk (4)

for ω satisfying (3).
In general, when2σ/c is not an integer, the situation is

slightly more complicated. We demonstrate this through an
example in Figure 2. It is clear from the visualization that we
need to distinguish between two sub-intervals

P1
def
= [−σ,−σ + r) and P2

def
= [−σ + r,−σ + c), (5)

where r
def
= 2σ − ⌊2σ/c⌋c is the remainder of the “floored

division” of 2σ by c. As shown in the figure, whenω ∈ P1,
up to⌈2σ/c⌉ spectral segments will be “aliased” on top of each
other in forming (2). Whenω ∈ P2, the number of overlapping
spectral segments becomes⌊2σ/c⌋. Defining

M(ω)
def
=

{
⌈2σ/c⌉ for ω ∈ P1

⌊2σ/c⌋ for ω ∈ P2

,
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Fig. 2. Illustration of frequency aliasing (overlapping) due to downsampling.
(a) The continuous-time Fourier transformX(ω) of the input signal. (b) The
discrete-time Fourier transformYk(ω) of the sampled sequence according
to formula (2). For simplicity, we assume thatτk = 0. Intuitively, Yk(ω)
consists of several overlapping spectral segments ofX(ω). More specifically,
for ω ∈ P1 = [−σ,−σ + r), there are three (equal to⌈2σ/c⌉) spectral
segments “folded” on top of each other. Forω ∈ P2 = [−σ + r,−σ + c),
the number of overlapping spectral segments is two (equal to⌊2σ/c⌋).

we can combine the above two cases, and simplify (2) as

Yk(ω) =
αk

T

M(ω)−1∑

m=0

X(ω + mc) e−j(ω+mc) τk . (6)

Note that when2σ/c is an integer, the sub-intervalP1 is empty
and (6) reduces to (4).

Let Y (ω)
def
= [Y1(ω), Y2(ω), . . . , YK(ω)]T be a vector of the

Fourier transforms of theK channels, and let

X(ω)
def
= [X(ω), X2(ω + c), . . . , X(ω + (M(ω) − 1)c)]T

be an M(ω)-dimensional vector formed fromX(ω). The
equality (6) can be written in a compact matrix-vector form

Y (ω) = Λτ (ω)Λα V τ X(ω), (7)

whereΛτ (ω)
def
= diag

{
e−jωτk

}
andΛα

def
= diag {αk/T } are

two diagonal matrices,

V τ

def
=




1 e−jcτ1 . . . e−jc(M(ω)−1)τ1

1 e−jcτ2 . . . e−jc(M(ω)−1)τ2

...
...

. ..
...

1 e−jcτK . . . e−jc(M(ω)−1)τK




is aK×M(ω) Vandermonde matrix, andα
def
= [α1, . . . , αK ]T

andτ
def
= [τ1, . . . , τK ]T denote the unknown channel gains and

offsets, respectively.
Remark 1: In (7), we could have combinedΛτ (ω) and

Λα into a single diagonal matrix. We choose to separate
the two, because the former is a function ofω whereas the
latter is a constant matrix. This property will be exploited
in the derivation of the proposed reconstruction algorithmin
Section IV.

III. M INIMUM SAMPLING RATES FORUNIQUE

RECONSTRUCTIONS

In this section, we study the following question: For the
input x(t) to be uniquely determined by its samples{yk[n]},
how many channels do we need and how often should each
channel take samples? In particular, we are interested in
deriving minimum sampling rates which still allow for unique
reconstructions.

We start by considering the simple case where the channel
gainsα and offsetsτ are known.

Proposition 1: Supposed that the channel gainsα and
offsetsτ are known. The input signalx(t) is uniquely specified
by its samplesif and only if the following two conditions
holds:

1) The sampling rate at each channel is lower bounded by

1

T
≥

σ

Kπ
; (8)

2) Among theK offsets{τk}, there exist at least⌈2σ/c⌉
of them such that their pairwise differences satisfy

(τk − τℓ)/T /∈ Z. (9)

Proof: We note that the unicity condition is equivalent to
the invertibility of the matrix-vector equation (7) linking the
unknownX(ω) to the observationsY (ω). This, in turn, boils
down to checking whether the matrixΛτ (ω)ΛαV τ in (7) has
full column rank for (almost) allω satisfying (3).

Sufficiency: The bound (8) on sampling rates implies that
K ≥ ⌈2σ/c⌉. Consequently, the matrixΛτ (ω)ΛαV τ always
has at least as many rows as its columns. Furthermore, for any
τk, τℓ satisfying (9),

e−jcτk/e−jcτℓ = e−j2π(τk−τℓ)/T 6= 1,

i.e., e−jcτk 6= e−jcτℓ . Since we have at least⌈2σ/c⌉ offset
values satisfying this pairwise condition, we can concludethat
the Vandermond matrixV τ has full column rank. It follows
that Λτ (ω)ΛαV τ has full column rank as well, since the
diagonal matricesΛτ (ω) andΛα are always invertible.

Necessity: If (8) does not hold, thenK < ⌈2σ/c⌉. In
this case, and forω ∈ P1, the matrix Λτ (ω)ΛαV τ has
more columns than rows, preventing it from having full
column rank. Similarly, if we cannot find⌈2σ/c⌉ offset values
satisfying the pairwise condition (9), the Vandermonde matrix
V τ will not contain ⌈2σ/c⌉ linearly independent rows, and
thus it does not have full column rank.

Remark 2:The requirement in (9) is intuitive. If we have
two channels such that their offsets satisfyτk − τℓ = NT , for
some integerN , then

yk[n] = αk x(nT − τk)

= (αk/αℓ)αℓ x(nT − NT − τℓ)

= (αk/αℓ) yℓ[n − N ].

In this case, the samples taken at thekth channel are merely
scaled and shifted versions of those taken at theℓth channel,



and thus do not carry any additional information. The require-
ment in (9) is almost always satisfied in practice. In fact, if
we are to draw the offset values{τk} from some continuous
probability distributions (e.g., uniform distributions), then (9)
holds with probability one.

Next, we consider the more challenging case where the
channel gains and offsets are unknown, which is the focus of
this work. To be clear, it is impossible to completely determine
the unknown signalx(t) and parameters{αk} and{τk} from
the channel samples. In fact, for anyα 6= 0 and τ 6= 0, the
following signal/parameter combinations

{x(t), αk, τk, 1 ≤ k ≤ K}

and {
αx(t − τ),

αk

α
, τk + τ, 1 ≤ k ≤ K

}

will generate the same channel outputs. To avoid this inherent
ambiguity, we fix the gain and offset of the first channel to
α1 = 1 andτ1 = 0 in our following discussions.

Let BL(σ) represent the space of bandlimited functions with
frequency support[−σ, σ]. Denote by

X
def
= BL(σ) ×

{
α ∈ R

K : α1 = 1
}
×

{
τ ∈ R

K : τ1 = 0
}

the combined set of all unknowns in our problem. Let

B
def
=

{
(x(t), α, τ ) ∈ X : ∃ (x̃(t), α̃, τ̃ ) ∈ X s.t. x(t) 6= x̃(t)

but Λτ (ω)Λα V τ X(ω) = Λeτ (ω)Λeα V eτ X̃(ω)
}
.

(10)
It consists of those instances of the input signalx(t), channel
gainsα and offsetsτ that cannot be uniquely determined by
the channel samples. In other words, we cannot distinguish
between the channel outputsY (ω) generated by{x(t), α, τ}
and those by{x̃(t), α̃, τ̃}, for somex̃(t) 6= x(t).

Proposition 2: The “unrecoverable set”B in (10) is a set
of measure zeroif and only if

1

T
>

σ

Kπ
. (11)

We leave the proof of this result to [12].
Remark 3:Comparing the above bound to the one in (8),

we see that each channel needs to be (slightly) oversampled,
when the channel gains and offsets are unknown. Intuitively,
we need this redundancy (by oversampling) to compensate for
the parameter uncertainties.

Remark 4:Strictly speaking, we do not have the usual
notion of “measure zero” in BL(σ), as there is no analog
of Lesbegue measure on infinite-dimensional Hilbert spaces.
A more rigorous statement of Proposition 2 should thus
be based on the concept ofprevalence[13], which extends
Lesbegue “almost everywhere” to infinite-dimensional spaces.
More details about this technicality can be found in [12].

IV. A N EFFICIENT RECONSTRUCTIONALGORITHM

A. Subspace Condition for Parameter Estimation

In principle, given the forward model (7) of the multichan-
nel sampling process, we can estimate the input signal and
unknown parameters as follows:

(x̂(t), α̂, τ̂ )

= arg min
(x(t),α,τ)∈X

∫

ω∈P

‖Y (ω) − Λτ (ω)Λα V τ X(ω)‖2dω.

(12)
Solutions to this optimization problem are maximum likeli-
hood estimators of the unknown signal/parameters under white
Gaussian noise. We observe that (12) is a separable nonlinear
least-squares problem [14]: If we knew the parametersα, τ ,
the corresponding optimal estimate ofx(t)—given via its
equivalent frequency domain representationX(ω)—is

X(ω) = (Λτ (ω)Λα V τ )†Y (ω),

where(·)† denotes the Moore–Penrose generalized inverse of
a matrix. On substituting thisX(ω) into (12), the original
minimization problem becomes

(α̂, τ̂ ) = arg min
α,τ

∫

ω∈P

‖(I − (Λτ (ω)Λα V τ )

× (Λτ (ω)Λα V τ )†)Y (ω)‖2 dω,
(13)

where the unknown signalX(ω) has been eliminated.
In practice, it is still challenging to solve the simpli-

fied problem in (13). Local descent algorithms (such as
the variable projection method [14]) are not useful in this
particular problem, because the structure of the parametric
matrix Λτ (ω)Λα V τ lead to many local minima in the cost
functional.

In what follows, we further simplify the parameter estima-
tion task by separatingα and τ . Our derivation relies on a
subspace-based rank condition originally proposed in [11].

Let Λ
∗
τ
(ω)

def
= diag

{
ejωτk

}
denote the complex conjugate

of Λτ (ω). Multiplying both sides of (7) byΛ∗
τ
(ω), we get

Λ
∗
τ
(ω)Y (ω) = Λα V τ X(ω). (14)

When ω ∈ P2 as defined in (5),ΛαV τ is a constantK ×
⌊2σ/c⌋ matrix. The equality (14) implies that

Λ
∗
τ
(ω)Y (ω) ∈ R (ΛαV τ ) , (15)

whereR (ΛαV τ ) denotes the range space ofΛαV τ .
More generally, let{ω1, ω2, . . . , ωN} ⊂ P2 be a set ofN

frequency points, and construct aK × N data matrix

Dτ

def
= [Λ∗

τ
(ω1)Y (ω1),Λ

∗
τ
(ω2)Y (ω2), . . . ,Λ

∗
τ
(ωN )Y (ωN )] .

(16)
It follows from (15) that

R (Dτ ) ⊆ R (ΛαV τ ) . (17)



Proposition 3 (Rank Test [11]):Suppose that the sampling
rate at each channel satisfies (11) and that(τk − τℓ)/T /∈ Z

for all 1 ≤ k < ℓ ≤ K. Then

rank (Dτ ) ≤ ⌊2σ/c⌋, (18)

with equality holding when the “signal matrix”

S
def
= [X(ω1), X(ω2), . . . , X(ωN )] (19)

is of full row rank.
Proof: It follows from (17) that

rank (Dτ ) ≤ rank (ΛαV τ ) . (20)

Furthermore, when the matrix in (19) is of full row rank,
Dτ spans the full range space ofΛαV τ , in which case (20)
becomes an equality. In what follows, we just need to show
that rank (ΛαV τ ) = ⌊2σ/c⌋.

The condition (11) on sampling rate implies thatK >
σT/π = 2σ/c. This makesΛαV τ a “tall” matrix, having
more rows than columns. Meanwhile, the condition on offset
values guarantees thatΛαV τ has full column rank, thanks to
the Vandermonde structure ofV τ (see the proof of Proposi-
tion 1 for a similar argument).

In practice, we can choose the number of frequency points
N to be much greater thanK, and hence the data matrixDτ ,
of sizeK ×N , is a very “wide” matrix. Proposition 3 implies
that Dτ is rank deficient. This suggest that we can estimate
the unknown offsetsτ by solving the following minimization
problem [11]

τ̂ = arg min
τ

σK (Dτ ) , (21)

whereσK(·) represents theKth singular value of a matrix.
Once we obtain̂τ from (21), we can subsequently estimate

the channel gainsα as follows. Without loss of generality,
we assume thatK = ⌊2σ/c⌋ + 1. (If K > ⌊2σ/c⌋ + 1,
we then choose to work with the first⌊2σ/c⌋ + 1 channels.)
Under this setting, bothDτ andV τ are of co-dimension one.
Consequently, we can find two vectorsn1, n2 satisfying

n
T
1 Dτ = 0 and n

T
2 V τ = 0,

which are unique up to scalar multiplications.
Recall thatDτ = ΛαV τS, whereS is the signal matrix

defined in (19). It follows that

0 = n
T
1 Dτ = n

T
1 ΛαV τ S.

When S is of full row rank, the above equality implies that
(nT

1 Λα)V τ = 0. It follows from the unicity ofn2 that

n
T
1 Λα = s n2,

for some unknown scalars. The channel gains are obtained
as αk = sTn2,k/n1,k, with the uncertainty abouts resolved
by the assumption thatα1 = 1. We can also show [12] that
n1,k 6= 0 and thus the division operations are always feasible.

It is clear from the above discussions that estimating the
channel offsetsτ is the key step in the reconstruction algo-
rithm. Once we obtain estimates ofτ , the other unknownsα

and X(ω) can be obtained by standard linear inversions. In
[11], the channel offsetsτ are estimated by solving (21) in
an exhaustive fashion, with very high computational cost. In
the following section, we propose a novel noniterative way to
exploit the rank condition (18), which allows us to estimate
the unknown offsets in a single step.

B. A Noniterative Algorithm for Estimating the Channel Off-
sets

For simplicity of exposition, we focus on a specific case
where we haveK = 3 channels in the system. The sampling
rate1/T at each channel is chosen so that⌊2σ/c⌋ = 2. Under
these settings, we can write the matrixDτ defined in (16) as

Dτ =




Y1(ω1) Y1(ω2) . . . Y1(ωN )

Y2(ω1)e
jω1τ2 Y2(ω2)e

jω2τ2 . . . Y2(ωN )ejωN τ2

Y3(ω1)e
jω1τ3 Y2(ω2)e

jω2τ3 . . . Y3(ωN )ejω2τ3


 .

Since we setτ1 = 0, we have omitted the terms
{
ejωnτ1

}
in

the above expression.
To further simplifyDτ , we set the frequency points{ωn}

to be
ωn = △ω n, (22)

for some△ω > 0. Substituting (22) into the above formula
for Dτ , and writing

Yk,n
def
= Yk(ωn), u

def
= ej△ωτ1 , andv

def
= ej△ωτ2 ,

we can rewriteDτ as

Dτ =




Y1,1 Y1,2 . . . Y1,N

Y2,1 u Y2,2 u2 . . . Y2,N uN

Y3,1 v Y3,2 v2 . . . Y3,N vN


 . (23)

The task of estimating the unknown channel offsets{τ2, τ3}
becomes that of estimating the two parametersu andv.

From Proposition 3, the above3 × N matrix is of rank
⌊2σ/c⌋ = 2. It follows that the null space ofDT

τ
is nontrivial,

and thus there must exist somea andb such that
[
1 −a −b

]
Dτ = 0, (24)

Combining (23) and (24) leads to the following set of equa-
tions

Y1,n = Y2,n a un + Y3,n b vn, for 1 ≤ n ≤ N, (25)

and our goal is to estimateu and v from the observations
{Y1,n, Y2,n, Y3,n}

N
n=1.

The above setup is reminiscent of the classical harmonic
retrieval problem [15]. The challenging aspect is that, in our
problem, the unknown exponential sequencesaun and bvn

are “modulated” by two sequencesY2,n andY3,n, respectively.
This complication makes the classical algorithms for harmonic
retrieval (such as the annihilation filter method [15]) inappli-
cable.

In what follows, we propose a new algorithm for estimating
u andv, based on the idea of overparameterization.



Proposition 4: If the matrix Dτ in (23) is rank deficient,
then

(Y1,n+2Y2,n+1Y3,n)u − (Y1,n+2Y2,nY3,n+1) v

− (Y1,n+1Y2,n+2Y3,n)u2 + (Y1,nY2,n+2Y3,n+1)u2v

+ (Y1,n+1Y2,nY3,n+2) v2 − (Y1,nY2,n+1Y3,n+2)uv2 = 0,
(26)

for 1 ≤ n ≤ N − 2.
Proof: It follows from the rank deficiency ofDτ that any

three consecutive columns ofDτ must be linearly dependent.
In other words, we have

det







Y1,n Y1,n+1 Y1,n+2

Y2,n un Y2,n+1 un+1 Y2,n+2 un+2

Y3,n vn Y3,n+1 vn+1 Y3,n+2 vn+2





 = 0,

for 1 ≤ n ≤ N − 2. Since |u| = |v| = 1, we can multiply
the above matrix on the left bydiag{1, u−n, v−n} without
changing its determinant. It follows that

det







Y1,n Y1,n+1 Y1,n+2

Y2,n Y2,n+1 u Y2,n+2 u2

Y3,n Y3,n+1 v Y3,n+2 v2





 = 0. (27)

Expressing (27) by using the Leibniz formula [16] for matrix
determinants, we are done.

Note that (26) in Proposition 4 is a linear equality involv-
ing six unknownsu, v, u2, u2v, v2 and uv2. By varying the
frequency indexn from 1 to N − 2, we can construct from
(26) the following matrix equation

A
[
u v u2 u2v v2 uv2

]T
= 0, (28)

where A is a matrix of size(N − 2) × 6 whose rows are
formed by the constant coefficients in (26).

WhenN ≥ 7, we can show [12] thatrank(A) = 5, except
for certain degenerate cases. This ensures that the null space of
A has dimension one, and thus the unknown parameter vector[
u v u2 u2v v2 uv2

]T
can be uniquely determined

(up to a scalar) by computing the singular value decomposition
(SVD) of A and picking its right singular vector living in the
null space.

Remark 5:To be sure, the six unknown parameters here
(u, v, u2, u2v, v2 and uv2) are redundant. From a “parsimo-
nious” perspective, the expression in (28) should be interpreted
as a system of trigonometric polynomial equations of variables
u andv. However, numerically solving systems of polynomial
equations is a challenging task. Existing techniques (suchas
the Gröbner basis method [17]) are highly sensitive to numeri-
cal precisions and noise in the data. In the proposed approach,
we treat the six parameters as if they were independent. This
overparameterized perspective, albeit slightly redundant, leads
to a linear problem formulation, for which many mature and
robust numerical procedures (e.g., SVD) are available.

Remark 6:The result of Proposition 4 can be extended to
arbitrary K channels [12]. In general, the rank condition in
Proposition 3 leads to a system of linear equations withK!
unknowns. As long asN ≥ K! + 1, we can solve these

unknowns by computing the SVD of a constant matrix of
size(N − 2)×K!. It appears daunting that the computational
complexity is combinatorial with respect toK. However, for
relatively small values ofK (e.g., K ≤ 6)—which is often the
case in many practical applications—the problem dimensions
(6! = 720) is still well-within the capabilities of standard
numerical algorithms and computers.

V. NUMERICAL RESULTS

In this section, we verify the performance of the proposed
algorithm through several numerical simulations. In all our
experiments, we assume thatK = 3 and1/T = σ/(2π). This
corresponds to a sampling setup where we have three channels,
each sampling at one-half of the Nyquist rate. The input
signal x(t) is randomly generated, with its Nyquist samples
drawn from an i.i.d. Gaussian distribution. We also add white
Gaussian noise to the channel samples{yk[n]}, to emulate
a wide range of signal-to-noise ratios (SNR). At each SNR
value, we randomly choose the two unknown offsetsτ2, τ3

from a uniform distribution on[0, T ]2. We run the proposed
estimation algorithm over5000 such realizations.

We show in Figure 3 the mean absolute error in offset
estimation as a function of SNR values (ranging from 5 dB
to 70 dB). An error of1.0 corresponds to an entire sampling
periodT . For comparison, we also show the results obtained
by the rank-based method proposed in [11], which directly
solves the minimization problem (21) through an exhaustive
search on a coarse grid followed by local refinements. We
observe from the figure that the proposed algorithm achieves
a lower estimation error than the rank-based method, and tends
to be more consistent (i.e., with lower standard deviations).

Figure 4 plots the success rate as a function of the SNR. We
define successful estimation as those whose absolute errorsare
smaller than0.001. In medium to high SNR regimes (above40
dB), the proposed algorithm possesses superior success rates
than the rank-based method. At lower SNR values, the latter
becomes better, mainly due to its exhaustive search strategy.
Nonetheless, the performance of the proposed method remains
close.

The proposed algorithm is noniterative. Its computation
steps boil down to forming a fixed data matrix (as in (28)) from
the frequency values of the channel samples and computing
the SVD of that matrix. Consequently, its computational
complexity is much lower than that of the rank-based method
in [11], which contains an exhaustive search step. We have
implemented both the proposed method and the rank-based
method in MATLAB. In our experiments, the former is about
1600-times faster than the latter in terms of CPU time. At
lower SNR regimes (e.g., 35 dB or lower), we find it beneficial
to add a local refinement step (see [12]) to the proposed
method. Even with the additional computational cost incurred
by this local refinement stage, the proposed method is still
about30 to 40 times faster than the rank-based method, all the
while delivering similar or superior estimation performances.
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Fig. 3. Mean absolute error in offset estimation as a function of the SNR.
An error of1.0 corresponds to an entire sampling periodT . Results shown in
the figure are averaged over5000 simulations with randomly selected offsets.
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Fig. 4. Success rate as a function of the SNR. An estimation isdeemed
successful if the absolute error in offset estimation is smaller than0.001.

VI. CONCLUSION

This paper presents a detailed treatment of a multichannel
sampling problem, where the channel gains and offsets are
unknown. We derived the minimum sampling rates for unique
signal recovery and, as our main contribution, proposed a
novel algorithm that can efficiently estimate the unknown
gains and offsets. Our developments centered around ways to
efficiently exploit a subspace-based rank condition. By using
a linearization technique, we convert the original nonlinear
problem to a system of linear equations, whose solutions lead
to the unknown system parameters. The proposed algorithm
has low computational complexity, and can be solved by
computing the SVD of a fixed data matrix. Numerical results
confirm the effectiveness, efficiency, and robustness of the
proposed algorithm in the presence of noise.
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