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A generative facade design method based on daylighting performance goals

Jaime Gagne* and Marilyne Andersen

Department of Architecture, Massachusetts Institute of Technology, Building Technology, 77 Massachusetts Avenue, Cambridge,
MA 02139-4307, USA

(Received 21 June 2010; final version received 15 December 2010)

Successful daylighting design is a complex task which requires the designer to consider numerous design elements
and their effects on multiple performance criteria. Facades, in particular, include many variables which may
dramatically impact daylighting performance. Genetic algorithms (GAs) are optimization methods which are
suitable for searching large solution spaces, such as those presented by design problems. This article presents a GA-
based tool which facilitates the exploration of facade designs generated based on illuminance and/or glare objectives.
The method allows the user to input an original 3d massing model and performance goals. The overall building form
remains the same while facade elements may change. Ten parameters are considered, including materials and
geometry of apertures and shading devices. A simple building data model is used to automatically generate a 3d
model of each solution. Results from single- and multi-objective case studies are presented to demonstrate a
successful goal-driven design exploration process.

Keywords: daylighting; genetic algorithm; facade optimization; generative design system

1. Introduction

The facade design of a building is possibly the most
critical element in creating a successful daylighting
scheme on the interior. Optimization algorithms, such
as genetic algorithms (GAs), have the potential to aid
in performance-based facade design by combining an
intelligent search process with performance output
from simulation engines. This article presents a GA-
based method for facade design exploration, which can
be integrated into the design process. The proposed
method considers both illuminance and glare metrics
to enable a complete understanding of daylighting
performance due to facade elements. To appeal to
designers, the method has been implemented in
SketchUp (Google 2010), an intuitive 3d modelling
environment. Within this environment, the final
solution is generated as a 3d model or set of models
that the designer can use as a starting point as he or she
continues the design process. The method represents a
first step towards integrating performance-based
search into the early design exploration process.

Numerous studies have already demonstrated the
potential for optimization algorithms to facilitate
performance-based facade design exploration. Several
researchers have considered photovoltaic-integrated
facade systems and examined the trade-off between
facade area used for daylighting and that used for
electricity generation (Vartiainen et al. 2000, Charron

and Athienitis 2006). Park et al. considered double
facade systems with integrated blinds and have found
optimal blind angles for several visual comfort metrics
(Park et al. 2004). Shea et al. (2006) optimized the
effect of the glazing type of roof panels on lighting
performance and cost. Several studies have optimized
window size and placement while considering both
daylighting and energy (Caldas and Norford 2002,
Wright and Mourshed 2009). In the GENE_ARCH
system, lighting and energy are optimized in a
generative system which can also incorporate an
architect’s specific aesthetic design intent (Caldas
2008). Other studies have considered daylighting
performance from a visual comfort standpoint. For
example, Chutarat’s system allowed multiple objectives
within the daylighting domain such as illuminance,
glare and direct sunlight (Chutarat 2001), and Torres
and Sakamoto’s study found facade solutions resulting
in high illuminance and minimal glare due to day-
lighting (Torres and Sakamoto 2007).

Although there have been many previous studies
which focused on facade optimization, few have been
suitable to be implemented into an actual design
process. Many of these studies have restricted the
scope of the problem by fixing the initial geometry of
the space and the main optimization objective (typi-
cally minimizing energy consumption due to electric
lighting). Such limitations are very restrictive in an
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actual design scenario, as users may not be able to
model a problem that is relevant to their specific design
goals and aesthetics. A designer who might want to
adapt an existing optimization process to meet his own
specifications would either need to interpret the
provided output to his specific problem or design, or
possess knowledge of programming languages and
appropriately modify the algorithm himself.

The proposed approach aims to incorporate perfor-
mance-based daylighting design exploration and optimi-
zation into the design process by offering a GA-based
method which can be customized to suit a designer’s
specific needs without requiring skills beyond 3d
modelling. A simple building data model has been
created to allow the user-defined massing model to be
understood by the system. Object-oriented and building
data model approaches such as building information
models (BIMs) have been proposed in the past as a way
to integrate optimization into the design process by
allowing designers to use optimization in familiar
computer-aided design (CAD) based settings and to
enable a more generic approach which can handle a
larger variety of problems (Wang et al. 2005, Geyer
2009). The simple building data model described in this
article enables the system to recognize the geometric
characteristics of the user’s initial model and to
automatically generate new 3d models during the GA
process. The user does not need to create the building
data model; instead, a custom data model is automati-
cally created and populated based on the user’s original
3d model at the beginning of the process.

This article presents a validation of the proposed
system using simple case studies and an application of
the system to three more complex design scenarios.
These problems include a single-objective problem
with two non-conflicting goals and two multi-objective
problems. One of the multi-objective studies includes
two conflicting illuminance goals, and the other one
deals with conflicting illuminance and glare goals. In
all the situations presented, the proposed method was
able to successfully explore the design space and
present the user with a design solution or set of
solutions which approach the user-defined perfor-
mance objectives. These generated models are good
starting points for a designer who is interested in
considering daylighting performance in the early
design stages.

2. Proposed approach

The system described in this article has been created
using Google SketchUp’s embedded Ruby application
programming interface (API). This section will de-
scribe the various components of the system, including
the daylighting simulation engine and metrics, the

optimization problem and algorithm, the required user
inputs and the automation of generated 3d models
using a simple building data model.

2.1. Daylighting simulation engine

A building optimization process requires computa-
tionally intensive simulations. Because the proposed
system is intended for use during the design process, an
efficient simulation engine is a necessity. The engine
used in the proposed approach, the Lightsolve Viewer
(LSV), is a hybrid global rendering method which
combines forward ray tracing with radiosity and
shadow volumes rendering (Cutler et al. 2008). This
engine was chosen because it allows for rapid calcula-
tion of the daylighting metrics described in the
following section. Cutler et al. found that a rendered
scene in LSV took approximately 3.3% of the time that
it took to complete an analogous ‘‘fast rendering’’ in
radiance. Early validation results indicated that
rendered images by LSV displayed a pixel difference
of less than 10% from radiance for a variety of scenes,
camera positions and daylighting conditions (Cutler
et al. 2008).

To make the whole-year simulation more efficient,
the LSV engine divides the year into 56 periods and
calculates the illuminance during each time period
under four different sky types ranging from overcast to
clear using the method described in Kleindienst et al.’s
paper (2008). The climate-based illuminance is then
calculated for each time period as a weighted average
of illuminances from each sky type. In this study, the
total computation time for a full-year simulation with
illuminance and glare results ranged from less than
1 min for a simple model to about 5 min for a more
complex model on the author’s computer.1 An analysis
comparing illuminance data calculated on point
sensors in radiance with area-based patch sensors in
LSV indicated similar values (5% median, 7% mean
and 28% maximum relative difference) for a model
similar to those considered in the present study (Lee
et al. 2009).

The LSV engine currently models glazing materials
as ‘‘virtual’’ glass, where transmittance is independent
of the solar incidence angle. In the future, more
materials, including realistic glass, interior shading,
and advanced fenestration materials, will be available.

2.2. Optimization problem

Because the desired daylighting conditions may differ
among various design scenarios, the proposed system
features metrics which are calculated based on goals
specifically inputted by a user. To allow users to
understand the daylighting performance of their space
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in terms of both quantities of light and visual comfort,
we considered two metrics, one for illuminance and
one for daylight-based glare. The design variables,
chosen for this study, are those which are known to
influence both of these metrics and which are generally
considered early in the design process. This section
describes the design goals and design variables in
further detail.

2.2.1. Daylighting metrics and design goals

To allow for a comprehensive understanding of
daylighting performance, the proposed approach
features two different types of daylighting metrics,
one for illuminance levels and one for glare. Both of
these metrics are calculated using the daylighting
simulation engine described in section 2.1. The goal-
based illuminance metric requires the user to input
four illuminance values: acceptable low, desired low,
desired high and acceptable high (Kleindienst 2010).
The user must also specify which time periods of day
and seasons he or she is interested in: morning, mid-
day, afternoon and winter, spring/autumn, summer.
This metric is derived from the work presented by
Kleindienst et al. (2008) and uses the same logic for
climate and temporal simplifications. It assumes a
user-defined sensor plane which will be divided into
small patches during the simulation process. For a
single patch, the goal-based illuminance metric is
defined as the percentage of the user’s times and
seasons of interest in which daylight provides an
illuminance within the user’s specified range. The final
goal-based illuminance for a sensor plane is an average
of the performance over all patches on a sensor plane.
For illuminance levels which fall between the ‘‘accep-
table’’ and ‘‘desired’’ values, partial credit is given
(Figure 1(a)). A value of 100% indicates that the entire
area of the sensor plane sees an illuminance in the
user’s desired range over all periods of day and seasons
of interest.

The glare metric used in the proposed approach is a
model-based approximation of daylighting glare prob-
ability (DGP), which has been developed by Klein-
dienst and Andersen (2009). The DGP metric,
originally introduced by Wienold and Christoffersen
(2006), indicates the percent of occupants disturbed by
a daylighting glare situation. The model-based DGP
approximation method (DGPm) is an efficient way of
approximating the DGP using the LSV engine. When
compared to the DGP as calculated using the evalglare
program in radiance for different rectangular spaces
(and only for windows without mullions), the DGPm
has been found to perform within a 10% error over
90% of the time (Kleindienst and Andersen 2009). The
metric assumes a user-defined vertical sensor plane

whose normal indicates a direction of view. To
evaluate glare risks, the present study uses the glare
thresholds described by Wienold (2009), where any
value below 0.33 (imperceptible glare) is considered a
‘‘no glare’’ situation and given a glare credit of 0. The
user may choose from three glare tolerances: ‘‘zero’’,
which corresponds to an upper glare threshold value of
0.37; ‘‘medium’’, which corresponds to a threshold
value of 0.42; and ‘‘high’’, which corresponds to a
threshold value of 0.53. Any calculated glare value
above the upper threshold is given a glare credit of 1
(Figure 1(b)). These glare credits are averaged across
all glare sensors which face the same general direction
within the model. A value of 0% indicates that the
specified view direction is unlikely to see glare due to
daylighting.

Because the daylighting performance metrics are
defined as percentages, the objectives for any user-
defined problem can be represented as:

– Maximize the percentage of illuminance levels
within the user-selected illuminance goal range(s)
on the illuminance sensor plane(s); and

– Minimize the percentage of glare (based on the
user-selected tolerances) perceived by the glare
sensor plane(s).

Figure 1. Diagrams indicating system of full and partial
credit for (a) illuminance and (b) glare.
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This formulation allows for the same search
algorithm to be used for a wide range of daylighting
optimization problems. The scope of the problem
includes illuminance and/or glare goals for
models which conform to the guidelines described in
Appendix.

2.2.2. Design variables

Ten different design variables are considered, as
indicated in Table 1, along with the minimum and
maximum values they can take and the step sizes. For
this study, only parameters associated with the facade
were used. These parameters were chosen because they
are typically considered early in the design process and
frequently have a large impact on both exterior
aesthetics and on daylighting performance, including
both illuminance and glare.

2.3. Micro-genetic algorithms

GAs (Goldberg 1989) have been applied to many types
of architectural problems. During the GA process, a
set of initial solutions (a population) is chosen or
generated at random. Each member is evaluated for
‘‘fitness’’ (performance) and members that result in
good performance are used as ‘‘parents’’ for a new
generation. Since this new generation is based on the
best performing solutions in the previous solutions, we
assume that some members of the new generation will
perform better. Once evaluated, the good performers
are used as parents while the poor performers are
discarded. The cycle is continued until a suitable
solution or set of solutions is found or until a
predetermined number of generations have been
completed.

Multi-objective GAs work in a similar way except
that in these cases, one might consider two or more

objectives which are conflicting. In such cases,
increasing the fitness of one objective may decrease
the fitness of another, which means that a single
optimal solution may not exist. Instead, it is traditional
to try to find the Pareto front, which is the set of all
solutions in the solution space that are non-dominated
or Pareto-optimal. If for a given solution, we can find
another one within the solution space that is better for
both objectives, that solution is considered strongly
dominated. Pareto-optimal or non-dominated solu-
tions are those which are not dominated by any others
within the solution space. For a more comprehensive
explanation of multi-objective problems and Pareto
optimality, see Coello Coello et al. (2007).

GAs typically require large population sizes and
numbers of generations to converge, particularly for
multi-objective problems where the desired result is not
a single solution but a set of Pareto-optimal solutions.
In this study, we used a micro-GA, a genetic algorithm
which uses a very small population size when
compared to a classical GA. This small population
size reduces the computational time necessary to
simulate each generation, which means that a user
can run several generations of the micro-GA using the
same number of simulations as a single generation of a
classical GA. Micro-GAs have also been shown in
some studies to require fewer function evaluations than
a classical GA to converge to the near-optimal region
(Krishnakumar 1989, Carroll 1996). Micro-GAs have
been successfully implemented for building perfor-
mance optimization based on building energy criteria,
lighting and thermal behaviour (Caldas and Norford
2002, Caldas 2008). The proposed approach allows for
both single- and multi-objective problems, which both
utilize a micro-GA algorithm. The single-objective
problem considers illuminance only, while the multi-
objective problem considers both illuminance and
glare.

Table 1. List of variable facade parameters and possible values.

Facade parameter Minimum value Maximum value Step size

Window-to-wall ratio 0.1 0.8 0.1
Number of windows 1 8 1
Aspect ratioa Thinnest Widest –
Vertical locationa Lower bounds Upper bounds –
Horizontal locationa Right bounds Left bounds –
Window distributionsa Windows touching Windows far apart (at bounds) –
Overhang Yes No –
Fins Yes No –
Length of shading devices 0.15 m (0.5 ft) 1.22 m (4 ft) 0.15 m (0.5 ft)
Total glass transmissivity (%) 10 85 5
Per cent specular transmission (%) 0 100 12.5

Note: aActual values for these parameters will depend on user-defined geometry.
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2.3.1. Single-objective micro-GA

The micro-GA that has been implemented within the
proposed system is the original single-objective algo-
rithm as described by Krishnakumar (1989). Encoding
is done using binary strings, where the full set of design
parameters described in section 2.2.2. is encoded into a
string of 30 bits for each separate facade considered. A
micro-GA differs from a traditional GA in several
ways. The most obvious is the small population size:
five individuals in our system. Due to this small
population size, a micro-GA population tends to reach
‘‘bitwise convergence’’ within only a few generations.
Bitwise convergence is reached when all individual
binary strings in the population differ by 5% or less.
Upon bitwise convergence, the micro-GA resets the
population by creating a new random population. It is
of note that this algorithm does not use mutation, as it
is assumed that enough diversity will be maintained in
the population through the generation of new random
strings upon bitwise convergence, which is likely to
occur numerous times during the optimization process.

In our system, for the single-objective problem,
fitness is defined as the goal-based illuminance for a
single sensor plane or the average goal-based illumi-
nance over multiple sensor planes. An ‘‘optimal’’
solution will be one in which fitness is found to be
100%, which indicates that the illuminance goals are
met over 100% of the sensor plane area and over 100%
of the time during a year. For a simple problem, it may
be possible that multiple solutions within the solution
space meet the goal criteria (an example of this
phenomenon is described in section 3.1.).

Because we intend for the proposed method to be
used by designers early in the design stage for design
exploration and not necessarily for true optimization,
we do not impose a strict stopping criteria, such as a
mathematical or algorithmic test for global conver-
gence. The system will stop upon finding a solution
which meets the goal criteria, or else the designer can
stop the process after a predetermined number of
generations have been completed.

2.3.2. Multi-objective micro-GA

The micro-GA has previously been successfully used
for multi-objective problems (Coello Coello and Pulido
1993) by including external memory which stores non-
dominated solutions generated over the course of the
process. For this study, the algorithm used is similar to
that described for single-objective problems (Krishna-
kumar 1989), with the addition of an external memory
similar to that described by Coello Coello and Pulido.
A binary Pareto fitness ranking is used, and at each
step, the memory is updated to include new non-

dominated solutions, and any previous solutions which
are dominated by new ones are then removed. A
pseudo-Pareto front is approximated to be those
solutions contained within the external memory after
a certain number of generations. The multi-objective
process is essentially the same as the single-objective
process except it works towards finding non-domi-
nated solutions instead of working towards a single
solution with the highest fitness.

It is important to note that while this process does
produce a set of non-dominated solutions, which may
approximate the Pareto front, it does not necessarily
generate a true Pareto front with evenly distributed
solutions. However, as this system is intended to be
incorporated into the early design stages, the genera-
tion of a true Pareto front would likely require a
number of simulations that would be too time
consuming to complete. Although further research
would be needed to confirm this, one might also argue
that a true Pareto front may actually not be required
for designers who wish only to see a range of possible
solutions and who will ultimately be using them as a
starting point, not as a final design, as they continue in
their design process.

Within the described system, a user would use a
multi-objective approach when he or she had two
conflicting performance goals, or two sets of conflict-
ing goals. One scenario is two illuminance goals, in
which case the objective is to maximize the goal-based
illuminance on both sensors. The other scenario is
combined illuminance and glare, in which case the first
objective is to maximize the goal-based illuminance on
all illuminance sensors and the second objective is to
minimize the model-approximated DGP on all glare
sensors. Similarly to the single objective problem, we
do not impose strict stopping criteria for the multi-
objective case. Instead we allow the user to choose a
predetermined number of generations to run before
stopping the process.

2.4. Integration and operation

Within the proposed system, one important way in
which we have approached the problem of integrating
a GA-based tool into the design exploration process is
to allow the user to quickly and intuitively model his or
her specific design problem. Instead of specifying the
massing design using text-based inputs, the user is
allowed to create a 3d model in Google SketchUp as
input. This type of input should facilitate use of the
proposed system, particularly for designers who would
typically create such models over the course of the
early design process anyway. Additionally, the system
automatically generates and saves 3d models of all
solutions found over the course of the GA process.
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Once the process is complete, the designer can use
these models directly to further their designs. This
section describes the inputs and outputs of the
proposed system, including the use of a simple building
data model which is used to automate the process of
generating new 3d models.

2.4.1. User inputs

One way in which the proposed method has been
developed to appeal to designers is to incorporate an
intuitive set of user inputs. In particular, one innova-
tion is to allow the user to specify the base model by
creating a 3d massing model in Google SketchUp
instead of requiring them to define their base model
using a text-based approach. This user-defined massing
model should indicate the general form of the space
and all desired opaque material properties, i.e. wall,
floor, and ceiling reflectances. In order for the system
to correctly interpret the massing model, the model
should conform to a few basic guidelines (see
Appendix). We chose to require the user to name the
materials chosen for certain design elements using
special names (glazing, shading devices and those
facades which would be generated by the GA) rather
than to have the user select those elements directly, as
we assumed that they would be specifying materials
anyway.

Within the 3d model, the user must also specify 2d
sensor planes on which either illuminance or glare will
be calculated by including these planes in the massing
model. The user may choose to have any number of
illuminance and/or glare goals. The sensor planes may
be any size, and they may be oriented vertically or
horizontally. For each illuminance sensor plane, the
user must specify a desired illuminance goal range in
lux, and for each glare sensor, the user must indicate a
desired glare tolerance (see section 2.2.). The user can
input these goals into simple interfaces in Google
SketchUp (Figure 2).

2.4.2. Building data model

One of the novel features of the proposed approach
compared to work cited previously is the ability for the
user to provide a 3d model as input instead of
requiring programming, text-based input or the use
of a default model. To provide this functionality, a
building data model was developed whose values are
automatically assigned once the process is initiated.
The model contains information about each building
element in a 3d model and the relationships between
them. The general structure of the data model is
indicated in Figure 3. Each building element object
contains information about its location, geometry,
orientation and material.

The building data model allows the algorithms in
the proposed approach to understand which walls are
to be manipulated by the GA and what the boundary
conditions of those walls are. It also allows the system
to automatically create new 3d models of each GA
population member which can then be simulated
during the GA process.

In the proposed approach, the user creates a 3d
model in SketchUp as an initial input and a simple
building data model is automatically created by the
system. The logic for this automatic model population
is defined in detail in Appendix. Identification of each
building element occurs using a series of logic

Figure 2. Goal input boxes for (a) illuminance ranges and
(b) glare thresholds.

Figure 3. Schematic of simple building data model:
relationships between components and object attributes.
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statements regarding the geometry and material of
each modelled component. Element attributes are then
determined using information available from Sketch-
Up about each face. The logic assumes that the model
conforms to a few basic guidelines (see Appendix).

The use of the building data model is necessary
because SketchUp is a geometric modelling tool and
not a BIM. While there do exist plugins for BIMs
within SketchUp (for example, Demeter (Greenspace
Research 2007)), these programs require the user to
input more information than what is necessary for our
process and the population of the data model is
generally not automated. However, if an appropriate
BIM were to become available within SketchUp, it
would be possible to integrate data from such a BIM
into our system.

2.4.3. Model generation

The proposed approach automatically generates 3d
model representations of the binary strings created
during the GA process, i.e. it creates and saves new
SketchUp models for all population members. These
models are created using the following process (Steps 1
through 5 are demonstrated for an example model in
Figure 4):

(1) Add a single window of the given window-to-
wall ratio (window area) to the facade using the
same width as the wall itself to ensure fit.

(2) Divide into the given number of windows.
(3) Calculate the highest and lowest possible aspect

ratios that the windows can take based on the
window size and wall dimensions. Change the
aspect ratio of all windows based on the given
value.

(4) Calculate the largest distance that can exist
between each window based on window size
and wall dimensions (assume smallest distance
is 0.05 m [2 inches]). Change distribution based
on given value.

(5) Determine upper, lower, left and right wall
boundaries. Change window group location
based on given value.

(6) Add shading devices of the given length, if
applicable.

(7) Change window material given values.

Because the geometric parameters (window aspect
ratio, location and distribution) are calculated based
on the boundary conditions of a given facade instead
of being based on absolute values, the proposed
approach can generate models using any type of
original massing geometry that features vertical walls
facing cardinal directions. The user can also choose to

rotate the sky so as to simulate models whose walls are
orthogonal but which are not aligned with the cardinal
axes. This feature provides the user with a great level of
flexibility when creating the original massing model.

3. Validation

To ensure that the micro-GA algorithm was behaving
as expected, a set of test studies were performed on a
simple box model with a single illuminance sensor
plane located in the centre of the space at workplane
height. For each of these studies, the south and east
facades were generated by the GA while the north and
west facades remained opaque. In both cases, one or
more solutions to the problem were known to exist and

Figure 4. Automatic facade generation process based on
geometry variables.

Journal of Building Performance Simulation 147

D
ow

nl
oa

de
d 

by
 [

E
PF

L
 B

ib
lio

th
èq

ue
] 

at
 0

7:
24

 0
9 

Ju
ly

 2
01

5 



had been manually found by the authors before the
case studies were conducted. To determine the general
behaviour of the algorithm, for each case study the GA
process was run three times over ten generations or
until a ‘‘perfect’’ solution was found. Because we
wanted to verify that the algorithm would converge
quickly, we chose ten generations as stopping criteria
as it seemed a likely number that a designer might
consider choosing for a simple design scenario. For
these studies, ten generations took roughly 1 h to
simulate on the author’s computer.

Both case studies were considered successful,
although some limitations to the GA method can
already been seen in these initial trials. These limita-
tions include inconsistencies in the number of genera-
tions required to find a good solution, which are due to
the random and probabilistic nature of the algorithm,
and the possibility for the algorithm to get ‘‘stuck’’ in
one part of the solution space, which may be due to the
lack of mutation in the algorithm or to the nature of
the binary encoding that was used. However, these
studies also demonstrated the potential for the micro-
GA to effectively search a broad design space and to
converge onto successful designs quickly. While some
limitations were observed, these behaviours are com-
mon to many types of optimization algorithms, and
the GA is known to be less likely to fall into local
minima than some other algorithms.

3.1. Illuminance goal with no minimum

The maximum illuminance values in this study were
200 lux (desired) and 400 lux (acceptable); no mini-
mum values were specified. All seasons and periods of
day were considered. This case study was considered
the most basic because several designs within the
search space were known to meet the desired
illuminance goal range. The known solutions featured
a small window area with long shading devices. As
expected, the micro-GA was highly successful at
determining solutions to this problem, finding a
‘‘perfect’’ solution on each of three separate runs,
each time within 10 generations. For each of the three
runs, the performance of the GA and the final
generated solution are indicated in Figures 5 and 6,
respectively. Because the solution space was known to
be highly multi-modal, it is not surprising that the
three solutions found all met the goal criteria yet all
had different forms. It is likely that the final solutions
are different because each run began with a different
random initial population, although the probabilistic
nature of algorithm contributes to this diversity as
well. It is possible that additional runs would have
produced even more varied results, although it is
likely that any additional solutions would feature

similar characteristics of small window area with large
shading devices.

3.2. Illuminance goal with no maximum

This case study used the same model and sensor plane
as the previous study, but the goal in this problem was
to obtain a desired 400 lux minimum (200 lux mini-
mum accepted) with no maximum values. For this
problem, the authors were only able to manually find
one ‘‘perfect’’ solution, although it is possible that
more solutions exist. In this case, the known solution
featured a large window with a high glass transmissiv-
ity and no shading devices. This case study was
considered more difficult than the previous one
because there were fewer known solutions within the
search space.

Figure 5. Best member fitness over 10 generations for case
study with no minimum illuminance (three trials).

Figure 6. Final solutions for each of three trials for case
study with no minimum illuminance.
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As expected, the micro-GA came very close to
finding the known solution after ten generations but
never found one in which the illuminance goals were
met over 100% of the sensor plane area and over the
whole year. The most successful of the three final
solutions generated has the same features as the known
solution. All three solutions had a very large window
area; however, it is interesting to note that the second
solution got ‘‘stuck’’ in a search space that only
included shaded designs, so the final solution in this
case is the worst performer of the three. It is likely that
this solution would have become ‘‘unstuck’’ if we had
allowed the algorithm to continue running for more
generations, which would have introduced new ran-
dom solutions into the population upon convergence,
or if we had modified the algorithm to include
mutation. Nevertheless, all three trials found good
designs after only a few generations, indicating that the
micro-GA was again successful at efficiently conver-
ging on good designs (Figures 7 and 8).

4. Application case studies

While the validation case studies may be considered
successful, those studies represented only the most
simple performance goals and would likely not be
applicable to a true design scenario. In this section, we
describe three more complex case studies. All three
case studies have non-rectangular footprints and
multiple goals. The first case study has two non-
conflicting illuminance goals, the second has two
conflicting illuminance goals, and the third has
conflicting illuminance and glare goals. These studies
represent the variety of designs and performance goals
that can successfully be explored using the proposed
system.

Figure 7. Best member fitness over 10 generations for case
study with no maximum illuminance (three trials).

Figure 8. Final solutions for each of three trials for case
study with no maximum illuminance.

Figure 9. Original massing model for case study with two
non-conflicting illuminance goals.

4.1. Case study no. 1: non-conflicting illuminance goals

The proposed GA approach was applied to the
massing model shown in Figure 9 in Boston, MA.
This model has a non-rectangular footprint and a
slanted roof condition. The facades of interest in this
model were those facing north and south. It has two
illuminance goals that were not considered conflicting.
Both sensor planes are located at workplane height.
The illuminance goals for the west sensor are 200 lux
(acceptable) and 400 lux (desired) lower bounds; no
maximum. The goals for the east sensor are 100 lux
(acceptable) and 200 lux (desired) minimum; 800 lux
(desired) and 1000 lux (acceptable) maximum.

The micro-GA process was run for a total of 25
generations. We chose 25 generations as a reasonable
number for a designer working on a somewhat
complex problem. In total, the simulations required
for 25 generations took approximately 4 h, or half a
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work day, on the author’s computer. The fitness in this
case study was calculated as the mean of the goal-
based illuminance metric for both sensors. Therefore, a
value of 100% would indicate that the entire area of
both sensors would be within the specified illuminance
ranges throughout the whole year. The population
average and best fitness for each generation are shown
in Figure 10. The average fitness decreases at certain
generations (generations 6, 10 and 20) due to the
bitwise convergence and subsequent re-initialization of
the population. After 25 generations, the best solution
was found to have an average fitness of 90.2%
(individual fitnesses for the two sensors were 96.7%
and 83.7%). The final solution facades both have
windows concentrated towards the west size of the
space as expected based on the specified goals (Figure
11). The final solution found is less than expected for
an ‘‘optimal’’ design, which indicates that the two
performance goals considered may not have been
completely non-conflicting, i.e. a solution with a fitness
of 100% may not exist. However, from Figure 10, we
also note that the average fitness was increasing and
had not yet converged once 25 generations were
completed, which means that a better solution may
have been found if our stopping criteria had allowed
the GA to continue past 25 generations.

4.2. Case study no. 2: conflicting illuminance goals

While the previous case study considered two non-
conflicting goals, it is possible that a designer might
need to consider designs which have conflicting
illuminance goals. Therefore, the second case study
considered a problem in which two illuminance goals
were considered conflicting and which used a multi-
objective approach rather than a single-objective
algorithm. In this case study, a pseudo-Pareto front

of non-dominated solutions representing a range of
different designs is obtained instead of a single
solution.

For this case study, the massing model shown in
Figure 12 was considered. The model has a U-shaped
footprint with two sensor planes, one located towards
north and one located towards south. The goals for the
north sensor are 0 lux (acceptable) and 200 lux
(desired) minimum; 500 lux (desired) and 700 lux
(acceptable) maximum. The goals for the south sensor
are 800 lux (acceptable) and 1000 lux (desired) mini-
mum; no maximum illuminance. The facades of
interest in this case study are the north, west and
south, and the reason that the goals are considered
conflicting is that an additional constraint is added to
the problem in which all facades must have a uniform
aesthetic. To enforce this constraint, the same binary
string was used for all three facades.

The multi-objective micro-GA was run for 50
generations and a pseudo-Pareto front was generated.
In total, the simulations required for 50 generations
took approximately 9 h, or a full work day, on the
author’s computer. We assumed that in a design

Figure 10. Population best and mean fitness over 25
generations for case study with two non-conflicting
illuminance goals.

Figure 11. Final solution for case study with two non-
conflicting illuminance goals.

Figure 12. Original massing model for case study with two
conflicting illuminance goals.
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scenario, a designer would be unlikely to consider
running the system for any number of generations that
would require more than one full work day to
complete.

A subset of six non-dominated solutions are
highlighted to indicate the variety of designs generate
by the GA-based method (Figure 13). While it is clear
that designs with large window areas belong on one
end of the pseudo-Pareto front and designs with small
window areas belong on the other end, the designs in
between represent interesting choices for designers who
are trying to compromise between the two illuminance
goals. For example, several of the middle designs have
windows on the west facade which are shifted towards
the south. These designs meet the constraint that all
facades must have the same aesthetic while providing
more light to the south sensor. Because the goal range
for the south sensor is much less restrictive than the
goal range for the north sensor, we note that the non-
dominated solutions found include those which ap-
proach 100% fitness for the south sensor; however, the
maximum value found for the north sensor was 82%.
While a large window area seems sufficient to meet the
south sensor illuminance range goals, those designs
which come closest to meeting the north sensor

illuminance goals use a combination of smaller
window area, shading devices and low-transmissivity
glazing to control daylight such that the narrow
illuminance goal range on the north sensor is met.

4.3. Case study no. 3: conflicting illuminance and glare
goals

The multi-objective approach was applied to the
massing model shown in Figure 14 in Boston, MA.

Figure 13. Fitness for all generated solutions (50 generations) for case study with two conflicting illuminance goals, with subset
of selected non-dominated solutions.

Figure 14. Original massing model for case study with
conflicting illuminance and glare goals.
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In this model, the two facades of interest are facing
east and west. Similarly to the previous case study, an
additional constraint is added to this problem, i.e. the
two facades of interest must maintain a uniform
aesthetic. Two illuminance sensors are included, each
with the same illuminance goal ranges (200 lux
acceptable low, 400 lux desired low, no maximum).
Additionally, glare sensors facing towards the east and
west facades are considered. These sensors are
indicated in Figure 14. The glare threshold for this
problem was set to ‘‘zero’’, i.e. a calculated DGPm
value above 0.37 on a given sensor indicates 100%
glare in that direction. This threshold value was chosen
as it is the strictest glare threshold, and thus would be
the most difficult to satisfy.

A pseudo-Pareto front was created after running
the micro-GA process for a total of 50 generations, as
indicated in Figure 15. It is clear from the pseudo-
Pareto front that the two goals are conflicting,
although many designs have been found which come
close to meeting the illuminance goals while keeping
the glare low. A subset of seven non-dominated
solutions has been selected to show the variety of
solutions found (Figure 15), and we note that many of
these non-dominated solutions include vertical fins as
shading devices, which is expected due to the east and

west orientations of the facades. From this case study,
the designer can begin to understand that designs with
vertical shading devices combined with smaller win-
dow area and low-transmissivity glass have lower
potential for glare situations than designs with large
window area, high-transmissivity glass, horizontal
shading devices or no shading devices.

5. Conclusions

This article presents a GA-based approach which
enables performance-based exploration of facade de-
signs. This method combines a micro-GA algorithm
with an intuitive set of user inputs, including an
original 3d massing model and user-specific perfor-
mance goals. Such an approach is powerful because it
allows an infinite number of possible design scenarios
to be considered using the same system. In doing so, it
allows users who only have modelling experience to use
GAs during the design process. It also provides a way
for designers to explore the trade-offs between
performance and form by trying a variety of initial
massing models and performance goals.

Several case studies were presented which showed
the performance of the single and multi-objective
micro-GA search processes. The multi-objective case

Figure 15. Fitness for all generated solutions (50 generations) for case study with conflicting illuminance and glare goals, with
subset of selected non-dominated solutions.
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studies in particular demonstrate the range of possible
design solutions that a user can obtain using a set of
non-dominated solutions. In all single-objective cases,
the GA method found one or more solutions that
approach the goal conditions. The case studies also
demonstrated the variety of massing models and
performance goals that can be considered using the
proposed goal-oriented approach. Although these case
studies represented but a small subset of the wide range
of possible design problems that could be considered, it
should be clear that the system is a successful GA-
based method which is easily customized to specific
problems.

The proposed GA-based approach still has
several limitations. One of these is the lack of
consistency in the final solutions found, since the
randomly generated initial design solutions play a
large role in determining which subsequent designs
are found. This limitation can be solved to some
degree by running many generations, but this
approach adds additional time to an already time-
consuming process. One other limitation is the
tendency for the micro-GA to get ‘‘stuck’’ in a
solution that is only a local minimum or maximum.
This behaviour is due to the implementation of the
micro-GA with a very small population size and the
limited number of generations that were completed
for the presented case studies. However, for the
purposes of early stage performance-based design
exploration, it is not necessary to find a global
optimum; rather, it should be sufficient to present
the user with a design or set of designs which the
user will then use as an initial design rather than a
final one.

Although it is unlikely that a designer would
completely accept a solution generated by a GA, the
method has much potential in that it can begin to
inform the designer about facade conditions which are
more likely to result in good performance than other
possible designs. As the proposed method allows
consideration of both illuminance and glare perfor-
mance, designers can evaluate daylighting from both
energy and visual comfort perspectives. Because the
method uses 3d models, there is also the possibility that
one could connect it to a thermal energy simulation
engine to consider additional objectives as well.
Although GA methods should not replace the tradi-
tional design process, the proposed method has the
potential to automate parts of the design exploration
process in a way which may provide surprising results
to designers and which may ultimately influence them
to consider performance earlier in the design process.

The approach demonstrated in this article is a first
step towards integrating an intelligent search method
into the design process. Because the framework has

already been created, future modifications or additions
to the system may be quickly implemented. These
additions could include more specific stopping criteria
based on population convergence, more facade para-
meters including advanced fenestration materials and
internal shading, and the ability for the user to add
constraints to the design parameters. Future work will
also focus on the development of a search method
which includes daylighting expertise to improve
efficiency and provide more educational value to the
user.

Note

1. The author’s computer uses a 2.66 GHz Intel Core 2
Quad processor and 4 GB of SDRAM at 800 MHz.
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Appendix. Building model population logic

This logic applies to the initial massing model that the user
creates in Google SketchUp. All material names may be
specified within SketchUp. In order for massing model to be
correctly identified by the system, the following guidelines
must be met:

(1) Any plane that represents a sensor (for either
illuminance or glare) must have the word ‘‘SEN-
SOR’’ in its material name.

(2) Any plane that represents an external shading device
must have the word ‘‘EXTERNAL’’ in its material
name.

(3) Any plane that is manipulated by the GA must have
the words ‘‘GA_WALL’’ in its material name.

(4) The normal vectors of all faces should point towards
the interior of the space.

Assuming these guidelines are met, the logic used to
identify each element is as follows (assume all elements are
faces):

(1) If the face is not opaque and not called ‘‘SENSOR’’,
it is a window.

(2) If the face is opaque and called ‘‘EXTERNAL’’, it is
a shading device.
(a) If the normal points up or down, it is an

overhang.
(b) Else, it is a fin.

(3) If the face is opaque and not called ‘‘EXTERNAL’’:
(a) If the normal points up, it is a floor.
(b) If the normal points down, it is a ceiling.
(c) Else, it is a wall.

(4) If the face called ‘‘SENSOR’’, it is a sensor plane.

Once the individual building elements have been
identified, a second set of logic is used to determine the
appropriate relationships between elements. This logic
determines the child–parent relationships between walls and
windows and between windows and shading devices. The
logic for determining these relationships is as follows:

(1) Assigning windows to walls: For each window, cycle
through all walls. If both elements have the same
orientation, and if the window location lies between
the edge boundaries of the wall, assign that window
to that wall.

(2) Assigning shading devices to windows: For each
shading device, cycle through all windows. If two
vertices of the overhang is located 0.05 m [2 inches]
or less from two vertices of the window (top two
vertices for overhangs, right or left vertices for fins),
assign that shading device to that window.

An initial massing model may or may not include
windows and shading devices. If the model does include
these elements, they will remain the same through the GA
process. Only those walls that have been labelled
‘‘GA_WALLS’’ will have generated facades.
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