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Abstract
Numerical computations of ITER equilibria in the hybrid scenario using a
three-dimensional (3D) magnetohydrodynamic equilibrium code with nested
magnetic flux surfaces demonstrate the formation of internal 3D helical cores
similar to saturated ideal internal kink modes under reversed magnetic shear
conditions when the minimum value of the inverse rotational transform is in
the neighbourhood of unity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ‘snakes’ in JET [1], the continuous mode in MAST [2] and the single helical axis (SHax)
configurations in the RFX [3] reversed field pinch constitute manifestations that nominally
axisymmetric systems can spontaneously develop three-dimensional (3D) internal equilibrium
structures that are not captured with standard tokamak equilibrium solvers. Typically until now,
nonlinearly saturated mode structures have been calculated analytically [4] and with nonlinear
magnetohydrodynamic (MHD) codes [5]. Alternatively, introducing a small forcing term in
the second variation of the energy principle, then removing it after many iterations, can lead
to bifurcated solutions with 3D characteristics [6]. This suggests that the application of 3D
equilibrium codes developed for stellarator applications should be considered to model this type
of phenomena in tokamaks. The SHax state in RFX has already been successfully modelled
with the VMEC code [7] in which an internal helical structure with seven-fold periodicity
corresponding to the lowest order core resonant surface has been computed [8]. Similarly,
internal helical structures have been calculated with the ANIMEC code [9] in elongated high
current TCV-like tokamak configurations with reversed or very flat inverse rotational transform
q-profiles with qmin ∼ 1 [10].

Nonlinear tokamak MHD codes (like that of [5]) develop four possible solution states:

• The plasma is stable linearly (and nonlinearly) and the perturbations remain infinitesimally
small.
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• The plasma is violently unstable, the displacement vector becomes very large with a strong
stochastization of the magnetic field lines. This would model a disruptive termination of
an experimental tokamak discharge.

• The plasma evolves into a saturated state with distinct island structures separated by closed
magnetic flux surfaces.

• The plasma, after an initial unstable linear stage, saturates in a nonlinear 3D quasi-static
state in which the perturbed structure does not extend to the edge of the plasma. We
argue that the equilibrium model we apply is capable of essentially reproducing static
configurations of this type.

In this paper, we explore the possibilities of an ITER hybrid scenario configuration [11, 12]
to develop core helical deformations.

2. The MHD equilibrium state

The minimization of the energy W ,

µ0W =
∫ ∫ ∫

d3x

(
B2

2
+

µ0p||
� − 1

)
, (1)

constitutes the starting point for the computation of 3D MHD equilibrium states. The magnetic
field strength is B, the parallel total plasma pressure is p||, µ0 is the permeability of free space
and � is the adiabatic index. The total parallel pressure can be expressed in the form [9]

p||(s, B) = M(s)[�′(s)]�
1 + ph(s)H(s, B)

〈1 + ph(s)H(s, B)〉� , (2)

where M is the plasma mass, ph is a hot particle pressure amplitude factor and H(s, B) is
a form factor that governs the variation of the hot particle pressure components around each
flux surface labelled with radial variable s, 0 � s � 1. The coordinate s is proportional to the
toroidal magnetic flux function � (normalized to its value at the plasma–vacuum interface).
The symbol prime (′) indicates the derivative of a flux surface quantity with respect to s and 〈...〉
denotes a flux surface average. Invoking a bi-Maxwellian model to describe the hot particle
distribution function [13], the form function H(s, B) reads as [9, 14]

H(s, B) = B/Bc

[1 − (T⊥/T||)(1 − B/Bc)]
, (3)

as long as we choose the constant Bc < Bmin, with Bmin the minimum value of B in the plasma.
Furthermore, imposing that the perpendicular and parallel hot particle temperatures satisfy the
condition T⊥ = T|| = T , the form factor H reduces to unity. The pressure thus becomes
isotropic. This is the choice we have made for all of the work presented in this paper. We
can analyse anisotropic pressure profiles, however it is expected that the ITER fast particle
distribution function will remain relatively isotropic. Consequently, we can write

p(s) = M(s)[�′(s)]�
1 + ph(s)

〈1 + ph(s)〉� . (4)

We select ph to be a constant much smaller than unity, typically 0.001, so that effectively
p(s) � M(s)[�′(s)]� . Note that p = M for � ≡ 0, however, we have made the
choice � = 5/3 and therefore prescribe the plasma mass profile and calculate the pressure
profile accordingly. The major disadvantage is that the plasma mass is not an intuitively
straightforward quantity to understand from an experimental perspective, at least compared
with the pressure. On the other hand, the total system energy, as depicted in equation (1),
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Figure 1. An up-down symmetric description of the ITER plasma boundary. The dimensions of
R and Z are expressed in metres.

increases (decreases) for � > 1(� < 1) as the plasma 〈β〉 becomes larger. The idea that the
energy should decrease as we increment the 〈β〉 value is not very appealing. This is the reason
we impose � = 5/3.

3. Inputs and profiles

A Fourier decomposition of the plasma–vacuum interface must be provided to the ANIMEC
code [9] for fixed boundary equilibrium computations. The description of an ITER boundary
is presented in figure 1, which is then Fourier analysed to obtain the necessary input data. For
simplicity, we have used an axisymmetric up-down symmetric description of the last closed
flux surface. The Fourier coefficients of R (the distance from the major axis) and Z (the height
from the midplane) at the plasma edge are obtained and presented in table 1.

The ANIMEC code requires �, the edge toroidal magnetic flux, the plasma current and the
parameter Bc and four profiles [9]. The first of these profiles is the plasma mass (the thermal
pressure for � ≡ 0). We specifically choose the following polynomial expansion:

M(s) = M(0)(1 + 0.410 2275s2 − 14.198 75s4 + 29.625 25s6 − 22.9512s8 + 6.1152s10).

(5)

We choose M(0) = 4 × 104 to obtain equilibria with volume averaged 〈β〉 � 2.9% when
the toroidal magnetic flux enclosed within the plasma boundary 2π�(1) = 105 Wb. The
toroidal magnetic field at the magnetic axis then is approximately 4.6 T and βN � 2.2 when the
toroidal current is 13 MA. The pressure profile obtained with the plasma mass expression given
in equation (5) is shown in figure 2. It is flat in the central region of the plasma consistent with
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Table 1. The Fourier coefficients of R and Z that describe the last closed flux surface of an ITER
configuration. The poloidal mode number is m and the toroidal mode number is n. The dimensions
of Rmn and Zmn are expressed in metres.

m n Rmn(1) Zmn(1)

0 0 5.8722 0
1 0 2.0291 3.5185
2 0 3.1581 × 10−1 −1.5611 × 10−1

3 0 −2.9946 × 10−2 1.4543 × 10−2

4 0 1.3105 × 10−2 1.2426 × 10−2

5 0 5.3984 × 10−4 −2.9503 × 10−3

6 0 −1.2283 × 10−3 −4.6531 × 10−4

7 0 3.7245 × 10−4 7.6980 × 10−4

8 0 1.0836 × 10−4 −1.4809 × 10−4
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Figure 2. The pressure profile obtained using the mass profile prescribed by equation (5)
and the mass profile as a function of

√
s. The pressure is given in units of pascals times

µ0 = 4π × 10−7 H m−1, the permeability of free space.

a large qmin � 1 radius and with observations in the TCV tokamak when sawteeth relaxations
disappear [15, 16].

The second profile is the hot particle perpendicular to parallel temperature ratio T⊥/T||
chosen as unity for isotropic pressure conditions, further guaranteed by selecting Bc =
0.026T 	 Bmin. The third profile of ANIMEC is ph for which the constant 0.001 is given.

The fourth profile can be either the rotational transform 1/q or the toroidal plasma current.
It is easiest to prescribe inverse q. However, while the q-profile can be quite insensitive to
details in the toroidal current profile, the converse does not hold. Imposing the q-profile can
yield a toroidal current profile that reverses in the outer fraction of the plasma volume with a
finite jump at the plasma–vacuum interface. Therefore, the toroidal current profile prescription
tends to be preferable to guarantee physically realistic conditions. We have adapted and
implemented in ANIMEC the model employed in the CHEASE code [17] to describe the
toroidal current profile by three piecewise differentiable polynomials, rather than the standard
polynomial expansion employed in VMEC [7]. From the magnetic axis to some surface
labelled by s1, the profile is quadratic, from s1 to s2 it is cubic, and linear from s2 to the plasma
edge (s = 1). There are seven coefficients to provide as input. These are the radial positions s1

4
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Figure 3. The inverse rotational transform profile q as a function of
√

s for the case with 13.3 MA
toroidal current.
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Figure 4. Contours of constant pressure at cross sections with toroidal angle (a) v = 0, (b)
v = π/3, (c) v = 2π/3 and (d) v = π for an ITER hybrid scenario equilibrium with 13.3 MA
toroidal plasma current. R and Z are in metres.

and s2, the values of J ′(s) at the magnetic axis and at the plasma edge and the values of J ′′(s)
at the magnetic axis, at s1 and at s2. The toroidal plasma current enclosed within the surface
s, which corresponds to 2πJ (s), is integrated analytically from the profile prescribed, it is
normalized to its value at the plasma boundary and is multiplied by the total current which is
a separate input parameter of the code. The current profile coefficients J ′(0) = 1, J ′(1) = 0,
J ′′(0) = 5, J ′′(s1) = −2, and J ′′(s2) = −0.05 have been fixed for all the calculations
undertaken in this work. We have varied s1, s2 and adjusted the total plasma current so that the
minimum value of q (qmin) is in the neighbourhood of unity. The corresponding q-profile for
a case with toroidal current of 13.3 MA, s1 = 0.35 and s2 = 0.55 is shown in figure 3. When
qmin is near unity at a sufficiently large plasma radius, we can obtain an equilibrium with a 3D
helical core despite imposing a fixed axisymmetric plasma boundary [10]. An example with
the ITER-shaped boundary shown in figure 1, with the pressure of figure 2 and q-profile of
figure 3, is given in figure 4. These new equilibrium states can exist in a range of q-profiles
having qmin � 1. For the set of parameters used in this study, cases with 13.1 and 13.8 MA
are presented in figure 5 that encompass a sequence of equilibria with 3D helical cores.
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Figure 5. Zoom of the inverse rotational transform q-profiles as a function of
√

s for the cases
with toroidal current of 13.1 MA (solid curve) and 13.8 MA (dashed curve).

4. Convergence properties of helical core equilibria

4.1. Convergence study with radial mesh

We investigate the dependence of the extent of the helical deformation of the magnetic axis on
the radial mesh size for a sequence where we vary the number of radial grid points from 81 to
209. The spectrum of Fourier components encompass 0 � m � 8 and −4 � n � 4, where
m is the poloidal mode number and n is the toroidal mode number. The interface locations
of the current profile segments are given by s1 = 0.4 and s2 = 0.6. To obtain equilibria with
qmin � 1, we require a total plasma current of 15.1 MA.

We define the helical deformation of the magnetic axis as

δH =
√

R2
01(s = 0) + Z2

01(s = 0)

a
, (6)

where R01(Z01) is the (m = 0, n = 1) Fourier component of R(Z) at the magnetic axis and
a = 2.65 m is the effective plasma minor radius. The extent of the helical axis distortion as
a function of the inverse of the number of radial grid points N2

r is displayed in figure 6. We
conclude that the choice of Nr > 150 radial mesh points constitutes an adequate number to
obtain reliably converged helical ITER equilibrium solutions. We therefore employ Nr = 193
for the calculations described in the next sections.

4.2. Convergence study with poloidal and toroidal mode numbers

The convergence of the helical core ITER equilibrium states with respect to the number of
Fourier mode components is investigated in this section. For the sequence in which we vary
the maximum poloidal mode number mmax from 8 to 11, we have fixed the maximum toroidal
mode number nmax = 4, while that in which we alter nmax from 3 to 6 has fixed mmax = 10.
The toroidal plasma current in these sequences is 13.2 MA. The helical distortion parameter
δH is displayed as functions of mmax and nmax in figure 7 from which we conclude that mode
numbers mmax = 8 and nmax = 4 can reliably generate acceptably converged equilibrium
structures. These limits are imposed for the computations presented in subsequent sections.
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Figure 6. Convergence of the magnetic axis helical distortion parameter δH as a function of the
inverse number of radial grid points Nr for an ITER equilibrium with 15.1 MA toroidal current.
The value of δH extrapolated to infinitesimal mesh size is ∼0.44.
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Figure 7. Convergence of the magnetic axis helical distortion parameter δH with respect to the
maximum poloidal mode number mmax (left) and with respect to the maximum toroidal mode
number nmax (right) for an ITER equilibrium with 13.2 MA toroidal current.

Computer simulation programmes that apply a Fourier representation in the angular
coordinates converge exponentially with the number of poloidal and/or toroidal grid points [18].
Typically, we need to choose the number of toroidal grid points Nt in the range 3nmax + 2 �
Nt � 4nmax +1 and the number of poloidal grid points Np in the range 4mmax � Np � 5mmax +1
to guarantee correct solutions. The computations that follow with mmax = 8 and nmax = 4
have Nt = 3nmax + 2 and Np = 5mmax which satisfy these criteria.

5. Helical ITER equilibria

5.1. Toroidal plasma current scan

We investigate a sequence of ITER equilibria where we choose s1 = 0.35 and s2 = 0.55 and
vary the toroidal current between 13.1 and 13.8 MA. In this range, we obtain equilibria with
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Figure 8. The magnetic axis helical distortion parameter δH as a function of the toroidal plasma
current in MA.
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Figure 9. The magnetic axis helical distortion parameter δH as a function of qmin.

spontaneous 3D helical distortions of the core region of the plasma though the boundary, as it
is fixed, remains axisymmetric.

The magnetic axis deformation δH as a function of the toroidal plasma current is plotted
in figure 8. As we increase the plasma current, the value of qmin decreases spanning the range
shown in figure 5. We show the corresponding dependence of δH with respect to qmin for the
sequence we have studied in figure 9.

The contours of constant pressure at four toroidal cross sections spanning half of the torus
were displayed in figure 4 for the case with 13.3 MA toroidal plasma current. We highlight the
change in the internal helical structures with current by plotting the constant pressure contours
at the toroidal angle v = 2π/3 (one third of the way around the torus) for the sequence of
equilibria described in figures 8 and 9 as we vary the current from 13.1 to 13.8 MA in figure 10
which confirm that the maximum helical deformation occurs at a current of 13.5 MA where
qmin � 0.996.
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Figure 10. Contours of constant pressure at the cross sections with toroidal angle v = 2π/3 with
toroidal current (a) 13.1 MA, (b) 13.2 MA, (c) 13.3 MA, (d) 13.4 MA, (e) 13.5 MA, (f ) 13.6 MA,
(g) 13.7 MA and (h) 13.8 MA, where R and Z are expressed in metres.

5.2. ITER hybrid scenario study: 〈β〉 scan

The ITER hybrid scenario is specifically targeted to have a toroidal field of 5.3 T and toroidal
plasma currents in the 12–14 MA range [12]. In order to achieve these targets, we have
increased the toroidal magnetic flux to 121.6 Wb and sharpened the toroidal current profile by
imposing s1 = 0.36, s2 = 0.38, J ′′(0) = 12 and J ′′(s1) = −10. The remaining coefficients
for the current profile are the same as in the current scan we have described in the previous
section. A sequence of equilibria is computed by changing M(0) from 2 to 50 000 to obtain
a finite 〈β〉 scan from 0 to 3.5% (corresponding to βN � 3.3). The helical distortion of the
magnetic axis is plotted in figure 11 showing that a helical core exists in the absence of plasma
pressure and increases somewhat with 〈β〉. The toroidal plasma current in this sequence is
fixed at 12 MA and the number of radial grid points Nr = 289.

6. Conclusions and discussion

The work presented in this paper represents a paradigm shift for tokamak magnetic confinement
physics research because we have theoretically demonstrated that the equilibrium state in the
ITER device operating in the hybrid scenario with qmin � 1 can develop an internal helical
core structure with the essential characteristics of a saturated m = 1, n = 1 ideal internal
kink mode. Scans in toroidal plasma current and 〈β〉 have been generated to determine the
sensitivity and magnitude of the core helical deformations with respect to these parameters. The
structures are computed in the 12–15 MA range. The toroidal current profile that is prescribed
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Figure 11. The magnetic axis helical distortion parameter δH as a function of the volume
averaged 〈β〉.

becomes more peaked towards the lower end of this range. However, we conjecture that the
exact axisymmetric boundary we have imposed constitutes a sufficiently severe restriction that
forces the helical core to develop above a relatively high current threshold. In future work,
we shall concentrate on free boundary calculations to ascertain the robustness of the 3D core
helical equilibrium states in a wider range of toroidal currents and profiles.
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