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Abstract

Generalized Linear Models (GLMs) are an increasingly papédamework for
modeling neural spike trains. They have been linked to teerthof stochastic
point processes and researchers have used this relati@sd¢esagoodness-of-fit
using methods from point-process theory, e.g. the timealaw theorem. How-
ever, high neural firing rates or coarse discretization teadbreakdown of the as-
sumptions necessary for this connection. Here, we show looaress-of-fit tests
from point-process theory can still be applied to GLMs by staincting equiva-
lent surrogate point processes out of time-series obsengatFurthermore, two
additional tests based on thinning and complementing goimtesses are intro-
duced. They augment the instruments available for cheakiodel adequacy of
point processes as well as discretized models.

1 Introduction

Action potentials are stereotyped all-or-nothing evemtsaning that their amplitude is not consid-
ered to transmit any information and only the exact time @unence matters. This view suggests
to model neurons’ responses in the mathematical framewbpgoiot processes. An observation
is a sequence of spike times and their stochastic propemeesaptured by a single function, the
conditional intensity [1]. For point processes on the tiime,| several approaches for evaluating
goodness-of-fit have been proposed [2]. The most populdremeuroscientific community has
been a test based on the time-rescaling theorem [3].

In practice, neural data is binned such that a spike traiedeasented as a sequence of spike counts
per time bin. Specifically, Generalized Linear Models (G)Mee built on this representation. Such
discretized models of time series have mostly been seen ap@pximation to continuous point
processes and hence, the time-rescaling theorem was gieda such models [4, 5, 6, 7, 8].

Here we ask the question whether the time-rescaling theoagne translated to discrete time. We
review the approximations necessary for the transitionigordte time and point out a procedure
to create surrogate point processes even when these apptadis do not hold (section 2). Two
novel tests based on two different operations on point msE® are introduced: random thinning
and random complementing. These ideas are applied to & sdrexamples (section 3), followed
by a discussion (section 4).
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Figure 1. Spike train representations. (A) A trace of the imeme potential of a spiking neuron.
(B) Information is conveyed in the timings and number of @etpotentials. This supports the
representation of neural activity as a point process in kvkich spike is assumed to be a singular
eventin time. (C) When time is divided into large bins, theksprain is represented as a time series
of discrete counts. (D) If the bin width is chosen small erfgute spike train corresponds to a
binary time series, indicating the presence of a singleesipigide a given time bin.

2 Methods

2.1 Representations of neural activity

We characterize a neuron by its response in terms of traiastadin potentials using the theory of
point processe@Figures 1A and 1B). An observation consists of a list of 8imeach denoting the
time point of one action potential. Following a common nioia{3, 9], let(0, 7] be the time interval

of the measurement add, } be the set ofi event times. The stochastic properties of a point process
are characterized by its conditional intensity functidin| 4 (¢)), defined as [1]:

. Plspikein (¢t,t + A)|Hy]
- ilglo A ’ (1)
whereH, is the history of the stochastic process up to tina@d possibly includes other covariates
of interest. For fitting and evaluating different paramesits of the conditional intensity function, a
maximum-likelihood approach is followed [10, 11]. The Ibkelihood of a point process model is
given by [1]:

A(t|Hy)

n T
log L(point process) = Z log A(u;|Hy,) — / A(t|Hy)dt. 2
i=1 0

One possibility are binning-free models (like renewal gsges or other parametric models). Alter-
natively,\(¢| H;) can be modeled as a piece-wise constant function with eack piaving length.

In this case, the history terifi; covers the history up to the time of the left edge of the curbém
Inside the bin, the process locally behaves like a Poissotegs with constant rate, = A(¢|Hy)
with ¢, = Ak andH, = H,,. Using the number of spikeg per bin as a representation of the obser-
vation, the discretized version of Equation 2 is equivalethe log-likelihood of a series of Poisson
samples (apart from terms that are not dependent(oii#;)). Hence, for finding the maximum-
likelihood solution for the point process, it is equivalgrgufficient to maximize the likelihood of
such a Poisson regression model. The result of fitting wikhlsequence qf; for each bin, where
1; is the expected number of counts. Since a local Poissongsag@ssumed within the bins; is
related to\; via: \; = p;/A.

A complementary approach to the point process framework et spike trains aime series

e. g. as a sequence of coukits} or binary event{b;} (Figures 1C and 1D). For Poisson-GLMs,
a sequence of Poisson-distributed count variablds modeled and the linear sum of covariates
is linked to the expected mean of the Poisson distributipnBinary time series can be modeled
as a sequence of conditionally independent Bernoulligngith outcomes 0 and 1 and success
probabilities{p;}. For Bernoulli-GLMs, thep;s are linked via a non-linear transfer function to
a linear sum of covariates. Defined this way, the likelihooddn observed sequengggiven a
particular model op; is given bylog L(Bernoulli) = }°, by log t24- + 3~ log(1 — p). In the
approximation ofu; < 1, u; becomes approximately, and the likelihoods of the Bernoulli and
Poisson series become equivalent. Moreover, using the appreximation, it is possible to link
the Bernoulli series to the conditional intensity functidtt| H;) via A; ~ p;/A . Traditionally,
this path was chosen to relate the time series to the thequgiof processes and to be able to use
goodness-of-fit analyses available for such point procg€§e
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Figure 2: Overview of goodness-of-fit tests for point-pxeodels. (A) Using the time-rescaling
theorem, the time of each spike is rescaled according tontiegrial of the conditional intensity
function. (B) Assuming that the conditional intensity ftioa has a lower limitB, spikes of the
original spike train are thinned by keeping a spike only vpjtbbabilityB)\i_l. (C) Assuming that
the conditional intensity function has an upper lifiita complementary proces$’ = C' — A can

be constructed. Adding samples from this inhomogeneoussBoiprocess to the observed spikes
results in a homogeneous Poisson process with(fate

2.2 Goodness-of-fit tests for point processes

Statistical tests are usually evaluated using two meastitesspecificity(fraction of correct models
that pass the test) and tlsensitivityor test power(fraction of wrong models that are properly
rejected by the test). The specificity is set by the signifiedievel: With significance level, the
specificity is1 — a.. The sensitivity of a given test depends on the strengtheofidparture from the
modeled intensity function to the true intensity.

2.2.1 The time-rescaling theorem

A popular way for verifying point-process-based modelsiieen the time-rescaling theorem [3, 12].
It states that if u; } is a realization of events from a point process with cond#idntensity\(¢| H;),
then rescaling via the transformatioh = foui A(t|Hy)dt will yield a unit-rate Poisson process.

We call the following transformation thesive time-rescalingvhen it is applied to binary sequences.
The spike timey; falling into bin j, is transformed intou, = >~ _, px.

2.2.2 Thinning point processes

It is well known that an inhomogeneous point process can imellated by generating a homo-
geneous Poisson process with constant inter@ityith C' > max A(¢) (the so-called dominant
process) and keeping every spike at titpavith probability p = % [13, 2]. In reverse, this
can be used to do model-checking [14]: LBte a lower bound of the fitted conditional intensity
A(t|H(t)). Now takeA(t|H (t)) as the dominant process with samplesThin the process by keep-
ing a spike with probabilityk(tfﬁ. For a correctly specified modal¢|H,), the thinned process
will be a homogeneous Poisson process with a{Eigure 2B).



Typically, B = min A(t) < A(t) (due to absolute refractoriness in most renewal proces®iniod
and GLMs), such that the thinned process will have a pratétlow rate and only very few spikes
will be selected. Testing the Poisson hypothesis on a haoéipikes will result in a vanishingly
low power.

To circumvent this problem, we propose the following remeldgt B* be a threshold which may
be higher than the lower bound. Then consider only the intervals affor which A > B* and
concatenate those into a new point process. After applyiadhinning procedure on all spikes of
the stitched process, the thinned process should be a Rgissoess with raté*. This procedure
can be repeatefl” times for a range of uniformly spacdsis ranging fromB to C (upper bound).
Stretching each thinned process by a factoBofcreates a set ak” unit-rate processes. Each of
them is tested for the Poisson hypothesis by a Kolmogoroirsmtest on the inter-spike intervals.
The model is rejected when there is at least one significgettesl null hypothesis. To correct for
the multiple tests, we employ Simes’ procedure. It testsglbbal null hypothesis that all tested
sub-hypotheses are true against the alternative hypettiesti at least one hypothesis is false. To

. . . . ( ( ,
this end, it transforms the ordered list of p-valgés, ..., p(%) into X2 v Ky 2 K‘}QK). If any

of the transformed p-values is less than the significanad tev= .05, the model is rejected [15]

2.2.3 Complementing point processes

The idea of thinning might also be used the other way rounduA® the observations have been
generated by thinning a homogeneous Poisson process wéth'nasing the modeled conditional
intensity A(¢|H;) as the lower bound. Then we can define a complementary praéggs= C —
A(t|Hy) such that adding spikes from the complementary point psotethe observed spikes, the
resulting process will be a homogeneous Poisson procelgaté C. This algorithm is a straight-
forward inversion of the thinning algorithms discusseddn]].

It might happen that the upper bouatof the modeled intensity is much larger than the average
A(t). In that case, the observed spike pattern would be distasitichigh number of Poisson spikes
from the complementary process and the test power wouldvielmavoid this, a similar technique
as for the thinning procedure can be employed. Define a thiégli* < C and consider only the
region of the spike train for which(¢|H(t)) < C*. Apply the complementing procedure on these
parts of the spike train to obtain a point process with @Gtevhen concatenating the intervals. This
process can be repeatédtimes with values”* ranging fromB to C. A multiple-test correction
has to be used, again we propose Simes’ method (see preeicticss.

2.3 Creating surrogate point processes from time series

Since the time-rescaling theorem can only be used wH¢[#;) the exact spike time$u;} are
known, it is not a priori clear how it applies to discretizéohe-series models. For such cases,
we propose to generate surrogate point process samplearéhatjuivalent to the observed time
series. To apply the time-rescaling theorem on discretizedels such as GLMs, the integral of the
time transformation is replaced by a discrete sum over hivesn@ive time-rescaling Taking the
simplest example of a homogeneous Poisson process, itdergvhat the possible values for the
rescaled intervals form a finite set. This contradicts theetrescaling theorem that states that the
intervals are (continuously) exponentially distributédence, using the time-rescaling theorem on
discretized data produces a bias [17].

While Haslinger et al. considered a modification of the tirasealing theorem to explicitly ac-
count for the discrete nature of the model [17], we proposeregergl, simple scheme how to form
surrogate point processes from Poisson- and Bernoulli-&tat can be used for the continuous
time-rescaling theorem as well as for any other goodnesitefst designed for point-process data
(Figure 3).

Poisson-GLMs The observation consists of a sequence of count variabldsat is modeled as

a sample from Poisson distributions with mean Hence, the modeled process can be regarded
as a piecewise-constant intensity function. The expectieabier of spikes of a Poisson process is
related to its intensity vig; = A\;A such that we can construct the conditional intensity fumcés

The K tests contain overlapping regions of the same spike train, hence, wet #xpstatistical tests to be
correlated. In these cases, a simple Bonferroni-correction wouldbepttservative [16].
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Figure 3: Creating surrogate point processes from timeseifror bin-free point process models
for which the spike times and a conditional intensiti¢| H (¢)) is available, goodness-of-fit tests
for point processes can be readily applied. For Poisson-§leMact spike times are drawn inside
each bin for the specified number of spikes that were obseiezl piece-wise constant conditional
intensity function is linked to the modeled number of coysbin via\; = A~!y,. For Bernoulli-
GLMs, the probability of obtaining at least one spike perjirs modeled. For each bin with spikes
(b; = 1) —assuming a local Poisson process — a samplieom a biased Poisson distribution with
meany; = —In(1 — p;) is drawn together with corresponding spike times. Finglbint-process
based goodness-of-fit tests may be applied to this surregée train.

piece-wise constant with valugs = A~!y;. Conditioned on the number of spikes that occurred in
a homogeneous Poisson process of kgt¢éhe exact spike times are uniformly distributed inside bin
1. A surrogate point process can be constructed from a PaiS&dh by generating random spike
times(i — 1+ Unif(0,1))A for each spike within bin i{ < ¢ < N) for all bins with¢; > 0. One
can then proceed to the point-process-based goodnedganiiéi using the surrogate spike train and
its conditional intensity\;.

Bernoulli-GLMs : Based on the observed binary spike trébn}, the sequence of probabilities
of spiking within bini is modeled. We can relate this to the point process framewsitkg the
following observations: Assume that denotes the probability of finding at least one spike within

each biR and that locally, the process behaves like a Poisson protess,p; = PP (X >
1) = 1— PPosen (X = 0) = 1 — exp(—y;). The conditional intensity is given by, = A~1;; =
—A~1In(1 — p;). In practice, for each bin with, = 1, we draw the amount of spikes within the
bin by first sampling from the distributioﬁ’lﬁpms"“) (X = k|k > 1) and sample exact spike times

i

uniformly as in the case of the Poisson-GLMs.

3 Results

Here, we compare the performance of the three differentoaghies in detecting wrongly specified
models, using examples of models that are commonly appfieteural data analysis. For the
thinning and complementing procedu¥é,= 10 partitions were chosen (see section 2.2.2). Unless
otherwise noted, we report the test power at a specificiy-ofx = .95. The Poisson hypothesis in
the proposed procedures is tested by a Kolmogorov-Smigsivwn the inter-spike intervals of the
transformed process.

3.1 Example: Inhomogeneous Poisson process

Consider an inhomogeneous Poisson process with banedinmitensity: A(t[H;) = A(t) =
20 Hz + Z]J::140 ” €7n(2(7;f(t]—Tl;T))
L=
drawn from a uniform distribution on the intervil, 20]. The process was simulated over a length
of T = 20 s and the intensity was discretized with= 1 ms. Negative intensities were clipped

with f = 1 Hz andJ = 40 coefficients that were randomly

2such clipping is implicitly performed in many studies, e. g. in [18, 19, 20].
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Figure 4: Inhomogeneous Poisson process. (A) Sample ittdasctions for an undistorted inten-
sity (black line) and two models with jitters in the coefficie (3 = 12, medium jitter and3? = 30,
large jitter). (B) The test power of each test as a functiothefjitter strength. The dashed line
indicates the level of the medium jitter strength (red lindigure A). (C) ROC curve analysis for
an intermediate jitter strength ¢f= 12. The intersection of the curves with the dashed line corre-
sponds to the test power at a significance level ef .05.

to zero. A binary spike train was generated by calculatirgpfobability of at least one spike in
each time bin ag; = 1 — exp(—A(¢;)A) and drawing samples from a Bernoulli distribution with
specified probabilitiep;.

For evaluating the different algorithms, wrong models fog tnhtensity were created with jittered
coefficientsu), = ux + SUnif(—1, 1) whereg indicates the strength of the deviation from the true
model. For each jitter strengtlly = 1000 spike trains were generated from the true model and
A(t|Hy) was constructed using the wrong model (Figure 4A). For/any 0, the fraction of rejected
models defines the sensitivity or test power. Bote 0, the fraction of accepted models defines the
specificity which was controlled to be &t o = .95 for each test.

All three methods (rescaling, thinning, complementingdvgla specified type-I error of approx-
imately 5% (3 = 0) and progressively detect the wrong models. Notably, thaptementing
and thinning procedures detect a departure from the camedel earlier than the classical rescal-
ing (Figure 4B). For comparison, also theiveimplementation of the rescaling transformation is
shown. The significance level for the KS test used for thiwenéime-rescaling was adjusted to
a = .015 to achieve a 95% specificity. The adjustment was necessarjodhe discretization bias
(see section 2.3).

For models with an intermediate jitter strength=£ 12), ROC curves were constructed. Here, for a
given significance level, a pair of true and false positive rates can be calculategmtidd for each
test (takingNV = 1000 repetitions using the true model and the model with jittereefficients). It
can be seen that especially for intermediate jitter streygiomplementing and thinning outperform
time-rescaling (Figure 4C), independent of the choserifsignce level.

3.2 Example: Renewal process

In a second example, we consider renewal processes, ieesiike intervals are an i. i. d. sample
from a specific probability distributiop(At). In this case, the conditional intensity is given by

A(t|Hy) = e f’t’(_t;t*() . wheret* denotes the time of the last spike prior to time t. For this
— p(u)du
0

example, we chose the Gamma distribution as itis commomg tsmodel real spike trains [4, 3, 7].

The spike train was generated from a true model, followingen@a distribution with scale param-

At
eterA = 0.032 and shape parameté = 6.25: p(At) = (At)P~! 4575, Wrong models were
generated by scaling the shape and scale parameter by ad&tte 5 ("jitter”) while keeping the
expected value of the distribution constant (i3.= (1 + 3)B, A’ = (1 + 3)~1A) (Figure 5A).
For each jitter strengthy = 1000 data sets of lengtli’ = 20 s were generated from the true model
and the wrong model and the tests were applied.
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Figure 5: Renewal process. (A) Inter-spike interval digttions for the undistorted (black line) and
distorted models (medium jittef, = 0.5 and strong jitters = 1.0). For comparison, a sample ISI
histogram from one of the simulations is shown in gray. Nb& the mean of the three distributions
is matched to be the same (vertical dashed line). (B) Thepteser of each test as a function of the
jitter strength. The dashed line indicates the level of tleelioim jitter strength (red line in figure A).
(C) ROC curve analysis for an intermediate jitter strendth e= 0.5. The intersection of the curves
with the dashed line corresponds to the test power at a signde level ofx = .05.

The analysis of test power for each test and the ROC curvgsgiadbr an intermediate jitter strength
reveal that time-rescaling is slightly superior to thirmmand complementing (Figure 5B and C). The
nave time-rescaling performs worst (adjusted significameellfor the KS testy = .017).

3.3 Example: Inhomogeneous Spike Response Model

We model an inhomogeneous spike response model with esoggeeusing a Bernoulli-GLM [21].
The spiking probability is modulated by an inhomogeneotes:r&). Additionally, for each spike,
a post-spike kernel is added to the process intensity. Tieefuaction is modeled like in the first
example as a band-limited function, = r(t;) = Y7-,° j—“”fz;f(_tfgm with f = 1 Hz
and J = 40 coefficients that were randomly drawn from a uniform disttibn on the interval
[—0.2,0.2]. The post-spike kernej(At) is modeled as a sum of three exponential functians=(
5 ms,25 ms andl s) with appropriate amplitudes as to mimick a relative i&fsey period, a small
rebound and a slow (inhibitory) adaptation. To construetBbrnoulli-GLM, the spiking probability
p; per bin of lengthA = 1 msisp; = m with s; = =3+, + Z{uj}di n(u; —t;).

A binary time series (the spike train) was generated for atitur of 7' = 20 s. The jittered models
were constructed by adding a jittgron the coefficients of the inhomogeneous rate modulation
(Figure 6A). For each jitter strengttN' = 1000 data sets were generated from the true model and
the wrong model and the tests were applied.

Both thinning and complementing are able to detect smaliodions than both the time-rescaling
on the surrogate and discrete data (Figure 6B, adjustedfisace level for the riae rescaling,
a = .018). A ROC curve analysis for an intermediate jitter strength=0.4) supports this finding
(Figure 6C).

4 Discussion

Assessing goodness-of-fit for Generalized Linear Modets rhastly been done by applying the
time-rescaling transformation that is defined for pointgesses, assuming a match between those
approaches. When the per-bin probability of spiking caneatdgarded as low, this approximation
breaks down and creates a bias when applying the time-negdshnsformation [17]. In a first
step, we proposed a procedure to create surrogate poirggz®eg from discretized models, such as
Bernoulli- and Poisson-GLMs, that do not exhibit this bidkroughout all the examples, the time-
rescaling theorem applied to the surrogate point processystematically better than applying the
nave time-rescaling on the discrete data. Since only thesseljlitime-rescaling procedure allows
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Figure 6: Inhomogeneous Spike Response Model. (A) Samigasity functions for an undistorted
intensity (black line) and two misspecified models (mediitterj 5 = 0.4 and strong jitters =
1.0). (B) The test power of each test as a function of the jitteargith. The dashed line indicates the
level of the medium jitter strength (red line in figure A). (RPC curve analysis for an intermediate
jitter strength ofg = 0.4. The intersection of the curves with the dashed line comedp to the test
power at a significance level of = .05.

to reliably control the specificity of the test, it should beferred over the classical time-rescaling
in all cases where discretized models are used.

We have presented two alternatives to an application ofithe-tescaling theorem: For the first
procedure, the observed spike train is thinned accorditigeaalue of the conditional intensity at
the time of spikes. The resulting process is then a homogesneoisson process with a rate that is
equal to the lower bound on the conditional intensity. Theoee proposed method builds on the
idea that an intensity functiok(¢) with an upper bound’ can be filled up to a homogeneous Poisson
process of rat€’ by adding spike samples from the complementary pro€ess\(¢). The proposed
tests work best if the lower and upper bounds are tight. Hewéw most practical cases, especially
the lower bound will be prohibitively low to apply any staitsl test on the thinned process. As a
remedy, we proposed to consider only regions@fH (¢)) for which the intensity exceeds a given
threshold and repeat the thinning for different thresholdss successfully overcomes the limitation
that may have — up to now — prevented the use of the thinnirgithign as a goodness-of-fit measure
for neural models.

The three tests are complementary in the sense that thegrsiige to different deviations of the

modeled and true intensity function. Time-rescaling isycsgnsitive to the total integral of the

intensity function between spikes, while thinning exchesy considers the intensity function at the
time of spikes and is insensitive to its value at places wherspikes occurred. Complementing is
sensitive to the exact shapeqf) regardless of where the spikes from the original obsematie.

For the examples of an inhomogeneous Poisson process apittee Response Model, thinning
and complementing outperform the sensitivity of the sintpiee-rescaling procedure. They can
detect deviations from the model that are only half as laggtha ones necessary to alert the test
based on time-rescaling. For modeling renewal procesess;rescaling was slightly advantageous
compared to the to other methods. This should not come apasisince the time-rescaling test
is known to be sensitive to modeling the distribution of irgpike intervals [3].

Beside from likelihood criteria [12, 22, 23], there existvfgoodness-of-fit tools for neural mod-
els based on Generalized Linear Models [2, 24]. With the psed procedure for surrogate point
processes, we bridge the gap between such discrete modefsoan processes. That enables to
make use of additional tests from this domain, such as thinahd complementing procedures. We
expect these to be valuable contributions to the generatipesof statistical evaluation in modeling
single neurons as well as neural populations.
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