000162682 001__ 162682
000162682 005__ 20190316235024.0
000162682 0247_ $$2doi$$a10.1080/15715124.2010.517672
000162682 022__ $$a1571-5124
000162682 037__ $$aARTICLE
000162682 245__ $$aComprehensive system analysis of a multipurpose run-of-river power plant with holistic qualitative assessment
000162682 269__ $$a2010
000162682 260__ $$c2010
000162682 336__ $$aJournal Articles
000162682 500__ $$a[759]	
000162682 520__ $$aAlpine rivers have been channelized by significant river training works in the past two centuries and are now disconnected from their natural environment. In adition, their flow regime is often affected by hydropower plant operation. Also the risk of flood damages is increasing continuously due to urbanization requiring additional flood protection measures. Nevertheless, such trained rivers still have high potential for renewable energy production. Furthermore, there is often a need for biotope restoration and creation of leisure infrastructures. New hydraulic schemes on such rivers have a chance to obtain public acceptance only if they are designed as multipurpose projects, which can alone ensure high synergies between different goals. Multipurpose projects are complex systems and have to be assessed with an appropriate global approach. Based on a network thinking approach, this article presents a global qualitative system analysis specially adapted for a typical multipurpose run-of-river power plant for the six project themes involved: (1) hydraulic scheme and river flow regime, (2) energy, (3) economy, (4) leisure activities, (5) groundwater and (6) ecology. The qualitative network thinking method developed by Gomez and Probst for business strategies is, for the first time, applied and enhanced for the assessment of such a multipurpose hydraulic scheme. Each theme, i.e. purpose of the project, is analysed separately, followed by a comprehensive study of the six themes combined together. Based on a network representation of the global system, three groups of factors are distinguished describing the sizes, the operations and the goals of the project. The size factors characterize the main geometrical aspects of the hydraulic structures, which can define the best layout of the project. The operation factors allow the optimization of the management of the reservoir. Finally, the objective factors characterize the synergies obtained by the multipurpose project. The developed methodology is illustrated with a case study of a multipurpose hydroelectric run-of-river power plant.
000162682 6531_ $$aMultipurpose run-of-river scheme; complex system analysis; qualitative assessment; network thinking approach; hydropeaking; flood routing; shallow reservoir
000162682 700__ $$aHeller, Philippe
000162682 700__ $$0241226$$aBollaert, Erik$$g107179
000162682 700__ $$0241228$$aSchleiss, Anton$$g112841
000162682 773__ $$j8$$k3-4$$q295-304$$tInternational Journal of River Basin Management
000162682 8564_ $$uhttp://www.informaworld.com/$$zURL
000162682 8564_ $$s524414$$uhttps://infoscience.epfl.ch/record/162682/files/2010-759_Heller_Bollaert_Schleiss_comprehensive_system_analysis.pdf$$yn/a$$zn/a
000162682 909C0 $$0252079$$pLCH$$xU10263
000162682 909C0 $$0255473$$pPL-LCH$$xU10263
000162682 909CO $$ooai:infoscience.tind.io:162682$$particle$$pENAC$$qGLOBAL_SET
000162682 917Z8 $$x206365
000162682 937__ $$aEPFL-ARTICLE-162682
000162682 973__ $$aEPFL$$rNON-REVIEWED$$sPUBLISHED
000162682 980__ $$aARTICLE