Dielectric discontinuity effects on the adsorption of a linear polyelectrolyte at the surface of a neutral nanoparticle

The formation of complexes between nanoparticles and polyelectrolytes is a key process for the control of the reactivity of manufd. nanoparticles and rational design of core shell nanostructures. In this work, we investigate the influence of the nanoparticle dielec. const. on the adsorption of a linear charged polymer (polyelectrolyte) at the surface of a neutral nanoparticle. The polyelectrolyte linear charge d., as well as the image charges in the nanoparticle due to the dielec. discontinuity, is taken into account. Monte Carlo simulations are used to predict the adsorption/desorption limits and system properties. Effects of the nanoparticle size and polyelectrolyte length are also investigated. The polyelectrolyte is found adsorbed on the nanoparticle when the dielec. const. of the nanoparticle is greater than the dielec. const. of the medium. Attractive interactions induced by the presence of opposite sign image charges are found strong enough to adsorb the polyelectrolyte showing that the reaction field contribution has to be considered. The affinity between the polyelectrolyte and the nanoparticle is found to increase in magnitude by increasing the nanoparticle size and dielec. const. The reaction field magnitude is also found to depend in a nonlinear way from the polyelectrolyte length.

Published in:
The Journal of Chemical Physics, 131, 17, 174704
American Institute of Physics

 Record created 2011-01-25, last modified 2018-01-28

External link:
Download fulltext
Rate this document:

Rate this document:
(Not yet reviewed)