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Abstract—Multi-Processor Systems-on-Chip (MPSoCs) are penetrating
the electronics market as a powerful, yet commercially viable, solution
to answer the strong and steadily growing demand for scalable and high
performance systems, at limited design complexity. However, it is critical
to develop dedicated system-level design methodologies for multi-core
architectures that seamlessly address their thermal modeling, analysis and
management. In this work, we first formulate the problem of system-level
thermal modeling and link it to produce a global thermal management
formulation as a discrete-time optimal control problem, which can be
solved using finite-horizon model-predictive control (MPC) techniques,
while adapting to the actual time-varying unbalanced MPSoC workload
requirements. Finally, we compare the system-level MPC-based thermal
modeling and management approaches on an industrial 8-core MPSoC
design and show their different trade-offs regarding performance while
respecting operating temperature bounds.

1. INTRODUCTION

With the advance of technology, the number of functional units
and cores integrated on a chip is increasing. Already today several
commercial multicore architectures ranging from few cores to several
tens of cores are starting to be available, such as Sun’s 8-core
Niagara [1] and Tilera’s 64-core architecture [2]. However, power
and thermal management are critical challenges for such multicore
systems [4]. In fact, temperature gradients and hot spots not only
affect the performance of the system, but also lead to unreliable
circuit operation and reduce the lifetime of the chip [3]. In addition,
abrupt power-mode transitions in voltage and frequency scaling waste
additional power [6]. Thus, system-level thermal management for
multicore architectures is a critical matter to tackle nowadays.

In the last years, thermal management techniques received a lot
of attention. Many state-of-the-art thermal control policies operate
power management by employing dynamic voltage and frequency
scaling (DVFS) based techniques [5], [6]. On the one hand, most
previous works target power density reductions, which has the indi-
rect effect of reducing overall temperature. However, these techniques
do not proactively minimize thermal gradients or hot spots, but
rather take reactive decisions based on information related to the
current thermal profile and frequency setting of the MPSoC to
control. On the other hand, most recent approaches start tackling joint
processor power optimizations and thermal management by using
convex optimization [8], [12], [15]. These works start exploiting a
temperature forecast technique based on convex-optimization models,
but the adaptation is only done on-line exploiting information related
to a limited workload history.

Finally, two recent approaches [16] and [17] describe two methods
to achieve thermal prediction without completely relying on the
thermal model, thermal sensors and power consumption statistics.
However, these previous policies do not completely avoid hot spots,
but they simply reduce their frequency. The reason is that the
interaction between the prediction method, the thermal behavior of
the MPSoC and the frequency assignment of the MPSoC is not
addressed as a joint system-level optimization problem. Thus, the

978-1-4244-9472-9/11/$26.00 ©2011 IEEE

actions taken by the policies to avoid hot spots do not explore the
problem from a global optimum perspective.

In this work, we explore novel thermal-aware system-level control
approaches for multi-core architectures that seamlessly considers
thermal modeling, analysis and management. We first define a thermal
model of the underlying MPSoC architecture, which is linked to
the thermal response of the physical materials and chip geometries,
in an initial design-time thermal response analysis of the target
MPSoC. Then, we show how these approaches exploit this MPSoC
thermal model to solve the system-level run-time thermal manage-
ment problem as an optimization problem using model predictive
control (MPC) [7]. Our results on an 8-core MPSoC design show that
different system-level MPC-based thermal control methods have dif-
ferent trade-offs regarding workload demands fulfillment, frequency
assignment speeds and thermal control computation overhead.

The remainder of this paper is organized as follows. Section 2
present the formulation of the MPSoC system-level thermal model.
Section 3 describes the MPC-based thermal management policies.
Section 4 presents the experimental results of the comparisons
between the MPC-based thermal management approaches. Finally,
Section 5 summarizes the main conclusions of this work.

II. SYSTEM-LEVEL MPSOC THERMAL MODELING

The structure of the considered system-level MPC-based thermal
management approaches is reported in the diagram of Figure 1. In
these approaches, the thermal management policy regulator monitors
the MPSoC, which is partitioned into p islands (or subsystems),
each with independent frequency and voltage settings. Then, Vector
f- € NP represents the value of the clock frequencies at time 7. The
frequency value of input ¢ at time 7 is denoted by (f- );. Input 4 ranges
from 1 to p. Thus, the thermal management approach (or policy
regulator) sets working frequencies fr11 according to a specific
MPC-based control scheme. The frequency setting the regulator does
at time 7 is performed by taking into account the current frequency
setting f,, temperature measurements t, coming from on-die thermal
sensors and a workload requirement coming from the scheduler w-
epsilon RP. For each functional unit ¢ = 1..p, the workload
is defined as the minimum value of the clock frequency that the
functional unit should have in order to execute the required tasks
within the specified system constraints. The regulator provides a
frequency assignment that minimizes the difference between the
required and the achieved workload.

A. Frequency Input Model

Using the MPSoC system described in Figure 1, we model syn-
chronous MPSoCs with p clocks that are viewed as the inputs to the
system: vector f; e P represents the value of the clock frequencies
at time 7. The frequency value of input ¢ at time 7 is (f-);. Clock
frequencies are continuous, range from zero to a max frequency
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Fig. 1. Diagram of a generic DVFS-based thermal management system
value (fmax), and represent our optimization variable. The previous
statement is expressed by: 0 =< f- <X f,ax V 7, where the symbol
= means element-wise comparison, fmax -+ 1 = fmax and 1 is a
vector of all ones of size p. Then, the frequency vector represents
our optimization variable. The value of its elements is assigned by
solving the minimization problem described in the following section,
which tries to achieve the desired performance requirements while
satisfying the given temperature constraints.

At time 7, the relation between the normalized value of power
dissipation p- € P and the normalized frequency of operation f- is
expressed by: ufy = pr V 7, where u is a technology-dependent
coefficient. The constant v depends as on the technology as well and
usually it takes a value between 1 and 2. If « = 1, we have a linear
dependence (i.e., frequency scaling) while if 1 < a < 2 we obtain a
quadratic or sub-quadratic dependence (i.e., DVES) [8].

B. Workload Model

The workload requirement is obtained from the higher-level soft-
ware layers (e.g., operating system). Using the MPSoC system
described in Figure 1, for each p islands, the workload is defined
as the minimum value of the clock frequency that the functional unit
should have to execute the required tasks within the specified system
constraints. Thus, the workload requirement at time 7 is defined as a
vector w, € RP, where (w); is the workload requirement value for
input ¢ at time 7. (w;); is the frequency that cores associated with
input 4 from time 7 to time 7 + 1 should have to satisfy the desired
performance requirement coming from the scheduler. This model is
assumed to be continuous and ranges from zero to a max value fi,ax,
the maximum frequency at which the cores process data is:

ijfjfmax VT (1)

When (w;); > (fr);, the workload cannot be processed and so
it needs to be stored and re-scheduled in the following clock cycles.
The, the way we measure the performance of the system in achieving
the requested workload requirements at time 7 is given by the vector
u,. € NP, which expresses the undone workload at time 7.

u, =w, —f, 2)

C. Heat Propagation Model

Our MPSoC system-level thermal model is based on RC-network
differentiation [10]. The chip floorplan is divided into thermal cells
of cubic shape considering silicon and copper layers, and every
functional unit in the floorplan is represented by one or more
thermal cells. Temperatures are then computed considering the cells
heat conductances and capacitances, and the discretization of the
differential equations is solved using a discrete-time, linear, invariant
system [14]. The MPSoC thermal model is thus described as follows:

Xr41 = AX-,— + Bp‘r (3)

t, = Cx, 4)

Where matrix A € R'*! and matrix B ¢ R*?. The number of states
of the new thermal model is [ and p is the number of frequency
island in the MPSoC. Equation 3 describes the state update for a
reduced order model of the MPSoC, as explained in [8], [9], [13].
Then, Matrix C e R°* in Equation 4 relates the value of the states to
temperature measurements in s specific locations inside the MPSoC,
and how the measurements can be derived from the state vector x.

III. SYSTEM-LEVEL MPC-BASED THERMAL CONTROL

All the considered control policies ensure that the maximum
MPSoC temperature never exceeds a predefined threshold, while they
avoid abrupt frequency and temperature variations both over time and
space. Finally, they minimize the undone requested work from the

scheduler. Thus, the control problem can be formalized as:
h

7= (sl + IRpls + [ Tacls )

min J - (6)
subject to : 0=f <X fhnax VT )
Xr41 = AXT + ]~3p7 YT ®)

Cxri1 < tmax V7T )

u, =0 Vr (10)

u=w, —f, V7 (11)

pr = pff V7 (12)

Function J has three sums, where the summation index 7 ranges
from 1 to h future steps. The system tries to minimize the cost
function J and computes the frequency assignment for these steps.
The first term ||Qx-||g is the g norm of the state vector x weighted
by matrix Q, which relates temporal thermal control (hotspot mini-
mization) and spatial thermal control (thermal balancing). The second
term ||Rp-||; is the j norm of the input power vector p weighted by
matrix R. The third term || Tu,||p is the b norm of the amount of
predicted required workload that has not been executed. The weight
matrix T quantifies the importance of workload execution, as required
from the scheduler, in the optimization.

Then, regarding the constraints, inequality 7 defines the range of
working frequencies that can be used (either a continuous range of
frequency settings or a discrete one). Equation 8 defines the evolution
of the system according to the present state and inputs. Equation 9
states that temperature constraints should be respected at all times
and in all specified locations. Since the system cannot execute jobs
that have not arrived, every entry of u, has to be greater than or
equal to 0 as stated by Equation 10. The undone work at time 7, u,
is defined by Equation 11. Finally, equation 12 defines the relation
between the power vector p and the working frequencies, where p
is a technology-dependent constant.

This system-level thermal management control problem can then
be formulated over an interval of h time steps, which starts at current
time 7. For this reason, the approach is said to be predictive. The
result of the optimization is an optimal sequence of future control
moves (i.e. frequencies and voltages) settings for the cores. Only the
first sample of such a sequence is applied and the remaining moves
are discarded. At the next time step, a new optimal control problem
based on new temperature measurements and required frequencies
is solved over a shifted prediction horizon. Hence, this receding-
horizon [7] mechanism transforms an open-loop design method into
a feedback one. Next, we summarize the considered MPC-based
thermal management methods.
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A. Linear Quadratic Regulator

The linear quadratic regulator (LQR) was proposed in [13]. If
the maximum MPSoC temperature (Tmax) is less than a certain
threshold, the overall control system is a linear feedback system,
where MPSoC frequencies are calculated simply by subtracting from
the workload requirement w, the product of the state vector x- and
the controller matrix gain K. The state vector x is related to the
thermal profile by Equation 4. Then, an emergency saturation system
ensures that the regulated frequencies go to the minimum value when
the maximum MPSoC temperature is higher than the threshold Tmax.

By looking at the general model of Equations 5 - 12, the problem
formulation of this policy considers that the horizon is infinite and the
reference (the requested workload w ) is assumed to be constant over
all this period. Matrix T is a null matrix and the norm g = j = 2.
Thus, the objective function is a quadratic form. Because this method
is linear, it is not possible initially to link temperature and undone
work constraints. However, a bias signal wy is added to the control
loop to force the system to execute the requested workload. Finally, an
emergency saturation mechanism avoids that the maximum MPSoC
temperature is higher than the threshold Tmax by clock gating the
MPSoC beyond the emergency temperature [13].

B. Explicit/Implicit MPC

This policy, presented for the first time in [9], considers the thermal
control problem in MPSoC as an MPC optimal control approach
aimed at maximizing a performance metric for a linear dynamic
system under input/output constraints. According to the general
model of Equations 5-12, this problem formulation considers that
the horizon is finite and equal to h and the reference (the requested
workload w) is assumed to be constant over all this period. The
state and the power cost function matrices Q and R are set to be
null. Matrix T is the identity matrix and the norm b = 2. Thus, the
objective function is a quadratic form, and the constraints (Equations
7-12) are considered in the problem formulation.

Then, the proposed control strategy can be implemented in two
different ways [7]. The first one is called implicit and requires to solve
on-line the minimization problem every time the policy is applied.
Thus, a significant amount of hardware resources are needed, since
the result must be computed in a time frame shorter than the thermal
time constants of the MPSoC. An alternative approach is that the
MPC problem is solved off-line in a way that makes explicit the
dependence of the solution of the frequency assignment problem f;*
on input vectors £, w5 and x,. Bemporad et al. [7] have shown that
the optimal explicit controller is piecewise affine. The state space can
be divided into a set of regions, bounded by linear inequalities (i.e.,
a polytope), and in each region a different linear controller can be
specified and computed off-line. Then, the controller selection can be
efficiently performed on-line by simply checking region boundaries.

Finally, a variation of the explicit MPC controller is the approx-
imate explicit MPC approach proposed in in [14]. This method is
similar to the explicit approach presented before, but the solution of
the optimization problem is computed off-line in a way that makes
explicit the dependence of the solution of the frequency assignment
problem f-1 1 on input parameters w- and x-. The resulting explicit
controller is piecewise polynomial. Thus, this method provides a
significant reduction in hardware requirements and computational
cost at the expense of a very limited loss in accuracy (Section IV).

C. Convex Optimization-Based Policies

In this case, the system-level thermal management problem for-
mulation is solved using an embedded solver to compute on-line
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Fig. 2. Floorplan used of the Niagara-1 multicore case study

the frequency assignment [8], [12]. The major difference compared
with previous methods is that the algorithm dynamically adapts to
the actual run-time situation of the system, without relying on any
exhaustive characterization at design time of the possible workloads
of the target system. The result of this optimization is a very smooth
control where both thermal and reliability constraints are satisfied
while achieving significant performance improvements.

According to the general model of Equations 5-12, this problem
formulation considers a finite horizon and equal to h. The state cost
matrix Q is set to be a null matrix. Matrix R, responsible for the
power minimization is an identity matrix and the norm j = 1. All
the others constraints expressed by Equations 7-12 are considered
inside the problem formulation. Then, the major differences with
respect to previous problem formulations is that the Matrix T is time
varying, the norm b = 1 and the requested workload w) are time-
varying. Thus, the algorithm dynamically predicts the future workload
requirements w, and the reliability of the estimation is embedded in
the problem formulation by matrix T.

IV. EXPERIMENTAL RESULTS

The floorplan of the considered MPSoC 8-core Niagara-1 (Ultra-
Sparc T1) architecture is shown in Figure 2. It has been modelled
using blocks of 3mm side each and the technological parameters have
been derived from [1]. We simulated it using a HW/SW emulation
infrastructure inspired by [10]. This architecture has a maximum
operating frequency of 1.2 GHz, where we consider 10 DVFS settings
between 0-1.2GHz in our experiments, and the maximum power con-
sumption of each processor core at the highest frequency is 4 W [1].
We run different web-accessing and multimedia benchmarks [11].

A. Compared system-level thermal management policies

In all our experiments the system-level thermal management poli-
cies are applied every T},,; = 10ms, while the simulation step for
the discrete time integration of the RC thermal model (Section II-C)
is set to 200us. The maximum temperature limit is set to 375° K.
The room temperature is set to 300° K, and we used o = 2 [8] to
link the DVFS setting and its power consumption.

- Threshold Based DVFS (TB-DVFS): This policy checks if the
maximum chip temperature goes above the 370° K threshold, and
sets the frequency up to 62.5% of the maximum one [5], [8].

- Linear Quadratic Regulator (LQR): This policy is presented in
Section II-C and according to our experimental model, the frequency
adaptation needs to be performed every T},

- Model Predictive Control based policies (MPC): We explore
the implicit-explicit optimal MPC approaches presented in [9] and
polynomial approximated MPC-based thermal control policies [14]
with 100-600 vertices. Our experiments indicate that, comparing
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Fig. 3. Executed workload vs. temperature for system-level control policies

with the optimal MPC, approximated controllers reduce the control
computation time from 2.7x (600 vertices) to 4.9x (100 vertices).
In both cases, the size of the matrices A and B is 60x60 and 60x8,
respectively, which are reasonable sizes for the on-line computation
performed in the OS, using the 10ms target update figure for
system-level thermal control. Moreover, even using the approximated
controller we can perform a suitable time-scale synchronization
between the heat flow propagation model and the MPC approaches,
as temperature variation has a much slower time variation constant
than the used DVFS and task scheduling tuning knobs.

- Convex Optimization based policy (Convex-opt): The linear
predictor has been designed using a 3" order polynomial equation
[12], an observation window of 600ms and a prediction length equal
to 50ms in the future. We assumed to have two frequency inputs
controlling the MPSoC: the first one controls cores 1, 4, 5 and 8;
the second one sets the frequency value for cores 2, 3, 6 and 7. We
suppose that the scheduler tries to perform a workload balancing
strategy on the cores and the interval between two consequent
applications of the policy ranges from 10ms to 100ms.

B. Trade-offs between executed workload, working temperature, and
control computation overhead

In our experiments (Figure 3), we explore the trade-offs of the
control policies by plotting the normalized executed workload versus
the thermal profile. The top plot analyzes the average maximum
chip temperature, while the bottom one shows the maximum MPSoC
temperature peak. This figure shows that when no thermal policy
is used in our target 8-core MPSoC, even for an average workload
of less than 65%, the maximum chip temperature reaches almost
405°K. On the contrary, most of the system-level MPC-based
thermal control policies used in this work are able to avoid this
problem (i.e., maximum temperature peak of all policies is less than
377°K). The best performance in terms of executed workload is
provided by convex optimization-based (Convex-opt) policy, followed
by the implicit/explicit MPC techniques. All these policy outperforms
TB-DVFS in terms of executed workload by a factor of 50%,
while having the same average temperature. Then, the approximated
MPCs (200-300 vertices) provides almost the same performance as
the optimal MPC (MPC-Opt) policy. In fact, the optimum MPC
changes the frequencies more often than the approximated versions

because it has more DVFS control regions [14]. However, the change
in the frequency setting has an overhead in terms of additional
power dissipation that is no considered in the presented problem
formulation. Thus, this effect leads to an energy loss of approximately
10% compared with the approximated MPC. Moreover, the TB-
DVFS and LQR policies show lower performance (50% and 25%
less executed workload, respectively) than the convex-optimization
approach and the approximated MPCs polices. Then, the LQR policy
shows an executed workload that is 3% lower the same compared with
the TB-DVEFS, which is much simpler, thus outlining that complete
MPC-based controllers (implicit and explicit) are better options than
LQR policies for system-level thermal control in MPSoCs. Finally,
regarding spatial temperature differences, the policy with the smallest
thermal variations (both in time and space) is the approximated MPC
with 300 vertices and the LQR.

V. CONCLUSIONS

MPSoCs have been proposed as a promising solution to pro-
vide scalable architectures with limited design complexity, but new
thermal-aware design methods must be proposed to guarantee their
safe operation. In this paper we introduced the problem of system-
level thermal modeling and showed how to formulate it as a
discrete-time optimal control problem, which can be solved using
finite-horizon model-predictive control (MPC) techniques. Then, we
explored different MPC-based techniques on an 8-core Niagara-
1 MPSoC and outlined the different trade-offs regarding thermal
balancing, workload fulfillment and thermal control overhead with
respect to more classical DVFS-based thermal control.
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