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ABSTRACT

We present a novel framework for automatically determining whether or not to apply black point compensation
(BPC) in image reproduction. Visually salient objects have a larger influence on determining image quality
than the number of dark pixels in an image, and thus should drive the use of BPC. We propose a simple and
efficient algorithmic implementation to determine when to apply BPC based on low-level saliency estimation.
We evaluate our algorithm with a psychophysical experiment on an image data set printed with or without BPC
on a Canon printer. We find that our algorithm is correctly able to predict the observers’ preferences in all cases
when the saliency maps are unambiguous and accurate.
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1. INTRODUCTION

The conversion of an image from a device’s color encoding to another device’s color encoding is a difficult task
if the target color gamut is significantly larger or smaller than the source color gamut. In the latter case, it can
occur that an image contains pixels that are darker than the black point of the target gamut. There are two
strategies to deal with this conflict: clipping and black point compensation (BPC). Clipping maps the too dark
pixels to a nearby color value on the target gamut (e.g., the black point of the target gamut). This leads to a loss
of details and tonal variations in the respective dark regions. BPC preserves these details by mapping most or
all of these values inside the target gamut, thereby maintaining tonal variations in the dark areas but reducing
contrast in the mid-tones and/or highlights of the image.

BPC significantly changes the visual appearance of an image, as illustrated in Figure 1. The birds and the
wire images are rendered for a Canon iPF700 inkjet printer with BPC enabled and disabled, respectively. The
effect on dark regions can be observed in the two version of the birds image. The version with BPC (Fig. 1(a))
clearly shows the structures in the birds’ feathers. The version without BPC (Fig. 1(b)) lacks these structures
due to clipping. But BPC also affects the mid-tones and highlights, as shown in the two versions of the wire
image. The wire is rendered with more contrast in the version with disabled (Fig. 1(d)) than with enabled BPC

(Fig. 1(c)).

(a) enabled BPC (b) disabled BPC (c) enabled BPC (d) disabled BPC

Figure 1. Images of birds and a wire. Both images are rendered for a Canon iPF700 inkjet printer in presentation print
mode on standard red label paper. People prefer the birds with enabled (a) and the wire with disabled (d) BPC despite
the fact that the wire image contains proportionally much more dark pixels than the birds image. For display on a screen,
the images have been converted back to sRGB encoding. Depending on the display or printer used to reproduce these
images, the differences might be more or less visible.
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BPC can be seen as a trade-off between sacrificing the details in the dark regions in order to allow more
contrast in the mid-tones and/or highlights versus retaining the details in the dark regions while forfeiting some
contrast in the other image regions. A global mapping cannot simultaneously retain both the details in the dark
regions and the contrast in the other regions. Thus, for a given image, a decision has to be made whether to en-
or disable BPC.

Our hypothesis is that only the visually important regions of an image need to be considered in order to
decide when to apply BPC or not, and not the whole image. This implies that the decision is driven not only
by the difference in source and target gamut, but also by an image’s individual content. For the images in Fig.
1, the visually important image regions are those that show the birds or the wire, respectively. Even though in
both images the backgrounds consist of more pixels than the objects, these regions are not visually important
enough to drive the decision to en- or disable BPC.

In this paper, we propose a novel approach to automatically decide whether to apply BPC or not based on
individual image content. According to our hypothesis it incorporates the concept of visual importance, which
we estimate with saliency maps. The more a pixel is visually important, the higher its saliency value. We use a
detector for low level saliency, which highlights regions that stand out to an observer if the image is presented
for a short duration.! There are other types of saliency estimators that are of higher level or depend on a given
task.?2 However, in this article we want to reflect an observer’s first impression and thus use low level saliency.
We define a simple algorithm that uses saliency as a decision criterion: BPC is applied if and only if the dark
regions are more salient than the rest of the image.

We evaluate our algorithm on a set of images that all contain dark regions. For the psychophysical experiment,
we printed all images with and without black point compensation, presented them pairwise to different observers,
and collected which version they prefer. We find that salient regions indeed play a major role in the judgement of
the observers. When the saliency estimator correctly predicts visual importance, our algorithm correctly predicts
observers’ preferences. Images with dark salient objects on non-dark background are preferred with BPC and
images with non-dark objects on dark background are preferred without BPC (see Figure 1).

This paper is organized as follows. Section 2 reviews the state of the art. In Section 3 we give a qualitative
explanation of our novel approach and explain the implementation. Section 4 presents the image set used for
the evaluation. The experimental details and results follow in Section 5. The results are discussed in Section 6
and the article is concluded in Section 7.

2. STATE OF THE ART

Black point compensation (BPC) can be applied when the dynamic range of an image is larger or smaller
than that of the target device. We limit the discussion and experiments here to the cases where the image’s
dynamic range is larger. In this case, the dynamic range needs to be compressed, as is the case in many color
re-rendering (e.g., printing) applications. Yet, the idea of using saliency in color rendering can also be used in
other applications.

The simplest way to deal with pixel values that are lower than the target black point is clipping. However, if
details in the dark regions need to be preserved, BPC has to be applied. There is a large amount of literature on
how to compress an image’s dynamic range. Most of the literature considers local and/or global color rendering
from scene to output-referred image encoding,®? or, in other words, how to best represent a scene’s dynamic
range in a limited image encoding range, such as defined for popular color image encoding formats like SRGB
or Adobe RGB. Here, we specifically address global black point compensation (BPC) that is applied within the
framework of the International Color Consortium (ICC)® when re-rendering from output-referred image encoding
(sRGB, Adobe RGB, etc.) to print or display device encoding.

Adobe Systems’ implementation of BPCS first converts to a normalized XYZ encoding with white point
[1,1,1]. The values are then linearly scaled to fit in the target’s range and are converted from XYZ to the target
gamut in XYZ or CIELAB. Alternative methods have been proposed, such as lightness compression algorithms
(LCA),” where the pixel values are re-mapped on the lightness axis in CIELAB color space. LCA and BPC
have in common that they reduce the contrast in the highlights but also in the mid-tones. Sigmoidal LCAs aim



at compensating for this by enhancing the contrast in the mid-tones and therefore lowering the contrast in the
shadows and highlights. See Morovic and Luo® or Bonnier® for an overview.

The preservation of details in the dark regions at the expense of reducing contrast in the rest of the image is
not always preferable and depends on the image (see examples in Figure 1). Thus the question arises how one
can decide whether BPC is advantageous for an image. To our knowledge, there are three different methods how
that is handled today:

1. BPC is applied by default in order to preserve as much information as possible.!?

2. Decision whether to en-/disable BPC is done by a human expert.

3. BPC is only applied if the image contains a significant amount of dark pixels.% !

The first approach is automatic but does not take the image characteristics into account. For the example
of the wire image (Fig. 1 (c), (d)), this leads to a suboptimal result. The second approach probably leads to
the best result, but it is subjective and expensive for a large number of images. The third method is automatic
and is image dependent. However, in reality it is difficult to determine a valid threshold above which there is a
significant amount of dark pizels. Also the examples in Figure 1 show there is no universal threshold. The image
of the wire in Figure 1(c) contains proportionally more dark pixels than the image of the birds in Fig. 1(a), but
still the birds image is better reproduced with BPC, unlike the wire image.

3. AUTOMATIC BPC USING VISUAL IMPORTANCE

In this section we give a qualitative explanation of the proposed algorithm (Section 3.1) and then a technical
explanation of the implementation (Section 3.2).

3.1 Qualitative explanation of the approach

BPC can be understood as a trade-off between preserving details in the dark shadows and high contrast in
the mid-tones and highlights. Since they are mutually exclusive when applying a global mapping, it has to be
determined which of the two gives a perceptually better result. The key idea of our approach is to sacrifice the
one that is visually less important for the given image. This means that BPC is applied if the dark regions are
visually important and BPC is not applied if the dark regions are not visually important.

There are many methods to detect visually important regions in a given image, e.g., saliency methods,,' 1?13

object detectors for specific classes,'* or for general purpose.'®> We chose to use the saliency detector of Achanta
et al.! since it is easy and fast to compute. It outputs saliency maps, which highlight regions that stand out to
an observer at first impression.

A saliency map is usually encoded as a gray level image where the pixel values correlate with estimated
visual importance. In an ideal case, a saliency map highlights the entire salient object uniformly and has a sharp
outline that follows the objects’ or regions’ boundaries. An example saliency map can be seen in Figure 2.

(a) image (b) saliency map

Figure 2. Image of the two birds (a) and its saliency map (b). The brighter a pixel in the saliency map, the more it is
estimated to be visually important in the original image.



3.2 Implementation

Given an input image I, we compute its saliency map S using the approach from Achanta et al.! A pixel’s value
at position (z,y) in the saliency map is:

5(%3/) = ||Iavg - Iblur(xay)”Q (1)

where I4,4 is a 3-dimensional vector that is the average value over the whole image I in the CIELAB color space,
Tpiur(z,y) is the CIELAB value at the pixel position (z,y) of a slightly blurred version of the original image
(blurring removes noise and image artifacts) and || - || is the Euclidean distance.

We calculate the average saliency of the dark and the non-dark regions, respectively:

1 1
Sdark = Z S(l’, y) ) Snon—dark =~ Z S(.I', y)

N, Nhon-
dark L(z.9)< Ly non-dark L(2.9)> Lok

(2)

where L(z,y) is the CIELAB L* value at a pixel position (x,y), Lk is the CIELAB L* value of the target black
point and Ngax and Npon-dark are the number of pixels in the dark and non-dark regions, respectively.

The binary decision whether to apply BPC or not is done with a simple comparison of the average saliencies:

. enable BPC:  Sqak > Shon-dark
Decision = ) .
disable BPC: otherwise
A relative measure between two saliency values within an image is better than an absolute threshold since

an observer looks at only one image at a time. In this case the different regions of the given image compete for
the user’s attention and the one with the highest saliency values is visually more important.

Snon—dark

e < ble BPC
//? o —> cnable

Ly —4
2
/’% —> Snon-dark
- > —>disable BPC
Sdark

Ly —4

Figure 3. Diagram of the algorithm to decide whether or not to apply BPC. First a saliency map of the given image is
calculated. Then the average saliencies (Saark, Snon-dark) for the dark and the non-dark regions are calculated, respectively
(e.g., for Shon-dark the saliency values of the pixels that are darker than Lyk are not taken into account, which is depicted
by overlying these regions with diagonal stripes). A comparison between the average saliencies leads to the decision to
apply BPC or not. The top row shows an example where BPC is enabled (Sdqark > Snon-dark) and the bottom row an
example with disabled BPC (Sdark < Snon-dark)-



4. IMAGE SET

To evaluate our saliency based decision criterion, we need a set of images that contain a significant amount of
dark pixels. Further, the images need to be of sufficient quality for a high quality print, which we use for the
psychophysical evaluation, and need to cover different scenes, such as dark main object on non-dark background
and vice versa. To our knowledge, there exists no such publicly available database. There are public databases
for research on saliency estimation'® but these collections generally contain low resolution images with JPEG
compression. Therefore, we decided to create a database for our specific purpose. We downloaded images with
a creative commons license from flickr* that contain a significant amount of dark pixels and that are suitable
for high quality photo print. Most of the images had an embedded ICC profile and for those that did not, we
assumed sRGB encoding. An overview of the 20 images is given in Figure 4 and the corresponding saliency maps
are reproduced in Figure 5. The images and the saliency maps can be retrieved from our laboratory’s webpage:
http://ivrg.epfl.ch/supplementary_material/AL_BPC

i
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(h) reservoir

(o) sunset (p) teddy (q) tower (r) climber (s) beach (t) coffee

Figure 4. Dataset of images. Images have been chosen when they contain a significant amount of black pixels and are
suitable for a high quality photo print.

5. EVALUATION OF PROPOSED METHOD

Section 5.1 explains the printing process and Section 5.2 presents the psychophysical experiment and the results.

5.1 Print setup

The images were scaled so that the longer edge was 5 inches long at 600 dpi resolution. They were printed
on a Canon iPF700 inkjet printer on coated matte paper in high quality print mode. Each image was printed
using the ICC relative colorimetric rendering intent® with enabled and disabled BPC, respectively. The printer
ICC version 2 profile was calculated with an Océ software. For the used printer, the black point in Equation
2 is Ly, = 16.80. The conversion from source to target gamut was done using the Onyx ProductionHousef
Color Management Module (CMM). The CMM is an Onyx internally optimized version of the IccProfLib library
found in the SampleICC project, which is publicly available.f IccProfLib provides an example implementation
of Adobe’s BPC,5 which is used to perform black point compensation in Onyx ProductionHouse.

“http://www.flickr.com/creativecommons/
Thttp://www.onyxgfx.com/
thttp://sourceforge.net /projects/sampleicc/



(h) reservoir (j) flowers (k) blossom

(o) sunset (p) teddy (q) tower (r) climber (s) beach (t) coffee

Figure 5. Saliency maps of all images from our dataset in Figure 4. Brighter pixels indicate more salient pixels.

5.2 Evaluation

The psychophysical experiment was conducted under controlled lighting conditions: a Gretag Macbeth viewing
booth with daylight illuminant. The two versions of each image were shown in pairs to human observers. The
given task was to decide which version they prefer. Table 1 shows the collected responses per image. We
evaluated statistical significance for paired comparisons using the toolbox from Green and MacDonald.'”

1. Correct predictions:

BPC | berries (b)  wire (c) cat (e) tubes (g) blossom (k) clock (m) teddy (p)
enable 3 2 3 3 3 4 2
disable 12 13 12 12 12 11 13

BPC | birds (a)  gorilla (d) dog () reservoir (h)  coffee (t)
enable 12 15 11 14 12
dsiable 3 0 4 1 3

2. Ambiguous cases:

BPC | truck (i) flowers (j)  eagle (1) tower (q)
enable 7 7 8 8
disable 8 8 7 7

3. Erroneous predictions:

BPC | lake (n)  sunset (o) climber (r) beach (s)
enable 5 3 5 13
disable 10 12 10 2
Table 1. Observer’s responses. Significant tendencies towards enabled or disabled BPC are marked in bold font (95%
confidence). The predictions of our algorithm are marked by underlining the number in the appropriate row. The
1st table lists images where our algorithm’s predictions match the observers’ opinions on disabled and enabled BPD,
respectively. The 2nd table lists ambiguous cases, and the 3rd table lists erroneous predictions.




6. DISCUSSION

In this section we discuss the cases where the observers agree with our algorithm’s predictions (Section 6.1),
ambiguous cases (Section 6.2) and the cases where our algorithm does not predict correctly (Section 6.3).

6.1 Correct predictions
Images with disabled BPC

The images for which our algorithm and the observers agreed on disabling BPC are (Fig. 4): berries (b),
wire (c), cat (e), tubes (g), blossom (k), clock (m), and teddy (p). All these images have in common that they
show a non-dark main object with a very dark non-salient surround. Many of the observers reported during the
evaluation that they preferred disabled BPC since the contrast in the mid-tones and highlights is more important
than the details in the dark regions. Since the saliency map correctly highlights the main object, the algorithm
correctly decides to disable BPC.

Images with enabled BPC

The observers confirmed the estimation of our algorithm to enable BPC for the following images (Fig. 4):
birds (a), gorilla (d), dog (f), reservoir (h), and coffee (t). In opposition to the previously discussed images,
these images contain a dark main object on a non-dark background. In these cases, the details in the salient
dark objects are judged visually important and thus BPC has to be enabled. If BPC is disabled the main object
will be clipped and contain flattened regions that are not pleasing to a human observer (see Figure 1(b) for an
example).

These images support our hypothesis that the main salient region (or regions) is more important for BPC
estimation than non-salient other regions in an image. Observers do not value preserved contrast in regions that
are not (or less) visually important. If the contrast has to be reduced for output on a device with smaller gamut,
the salient regions’ contrast has to be retained as much as possible.

6.2 Ambiguous cases

The observers’ judgements were ambiguous for four of the images (Fig. 4): truck (i), flowers (j), eagle (1) and
tower (q). These images contain competing salient regions that need contradictory BPC settings. Let us consider
the eagle image (Fig. 4(1)) to illustrate. The judgements of the observers are almost even (8 en- and 7 disable).
Participants who preferred the image with enabled BPC referred to the eagle’s back. The entire back of the
eagle is very dark and the plumes are much more distinct from the background if BPC is enabled. Observers
who preferred the image with disabled BPC pointed out the increased contrast of the eagle’s white cheek and the
spots on its chest. In terms of applying BPC, the two competing salient regions are contradictory and observers
do not agree whether the eagle’s spots are more or less important than the eagle’s back. The same ambiguity is
present in the truck image (i) where the two competing regions are the truck’s red loading space and the dark
wheels. Observers who preferred the image without BPC argued with the red color that looked better in this
version. Participants who preferred the image with BPC pointed out that the wheels and axis of the truck are
better visible.

These images highlight the shortcomings of all automatic methods, as none can actually take into account
individual observers’ judgments. Color rendering is not just a science, it is also an art. Personal preference,
based on an individual’s experience and interest will always play a role in the judgment of image quality, and we
are still very far from predicting these effects.

6.3 Erroneous predictions

There are four images where human observers statistically significantly do not agree with the prediction from
our algorithm. The images are (Fig. 4): lake (n), sunset (o), climber (r), beach (s). Especially the beach
image (s) is of particular interest. It demonstrates the dependence of our method on a good saliency estimation.
All observers who chose the image with enabled BPC argued with the increased visibility of the bikers in the
foreground where the silhouette outline is better defined against the dark beach. Even though it is obvious to
an observer that the bikers are visually important, the saliency estimator fails with this difficult scene since it



is based on color and not on shape (see Equation 1). This image illustrates that our hypothesis—salient regions
are important to predict observer preference—is correct. However, if the automatic saliency estimation method
fails, then our algorithm fails.

The climber image (r) has two competing salient regions (the climber and the rock wall). In this image, the
region showing the wall is bigger than the region of the climber. In this case, observers gave more weight to
the wall and preferred disabled BPC. The saliency estimator highlights the climber more than the wall and thus
the algorithm’s prediction is wrong. In the lake image (n), the dark grass and trees are estimated to be salient
enough to enable BPC but the observers preferred the more saturated appearance of the red and orange clouds
in the version with disabled BPC. They used the same reasoning for the sunset image (0).

7. CONCLUSIONS AND FUTURE WORK

We propose an algorithm that provides an automatic decision criterion when to apply black point compensation
(BPC) in color re-rendering applications, such as mapping from output-referred image to print encoding within
the ICC framework. The decision criterion is based on a saliency map, which highlights in an image the pixels
that are visually most important. The algorithm computes the average saliency of the image regions that are
darker than the target’s gamut black point and compares to the average saliency of the other regions. If the
average from the dark regions is higher, BPC is enabled. Accordingly, BPC is disabled if the non-dark regions
are more salient.

To demonstrate the validity of our approach, we selected a set of 20 images with dark regions and varying
scene content. All images were printed on a Canon 1PF700 with BPC enabled and disabled, respectively. The
20 image pairs were judged by 15 observers in a controlled lighting environment. The observers were asked to
indicate for each image which reproduction they prefer: with enabled or disabled BPC.

The results show that our algorithm is well able to predict observers’ preference when the computed saliency
map accurately highlights visual importance. When the saliency detection is ambiguous or wrong, then the
observers are either conflicted or prefer the other version.

Future work will explore spatially adaptive BPC where each region of the image is processed according to its

local content. Such techniques are used in high dynamic range image rendering'® and could also be adopted for
BPC.
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