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Abstract

Extreme hydrological events are often triggered by exceptional co-variations of the relevant hydrometeorological processes and in
particular by exceptional co-oscillations at various temporal scales. Wavelet and cross wavelet spectral analysis offers promising time-
scale resolved analysis methods to detect and analyze such exceptional co-oscillations. This paper presents the state-of-the-art methods
of wavelet spectral analysis, discusses related subtleties, potential pitfalls and recently developed solutions to overcome them and shows
how wavelet spectral analysis, if combined to a rigorous significance test, can lead to reliable new insights into hydrometeorological pro-
cesses for real-world applications. The presented methods are applied to detect potentially flood triggering situations in a high Alpine
catchment for which a recent re-estimation of design floods encountered significant problems simulating the observed high flows. For
this case study, wavelet spectral analysis of precipitation, temperature and discharge offers a powerful tool to help detecting potentially
flood producing meteorological situations and to distinguish between different types of floods with respect to the prevailing critical
hydrometeorological conditions. This opens very new perspectives for the analysis of model performances focusing on the occurrence
and non-occurrence of different types of high flow events. Based on the obtained results, the paper summarizes important recommenda-
tions for future applications of wavelet spectral analysis in hydrology.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Continuous wavelet transform; Wavelet spectrum; Wavelet coherence; Cross wavelet analysis; Time series analysis; Hydrological modelling;
Hydrological processes; Catchment hydrology

Contents
L. IntrodUCHiON . . . . . o e 2512
1.1.  Detecting co-oscillations of hydrometeorological Processes . . . ... ... ..o v ittt ettt 2512
1.2.  Wavelet spectral analysis in hydrology . . .. .. ... ... 2512
1.3, Objectives Of this Paper . . . . . . . ot e 2513
2. Mathematical Dasis . . . . . . . ... e 2513
2.1. The relation to Fourier analysis . . . . . . ... ..t e 2513
2.2.  Continuous wavelet transformation. . . . .. ... .. ... e 2513
2.3, Inverse wavelet transformation. . . . ... ... ... .. 2514

* Corresponding author. Present address: Water Resources Section, Delft University of Technology, 2600 GA Delft, The Netherlands. Tel.: +31 15 278
50 80.
E-mail address: bettina.schaefli@a3.epfl.ch (B. Schaefli).
! Present address: Climatic Research Unit, University of East Anglia, Norwich NR4 7TJ, UK.

0309-1708/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advwatres.2007.06.004


mailto:bettina.schaefli@a3.epfl.ch

2512

B. Schaefli et al. | Advances in Water Resources 30 (2007) 2511-2525

2.4. Intrinsic correlations and the reproducing kernel . . . . . ... ... . . e 2514

2.5. Choice of the wavelet . . . ... ... 2514

3. Wavelet spectral analysis: state of the art. . . . ... ... .. .. 2514
3.1 Wavelet SPECLIUM . . . . . ot ettt e e e e e e e e e 2514

3.2.  Estimating the wavelet SPECtIUm. . . . . .. ... ... 2515
32,0 BHAS .. 2515

3.2.2. Confidence intervals . . . . . . .. 2515

3.2.30 Normalization . . . ..o ottt 2515

3.3.  Significance testing the wavelet SPectrum. . . . . . . . ... 2515
33,1, POINIWISE TESTINE . . o o vt o e e e e e e e e e e e e e e e 2515

3.3.2.  Areawise testing the wavelet SpeCtrim . . . . ... .. ... 2516

34, Cross wavelet analysis . . . . . ...t 2517
3.4.1.  Wavelet Cross SPECLITIML. . . . o v vttt e e e e e e e e e et e e e e e e e e e e 2518

3.4.2. Estimating the wavelet Cross SPeCtIUM . . . . . .. . ittt e e e et e e 2518

3.4.3. Significance testing the wavelet cross Spectrum . . . .. .. ... ... it 2518

344, Wavelet CONGIENCE . . . . . . . .o 2518

3.4.5. Estimating the wavelet CONErence. . . . .. .. ... .t 2518

3.4.6. Significance testing the wavelet coherence. . . . .. ... ... ... .. 2518

3.4.7. Interpretation of significant wavelet coherence . ............ ... .. . . ... 2519

4. Case study: detecting flood triggering situations in an Alpine catchment. . ... ......... ... ... . ..., .. 2519
S RESUILS . . L 2520
5.1.  Detecting potentially flood producing SitUations. . . . . . . .. oottt et e e e e 2520

5.2. Investigating flood producing mechanisms. . . . . ... ... ... 2522

6. DISCUSSION. . . o o ittt e e e e e e e e e e e e e e e e 2523
6.1. Some remarks on the interpretation of wavelet Spectra. . . . ... .. ...ttt e 2523

7o CONCIUSION . . oottt et e e e 2523
Acknowledgements . . . . . ... . 2524
REferences . . . . ... o 2524

1. Introduction

1.1. Detecting co-oscillations of hydrometeorological
processes

Understanding the dependence between meteorological
and hydrological processes is a prerequisite for hydrologi-
cal modelling, especially for the prediction of extreme
hydrological events that are often triggered by exceptional
co-variations of the input processes. While general assump-
tions about the interrelations between driving processes
and catchment state or output processes can be derived
from our current understanding of hydrological processes,
the detection of exceptional situations in the observed time
series is not straightforward. Different statistical analysis
tools can reveal how the timing and the magnitude of the
events are related (e.g. correlation analysis or copulas e.g.
[1]. Exceptional situations are, however, often triggered
by a co-variation of processes (e.g. precipitation, tempera-
ture and soil moisture) at various temporal scales, which
can be analyzed by investigating when and at which tempo-
ral scales these processes are co-oscillating, i.e. by a time-
scale (or frequency) resolved analysis.

One method for such a time-scale resolved analysis is
wavelet analysis: it decomposes a signal into a superposi-
tion of scaled and translated versions of an original
(mother) wavelet (a fast-decaying oscillating function).
This method has initially been formalized by Grossmann
and Morlet [2] and offers a complementary approach to

windowed Fourier transformation as proposed by Gabor
[3]: a windowed Fourier transformation assumes local sta-
tionarity in a time window shifted over the data set, which
implies a constant resolution, given by the window size, for
all analyzed frequencies. In wavelet analysis, the relative
frequency resolution Af/f is constant and the time resolu-
tion is adjusted to the analyzed scale (see, e.g. [4,5]).

Wavelet analysis covers a wide range of methods and
applications (in addition to the above references, see, e.g.
[6], for applications in geosciences, see [7]). In the present
paper, we are interested in the co-oscillating properties of
observed processes and we, therefore, focus on one partic-
ular application that is becoming increasingly popular for
hydrological case studies: continuous wavelet spectral anal-
ysis based on the continuous wavelet transformation
(CWT) (Section 2.2).

1.2. Wavelet spectral analysis in hydrology

Early applications of the CWT to hydrology are pre-
sented in [8]. The method became increasingly popular
after the work published by Torrence and Compo [9],
who placed continuous wavelet analysis into the frame-
work of statistical data analysis by formulating significance
tests against reasonable background spectra (the Null
hypothesis). In river regime characterization, it is used to
detect how discharge is related to climate variability indices
e.g. [10-12] or to qualitatively analyze how certain features
of the meteorological input time series are transferred to
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the hydrological system output e.g. [13,14]. This approach
is also applied for the analysis of the hydrological function-
ing of karstic systems e.g. [15]. Smith et al. [16] applied
CWT to answer the question to which degree a catchment
smoothes out the spatial variability of rainfall. Si and
Zeleke [17] used CWT to investigate the relationship
between hydraulic properties and physical soil properties.
In the most recent type of applications, CWT is used to
investigate the relationship between measured and simu-
lated hydrographs to assess the performance of hydrologi-
cal models e.g. [18].

1.3. Objectives of this paper

One of the most important difficulties in wavelet spectral
analysis concerns the significance testing of wavelet spectra:
the hitherto applied (pointwise) significance test detects
many false positive peaks, which are often misinterpreted
as physical results. We discuss this topic in reasonable
detail and present an areawise significance test recently
developed by Maraun et al. [19] (see Section 3.3.2).
Another typical problem is the cross wavelet analysis of
two observed processes that found its application in differ-
ent areas of geosciences e.g. [9]. However, as this measure is
not normalized, its interpretation is not straightforward
(see Section 3.4) and wavelet coherence should be used
instead (see Section 3.4.4).

Therefore,the objective of this paper is twofold:

e Presenting the state-of-the-art methods of wavelet spec-
tral analysis and highlighting the difficulties and subtle-
ties of estimating and interpreting wavelet spectra.

¢ Applying these methods to a real-world application to
discuss how and why wavelet spectral analysis can give
reliable insights into multivariate hydrological
processes.

First, in Section 2, we introduce the well known basics
of wavelet analysis as well as more subtle relations like
the reproducing kernel, which are essential for the further
discussion. Readers familiar with these advanced mathe-
matical aspects of wavelet analysis may skip this section.
In Section 3, we present the state-of-the-art of continuous
wavelet spectral analysis. Part of the discussed methods
are classically known in continuous wavelet analysis, but
are recalled here because they are not always applied in
hydrology (e.g. the use of the wavelet coherence instead
of the wavelet cross spectrum e.g. [20]). Some methods
have only recently been introduced, namely the areawise
significance test [19].

In Section 4, we apply the presented methods to analyze
potentially flood producing situations in a catchment in the
Swiss Alps for which a recent re-estimation of design floods
encountered significant problems simulating the observed
high flows. Based on the obtained results, we discuss how
continuous wavelet analysis combined to prior knowledge
of the relevant physical mechanisms can contribute to the

understanding and modelling of hydrological processes
(Section 6) and summarize the most important findings
and recommendations for future research (Section 7).

2. Mathematical basis

In the following, we shortly introduce the mathematics
that are the most relevant for the present paper. For a
detailed discussion of CWT basics please refer to the com-
prehensive literature [4,5,21].

2.1. The relation to Fourier analysis

The calculation of the Fourier transformation flw) of a
time series s(#) reveals information about the frequency
content of the underlying process:

flo)=F{s(t)} = /_OO drs(t)e ",
S0 =F ) =52 [ dort), (1

where @ denotes frequency. The Fourier periodogram
(based on the discretized version of Eq. (1)) |flw)|* esti-
mates the spectrum of the underlying process at frequency
. The Fourier spectrum intrinsically assumes stationarity
of the analyzed process. Real world processes, however, are
often non-stationary, i.e. their statistical correlation prop-
erties change over time. Thus a time-independent descrip-
tion of the spectrum is no longer suitable. When
extending the concept of the stationary spectrum to time
and frequency resolved measures, one faces the problem
that a higher time resolution always comes along with a
lower frequency resolution and vice versa. This is an imme-
diate consequence of the Heisenberg uncertainty relation.
Therefore one needs to find a compromise between the time
uncertainty and the frequency uncertainty in the descrip-
tion of the process. One possible compromise is provided
by wavelet analysis: here, the time resolution is chosen pro-
portional to the scale (i.e. periodicity) to be analyzed.
Another compromise would be time-windowed Fourier
analysis where the time resolution is constant for all ana-
lyzed frequencies. Many more approaches are possible,
and much of what we expose in the following can easily
be carried over to other time-frequency techniques as well.

2.2. Continuous wavelet transformation

The continuous wavelet transform (CWT) of a time ser-
ies s(7), Wy(b,a), at time b and scale a with respect to the
chosen wavelet g() is given as

.0 = W10} = [ e ("20)st0 @)

a

where (7) denotes complex conjugate. Here, we choose the
L*-normalization 1 /a% which will appear to be a natural
choice (see Section 3).
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The exponential function in Eq. (1) has been replaced by
a localized wavelet g(¢) which is translated by the time b
and stretched according to the scale a. Accordingly, wave-
let analysis offers a time as well as frequency resolved
analysis.

2.3. Inverse wavelet transformation

An inverse wavelet transformation of a function r(b,a)
from the wavelet domain H to the time domain can be
defined as follows:

My (1) = IWT{r(b,a)}

:/H%r(b,a)\/%h(’;b) (3)

Here, A(t) is called a reconstruction wavelet that, under
some very weak assumptions, can be derived from g(¢). If
g(1) 1s scaled suitably, then g(7) and /(z) may even be chosen
to be identical (for details see [5]). In case that
r(b,a) = WT,{s(t)}, then IWT,{r(b,a)} = s(t) reconstructs
the original signal®.

2.4. Intrinsic correlations and the reproducing kernel

The CWT transforms a signal from the one dimensional
time domain to the two dimensional time-scale domain. It
is therefore not surprising that it produces redundancies
that are reflected in intrinsic correlations. This is mostly
visible in the wavelet transform of a signal which is com-
pletely decorrelated. Indeed, for the wavelet transforma-
tion of Gaussian white noise #x(f), a simple relation
between the wavelet used for the analysis and the correla-
tions exists: the intrinsic correlations between the wavelet
coefficients at (b, a) and (b',a’) are given (up to some factor)
by the so-called reproducing kernel K, (b — b')/a’,ala’)
moved to the time b’ and stretched to the scale a’ [5,21]:

b—0b a
C(b7a;b/,a/) NKgg (T’;) (4)
The reproducing kernel itself is given as the wavelet trans-
formation of the reconstruction wavelet, K, ,((b — b')/d’,
ala’y = WT{h((b — b')/a’)}. The effect of intrinsic correla-
tions appears in every time-frequency analysis and repre-
sents a time-scale uncertainty.

2.5. Choice of the wavelet

In principle, there is a wide range of wavelets available.
We roughly distinguish two types of wavelets: real valued
wavelets and progressive wavelets (i.e. wavelets which have

2 In case of a progressive wavelet (for a definition see Section 2.5) and
r(b,a) being the wavelet transformation of a real valued signal s(¢) (which
is the most common situation), the above formula will rather recover the
analytic signal associated with s(¢). Its real part however is again s()/2,
2Re M(t) = s(1).

only positive frequencies). The latter ones are necessarily
complex valued. This is why those wavelets are sometimes
(erroneously) simply called complex wavelets. For details
see (see, e.g. [4,5]). However, the special requirements of
a time and scale resolved spectral analysis (which is the
focus of this paper) restrict the choice in the following way:

e Asone is interested in amplitudes of frequency content it
is preferable to use progressive, linear phase wavelets
(i.e. wavelets with a real valued Fourier transform).
These wavelets clearly separate amplitude and phase
information. For instance the wavelet transform of a
pure sinusoidal signal has a time independent distribu-
tion of energy. Using a real valued wavelet, the ampli-
tude and the phase information would mix, producing
oscillating energy in the wavelet plane. Using a progres-
sive wavelet, the amplitude is constant and the phase
picture of the wavelet plane may be used to estimate
the phase of the oscillation.

e To obtain a reasonable localization of the analysis in
both time and scale, a wavelet is required that exhibits
a good localization in the time domain as well as in
the frequency domain (in other words: the reproducing
kernel should not be too extended neither in the time
nor in the scale direction). Thus, for instance the Haar
wavelet (in addition to the fact that the Haar wavelet
is real) is not suitable for non-stationary wavelet spectral
analysis. Its poor regularity (it has jumps) implies a very
slow decay of its spectrum with many side peaks. In a
spectral analysis even of a pure frequency, this would
lead to corresponding side peaks of energy in the wave-
let plane.

e The trade-off between time and scale resolutions has to
be adapted to the analyzed process. A Morlet wavelet
with wy = 2 has been shown to work well for different
hydrological applications where the main objective is to
analyze observed time series e.g. [11,17,14]. Since the
Morlet wavelet is strictly speaking no wavelet (its mean
does not exactly vanish), it produces artifacts for small
values of w,. However, using only values of, say,
wog = 1 one can adjust the time-frequency resolution
for the individual analysis. Lane [18] uses a complex
Mexican hat wavelet (i.e. the analytic function of the
second derivative of a Gaussian) to have a very good
time resolution for the analysis of individual flood
peaks.

3. Wavelet spectral analysis: state of the art
3.1. Wavelet spectrum

A stationary Gaussian process is fully described by its
Fourier power spectrum S(w) = [f{lw) \2. Realizations of such
a process can be constructed by filtering Gaussian white
noise in the Fourier domain, i.e. s(f) = F~{flw) - F{n(1)}},
where #(¢) is a realization of Gaussian white noise. In a
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similar way, we introduce a class of processes by filtering in a
non-stationary way the wavelet transform of white noise and
transforming back. More precisely, for a fixed analysis-
reconstruction pair (g, /1), we choose a wavelet filter function
m(b, a). The spectrum of the process is then defined as

S(@) = m(b,a)l’. (5)

Here m(b, a) is a complex function in time b and scale a fol-
lowing a certain asymptotic behavior (for details see [19])
to ensure the well definiteness of the process. Within this
framework, white noise is defined as m(b,a) = const., i.e.
independent of time and scale. Realizations of a non-
stationary Gaussian process following this spectrum are
generated by

s(t) = IWT,{m(b, a) - WT{n(7)}}, (6)

with () being Gaussian white noise. These realizations de-
pend on the wavelets g(¢) and A(¢), thus for a complete def-
inition of the process, one needs the spectrum as well as the
wavelets chosen for the filtering. For a discussion of rather
subtle implications, which are beyond the scope of this pa-
per, refer to [19].

3.2. Estimating the wavelet spectrum

Given a time series s(¢), the underlying wavelet spectrum
can be estimated by the wavelet sample spectrum

Se(b,a) = A(Wis(t)), (7)

where k() denotes the wavelet chosen for the analysis. A(*)
denotes an averaging kernel to reduce the variance of the
estimate. This kernel needs to be adjusted to the time and
frequency resolution on every scale, i.e. to the reproducing
kernel, see Section 2.4:

e For averaging over a range of scales, the width of the
kernel should be proportional to scale, i.e. for the com-
mon logarithmic scale axis, the width would be constant.

e For averaging over a certain time region, the width of
the kernel has to be chosen proportional to the scale
under consideration, such that always the same number
of oscillations fit into the kernel.

For details about the averaging please refer to [19].

3.2.1. Bias

This estimator is not unbiased. The averaging produces
an averaging bias, and an additional bias results from the
intrinsic correlations (Eq. (4)), i.e. from the time-frequency
uncertainty relation inherent to any time-frequency analy-
sis [19]. Due to this intrinsic bias, the wavelet sample spec-
trum is not a consistent estimator of the true wavelet
spectrum for finite scales. This bias might initially appear
of rather theoretical interest, but becomes more obvious
when considering a time series analyzed with two different
wavelets: for finite scales, the resulting wavelet sample spec-

trum will be different for both analyses and both will be
biased against the true wavelet spectrum.

3.2.2. Confidence intervals

The variability of the estimator can be estimated by gen-
erating a bootstrap ensemble using Eq. (6) (see [19]). When
using white noise for the generation, this implicitly assumes
Gaussianity of the process. From the bootstrap ensemble,
one can easily derive an arbitrary confidence region, e.g.
95% confidence intervals, for every point in the wavelet
domain.

If the marginal distribution of the data deviates strongly
from Gaussianity, these confidence intervals might be mis-
leading. For a general introduction to bootstrapping,
please refer to e.g. [22].

3.2.3. Normalization

Except for the bias discussed above, the chosen L’-norm
in Eq. (2) directly relates the estimator A(|W,s(¢)|*) to the
true wavelet spectrum |m(b,a)|*. For instance, in the case
of white noise, m(b,a) = const., the expectation value of
the estimator is time and scale independent, E(A(| Wgs(l)|2))
= const. Using other normalization factors, the estimated
wavelet spectrum shows a different scale dependency (e.g.
a decay for white noise for long scales) and needs to be
renormalized to be comparable with the true spectrum. In
this sense, the L? normalization is the natural choice for
continuous wavelet spectral analysis. However, this nor-
malization overemphasizes power on high scales that might
easily be misinterpreted without a significance test. For a
discussion of pitfalls related to the interpretation of the
L*-normalization and other normalizations, please refer to
[20].

3.3. Significance testing the wavelet spectrum

The wavelet sample spectrum of an observed time series
is merely an estimate of the true wavelet spectrum and is
thus subject to variance and bias. Accordingly, the quality
of the estimate needs to be assessed in statistical terms. This
can either be done in terms of confidence intervals, see Sec-
tion 3.2.2 or by testing the estimated spectrum against a
Null hypothesis for the true spectrum (e.g. an AR [1] pro-
cess that according to Hasselmann [23] is suitable as Null
hypothesis for many climatological applications, see also
Section 4).

3.3.1. Pointwise testing

Torrence and Compo [9] established a pointwise signifi-
cance test for the wavelet spectrum to judge whether a mea-
sured sample spectrum deviates significantly from a trivial
background process fitted to the data. A slightly modified
version [20,19] is performed as follows:

e Choose a significance level 1 — a.
e Choose a reasonable model as Null hypothesis H, and
fit it to the data.
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Fig. 1. Wavelet periodogram of a Gaussian white noise realization with the Morlet wavelet, wy = 2n. Thin lines: pointwise test on 95% level, thick lines:

additional areawise test on 90% level.

o Estimate the (1 — a)-quantile S (i.e. the critical value)
of the corresponding background spectrum by Monte
Carlo simulations. Depending on the chosen back-
ground model and the chosen normalization of the spec-
tral estimator, the critical value in general depends on
scale.

e Check for every point in the wavelet domain, whether
the estimated spectrum exceeds the corresponding criti-
cal value. The set of all pointwise significant wavelet
spectral coefficients is given as

PPW = {(b7a)|§g(bva) > Scrit}~ (8)

We call this test pointwise as it tests every point in the
wavelet domain separately without accounting for any spa-
tial structure. Hitherto, only this test has been applied for
statistical evaluations. However, pointwise testing in the
time-frequency domain has a severe drawback that almost
always leads to misleading false positive results: given a sig-
nificance level 1 — «, a repetition of the test for N wavelet
spectral coefficients leads to, on an average, a/N false posi-
tive results. This effect is referred to as multiple testing and
appears in every case where a significance test is repeated
on different samples. For any time-frequency analysis,
one faces a second problem: according to Section 2.4,
neighboring wavelet coefficients are correlated, i.c. false
positive values are unlikely to occur alone, but always as
a contiguous patch. Thus, the wavelet plot of a time series
without any interesting signal will by construction be cov-
ered by many false positive patches, making up about «
percent of the wavelet plot area’. These effects mark an
important problem: without additional information, it is
not clear if patches detected in a pointwise test reflect real
physical behavior or simply represent artifacts emerging
from multiple testing effects and the intrinsic correlations
of the wavelet transformation.

3 Here it is important to note, that the area has to be calculated
relatively to a scale dependent measure, in other words: a ten year long
signal on the one year scale is effectively two times longer than a ten year
signal on the two year scale.

Fig. 1 illustrates this problem: the plot shows the wave-
let periodogram (using a Morlet wavelet with wg = 27) of a
Gaussian white noise realization. The thin lines enclose
regions of pointwise significance on the 95% level. How-
ever, as the process itself is fully captured by the red noise
Null hypothesis, all the detected deviations are false posi-
tive results, i.e. artifacts (the thick lines will be discussed
in the following section).

3.3.2. Areawise testing the wavelet spectrum

The previous discussion illustrates that for a reliable
analysis it is necessary to account for the size and spatial
structure of the detected patches. Accordingly, Maraun
et al. [19] developed an areawise significance test that over-
comes the problems discussed in the previous section. The
main idea is the following: if the intrinsic correlations are
given by the reproducing kernel (Section 2.4), then also
the typical patch area for random fluctuations is given by
the reproducing kernel. Patches small compared to the
reproducing kernel are in principle indistinguishable from
noise. This idea leads to the following design of an areawise
significance test.

Following the dilation of the reproducing kernel Eq. (4),
the typical width in time and scale direction of false posi-
tive patches should grow linearly with scale. Thus, one
defines critical areas as a projection of the reproducing ker-
nel onto the wavelet domain:

Peit(b,a) = {(V',d)|(K(b,a;b',a') > Keit}- 9)

This area represents the effective size of the reproducing
kernel given a certain significance level, i.e. the threshold
K 1s determined by the significance level of the areawise
test*. The latter is defined as the ratio between the area of
patches passing the areawise test and the area of patches
passing the pointwise test (this area is weighted corre-
sponding to the scale, see previous section). Loosely speak-

4 The determination of the threshold is rather non-trivial: one chooses
an initial value for K and calculates the corresponding significance level
by a large set of Monte Carlo simulations. Then the value for Ky is
numerically optimized in an iterative procedure to obtain the desired
significance level, see [19].
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ing, the areawise test on the 10%-level sorts out 90% of the
false positive patches.

Then, given the set of all pointwise significant patches
Py, the subset of additionally areawise significant wavelet
patches is given as the union of all critical areas that com-
pletely lie inside the patches of pointwise significant values:

Py = U Pcril(baa)- (10)

Pesit (b,a)CPpw

In other words: patches thinner or even completely smaller
than the critical area are indistinguishable from back-
ground noise and consequently rejected by the arecawise
test. Note that the critical area is stretched according to
the analyzed scale (see Eq. (9)), i.e. a patch needs to be lar-
ger to be significant on high scales.

To summarize, the actual areawise test is performed as
follows:

e Perform the pointwise test according to Section 3.3.1 on
the 1 — « level.

e Choose a significance level for Eq. (4), choose a signifi-
cance level 1 — a,,, for the areawise test and the corre-
sponding critical area P.;(b,a) of the reproducing
kernel.

o Slide the critical area P (b,a) (for every scale the corre-
sponding dilated version) over the wavelet matrix. A
point inside a patch is defined as areawise significant,
if any critical area containing this point totally lies
within the patch.

This test has been shown to drastically increase the reli-
ability of a wavelet spectral analysis by rejecting most false
positive results. For details, refer to [19].

3.3.2.1. Interpreting areawise significant patches. The area-
wise test has to be interpreted in the following way: a pro-
cess that agrees with the Null hypothesis of the pointwise
test produces typical patches that are with a probability
of about 1 — a,,, smaller than the critical area. An areawise
significant patch can therefore occur in three cases: the first
(and trivial) one is a false positive patch which occurs in
about o, % of the cases. The two more interesting cases
are the following: either the correlation structure of the
analyzed process locally deviates from Gaussian red noise,
or its marginal distribution is locally strongly non-
Gaussian.

In the first of the interesting cases, the interpretation is
very intuitive: for the Morlet wavelet with wy = 2w, the
width of the critical area on a scale « is roughly three times
a. In other words: one needs to observe at least three cycles
of an oscillation to distinguish it from red background
noise. Shorter events are in principle invisible, depending
on the chosen time-frequency resolution: a high time reso-
lution might enable to detect more localized events at the
cost of a low frequency resolution.

The second case addresses extreme events: only extreme
events that highly exceed the noise level (which is assumed

to be Gaussian) might be identified. These events appear in
the wavelet plot as very time-localized patches that reach
from the lowest scale to considerably high scales. Such a
patch remains areawise significant even though the under-
lying event is much shorter in time than the reproducing
kernel. This rather non intuitive case can be explained as
follows: the single high value is convolved with the wavelet
on all scales. For small scales, the resemblance is very high,
leading to high values of the wavelet transform. Due to the
intrinsic correlations, the single event is smeared out to a
certain time interval that is long compared to the reproduc-
ing kernel. The resulting areawise peak can be identified
very easily, as it is very confined in the time direction, usu-
ally starts at the lowest analyzed scale and reaches over a
wide range of scales. Accordingly, this case does not reflect
any correlation structure, but an extreme event visible in
the wavelet spectrum due to non-Gaussianity of the data,
e.g. a strong asymmetry or a heavy tailed distribution. If
only the correlation structure is of interest, a solution to
reduce the effect of extreme events is to transform the mar-
ginal distribution to follow approximately a Gaussian mar-
ginal distribution. This, however, might also affect the
correlation structure itself, so any transformation of the
marginal distribution should be done carefully, comparing
the results of different approaches. (An alternative to trans-
forming the data to a Gaussian marginal distribution could
be to model a non-Gaussian Null-hypothesis. This, how-
ever, is beyond the scope of this paper.)

The functioning of the areawise test can be illustrated by
Fig. 1: most of the pointwise significant patches are small
compared to the critical area. For example the two large
patches on the 8 years scale are both rejected, the first one
ataround 7 = 20 because it is too short (roughly 2 1/2 cycles),
the second one because it is too slim. Only two patches are
attributed “areawise significant”. However, these are not
detected, because they have got any physical meaning, but
because also the areawise test is subject to (a reduced effect
of) multiple testing: on the 90% level, from the 20-30 patches
around 2-3 should by chance be so large that they are false
positively detected.

To summarize, the areawise test helps to reject most
false positive results. Due to its high specificity, an areawise
deviation almost always (depending on the significance
level of the areawise test) denotes a true deviation from
the Null hypothesis. Hence, this test has the ability to
greatly enhance the reliability of wavelet spectral analysis,
as many tempting and misleading results are rejected.
However, also the areawise test should not be applied
blindly; the areawise test produces also false positive results
and in certain cases it could be too specific (see Section 6.1).

3.4. Cross wavelet analysis

Compared to the wavelet spectral analysis, the inference
of covarying power is even more complicated. This is
mainly due to two reasons: first of all, even for a zero true
wavelet cross spectrum, the estimated wavelet cross
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spectrum will always be non-zero. Thus, peaks in the wave-
let cross spectrum are often falsely interpreted. Secondly,
even if a peak in the wavelet cross spectrum or wavelet
coherence really signifies common oscillations, this does
not necessarily imply a relationship between the two pro-
cesses. This is due to the local character of wavelet analysis:
even two independent processes, as long as they oscillate
with not too different frequencies, will randomly oscillate
together for finite time intervals.

3.4.1. Wavelet cross spectrum
The wavelet cross spectrum

CS(b,a) = my.(b,a)my.(b,a) (11)

defines two covarying non-stationary Gaussian processes,
where m,. and m,. describe the covarying fractions of the
overall spectra given by my(b,a) = m(b,a) + m(b,a)
and my(b,a) = myb,a) + my{b,a). Here, my; and m,, are
independent contributions to the variance. Realizations
can be calculated according to Eq. (6) with identical noise
for the covarying parts and independent noise for the inde-
pendently varying parts.

In general, this is a complex function that may be
decomposed into amplitude and phase:

CS(b,a) = |CS(b, a)| exp(iarg(CS(b, a))) (12)

For independent processes, the true wavelet cross spectrum
is zero.

3.4.2. Estimating the wavelet cross spectrum

Given realizations s,(¢) and s,(7) of two processes, the
wavelet cross spectrum of the underlying process can be
estimated by the wavelet sample cross spectrum

CS,(ba) = A(W 51 (1) g5:(1)), (13)
or decomposed into amplitude and phase,
CS(b,a) = |CS,(b, a)| exp(iarg(CS, (b, a))). (14)

Also here, confidence intervals can be estimated by gener-
ating a bootstrap ensemble.

3.4.3. Significance testing the wavelet cross spectrum
Torrence and Compo [9] and Huang et al. [24] suggested
a test for the wavelet cross spectrum against two red noise
processes fitted to the two data sets to be analyzed. How-
ever, Maraun and Kurths [20] showed that this test is not
specific and by a misconception has to lead to wrong
results. In fact, such as for the stationary Fourier cross
spectrum, no significance test for the wavelet cross spec-
trum exists. Assume two processes exhibiting independent
power at overlapping time and scale intervals. This power
does not covary, i.e. information about one of the pro-
cesses is not capable of predicting the other one. Hence,
the real wavelet cross spectrum is zero. By contrast, the
estimated wavelet cross spectrum always differs from zero,
even if the processes are completely independent (this is a
finite size effect; the sample covariance of two independent

white noise realizations of finite noise will also be different
from zero). As the wavelet sample cross spectrum is not a
normalized measure, significant peaks will occur not only
in case of covarying power, but also if one (or both) of
the single spectra exhibits strong power. Maraun and
Kurths [20] investigated the wavelet cross spectrum
between the NINO3-index and the NAO-index and showed
that peaks do not occur because of a (presumed) El Nifio
influence on the NAO, but only because of the strength
of the El Nino itself. To overcome this problem, one nor-
malizes the cross spectrum and tests against zero
coherence.

3.4.4. Wavelet coherence
The normalized squared modulus of the wavelet cross
spectrum yields the squared wavelet coherence,

2y v |CS(ba)]”
COR(0,4) = 5 (5, a)Sa(bra)
_ mie(b, @) (b, )
|1 (b, @) |m3 (b, a)|?

This measure exhibits values between 0 and I, signifying a
vanishing and a perfect linear relationship, respectively.

(15)

3.4.5. Estimating the wavelet coherence

Given realizations s1(¢) and s,(#) of two processes, the
squared wavelet coherence of the underlying process can
be estimated by the squared wavelet sample coherence as

. CS,(b,a)*
COH(b,a) = = CSeb )" (16)
Sg,l(b,a)Sgiz(b,a)

For the sample coherence, averaging is essential. Already in
Fourier coherence analysis, considering only one frequency
bin, the statistical concept of coherence breaks down: two
pure harmonic oscillations of identical frequency are al-
ways perfectly coherent. For wavelet coherence, the prob-
lem is even more obvious: investigating power in a single
point in time and scale prevents any information about
the oscillation and thus covariance. Consequently, numer-
ator and denominator become equal and one obtains a triv-
ial value of one for any two processes.

3.4.6. Significance testing the wavelet coherence

Also for wavelet coherence, one should always apply the
pointwise test in combination with the areawise significance
test.

The pointwise test for wavelet coherence differs from
that for the wavelet spectrum in two ways: firstly, as the
coherence is normalized to the single wavelet spectra, the
critical value becomes independent of the scale as long as
the smoothing is done properly according to Section 3.2,
i.e. when the geometry of the reproducing kernel is
accounted for [20]. Secondly, because of the normalization
the coherence should also asymptotically become process
independent. As wavelet analysis is localized, one is in gen-
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eral not in the asymptotic regime. However, Maraun et al.
[19] showed that the process dependency is weak and might
be ignored in a good approximation.

The procedure for the areawise test is the same as for the
wavelet spectrum, only the critical patch-size P.;(b,a) has
to be re-estimated. Areawise significant patches denote sig-
nificant common oscillations of two processes. Here, com-
mon means that two processes exhibit a rather stable phase
relation on a certain scale for a certain time interval.

3.4.7. Interpretation of significant wavelet coherence

The interpretation of the areawise test for coherence is
similar as for the spectrum. Besides a true physical cou-
pling of the processes and a mere false positive result,
two other cases exist.

3.4.7.1. Coincidence of extreme events. Similar to the wave-
let spectrum that can exhibit areawise significant patches
for extreme events, areawise significant patches might
occur in the wavelet coherence when two extreme events
coincide. Such a patch does then not reflect a co-oscillation
or coherence of the two processes on a certain scale but
rather a coincidence of extremes of both processes. As
mentioned previously, if one is not interested in these coin-
cidences, the marginal distributions of the time series could
be transformed to obtain a more Gaussian distribution (see
also Section 5). Also here, any transformation should be
applied carefully, as it might also destroy interesting
coherence.

3.4.7.2. Random co-oscillation. An areawise significant
result does not necessarily imply coherence in a strict sense.
Processes oscillating on similar frequencies trivially exhibit
patches indicating an intermittently similar phase evolu-
tion. The lengths of the patches are given by the decorrela-
tion times of the single processes and the similarity of the
concerned frequencies.

In many geophysical applications, this problem can be
solved considering system dynamics and not only statistics.
If the results of a wavelet spectral analysis suggest two
physically possible alternative explanations or if the knowl-
edge about the underlying dynamics is insufficient, further
statistical analysis is required to investigate if the detected
coherence is due to a randomly common oscillation or if
it really signifies a coupling between the two processes:
one has to test if the time interval of the common oscilla-
tions is significantly long compared to typical randomly
common oscillations of independent processes. The length
distribution under the Null hypothesis (i.e. of randomly
common oscillations) can be estimated by a bootstrap
approach. For an overview, please refer to [19].

4. Case study: detecting flood triggering situations in an
Alpine catchment

The presented methods are used to investigate the flood
producing mechanisms in a catchment located in the Swiss

Alps, the Vispa River at Visp (7.87 E, 46.3 0 N, catchment
size 778 km?). This river lies within the catchment of the
Swiss part of the Rhone River, for which flood prevention
is currently the subject of intense research e.g. [25] and for
which the design floods have recently been re-estimated
[26]. This estimation was based on a continuous simulation
framework including a hydrological model [27] coupled to
a stochastic weather generator [28] that generates tempera-
ture and precipitation fields based on general circulation
indices e.g. [29] and on an analogue sorting method e.g.
[30]).

The Vispa river, as well as the entire Swiss Rhone catch-
ment, has experienced four major flood events during the
last 20 years e.g. [31], at the end of August 1987, at the
end of September 1993 and 1994 and mid-October 2000
(Fig. 2). These floods where presumably mainly induced
by exceptional rainfall events; however, in Alpine catch-
ments such as the Vispa catchment (altitude ranging from
around 650-4500 m a.s.l., mean altitude around 2600 m
a.s.l., 30% of the catchment covered by glacier), the occur-
rence of floods is strongly influenced by the joint action of
rainfall and temperature that determines whether precipita-
tion falls as rain or accumulates as snow. Another impor-
tant factor is the catchment storage capacity before a
heavy rainfall event starts: if the soils or the snow cover
are almost saturated, a rainfall event will lead to much
higher discharges than in situations where the storage
potential is high. As a result, similar precipitation events
can lead to completely different discharge situations. The
flood of 2000 was for example much less severe in the Vispa
catchment than in the rest of the Rhone catchment [32].

The simulation of extreme high flow events in Alpine
catchments is particularly difficult due to the high spatial
variability of the main system inputs, i.e. of the precipita-
tion and of the temperature. For the Vispa catchment,
the application of a conceptual hydrological model per-
forming satisfactorily in neighboring catchments was not
able to reproduce all four observed high flow events [26].
Furthermore, the weather generator designed to reproduce
the observed statistics of the precipitation and the temper-
ature fields [28] induced simulated extreme discharge events
during spring, a period during which exceptional high flows
never occurred in this area. Based on these observations,
the question arises which particular hydrometeorological
situations induced the four observed floods in this particu-
lar catchment and whether other similar situations
occurred during the observed period without, however,
generating high discharges. Investigating the hydrological
model performance for these situations would enable a
more meaningful assessment of the performance of the
hydrological model than just considering the four observed
extreme events.

In the following, we will show whether and how the
dominant driving process for the occurrence of floods can
be detected through wavelet spectral analysis of the
observed discharge and the precipitation and temperature
observed at a meteorological station located within the
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Fig. 2. Observed daily time series of discharge (11%/s), precipitation (mm/d) and temperature (°C).

catchment at 1638 m a.s.l. All the observed time series (see
Fig. 2) have been pre-treated before the wavelet analysis.
They have been deseasonalized, i.e. every date has been
normalized by subtracting the interannual mean value of
this date and by dividing by the interannual variance.
The discharge time series shows a weekly cycle due to the
presence of a hydropower plant in the catchment. This
weekly cycle has been approximately removed by estimat-
ing and subtracting the average weekly cycle and by nor-
malizing to the weekly variance.

As we are interested in correlations between the hydro-
meteorological processes and not just in coincidences of
extreme events (see Section 3.4.7), we have, in addition,
transformed the discharge and the precipitation time series
to approximately follow a Gaussian marginal: we applied a
log-transformation to the discharge series, which — as for
many observed river flow series — leads to a good Gaussia-
nity of the data. For the precipitation series, we applied the
cubic root, which reduces the skewness of the precipitation
distribution and weakens its heavy tail e.g. [33].

o
wn
™~
[0}
s
o™
8 ™
0]
™
1982 1985 1988 1991
Time

1994

The wavelet and wavelet coherence analysis requires
defining appropriate Null hypotheses for significance test-
ing. Following Hasselmann [23], we use an AR [1] process
for the meteorological times series. The choice of a relevant
Null hypothesis for discharge time series is not straightfor-
ward as discharge can have rather different autocorrelation
structures at different places; many observed discharge ser-
ies can however be reasonably approximated by an AR [1]
process e.g. [34] and we, therefore, chose an AR [1] for all
analyzed time series.

5. Results
5.1. Detecting potentially flood producing situations

For illustrative purposes, Fig. 3 shows the Morlet wave-
let spectrum of the observed daily precipitation including
the identified areawise significant patches. As for all spectra
shown hereafter, this figure also shows the cone of influ-
ence above which the results are considerably influenced

1997 2000

Fig. 3. Wavelet spectrum of daily precipitation; values above the cone of influence (regular black line) are influenced by edge effects; the irregular thin
black contour lines delineate pointwise significance patches, the thick black lines delineate areawise significance areas.
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by edge effects (that equals, following Torrence and Compo
[9], v/2a). It can easily been seen that this — for this region
typical — outcome of continuous wavelet transform of a
daily meteorological time series does not provide any easily
interpretable insights into the observed process. The
numerous low-scale peaks in Fig. 3 probably occur due
to the non-Gaussianity discussed in Section 3.3.2.

In this Alpine area, high discharge events usually occur
during meteorological situations where warm and humid
air masses cross the Alps coming from the South and lead
to intense and long precipitation events [32,35]. Such situ-
ations occur during spring, late summer and autumn but
important floods usually only occur in autumn (see
Fig. 2) when the catchments are highly saturated and the
snow cover that could store part of the rainfall is still small
in depth and extent (see, e.g. [27,36]).

These typical meteorological situations are visible in the
synoptic pressure fields but are not readily visible in the
observed time series of an individual valley such as the
Vispa catchment. An analysis of the coherence between
the observed precipitation and the temperature time series
(Fig. 4a), however, could help detecting these typical mete-

orological situations: as expected, patches of high coher-
ence between precipitation and temperature can be seen
from spring to autumn, at scales between one and a few
days. This example also illustrates that a classical pointwise
significance test detects many patches which are small com-
pared to the critical area (i.e. reproducing kernel) and thus
likely to be spurious.

It is noteworthy that there is a significant coherence
between temperature and precipitation during two major
floods (1993, 1994) that are known to be the typical out-
come of such meteorological situations (see also zoom on
1993-1994 in Fig. 5b). This gives us further confidence that
we can detect such southerly flow situations in the wavelet
coherence between precipitation and temperature.

As the initial saturation of the catchment plays an
important role, it is well known that not all exceptional
meteorological situations that bring intense rainfall events
during autumn lead to flood situations. As expected based
on this considerations, not all significant patches in the
coherence between temperature and precipitation in
Fig. 4a correspond to high flow situations (Fig. 2). These
results show that wavelet coherence analysis of temperature
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Fig. 4. Squared wavelet sample coherence calculated with a Morlet wavelet, w, = 6, including the pointwise significance test (thin contour line) and the
areawise significance test (thick contour line); top: precipitation versus temperature, center: precipitation versus discharge, bottom: temperature vs.

discharge of the Vispa River.
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and precipitation is very useful to help detecting potentially
flood triggering situations.

5.2. Investigating flood producing mechanisms

The significant coherence between temperature and pre-
cipitation during the floods in autumn 1993 and 1994 are in
accordance with our (literature-based) knowledge that
these floods where the result of exceptional meteorological
situations. There are two flood events where we cannot see
patches of significant coherence between temperature and
precipitation, the one in 1987 and the one in 2000 (see
Fig. 4a, Fig. 5a, Fig. 5b). Just as the presence of significant
patches does not necessarily imply a meteorological corre-
lation, the absence of patches can only be a hint that the
meteorological situation might not have been exceptional.

For the event 2000, where 160 mm of precipitation
where measured during 3 days but the flood was relatively
small compared to 1993 (109 mm during 3 days), the snow-
fall line in this particular catchment is known to haven
fallen suddenly during the precipitation event [32]. This
explains why for this catchment the flood was small com-
pared to the occurred precipitation.

The coherence between the discharge and the precipita-
tion could be supposed to give us further insights into the
dominant processes during all four flood events. Fig. 4b
shows only very few significant coherence patches between
precipitation and discharge. This is to be expected for this
catchment: the influence of precipitation on discharge is
smoothed out through the snow accumulation (i.e. storage)
processes. However, we could still expect significant coher-
ence at very small scales (a few days). Remember, however,

that, as discussed in Section 3.3.2, single events are gener-
ally not visible in the wavelet spectrum; in this catchment,
discharge variations induced by intense precipitation essen-
tially result in such single peaks (Fig. 2). This can be
assumed based on process knowledge and visual inspection
of the observed times series; it is also confirmed by the
wavelet analysis.

Considering the wavelet coherence between discharge
and temperature (Fig. 4c), we see numerous significant
patches at scales between a few days and a month; the
catchment does not seem to significantly react to short tem-
poral fluctuations of temperature. This is a hint that high
flow events at the daily scale are not triggered by tempera-
ture exclusively, i.e. they are not triggered by snow or ice
melt. This interesting conclusion can, contrary to the previ-
ous ones, also be obtained using only hydrological process
knowledge: in high mountainous and steep catchments (as
the one analyzed here), short-term temperature fluctuations
only affect small parts of the catchment. If the snowmelt or
snowfall line rises momentarily, only very small areas start
contributing to the discharge (compared to lowland flat
catchments, where a short temperature variation affects
large areas simultaneously). Therefore, only temperature
variations at higher temporal scales are visible in the dis-
charge time series.

For the event 1987, there are no significant patches in
any of the coherence spectra; in addition, only 50 mm of
precipitation were measured during the three preceding
days. This suggests that either wavelet spectral analysis is
not sensitive enough to detect this event, or this event could
have been triggered by circumstances not detectable with
the used methods, which could be a hint that the catchment
moisture conditions played an important role.
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6. Discussion

Estimated wavelet spectra of observed time series can
give valuable information about the analyzed processes
and their time and scale resolved correlation but their inter-
pretation should be based on appropriate significance tests.
The areawise significance test for wavelet spectra developed
by Maraun et al. [19] is, therefore, a central point of the
presented methods. As they showed, in comparison to the
conventional pointwise test, the arcawise significance test
is slightly less sensitive but more specific, i.e. the probabil-
ity of obtaining misleading false positive results has been
reduced dramatically.

For the hydrological case study presented here, this
characteristic of the areawise test enables interpretations
of the estimated spectra that can be related in a meaningful
way to physical process knowledge. Applied to the coher-
ence between precipitation and temperature, it contributes
to identify potentially flood producing meteorological situ-
ations not readily visible in the original data, and to gener-
ate hypotheses about flood triggers (to test these hypotheses
much more detailed investigations are, of course, required).
How important the use of such an areawise test is, can best
been seen in the coherence between temperature and pre-
cipitation (Fig. 4a), where a pointwise test would identify
numerous small significant patches that have no hydrolog-
ical meaning.

This shows that wavelet spectral analysis, combined to
sound significance testing, is a powerful tool to assist the
identification of dominant hydrological processes in view
of process understanding and model development. For
the present case study, the identified potentially flood pro-
ducing meteorological situations could now be used to
focus the model development and its performance assess-
ment on the reproduction of the discharge during these
critical situations (around 20 situations, see Fig. 4a). This
would in particular reveal whether the hydrological model
is able to explain the occurrence and the non-occurrence
of floods during potentially flood producing situations,
which would give detailed insights into the model perfor-
mance. This represents a major advancement compared to
simply assess the model performance over the entire
observed period or only for the observed four flood
events.

In addition, the performance of the weather generator
used for the design flood estimation should now be re-
assessed to test whether the coherence of the simulated
temperature and precipitation time series differ significantly
from the observed pattern of coherence. This opens very
new perspectives for the performance assessment of
weather generators (see, e.g. [29,37]).

6.1. Some remarks on the interpretation of wavelet spectra
As mentioned earlier (see Section 3.3.2), local strong

non-Gaussianity of the data can lead to patches in the
coherence spectrum that are not related to a particular

correlation structure but to a coincidence of extreme
events. In addition to the transformations mentioned in
Section 4, we tested the effect of rendering the precipita-
tion series almost perfectly Gaussian by applying the nor-
mal quantile transformation [38]. This completely
suppresses the heavy tail of the distribution and, as a
result, removes most of the significant patches in Fig. 3
as well as, for instance, the significant patches in 1994
in Fig. 5a, i.e. in the latter case, the patches probably cor-
respond to a coincidence of extreme events rather than a
co-oscillation. Some of the patches might, however, disap-
pear due to effects of the transformation on the local cor-
relation structure: De Oliveira [39] has shown that
transforming a stationary random field to a Gaussian
marginal distribution effects the autocorrelation function
only marginally. To our knowledge, it has, however, not
been studied how strong this effect might be locally, espe-
cially in the presence of heavy tails.

As any statistical test, the areawise test also produces
false positive results. To increase confidence in the obtained
results, the total area of the areawise significant results
should be compared to the total area of the pointwise sig-
nificant results. If there is a large area of pointwise patches
but only a small area of areawise ones, the latter might well
be false positive outliers.

The areawise test can also be simply too specific, but
corresponding cases are very easily identified by eye:
assume a true deviation from the Null hypothesis over a
certain length that is large compared to the critical area.
The noisy wavelet periodogram might “frazzle” a corre-
sponding patch and accordingly, the pointwise test might
split this single deviation into two separate patches, which
are both small compared to the critical area. As a result,
no critical area fits in and the areawise test produces a
false negative result. Looking closely at neighboring
pointwise significant patches that might add up to an
areawise significant patch can help detecting such
situations.

7. Conclusion

For the presented case study from the Swiss Alps, wave-
let spectral analysis of precipitation, temperature and dis-
charge offers a powerful tool to help detecting potentially
flood producing meteorological situations and to distin-
guish between different types of floods with respect to the
prevailing critical hydrometeorological conditions. How-
ever, the obtained results and drawn conclusions are only
possible based on a sound combination of previous knowl-
edge about the physical processes involved and a method-
ologically rigorous wavelet analysis framework.

In fact, the application and interpretation of these rela-
tively new mathematical methods is not as straightforward
as suggested by some case studies. Therefore, this paper
presents an overview of state-of-the-art methods and recent
developments in wavelet spectral analysis before applying
them to the hydrological case study.
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In summary, the key points to which should be paid
attention for any application of wavelet spectral analysis
to hydrological time series are the following:

e Continuous wavelet analysis transforms a one dimen-
sional time series to the two dimensional time-scale
domain. This results in inherent correlations in the spectra
given by the reproducing kernel of the chosen wavelet.
These correlations reflect the fact that time and frequency
cannot be jointly estimated with arbitrary precision but
are subject to an uncertainty relation. Therefore, the
visual interpretation of estimated spectra can be mislead-
ing and significance testing is not straightforward.

e The interpretation of estimated wavelet spectra
requires confidence intervals or formal significance
testing that should be based on appropriate statistical
tests, such as the areawise significance test of Maraun
et al. [19] presented here, and on reasonable Null
hypotheses.

e Cross spectra are non-normalized measures of the time
and scale resolved covariance; therefore, they are only
interpretable in conjunction with appropriate confidence
intervals. We recommend to calculate the wavelet coher-
ence instead.

e Wavelet spectral analysis enables the inference of time
and scale resolved correlations between two time series
through the estimation of wavelet coherences; as for
the sample spectra, their significance should be tested.

o A significant coherence in a short time interval can be
due to spurious common oscillations; i.e. a short coher-
ence interval alone is not necessarily indicative of a
physical relationship.

Wavelet spectral analysis has the potential to substan-
tially contribute to the understanding and modelling of
hydrological behavior. The results presented here for the
time and scaled resolved analysis of hydrometeorological
time series from the Swiss Alps are merely qualitative;
the obtained insights will however be of substantial help
for the improvement of simulation tools for flood predic-
tion in this area and they will namely build the basis for
the development of new model performance diagnosis
tools.

We believe that given the state-of-the-art of wavelet
spectral analysis, the time is ripe for a shift from merely
qualitative to such more quantitative hydrological applica-
tions, for example for model diagnostics but also for the
development of signatures of hydrological behavior (see,
e.g. [40]) or of new catchment classification methods (see,
e.g. [41]).

Such more quantitative applications of wavelet spectral
analysis require however further research into the interpre-
tation of continuous wavelet spectra for hydrological pro-
cesses and should be completed in close collaboration with
time series analysts from other fields.

All methods presented here are implemented in SOWAS
(software for wavelet spectral analysis and synthesis) writ-

ten in R and Matlab and freely available on http://tocsy.
agnld.uni-potsdam.de/wavelets.
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