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Do Nash values have value?
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How Do We Communicate Model Performance?
The process of model performance evaluation is of primary importance,
not only in the model development and calibration process, but also when
communicating the results to other researchers and to stakeholders. The
basic ‘rule’ is that every modelling result should be put into context,
for example, by indicating the model performance using appropriate
indicators, and by highlighting potential sources of uncertainty, and
this practice has found its entry into the large majority of papers and
conference presentations.

While the question of how to communicate the performance of a
model to potential end-users is currently receiving increasing inter-
est (e.g. Pappenberger and Beven, 2006), we–as well as many other
colleagues–observe regularly that researchers take much less care when
communicating model performance amongst ourselves. We seem to
assume that we are speaking about familiar performance concepts and
that they have comparable significance for various types of model appli-
cations and case studies. In doing so, we do not pay sufficient attention
to making clear what the values represented by our performance mea-
sures really mean. Even concepts as simple as the bias between an
observed and a simulated time series need to be put into proper con-
text: whereas a 10% bias in simulation of simulated discharge may
be unacceptable in a climate change impact assessment, it may be of
less concern in the context of real-time flood forecasting. While some
performance measures can have an absolute meaning, such as the com-
mon measure of linear correlation, the vast majority of performance
measures, and in particular quadratic-error-based measures, can only
be properly interpreted when viewed in the context of a reference
value.

For hydrologists, the Nash–Sutcliffe efficiency measure (Nash and
Sutcliffe, 1970) (Equation (1)) has become a common part of our
everyday jargon when reporting the results of a catchment modelling
study. Somehow, we seem to ignore the fact that modellers in other
fields of environmental sciences are not often familiar with what a ‘Nash
value’ is. More important, it is worth asking whether we ourselves know
what it means when we report that a model has a ‘Nash value of 0·87’.
The reality is that the Nash efficiency value, while a convenient and
normalized (–inf to 1·0) measure of model performance does not provide
a reliable basis for comparing the results of different case studies. In
stating this, we are not pointing out anything not already well known (e.g.
Martinec and Rango, 1989; Legates and McCabe, 1999; Seibert, 2001),
but we think that it is worth recalling, with the hope that the following
discussion will encourage hydrologists to use performance measures in a
more useful manner–which is to always provide appropriate reference
values–so that reported Nash values can be properly interpreted.

Nash Values Need a Baseline
The Nash–Sutcliffe performance measure (Nash and Sutcliffe, 1970),
called, hereafter, the Nash–Sutcliffe efficiency (NSE), is computed as
follows:
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NSE = 1 −

N∑

t=1

[qobs(t) − qsim(t)]2

N∑

t=1

[qobs(t) − qobs]
2

(1)

where qobs (t) is the observed discharge at time step
t , qsim (t) the simulated discharge, qobs the mean
observed discharge over the entire simulation period
of length N .

The NSE is a normalized measure (–inf to 1·0)
that compares the mean square error generated by
a particular model simulation to the variance of the
target output sequence. In doing so, it represents a
form of noise-to-signal ratio, comparing the average
‘size’ (variability) of model residuals to the ‘size’
(variability) of the target output. It is implicitly
comparing the performance of the particular model
to that of perhaps the simplest imaginable model,
one that uses as its prediction the (constant) mean
value of the observed target. This means that an
NSE value = 1·0 indicates perfect model performance
(the model perfectly simulates the target output),
an NSE value = 0 indicates that the model is, on
average, performing only as good as the use of the
mean target value as prediction, and an NSE value
<0·0 indicates an altogether questionable choice of
model. We, therefore, prefer NSE values to be larger
than 0·0 and approaching 1·0. This corresponds,
however, to an apparent normalization because the
implicit reference model has different implications for
different case studies.

The NSE does not measure how good a model is
in absolute terms. Depending on the case study, the
reference model hidden in the NSE value poses com-
pletely different constraints on the actual model per-
formance. The use of the mean observed value as
a reference can be a very poor predictor (e.g. for
strongly seasonal time series), or a relatively good pre-
dictor (e.g. for time series that are essentially fluctua-
tions around a relatively constant mean value). Schae-
fli et al. (2005) showed an interesting example. In case
studies involving high mountainous catchments hav-
ing a strong annual discharge cycle, they obtained
surprisingly high NSE values (higher than 0·9) just
by a simple initial screening (through random gen-
eration) of seven model parameters. However, they
showed that an extremely simple model correspond-
ing just to the use of the mean observed discharge for
each calendar day yields an already high NSE of 0·85.

In the case of strongly seasonal time series, a model
that only explains the seasonality but fails to repro-
duce any smaller time scale fluctuations will report
a good NSE value; for predictions at the daily time
step, this (high) value will be misleading. In con-
trast, if the model is intended to simulate the fluctua-
tions around a relatively constant mean value, it can
only achieve high NSE values if it explains the small

time-scale fluctuations. Clearly, therefore, the defini-
tion of an appropriate benchmark model is particu-
larly important when we compare model performance
over a variety of hydrologic regimes. This is particu-
larly important in the context of model regionaliza-
tion studies conducted over widely differing types of
eco-hydro-climatic response (e.g. Parajka et al., 2005).

To properly communicate how good a model really
is, it seems necessary to establish appropriate refer-
ence or benchmark models–models having an easy-
to-apprehend explanatory power for a given case
study and a given modelling time step (see also
Seibert, 2001). For hydrologic case studies, it may
be difficult–if not impossible–to establish a general
and widely applicable benchmark model (such as an
autoregressive process for meteorological time series,
see, e.g. Hasselmann, 1976). However, it may be pos-
sible to at least decide on benchmark models that
‘speak’ to the modellers or the end-users, i.e. bench-
mark models that impose performance constraints
that are readily interpretable for a given context. In
the following, we will give two illustrative examples
for rainfall-runoff models at a daily time step.

Establishing Benchmark Models
For observed time series showing a strong but rela-
tively constant seasonality (for example, related to the
climate), a simple benchmark model is the one already
mentioned: the interannual mean value for every cal-
endar day. This benchmark model has already been
proposed by Garrick et al. (1978) and is recommended
by the WMO (1986) in their snowmelt model inter-
comparison report. For the three case studies pre-
sented in Schaefli et al. (2005), such a benchmark
model immediately reveals that the hydrologic model
is performing much better for one of the catchments
(Table I): for the Lonza River (Figure 1), the NSE of
the calibrated hydrologic model is 0·2 or 28% higher
than the NSE of the benchmark model. For the other
two case studies, the performance improvement of the
hydrologic model over the benchmark model is only
13% (Rhone River) and 7% (Drance River). Using
such a calendar day benchmark model is equivalent
to computing the NSE of pre-treated simulated and
observed series from which the seasonality has been
removed, which is a standard procedure in time series
analysis.

The performance improvement of the hydrologic
model over the benchmark model can be measured
by defining a normalized benchmark efficiency (BE)
defined, in analogy to the NSE, as follows:

BE = 1 −

N∑

t=1

[qobs(t) − qsim(t)]2

N∑

t=1

[qobs(t) − qb(t)]2

(2)
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Table I. Efficiency measures for the case studies of Schaefli et al. (2005) using their conceptual model GSM-SOCONT. For
the adjusted smoothed precipitation benchmark (ASPB) model, the precipitation is replaced by the equivalent precipitation
(Peq) that equals rainfall plus snow- and ice-melt (NSE = Nash–Sutcliffe efficiency, NSEB = Nash–Sutcliffe efficiency of the

benchmark model, BE = benchmark efficiency, win = optimum moving-average window size in days)

Hydrol. model Benchmark calendar day Benchmark ASPB with Peq

NSE NSEB BE NSEB BE lag win

Rhone 0·94 0·83 0·55 0·82 0·64 1 13
Lonza 0·92 0·72 0·62 0·78 0·62 1 26
Drance 0·90 0·84 0·22 0·83 0·37 1 7

where qb(t) is the benchmark model discharge at time
step t . Such a calendar day benchmark model will
establish whether the hydrologic model has greater
explanatory power than already contained in the
seasonality of the driving forces (the climate).

In a similar vein, we can construct benchmark
models that measure whether the hydrologic model
has more explanatory power than already contained
in the frequency content of the dominant driving
process, i.e. in the rainfall. Recall that the ‘func-
tion’ of a catchment is (by a process of storage
and time-delayed release) to transform the variabil-
ity of the driving signal (the rainfall) into an output
response (the streamflow) that has reduced amplitude
and variability, and is diffused over time. Therefore
a considerable part of the variability in the out-
put comes from the driving signal, and our inter-
est is in evaluating the ability of the model to cor-
rectly replicate the transforming function of the catch-
ment.

It is common for catchment modellers to show
hydrograph time series plots in which the model sim-
ulation ‘goes up—and down’ in a manner similar
to that of the measured catchment hydrograph, as
an indication of modelling success. Clearly, however,
the vast majority of the ‘up—and down’ hydrologic
model response is caused by the driving variables,
and what we need to measure is how well the catch-
ment process modification of this behaviour has been
reproduced. A very simple benchmark model, there-
fore, would be to simply scale the rainfall to match
the mean discharge (analogous to a 8-index opera-
tion, see, Chow et al., 1988) and to shift the sequence
in time by some optimum lag that reflects the time
of concentration of the basin. The idea is that this
benchmark ‘model’ projects the frequency variation
of the driving variables into the output while having
the correct runoff ratio. This adjusted precipitation
benchmark (APB) model is constructed as follows:
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Figure 1. Lonza River case study from Schaefli et al. (2005); left: observed, simulated and benchmark discharge time series (last year
of calibration period); right: scatter plots of simulated or benchmark discharge values versus observed discharge (for the same year);
top: discharge simulated with hydrologic model; centre: calendar day benchmark model (CDB); bottom: adjusted smoothed precipitation

benchmark model (ASPB); the efficiency measures are given in Table I
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Figure 2. Rainfall adjusted benchmark models for the Leaf River case study (year 1948); top: observed and simulated discharge and scaled
precipitation (precipitation multiplied by runoff ratio); centre: Adjusted Precipitation Benchmark (APB) simulation; bottom: adjusted
smoothed precipitation benchmark (ASPB) simulation (note the scale difference). The benchmark efficiencies and the benchmark model

parameters are given in Table II

1. Take the precipitation p(t) and multiply by the
runoff ratio r (mean discharge/mean precipitation)
to make the adjusted precipitation volume equal
to the observed discharge volume; this is called
adjusted precipitation.

2. Shift the adjusted precipitation to the right by an
optimum lag (lagopt ) which minimizes the mean
squared error-of-fit to observed discharge.

3. Hence the APB model becomes

qAPB(t) = r · p(t − lagopt) (3)

We illustrate the use of this benchmark model
(Figure 2 top and centre) for a case study involving
daily simulation of the rainfall-evapotranspiration-
streamflow behaviour of the Leaf River Basin, near
Collins, Mississippi, using the simple 5-parameter
model HyMod (Boyle, 2000) calibrated with the algo-
rithm presented in Vrugt et al. (2003). Clearly, the
APB model prediction gives a more realistic refer-
ence time series than just the mean discharge: it
fluctuates in a way that reflects the behaviour of
the basin averaged precipitation time series. Note
that the NSE value of the APB model prediction
(called NSEB) is negative (Table II, year 1948), incor-
rectly indicating that the mean discharge is a better
predictor–arguably this inference using the NSE mea-
sure is not reasonable. However, the benchmark effi-
ciency (BE) measure (BE = 0·93) indicates clearly that

the 5-parameter HyMod model provides a significant
improvement over the 2-parameter (runoff ratio and
lag) APB benchmark model.

A further important characteristic of catchments is
to filter (smooth) the rainfall to remove higher fre-
quency variability. We can, therefore, further add a
simple dispersion process (a moving average) to adjust
the smoothness of the scaled-down and translated pre-
cipitation to match the smoothness of the observed
discharge. One simple way to choose the degree of
smoothness (the size of the moving-average window)
is so as to maximize the correlation between the
adjusted precipitation and the observed flow (Morin
et al., 2002). Figure 2 (bottom) shows the perfor-
mance of this benchmark model (which we refer to
as the adjusted smoothed precipitation benchmark
(ASPB) model for the same Leaf River Basin study.
As expected, the ASPB benchmark model provides
an improved baseline simulation of the observed dis-
charge. In fact, the NSEB value of this model is 0·54
and the new BE with respect to the ASPB model
is 0·72, indicating that the 5-parameter hydrologic
model represents a significant improvement over the
simple 3-parameter (runoff ratio, lag and window
size) benchmark model. Table II shows the Nash effi-
ciencies as well as the BEs for the Leaf River simu-
lated for a different year (1978). Considering only the
NSE, we would come to the conclusion that the model
performs equally well as for the calibration period;
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Table II. Efficiency measures for the Leaf River case study simulated with the HyMod model and the Swiss pre-alpine river
Rietholzbach (see Gurtz et al., 2003) simulated with the PREVAH model (win = optimum moving-average window size in

days, calib = calibration period)

Hydrol.
model

Benchmark
APB

Benchmark ASPB

Period NSE NSEB BE lag NSEB BE lag win

Leaf River 1948 (calib) 0·87 −0·90 0·93 3 0·54 0·72 2 4
Leaf River 1978 0·87 −0·31 0·90 3 0·71 0·56 1 5
Rietholzbach 1987–2000 0·87 0·01 0·87 0 0·16 0·85 1 7

the BEs, however, indicate that the model performs
considerably worse for the year 1978 than for the cal-
ibration period (1948).

The ASPB, therefore, yields a stringent benchmark
model as it corresponds to the simplest hydrologic
filter for rainfall driven catchments: two linear pro-
cesses plus a time translation. The BE, with respect to
this model, enables us to compare different case stud-
ies and to judge how good the calibrated model for the
given case study really is. To illustrate this, we applied
the ASPB also to a rainfall-driven catchment from the
Swiss pre-alpine region simulated with the PREVAH
model (Gurtz et al., 1999). The case study has a NSE
of 0·87. How good is this performance compared to the
Leaf River example? The ASPB benchmark efficiency
is 0·85; this indicates that the model does a better job
than HyMod for the Leaf River, i.e. it explains com-
paratively more variation of the discharge time series
than obtained by a simple linear filtering of the pre-
cipitation time series.

We also computed the ASPB for the case studies of
Schaefli et al. (2005) but for these high mountainous
catchments we replaced the precipitation in the ASPB
by the so-called equivalent precipitation that equals
the precipitation plus simulated snow- and ice-melt.
This equivalent precipitation ASPB benchmark model
has four parameters (lag, window size, snowmelt fac-
tor and ice melt factor (Schaefli et al., 2005). The
results obtained with the calendar day benchmark
model are confirmed (Table I and Figure 1): the
hydrologic model has a much poorer performance for
the Drance River. But for at least two of the case stud-
ies (the Rhone and the Lonza River, see Figure 1) we
can conclude that the equivalent precipitation–runoff
transformation completed by the hydrologic model
using five additional parameters represents a substan-
tial improvement over the benchmark model.

Conclusion
The purpose of this paper is to argue that the def-
inition of an appropriate baseline for model per-
formance, and in particular, for measures such as
the NSE values, should become part of the ‘best
practices’ in hydrologic modelling. Every modelling
study should explain and justify the choice of bench-
mark. Of course, the appropriate benchmark model

will necessarily be different for different types of
case studies. However, for efficient communication,
the benchmark should fulfill the basic requirement
that every hydrologist can immediately understand
its explanatory power for the given case study and,
therefore, appreciate how much better the actual
hydrologic model is. We encourage further research
aimed at establishing a comprehensive set of bench-
mark models that could also be of further use
as a Null hypothesis for hydrologic significance
testing, and invite further open dialogue on this
topic.
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