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Others [topological invariants] were discovered
by Poincaré. They are all tied up with his

homology theory which is perhaps the most
profound and far reaching creation in all topology.

- S. Lefschetz





Abstract

In this project, we start by giving some basic results about (co)homology of
modules and groups, most of them taken from either [Wei94],[HS97] or [Rot79].
We then focus on the topological aspects and give a nice interpretation of the
(co)homology of a group via topology; more precisely, the (co)homology of a group
G is equal to the (co)homology of any Eilenberg-MacLane space K(G, 1). This will
bring us to the conjecture of Eilenberg-Ganea which states that the cohomological
dimension of any group G is equal to the geometric dimension of G.
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CHAPTER 1

Generalities

This chapter serves to provide all the necessary definitions and basic results in
group (co)homology.

Let R be a commutative ring.

1. Review of chain complexes and (co)homology

We recall a few facts about chain complexes.

Definition. A chain complex C (over R) is a sequence of R-modules (Cn)n∈Z
and morphisms of R-modules (dn : Cn → Cn−1)n∈Z, called differentiations,

C : · · · −→ Cn+1
dn+1−→ Cn

dn−→ Cn−1 −→ · · ·

such that dndn+1 = 0 for all n ∈ Z.
A morphism of chain complexes f : C → C ′ is a collection of morphisms of

R-modules (fn : Cn → C ′n)n∈Z such that the diagram

Cn
dn //

fn

��

Cn−1

fn−1

��
C ′n

d′n // C ′n−1

commutes for all n.
For a chain complex C, we define its n-th homology module by

Hn(C) := ker dn/ im dn+1.

If f : C → C ′ is a morphism of chain complexes, we define

Hn(f) : Hn(C)→ Hn(C ′)

[z] 7→ [fn(z)]

for all [z] ∈ Hn(C).

Similarly, we define cochain complexes and cohomolgy.

Definition. A cochain complex D (overR) is a sequence ofR-modules (Dn)n∈Z
and morphisms of R-modules (δn : Dn → Dn+1)n∈Z,

D : · · · −→ Dn−1 δn−1

−→ Dn δn−→ Dn+1 −→ · · ·

such that δn+1δn = 0 for all n ∈ Z.
We define its n-th cohomology module by

Hn(D) := ker δn/ im δn−1.

Remark. There are several ways to obtain a cochain complex from a chain
complex C. The most simple way is to set Cn := C−n and δn := d−n. Since we
will work with positive chain complexes (i.e. Cn = 0 for all n < 0) it is more

7



8 1. GENERALITIES

interesting to define Cn := C∗n = Hom(Cn, R) and δn := d∗n+1 = Hom(dn+1, R).
Let Hom(C,R) denote this cochain complex.

Definition. If C is a chain complex, we define its n-th cohomology module by

Hn(C) := Hn(Hom(C,R)).

Definition. Let f, g : C → C ′ be morphisms of chain complexes. We say that
f is homotopic to g if there exists a collection (hn : Cn → Cn−1)n∈Z of morphisms
of R-modules such that

fn − gn = d′n+1hn + hn−1dn

for all n ∈ Z. The collection (hn : Cn → Cn−1)n∈Z is called homotopy.

One can see that a homotopy defines an equivalence relation on Hom(C,C ′).
We omit the elementary proof that homology is homotopy invariant.

Proposition 1.1. Let f, g : C → C ′ be homotopic morphisms of chain com-
plexes, then Hn(f) = Hn(g).

The following theorem is also a classical result.

Theorem 1.2. Let 0 → C ′
i→ C

p→ C ′′ → 0 be an exact sequence of chain
complexes. Then there is a long exact sequence of modules

· · · −→ Hn(C ′)
Hn(i)−→ Hn(C)

Hn(p)−→ Hn(C ′′)
∂n−→ Hn−1(C ′) −→ · · · .

Moreover, the connection ∂n : Hn(C ′′)→ Hn−1(C ′) is defined by

∂n([z]) := [i−1
n−1(dn(y))], for any y ∈ p−1

n (z).

And similarly for cochain complexes and cohomology.

Theorem 1.3. Let 0 → C ′
i→ C

p→ C ′′ → 0 be an exact sequence of cochain
complexes. Then there is a long exact sequence of modules

· · · −→ Hn(C ′)
Hn(i)−→ Hn(C)

Hn(p)−→ Hn(C ′′)
∂n−→ Hn+1(C ′) −→ · · · .

Moreover, the connection ∂n : Hn(C ′′)→ Hn+1(C ′) is defined by

∂n([z]) := [i−1
n+1(δn(y))], for any y ∈ p−1

n (z).

2. Projective and injective modules

Here we define two dual concepts: projective and injective modules.

Definition. A R-module M is said to be free if there exists a set (mi)i∈I ,
called a basis of M , such that each m ∈M has a unique expression

m =
∑
i

rimi

for some ri ∈ R with almost all ri = 0.

Proposition 1.4. Let M be a free R-module and let B = (mi)i∈I be a basis.
For any map f : B → N and any R-module N , there exists a unique morphism of
R-modules f̄ : M → N such that the diagram

B
f //

� _

i

��

N

M

f̄

>>

commutes.
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Corollary 1.5. Let β : M → N be an epimorphism of R-modules. If P is
free, then for any morphism α : P → N there exists a morphism γ : P → M such
that βγ = α as in the following commutative diagram

P
γ

~~
α

��
M

β // N // 0.

We can slightly weaken the hypothesis and generalize to projective modules.

Definition. A R-module P is said to be projective if for any epimorphism of
R-modules β : M → N and any morphism α : P → N there exists a morphism
γ : P →M such that βγ = α.

Theorem 1.6. Let P be a R-module. Then the following statements are
equivalent:

(1) P is projective,
(2) Hom(P,−) is exact,
(3) every exact sequence of R-modules 0→M ′ →M → P → 0 splits,
(4) P is a summand of a free module, i.e. there exists a R-module M such

that P ⊕M is free,
(5) there exists (pi)i∈I ⊂ P and (ϕi : P → R)i∈I such that for all x ∈ P ,

ϕi(x) = 0 for almost all i ∈ I, and x =
∑
i ϕi(x)pi.

Proof. We know P is projective if for any exact sequence M β→ N → 0
and any α : P → N there exists a morphism γ : P → M such that βγ = α.
This is exactly saying that for any α ∈ Hom(P,N) there exists a morphism γ ∈
Hom(P,N) such that βγ = β∗(γ) = α. But this is equivalent to the statement
that β∗ : Hom(P,M) → Hom(P,N) is an epimorphism. Therefore the functor
Hom(P,−) is right exact. Since Hom(P,−) is clearly left exact, (1) is equivalent to
(2).

Suppose (1) and let 0 → M ′ → M → P → 0 be an exact sequence of R-
modules. Because P is projective there is a morphism γ that makes the following
diagram commute

P
γ

~~
IdP

��
M // P // 0.

Thus γ provides the desired splitting of the sequence. Hence (1) implies (3).
Suppose now (3). Consider the exact sequence 0→ kerα→ F

α→ P → 0 where
F is the free R-module generated by all the elements of P , i.e. F =

⊕
p∈P Rp and

the morphism α is given by universal property of free modules. By hypothesis, this
sequence splits. Consequently there exists r : P → F such that αr = IdP . One can
prove easily that

kerα⊕ P → F

(x, p) 7→ x+ r(p)

defines an isomorphism of R-modules. Hence (3) implies (4).
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Assume (4) and let F be such a free R-module where P is the summand. We
then construct the diagram

F

p
))

γ

��

P
i

ii

α

��
M

β // N // 0,

with pi = IdP . The universal property of free modules yields γ : F → M for any
morphism α : P → N and any epimorphism β : M → N . Thus (4) implies (1).

To conclude the proof, observe that (5) is equivalent to (4). The proof may
also be found in [Rot79, Chapter 3, Theorem 3.15]. �

The dual notion of projective modules is injective modules.

Definition. A R-module E is said to be injective if for any morphism α :
M → E and any monomorphism of R-modules β : M → N there exists a morphism
γ : N → E such that γβ = α as in the following commutative diagram

E

0 // M

α

OO

β // N.

γ
aa

Theorem 1.7. Let E be a R-module. Then the following statements are
equivalent:

(1) E is injective,
(2) Hom(−, E) sends monomorphisms to epimorphisms,
(3) every exact sequence of R-modules 0→ E →M →M ′ → 0 splits.

Proof. Let 0→M
β→ N be an exact sequence ofR-modules. Apply Hom(−, E)

to this sequence to obtain Hom(N,E)
β∗→ Hom(M,E)→ 0. Suppose that E is injec-

tive. Let α ∈ Hom(M,E), then there exists γ : N → E such that α = γβ = β∗(γ)
and thus β∗ is an epimorphism. Hence (1) is equivalent to (2).

Let us prove that (1) is equivalent to (3). If E is injective, we construct the
diagram

E

0 // E

IdE

OO

// M

γ
``

on any exact sequence 0→ E → M → M ′ → 0 of R-modules. One can see that γ
provides the desired splitting of the sequence.

Conversely, consider the diagram

E
β′ // P

0 // M

α

OO

β // N,

α′

OO

where P is the pushout of α and β, these being the same morphsims as in the first
part of the proof. Since β is a monomorphism, β′ is also a monomorphism. We

can consider the exact sequence 0→ E
β′→ P → cokerβ′ → 0. By hypothesis, there

exists s : P → E such that sβ′ = IdE . Defining γ := sα′ gives γβ = sα′β = sβ′α =
IdE α = α. Therefore E is injective. �



3. RESOLUTIONS AND EXTENSIONS 11

3. Resolutions and extensions

We introduce here the concept of resolutions of modules. They provide the
chain complexes that we use to define (co)homology for modules in general.

Definition. Let M be a R-module. A projective (resp. free) resolution of M
(over R) is an exact sequence of R-modules

· · · → Pn
dn→ Pn−1 → · · · → P1

d1→ P0
ε→M → 0.

where each Pn is a projective (resp. free).
An injective resolution of M (over R) is an exact sequence of R-modules

0→M
ε→ E0 δ0→ E1 → · · · → En

δn→ En+1 → · · ·
where each En is an injective.

Theorem 1.8. Every R-module M has a free resolution.

Proof. For any R-module M , there exists a free module F0 and an exact
sequence

0→ S0 → F0
ε→M → 0.

We apply the same argument to the R-module S0 to obtain an exact sequence

0→ S1
σ1→ F1

ϕ1→ S0 → 0.

By induction we have exact sequences

0→ Sn
σn→ Fn

ϕn→ Sn−1 → 0

for n > 0.
We assemble all those sequences into the diagram

· · · // F3
d3 //

""EEEEEE F2
d2 //

""EEEEEE F1
d1 //

""EEEEEE F0
ε // M // 0

· · · S2

<<yyyyyy

""EEEEEEE S1

<<yyyyyy

""EEEEEEE S0

<<yyyyyy

""EEEEEEE

· · · 0

<<yyyyyyy
0

<<yyyyyyy
0

<<yyyyyyy
0

with dn := σn−1ϕn. Let us now prove the exactness of the top row. Since σn is a
monomorphism, ϕn is an epimorphism and kerϕn = imσn we have:

ker dn = ker(σn−1ϕn) = kerϕn = imσn = im(σnϕn+1) = im dn+1.

Therefore the sequence above is exact. �

Corollary 1.9. Every R-module M has a projective resolution.

Theorem 1.10. Every R-module M has an injective resolution.

Proof. The proof is dual to the preceding theorem if we assume that every
R-module can be imbedded in an injective R-module. The reader can find the proof
of this useful fact in [Rot79, Chapter 3, Theorem 3.27]. �

Definition. Let M be a R-module. If

X := · · · → Xn
dn→ Xn−1 → · · · → X1

d1→ X0 →M → 0

is a chain complex, we define the deleted complex of X to be the chain complex

XM := · · · → Xn
dn→ Xn−1 → · · · → X1

d1→ X0 → 0.

We define similarly YN for any cochain complex of the form

Y := 0→ N → Y 0 δ0→ Y 1 → · · · → Y n
δn→ Y n+1 → · · ·
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Theorem 1.11. Consider the solid commutative diagram of R-modules

· · · // P2
d2 //

∃f2
��

P1
d1 //

∃f1
��

P0
ε //

∃f0
��

M //

f

��

0

· · · // X2
∂2 // X1

∂1 // X0
α // N // 0.

If each Pn is projective and if the bottom row is exact, then there exits a morphism
of chain complexes f∗ : PM → XN . Moreover, this morphism is unique up to chain
homotopy.

We say that such a morphism f∗ is a chain morphism over f .

Proof. We first show the existence of such a morphism of chain complexes by
induction on n. If n = 0 we draw the diagram

P0

fε

��
X0

α // N // 0

and since α is an epimorphism and P0 is projective, there exists a morphism of
R-modules f0 : P0 → X0 such that αf0 = fε.

Suppose fk : Pk → Xk constructed for all k ≤ n, and consider the diagram

Pn+1
dn+1 // Pn

dn //

fn

��

Pn−1

fn−1

��
Xn+1

∂n+1 // Xn
∂n // Xn−1.

Since ∂nfndn+1 = fn−1dndn+1 = 0 and ker ∂n = im ∂n+1 we have im(fndn+1) ⊂
im(∂n+1). Therefore, we may consider the diagram

Pn+1

fndn+1

��

fn

zz
Xn+1

∂n+1 // im ∂n+1
// 0

where fn is given by the projectivity of Pn+1.
We prove now that f∗ is unique up to a chain homotopy. Let f ′∗ : PM → XN be

a second morphism of chain complexes such that the above diagram commutes. By
induction, we construct a chain homotopy from f∗ to f ′∗. Let hn : Pn → Xn+1 be
the zero map for every n < 0. Suppose hk : Pk → Xk+1 constructed for all k < n,
such that

fk − f ′k = ∂k+1hk + hk−1dk.

We have that im(fn − f ′n − hn−1dn) ⊂ im ∂n+1 = ker ∂n, since

∂n(fn − f ′n − hn−1dn)

= ∂nfn − ∂nf ′n − ∂nhn−1dn︸ ︷︷ ︸
=(fn−1−f ′n−1−hn−2dn−1)dn

= ∂nfn − fn−1dn︸ ︷︷ ︸
=0

− (∂nf
′
n − f ′n−1dn)︸ ︷︷ ︸

=0

+hn−2 dn−1dn︸ ︷︷ ︸
=0

= 0.



4. HOMOLOGY AND COHOMOLOGY OF R-MODULES 13

Hence im(fn − f ′n − hndn+1) ⊂ im ∂n+1. Therefore, we may consider the diagram

Pn+1

fn−f ′n−hndn+1

��

hn+1

zz
Xn+2

∂n+1 // im ∂n+1
// 0,

where hn+1 is given by the projectivity of Pn+1. �

4. Homology and Cohomology of R-modules

This section defines the functors Tor and Ext. For convenience, let ⊗ denote
⊗R, the tensor product over R.

Definition. Let M,N be R-modules. Let PM be the deleted complex of a
projective resolution of M . Form the complex PM ⊗ N by applying the functor
(−)⊗N on each degree, i.e.

PM ⊗N : · · · → Pn ⊗N
dn⊗IdN−→ Pn−1 ⊗N → · · · → P0 ⊗N → 0.

We define TorRn (M,N) as the n-th homology of the chain complex PM ⊗N , i.e.

TorRn (M,N) := Hn(PM ⊗N) = ker(dn ⊗ IdN )/ im(dn+1 ⊗ IdN ).

Remark. We sometimes write Hn(M,N) for TorRn (M,N).

We have to show that TorRn (M,N) is independent of the choice of a projective
resolution for M .

Theorem 1.12. Let M,N be R-modules. If TorRn (M,N) and TorRn (M,N)
are the homology modules associated respectively to the projective resolutions PM
and PM ofM , then there exists a natural isomorphism TorRn (M,N) ∼= TorRn (M,N).

Proof. Consider the diagram

· · · // P2
// P1

// P0
// M //

IdM

��

0

· · · // P2
// P1

// P0
// M // 0.

By the theorem 1.11 there exists a morphism of chain complexes i : PM → PM
over IdM . If we turn the above diagram upside down, the same theorem gives us
a morphism of chain complexes j : PM → PM over IdM . By composition, we have
that ji : PM → PM and ij : PM → PM are morphisms of chain complexes over
IdM . Moreover, they are homotopic to the trivial morphisms of chain complexes.
If we now apply the functor (−) ⊗N , they remain homotopic, hence their homol-
ogy modules are isomorphic. Consequently, TorRn (M,N) ∼= TorRn (M,N) and the
isomorphism is given by i∗ := Hn(i⊗N) : Hn(PM ⊗N)→ Hn(PM ⊗N).

The proof of the naturality of i∗ may be found in [Rot79, Chapter 6, Theorem
6.11]. �

Definition. Let M,N be R-modules. Let PM be the deleted complex of a
projective resolution ofM . Form the complex Hom(PM , N) by applying the functor
Hom(−, N) to each degree, i.e.

Hom(PM , N) : 0→ Hom(P0, N)
d∗1→ · · · → Hom(Pn, N)

d∗n+1→ Hom(Pn+1, N)→ · · ·
We define ExtnR(M,N) by taking the n-th cohomology of the cochain complex
Hom(PM , N), i.e.

ExtnR(M,N) := Hn(Hom(PM , N)) = ker d∗n+1/ im d∗n.
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Remark. We sometimes write Hn(M,N) for ExtnR(M,N).

Theorem 1.13. Let M,N be R-modules. If ExtnR(N,M) and ExtnR(N,M)
are the cohomology modules associated respectively to the projective resolutions PM
and PM ofM , then there exists a natural isomorphism ExtnR(N,M) ∼= ExtnR(N,M).

Proof. The proof is similar to the proof of 1.12. �

Remark. In fact, the cohomology of M with coefficients in N can be defined
using injective resolutions. Let EN be the deleted complex of an injective resolution
of N . Form the complex Hom(M,EN ) by applying the functor Hom(M,−) to each
degree, i.e.

Hom(M,EN ) : 0→ Hom(M,E0)
δ0∗→ · · · → Hom(M,En)

δn∗→ Hom(M,En+1)→ · · ·

The n-th cohomology of M with coefficients in N is the n-th cohomology module
of the cochain complex Hom(N,EM ), i.e.

Hn(M,N) = Hn(Hom(M,EN )) = ker δn∗ / im δn−1
∗ .

The reader may find the proof of

Hn(Hom(M,EN )) = Hn(Hom(PM , N)) = ExtnR(M,N)

in [Rot79, Chapter 7, Theorem 7.8].

Lemma 1.14. Let 0 → M ′
i→ M

p→ M ′′ → 0 be an exact sequence of R-
modules. Let P ′ and P ′′ be projective resolutions of M ′ and M ′′. Then there exists
a projective resolution P of M such that the sequence of chain complexes

0→ P ′M ′
i∗→ PM

p∗→ P ′′M ′′ → 0

is exact.

Proof. First, we consider the diagram

0

��

0

��
K ′0

��

K ′′0

��
P ′0

ε′

��

P ′′0

ε′′

��
0 // M ′

��

i // M
p // M ′′

��

// 0

0 0

where K ′0,K ′′0 are the kernels of ε′ and ε′′. Since P ′′0 is projective, there exists
σ : P ′′0 → M such that pσ = ε′′. If we set P0 := P ′0 ⊕ P ′′0 and define i0 : P ′0 → P0

by x′ 7→ (x′, 0) as well as p0 : P0 → P ′′0 by (x′, x′′) 7→ x′′, then the sequence

0→ P ′0
i0→ P0

p0→ P ′′0 → 0

is exact. Now define ε : P0 → M by (x′, x′′) 7→ iε′x′ + σx′′. We show that ε is an
epimorphism. Let m ∈ M . Since ε′′ is an epimorphism, there exists x′′ ∈ P ′′0 such
that ε′′x′′ = pm. Therefore, p(m − σx′′) = 0 and since the sequence is exact, we
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can find an element m′ ∈M ′ such that im′ = m− σx′′. By surjectivity of ε′ there
exists x′ ∈ P ′0 such that ε′x′ = m′.

x′ ∈ P ′0_

∃
��

� // (x′, 0)
_

��

x′′ ∈ P ′′0 x′_

∃
��

m′ ∈M ′ � ∃ // m− σx′′ m ∈M � // pm

We then have m = m− σx′′ + σx′′ = ε(x′, x′′). This proves the surjectivity of ε.
Set K0 := ker ε, then one easily completes the diagram

0

��

0

��

0

��
0 // K ′0 //

��

K0

��

// K ′′0

��

// 0

0 // P ′0

ε′

��

i0 // P0

ε

��

p0 // P ′′0

ε′′

��

// 0

0 // M ′

��

i // M
p //

��

M ′′

��

// 0

0 0 0

into a commutative diagram with exact rows and columns.
By induction, we can iterate the process to

0

��

0

��
K ′n+1

��

K ′′n+1

��
P ′n+1

d′n+1

��

P ′′n+1

d′′n+1

��
0 // K ′n

��

// Kn
// K ′′n

��

// 0

0 0

where K ′n+1 and K ′′n+1 are the kernels of d′n+1 and d′′n+1. In the end we obtain a
projective resolution since the direct sum of projective modules is projective. �

Theorem 1.15. Let 0 → M ′
i→ M

p→ M ′′ → 0 be an exact sequence of
R-modules and let N be a R-module. Then there exists a long exact sequence in
homology

· · · →TorRn (M ′, N)
TorRn (i,N)−→ TorRn (M,N)

TorRn (p,N)−→ TorRn (M ′′, N)

∂n−→TorRn−1(M ′, N) −→ · · · .



16 1. GENERALITIES

Proof. By the preceding lemma, we can create an exact sequence of mor-
phisms of chain complexes

0→ P ′M ′ → PM → P ′′M ′′ → 0.

If we now apply the functor (−)⊗N we still have an exact sequence of morphisms
of chain complexes

0→ P ′M ′ ⊗N → PM ⊗N → P ′′M ′′ ⊗N → 0

since it is a split exact sequence. Apply theorem 1.2 to obtain the desired long
exact sequence. �

Theorem 1.16. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
R-modules and let N be a R-module. Then there exists a long exact sequence in
cohomology

· · · →ExtnR(M ′′, N)
ExtnR(p,N)−→ ExtnR(M,N)

ExtnR(i,N)−→ ExtnR(M ′, N)

∂n−→Extn+1
R (M ′′, N) −→ · · ·

Proof. Apply the functor Hom(−, N) to the (split) exact sequence of mor-
phisms of chain complexes

0→ P ′M ′ → PM → P ′′M ′′ → 0

given by the lemma above. We obtain an exact sequence of cochain complexes

0→ Hom(P ′′M ′′ , N)→ Hom(PM , N)→ Hom(P ′M ′ , N)→ 0.

Apply theorem 1.3. �

5. Homology and Cohomology of groups

We can now talk about the (co)homology of groups specifically.

Definition. Let G be a group (written multiplicatively), the integral group
ring ZG is the free abelian group with basis G whose elements are

{
∑
x∈G

mxx | mx ∈ Z and almost all mx = 0}

and whose multiplication is induced by the multiplication of G.
For convenience, we say G-module instead of ZG-module and ⊗G denotes ⊗ZG,

the tensor product over ZG.

Definition. Let G be a group, and N a G-module. Consider the integers Z
as a trivial G-module and define the n-th homology group and the n-th cohomology
group of G with coefficients in N to be

Hn(G,N) := TorZGn (Z, N) Hn(G,N) := ExtnZG(Z, N).

From now on, let G denote a group.

Definition. A G-module M is called trivial if every element of G acts as the
identity on M . Any abelian group can be regarded as a trivial G-module for any
group G.

Theorem 1.17. Let 0 → M ′
α→ M

β→ M ′′ → 0 be an exact sequence of
G-modules, then there exists a long exact sequence in homology

· · · → Hn(G,M ′)
α−→ Hn(G,M)

β−→ Hn(G,M ′′)
∂n−→ Hn−1(G,M ′) −→ · · · .
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Proof. Let

· · ·Pn+1 → Pn → Pn−1 → · · · → P0 → Z
be a projective resolution of Z over ZG (Z is seen as a trivial G-module).

Consider the exact sequence of chain complexes

0→M ′ ⊗G PZ →M ⊗G PZ →M ′′ ⊗G PZ → 0.

This sequence is exact because a projective module is flat. Apply theorem 1.2 to
obtain the wished long exact sequence. �

Theorem 1.18. Let 0 → M ′
α→ M

β→ M ′′ → 0 be an exact sequence of
G-modules, then there exists a long exact sequence in cohomology

· · · → Hn(G,M ′)
α−→ Hn(G,M)

β−→ Hn(G,M ′′)
∂n−→ Hn+1(G,M ′) −→ · · · .

Proof. The proof is similar to the one given above, except that we instead
apply the functor Hom(PZ,−) to our exact sequence and use theorem 1.3. �

The following theorem characterises (co)homology with coefficients in some
arbitrary module.

Theorem 1.19 (Universal coefficient theorem). Let G be a group and M a
trivial G-module. Then for n ≥ 0 there exist split exact sequences

0→ Ext1
Z(Hn−1(G,Z),M)→ Hn(G,M)→ HomZ(Hn(G,Z),M)→ 0,

and
0→ Hn(G,Z)⊗Z M → Hn(G,M)→ TorZ1 (Hn−1(G,Z),M)→ 0.

Proof. Subsequently, we will give a topological proof of this theorem using
the Eilenberg-MacLane space. �

6. Homology groups

In this section, we give a few techniques to compute low homology groups.

Definition. The augmentation map of G is the ring homomorphism ε : ZG→
Z given by

∑
mxx 7→

∑
mx. The kernel of ε is called the augmentation ideal and

is written g.

Lemma 1.20. Let M be a G-module, then Z⊗GM ∼= M/gM .

Proof. Consider the exact sequence 0 → g → ZG ε→ Z → 0, and apply the
functor (−)⊗GM . This yields the exact sequence

g⊗GM
i⊗GIdM−→ ZG⊗GM → Z⊗GM → 0.

Since ZG ⊗G M ∼= M and the image of i ⊗G IdM up to this isomorphism is gM ,
that implies Z⊗GM ∼= M/gM . �

Lemma 1.21. The abelian group g is free with basis {x− 1 | x ∈ G− {1}}.

Proof. If ε(
∑
mxx) = 0 then

∑
mx = 0. Therefore

∑
mxx =

∑
mxx −∑

mx1 =
∑
mx(x− 1). So g is generated by the x− 1, x ∈ G. Suppose now that∑

mx(x − 1) = 0, hence
∑
mxx =

∑
mx1 and since it is an equality in our free

group ZG, we have mx = 0 for all x ∈ G− {1}. �

Definition. For a G-module M , we define MG to be the maximal quotient of
M that is G-trivial, i.e that G acts on trivially. Hence MG = M/S where S is the
submodule generated by {xm−m : x ∈ G,m ∈M}.

Lemma 1.22. For a G-module M , MG
∼= M/gM ∼= Z⊗GM .
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Proof. For all x ∈ G and m ∈ Z, xm−m = (x− 1)m. Hence S = gM . �

Theorem 1.23.
H0(G,M) ∼= MG.

In particular, if M is G-trivial, then H0(G,M) = M .

Proof. If

P1
d1→ P0

ε→ Z→ 0

is an exact sequence, then the right exactness of (−) ⊗G M gives us the exact
sequence

P1 ⊗GM
d1⊗IdM→ P0 ⊗GM

ε⊗IdM→ Z⊗GM → 0.

Hence, H0(G,M) = coker(d1⊗ IdM ) ∼= Z⊗GM . The preceding lemma implies the
result. �

Remark. There exists a similar formula for the 0-th cohomology group. Define
MG := {m ∈ M |gm = m,∀g ∈ G} as the subset of fixed points of M . One can
prove (with the bar resolution) that

H0(G,M) ∼= MG.

In particular, if M is G-trivial, then H0(G,M) = M . The proof can be found in
[Rot79, Chapter 5, theorem 5.15].

Theorem 1.24.
H1(G,Z) ∼= g/g2

where Z is G-trivial.

Proof. Consider the exact sequence of G-modules

0→ g→ ZG ε→ Z→ 0.

This gives us an exact sequence in homology

H1(G,ZG)→ H1(G,Z)
∂→ H0(G, g)→ H0(G,ZG)

ε→ H0(G,Z)→ 0.

By the preceding theorem, H0(G,Z) ∼= Z (since Z is G-trivial) and H0(G,ZG) ∼=
Z⊗G ZG ∼= Z by the above lemma. Furthermore, an endomorphism of Z is either
0 or a monomorphism, but ε is an epimorphism by exactness, hence ε is not 0 and
is an isomorphism.

Since ZG is projective, TorZG1 (Z,ZG) = 0 and we have H1(G,ZG) = 0. By
exactness of the sequence, ∂ : H1(G,Z)→ H0(G, g) is an isomorphism. Finally, by
the theorem above H0(G, g) ∼= g/gg = g/g2. �

Theorem 1.25.
H1(G,Z) ∼= G/[G,G]

where [G,G] denotes the commutator subgroup.

Proof. We shall map out an isomorphism from the multiplicative groupG/[G,G]
to the additive group g/g2. Define

θ : G→ g/g2

x 7→ x− 1 + g2.
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It is a group homomorphism, since

θ(xy) = xy − 1 + g2

= (xy − 1)− (x− 1)(y − 1) + g2

= (xy − 1)− (xy − x− y + 1) + g2

= (x− 1) + (y − 1) + g2

= θ(x) + θ(y).

Since g is an abelian group, [G,G] ⊂ ker θ. Therefore, the induced map

θ : G/[G,G]→ g/g2

[x] 7→ x− 1 + g2

is well defined.
To prove that θ is an isomorphism, we exhibit θ

−1
. Define

ϕ : g→ G/[G,G]

(x− 1) 7→ x[G,G].

It is straightforward to show that g2 ⊂ kerϕ and the induced map

ϕ : g/g2 → G/[G,G]

(x− 1) + g2 7→ x[G,G]

is θ
−1

. �

Remark. This theorem is known in topology as the Hurewicz theorem. We
shall give later a topological proof of this theorem using Eilenberg-MacLane spaces.

7. Homology and Cohomology of cyclic groups

In this section, we give some computations for cyclic groups. The following
obvious Lemma is pretty useful.

Lemma 1.26. Let C∞ = {. . . , t−2, t−1, 1, t, t2, . . . } be the infinite cyclic group
and Ck = {1, t, . . . , tk−1} the cyclic group of order k > 0, k ∈ N. Then

ZC∞ = Z[t, t−1] ZCk = Z[t]/(tk − 1).

Proposition 1.27.

Hn(C∞,Z) = Hn(C∞,Z) =

{
Z n = 0, 1
0 n > 1

Proof. Consider the following projective ZC∞-resolution of Z

· · · // 0 // ZC∞ // ZC∞ // Z // 0

· · · // 0 // Z[t, t−1]
d1 // Z[t, t−1]

ε // Z // 0

where

d1 : Z[t, t−1]→ Z[t, t−1]

tk 7→ tk(t− 1)
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and

ε : Z[t, t−1]→ Z∑
k

mkt
k 7→

∑
k

mk

One can easily see that d1 is a monomorphism, ker ε = im d1 and ε is an epimor-
phism. Recall that for any ZC∞-module M , M ⊗ZC∞ ZC∞ ∼= M via m⊗ x 7→ xm.
If we now apply (−) ⊗ZG Z to the deleted complex, we obtain the commutative
diagram

· · · // 0 // Z⊗Z[t,t−1] Z[t, t−1]

∼=
��

d1 // Z⊗Z[t,t−1] Z[t, t−1]

∼=
��

// 0

· · · // 0 // Z
∂1 // Z // 0.

One can see that ∂1 = 0 (use the fact that Z is Z[t, t−1]-trivial). Hence the homology
groups are

Hn(C∞,Z) =

{
Z n = 0, 1
0 n > 1.

To compute the cohomology groups, we apply the functor HomZC∞(−,Z) to
the deleted complex above. Recall that HomZC∞(ZC∞,M) ∼= M via f 7→ f(1) for
any ZC∞-module M . We obtain

0 // HomZC∞(ZC∞,Z)
d∗1 //

∼=
��

HomZC∞(ZC∞,Z) //

∼=
��

0 // · · ·

0 // Z δ0 // Z // 0 // · · · .

One can see that δ0 = 0 (once again this is due to the triviality of the action),
therefore

Hn(C∞,Z) =

{
Z n = 0, 1
0 n > 1.

�

Proposition 1.28.

Hn(Ck,Z) =

 Z n = 0
Ck n odd
0 n even

and

Hn(Ck,Z) =

 Z n = 0
0 n odd
Ck n even.

Proof. Consider the following ZCk-resolution of Z

· · · // ZCk
d2 // ZCk

d1 // ZCk
ε // Z // 0

· · · // Z[t]/(tk − 1)
d2 // Z[t]/(tk − 1)

d1 // Z[t]/(tk − 1)
ε // Z // 0

where ε : Z[t]/(tk − 1)→ Z : tk 7→ 1 and the dn are defined by

dn : Z[t]/(tk − 1)→ Z[t]/(tk − 1)

tl 7→ tl(t− 1)
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if n is odd, and

dn : Z[t]/(tk − 1)→ Z[t]/(tk − 1)

tl 7→ tl(1 + t+ · · ·+ tk−1)

if n is even.
One can easily see that the sequence is exact. If we apply the functor (−)⊗ZCkZ,

we obtain via the isomorphism tl ⊗ 1 7→ tl1 = 1 the sequence

· · · // Z
∂4 // Z

∂3 // Z
∂2 // Z

∂1 // Z // 0.

Thus when n is even ∂n : Z→ Z : m 7→ km is the multiplication by k and when n
is odd ∂n = 0. Take homology to obtain the result.

To compute the cohomology groups, we apply the functor HomZCk(−,Z) to our
resolution. Via the isomorphism HomZCk(ZCk,Z) ∼= Z, we obtain the complex

0 // Z δ0 // Z δ1 // Z δ2 // Z δ3 // · · ·

If n is odd then we can identify δn as the multiplication by k and if n is even then
δn = 0. Take cohomology of this cochain complex to obtain the result. �

For a finite cyclic group Ck, we now want to compute the (co)homology with
coefficients in an arbitrary Ck-module.

Proposition 1.29. Let M be a Ck-module and n > 2. Then

Hn(Ck,M) ∼= Hn−2(Ck,M).

Proof. This follows from the fact that the resolution is periodic of period
2. �

Therefore it suffices to computeH1(Ck,M) andH2(Ck,M). Remark that there
is an analogous result for homology, which is also of period 2.

Proposition 1.30. Let t be a generator of Ck and consider the Ck - homo-
morphisms φ, ψ : M →M defined by

φm = (t− 1)m, and ψm = (tk−1 + tk−2 + · · ·+ t+ 1)m ∀m ∈M .

Then
H1(Ck,M) = kerψ/ imφ and H2(Ck,M) = kerφ/ imψ

as well as

H1(Ck,M) = kerφ/ imψ and H2(Ck,M) = kerψ/ imφ.

Furthermore, H0(Ck,M) = kerφ and H0(Ck,M) = cokerφ.

Proof. Again, we will just prove these results for cohomology. Recall the
2-periodic ZCk-resolution of Z defined by

dn : Z[t]/(tk − 1)→ Z[t]/(tk − 1)

tl 7→ tl(t− 1)

if n is odd, and

dn : Z[t]/(tk − 1)→ Z[t]/(tk − 1)

tl 7→ tl(1 + t+ · · ·+ tk−1)
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if n is even. We apply the functor HomZCk(−,M) to the resolution. The result is
just a consequence of the commutativity of the following diagram

0 // HomZCk (ZCk,M)
d∗1 //

∼=
��

HomZCk (ZCk,M)
d∗2 //

∼=
��

HomZCk (ZCk,M)

∼=
��

// · · ·

0 // M
φ // M

ψ // M // · · · ,

where the isomorphism HomZCk(ZCk,M) → M is just evaluation on the identity.
�

The two previous propositions completely describe (co)homology of finite cyclic
groups. We conclude this chapter with a classical example.

Example. We consider the action of Gal(C/R) ∼= C2 on C and want to compute
H2(C2,C∗). Now C∗ is a Z[σ]/(σ2 − 1)-module with

σ(x+ iy) = x− iy.
This means that our morphisms φ and ψ are defined as follows on C∗:

φ(z) = (σ − 1)z = z̄z−1 = z̄2/N (z)

and
ψ(z) = (σ + 1)z = zz̄ = N (z).

So
H2(C2,C∗) ∼= kerφ/ imψ ∼= R∗/N C∗ ∼= {±1} ∼= C2

as ZGal(C/R)-modules, using the fact that the norm sends complex numbers to
positive real numbers.

8. The bar resolution

In this section, we present an explicit resolution of Z over a given group G.

We first describe the non-normalized homogeneous bar resolution. Let B̄n,
n ≥ 0, be the free abelian group on the set of all (n + 1)-tuples (y0, y1, . . . , yn) of
elements of G. Define a left G-module structure on B̄n by

y(y0, y1, . . . , yn) = (yy0, yy1, . . . , yyn), y ∈ G.
Also define the differential in the sequence

B̄ : · · · → B̄n
∂n→ B̄n−1 → · · · → B̄1

∂1→ B̄0

by the simplicial boundary formula

∂n(y0, y1, . . . , yn) =

n∑
i=0

(−1)i(y0, . . . , ŷi, . . . , yn),

where ŷi means that we omit the i-th element. Finally define the augmentation
ε : B̄0 → Z by

ε(y) = 1.

Proposition 1.31. The chain complex B̄ is a free G-resolution of Z.

Proof. We have that ∂n and ε are G-module homomorphisms. Moreover, a
trivial calculation yields

∂n−1∂n = 0 for n ≥ 2 and ε∂1 = 0.

Clearly, B̄n is a free G-module, for example (1, y1, . . . , yn) is a basis. It remains
to show that the chain complex is acyclic. We show that it admits a contracting
homotopy ∆̄. Define

∆̄−1(1) = 1, and ∆̄n(y0, . . . , yn) = (1, y0, . . . , yn).
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Again one can verify that that ∆̄ is indeed a contracting homotopy, i.e that

ε∆̄−1 = 1, ∂1∆̄0 + ∆̄−1ε = 1,

and
∂n+1∆̄n + ∆̄n−1∂n = 1, n ≥ 1. �

The complex B̄ is the non-normalized bar resolution in homogeneous form.
Let now Dn ⊆ B̄n be the subgroup generated by the (n+ 1)-tuples (y0, y1, . . . , yn)
where yi = yi+1 for at least one value of i in {0, . . . , n − 1}. Such a Dn will be
called degenerate. Thus Dn is a submodule of B̄n generated by the degenerated
(n+ 1)-tuples with y0 = 1.

Lemma 1.32. We have that ∂Dn ⊆ Dn−1.

Proof. Take (y0, y1, . . . , yn) degenerate with yj = yj+1. Then ∂n(y0, y1, . . . , yn)
is a linear combination of degenerated n-tuples together with the term

(−1)j(y0, . . . , yj−1, y, yj+2, . . . , yn) + (−1)j+1(y0, . . . , yj−1, y, yj+2, . . . , yn),

where y = yj = yj+1. �

Therefore the submodules Dn yield a subcomplex D called the degenerate sub-
complex of B̄.

Proposition 1.33. The quotient complex B := B̄/D is a G-free resolution
of Z.

Proof. It suffices to see that ∆̄nDn ⊆ Dn+1 and thus we can take the con-
tracting homotopy ∆ induced by ∆̄. �

This complex B is the normalized resolution in homogeneous form.

We now want a resolution that is inhomogeneous. Let B̄′n, n ≥ 0 be the free left
G-module on the set of all n-tuples [x1|x2| . . . |xn] of elements of G. The differential
in the sequence

B̄′ : · · · → B̄′n
∂n→ B̄′n−1 → · · · → B̄′1

∂1→ B̄′0

is defined by
∂n[x1|x2| . . . |xn] = x1[x2| . . . |xn]

+

n−1∑
i=1

(−1)i[x1|x2| . . . |xixi+1| . . . |xn]

+(−1)n[x1|x2| . . . |xn−1].
The augmentation ε : B̄′0 → Z is defined by

ε[ ] = 1.

This already makes B̄′ into a chain complex since again it is easy to verify that
∂n∂n+1 = 0 for all n ≥ 0. In particular,

∂1[x1] = x1[ ]− [ ],

∂2[x1, x2] = x1[x2]− [x1x2] + [x2],

∂3[x1, x2, x3] = x1[x2, x3]− [x1x2, x3] + [x1, x2x3]− [x1, x2].

Proposition 1.34. There is an isomorphism of chain complexes between B̄
and B̄′.
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Proof. Define φn : B̄n → B̄′n by

φn(1, y1, . . . , yn) = [y1|y−1
1 y2| . . . |y−1

n−1yn]

and ψn : B̄′n → B̄n by

ψn[x1| . . . |xn] = (1, x1, x1x2, . . . , x1x2 . . . xn).

One checks easily that φn, ψn are mutual inverses and that φ, ψ defined in this way
are inverses and morphism of chain complexes, i.e. commute with differentials in
every degree. �

Furthermore, if we define D′n := φnDn, then D′n is the submodule of B̄′n
generated by the n-tuples [x1|x2| . . . |xn] with at least one xi equal to 1. The
modules D′n define a subcomplex D′ of B̄′ that we call degenerate. The quotient
complex

B′ := B̄′/D′

is a G-free resolution of Z isomorphic to B called the normalized resolution in
inhomogeneous form.



CHAPTER 2

Homological algebra and topology

In this chapter we will try to understand group (co)homology via topology.
First we will recall some general facts about (co)homology of topological spaces.
Then we introduce some very useful topological spaces (CW-complexes) and give
some tools to compute their (co)homology. Finally we define and construct some
Eilenberg-MacLane spaces K(G,n). We use them to give us the topological inter-
pretation of the (co)homology of a group.

1. Review of the (co)homology of a topological space

In this section, we recall some basic facts about (co)homology. We assume
that the reader already followed a course in algebraic topology and knows almost
everything in this section.

Definition. Let n ∈ N, define the topological n-simplex to be the topological
space

∆n := {(t0, . . . , tn) ∈ Rn+1|
∑
i

ti = 1, ti ≥ 0,∀i}.

A singular n-simplex in a topological space X is a continuous map σ : ∆n → X.
Define Sn(X) to be the free abelian group with basis all singular n-simplices. More
formally, Sn(X) := FAb(HomT op(∆

n, X)).
We now define for n ∈ N and 0 ≤ i ≤ n, the i-th face map to be the continuous

map

δi : ∆n−1 → ∆n

(t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

We define the boundary on every element of the basis of Sn(X) as

dnα =

n∑
i=0

(−1)iα ◦ δi ∈ Sn−1(X) if n > 0

for all α ∈ Sn(X). Let d0 := 0 be the zero morphism.

Theorem 2.1. The graded abelian group S(X) := (Sn(X))n≥0 equipped with
differentials (dn : Sn(X)→ Sn−1(X))n≥0;

· · · → Sn+1(X)
dn+1−→ Sn(X)

dn−→ Sn−1(X)→ · · · → S1(X)
d1→ S0(X)→ 0

is a chain complex.

Proof. Use the fact that δjδk = δkδj−1 if k < j to show that dndn+1 = 0. �

Remark. We can say more about Sn(X). If we define for 0 ≤ j ≤ n the j-th
degeneracy maps to be the continuous map

σj : ∆n+1 → ∆n

(t0, . . . , tn+1) 7→ (t0, . . . , tj−1, tj + tj+1, . . . , tn+1).

25
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Then define d̃i : Sn(X) → Sn−1(X) to be the function α 7→ α ◦ δi and sj :
Sn+1(X) → Sn(X) as the function α 7→ α ◦ σj for 1 ≤ i, j,≤ n. Then S(X)

equipped with the (d̃i)i and (sj)j is a simplicial set.

Definition. Let X be a topological space. The n-th (singular) homology group
is

Hn(X) = Hn(S(X)) = ker dn/ im dn+1.

If f : X → Y is a continuous map, then we can define a homomorphism
f# : Sn(X) → Sn(Y ) by f#(

∑
aαα) :=

∑
aαf ◦ α, where aα ∈ Z almost all equal

to zero.

Lemma 2.2. If f : X → Y is a continuous map, then the diagram

Sn(X)
dn //

f#

��

Sn−1(X)

f#

��
Sn(Y )

dn // Sn−1(Y )

commutes.

Proof. A short calculation gives us the result. �

Therefore, we can define Hn(f) : Hn(X) → Hn(Y ) by Hn(f)([z]) := [f#(z)].
To see that its well defined, we need to show that

f#(ker dn) ⊂ ker dn, and f#(im dn) ⊂ im dn.

All of this is done carefully in [Rot88, Chapter 4, lemma 4.9].

Theorem 2.3.

Hn : T op→ Ab

is a functor for all n ≥ 0.

Definition. Let A be a subspace of a topological space X. We define the
relative singular chain complex to be the quotient S(X,A) := S(X)/S(A). Define
now the n-th relative homology group as

Hn(X,A) := Hn(S(X,A)).

If G is an abelian group, define the n-th relative homology group with coefficients
in G to be

Hn(X,A;G) := Hn(S(X,A)⊗G).

Similarly, define the n-th relative cohomology group with coefficients in G as the
cohomology of the dual complex associated to the relative singular chain complex,
i.e.

Hn(X,A;G) := Hn(Hom(S(X,A), G)).

Remark. One can see that the relative (co)homology group (with coefficient
in an abelian group G) is a well defined functor from the category of topological
spaces to abelian groups.
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1.1. Important theorems from algebraic topology. We recall here the-
orems given by the algebraic topology. The interested reader will find the missing
proofs in any good algebraic topology book, such as [Hat02], [Rot88], [Bre93],
etc.

Theorem 2.4 (Long exact sequence for a pair in homology). If A is a sub-
space of X, there exists a long exact sequence

· · · → Hn(A)→ Hn(X)→ Hn(X,A)
∂→ Hn−1(A)→ · · ·

In addition, if f : (X,A)→ (Y,B) is a continuous map of pairs (i.e. f : X → Y is
continuous and f(A) ⊂ B), then we have a commutative diagram

· · · // Hn(A) //

f |A∗
��

Hn(X) //

f∗

��

Hn(X,A)
∂ //

f∗
��

Hn−1(A) //

f |A∗
��

· · ·

· · · // Hn(B) // Hn(Y ) // Hn(Y,B)
∂ // Hn−1(B) // · · ·

Proof. The proof is given by applying theorem 1.2 to the exact sequence

0→ S(A)→ S(X)→ S(X)/S(A)→ 0.

The naturality of ∂ gives us the second part of the theorem. �

We have a similar exact sequence for cohomology.

Theorem 2.5 (Long exact sequence for a pair in cohomology). If A is a
subspace of X and G an abelian group, then there exists a long exact sequence

· · · → Hn(X,A;G)
j∗→ Hn(X;G)

i∗→ Hn(A;G)
∂→ Hn+1(X,A;G)→ · · ·

Theorem 2.6. Let A′ ⊂ A ⊂ X be topological spaces, then there exists a long
exact sequence

· · · → Hn(A,A′)→ Hn(X,A′)→ Hn(X,A)
∂→ Hn−1(A,A′)→ · · ·

and for a given commutative diagram of pairs

(A,A′) //

��

(X,A′) //

��

(X,A)

��
(B,B′) // (Y,B′) // (Y,B),

we have the commutative diagram with exact rows

· · · // Hn(A,A′) //

��

Hn(X,A′) //

��

Hn(X,A)
∂ //

��

Hn−1(A,A′) //

��

· · ·

· · · // Hn(B,B′) // Hn(Y,B′) // Hn(Y,B)
∂ // Hn−1(B,B′) // · · ·

Proof. Apply theorem 1.2 to the exact sequence

0→ S(A)/S(A′)→ S(X)/S(A′)→ S(X)/S(A)→ 0. �

Remark. Apply the last theorem to the commutative diagram of pairs

(A, ∅) //

��

(X, ∅) //

��

(X,A)

��
(A,B) // (X,B) // (X,A)
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to obtain the commutative diagram

Hn(X,A)
∂ //

∂′

��

Hn−1(A)

i∗wwppppppppppp

Hn−1(A,B)

where ∂ is the connecting morphism given by the pair (X,A) and ∂′ is given by the
triple (X,A,B).

Theorem 2.7 (Universal coefficients theorem for homology). Let X be a
topological space and G an abelian group, then there exists for all n ≥ 0 a split
exact sequence

0→ Hn(X)⊗G α→ Hn(X;G)→ TorZ1 (Hn−1(X), G)→ 0,

where α([x]⊗ g) = [x⊗ g].

Proof. The reader shall find the proof in [Rot88, Chapter 9, Theorem 9.32].
�

The cohomological statement is the following.

Theorem 2.8 (Universal coefficients theorem for cohomology). Let X be a
topological space and G an abelian group, then there exists for all n ≥ 0 a split exact
sequence

0→ Ext1
Z(Hn−1(X), G)→ Hn(X;G)

β→ Hom(Hn(X), G)→ 0,

where β([f ]) : Hn(X)→ G : [x] 7→ f(x).

Proof. The reader shall find the proof in [Bre93, Chapter 5, Theorem 7.1].
�

Theorem 2.9 (Excision for homology). Let U ⊂ A ⊂ X subspaces such that
U ⊂ A◦ (where U denote the closure of U and A◦ is the interior of A). Then the
inclusion i : (X − U,A− U) ↪→ (X,A) induces for each n an isomorphism

i∗ : Hn(X − U,A− U)→ Hn(X,A).

Proof. The reader shall find the proof in [Hat02, Chapter 2, Theorem 2.20].
�

We have the same theorem also for cohomology groups.

Theorem 2.10 (Excision for cohomology). Let U ⊂ A ⊂ X subspaces such
that U ⊂ A◦ and let G be an abelian group. Then the inclusion i : (X−U,A−U) ↪→
(X,A) induces for each n an isomorphism

i∗ : Hn(X − U,A− U ;G)→ Hn(X,A;G).

Proof. The reader shall find a sketch of the proof in [Hat02, Chapter 3,
Section 3.1]. �

As for the cohomology, theorems 2.4, 2.6, 2.7 and 2.9 are true with coefficient
in any group G.
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1.2. Reduced Homology. Since the homology of a point is 0 in non-zero
degree and Z in degree zero, one could be interested to have another homology
theory with 0 everywhere. That is the idea of reduced homology.

Definition. Let X be a topological space, we define the augmented chain
complex, denoted by S̃(X), the chain complex

· · · → Sn(X)
dn→ Sn−1(X)→ · · · → S1(X)

d1→ S0(X)
d0→ Z→ 0

where d0 is defined to be
∑
nαα 7→

∑
nα. One can see easily that S̃(X) is a chain

complex.
The n-th reduced homology group of X is the homology of the augmented chain

complex, i.e.
H̃n(X) := Hn(S̃(X)).

Remark. One can see easily that H0(X) ∼= H̃0(X)⊕ Z, and Hn(X) = H̃n(X)
for n > 0. Hence the reduced homology of a point is zero everywhere.

Definition. Let X be a topological space and A ⊂ X a subspace. We say that
A is a deformation retract of X if there exists a continuous map F : X × I → X
such that F (−, 0) = IdX , F (X, 1) = A and F |A×I(−, t) = IdA for all t ∈ I.

In fact, a deformation retract is a special case of homotopy.

Theorem 2.11. Let X be a space and A a subspace such that A is a nonempty
closed subspace that is a deformation retract of some neighborhood in X, then there
exists a long exact sequence in reduced homology

· · · → H̃n(A)
i∗→ H̃n(X)

j∗→ H̃n(X/A)
∂→ H̃n−1(A)→ · · ·

where i : A ↪→ X is the inclusion and j : X → X/A the quotient map.

We will not proof this theorem, in fact we will give a more general result using
relative homology.

Proposition 2.12. Let (X,A) be a pair such that A is a nonempty closed
subspace which is a deformation retract of some neighborhood in X, and let q :
(X,A)→ (X/A,A/A) be the quotient map. Then we have an induced isomorphism

q∗ : Hn(X,A)→ Hn(X/A,A/A) ∼= H̃n(X/A).

for all n.

Proof. Let A ⊂ V ⊂ X such that A is a deformation retract of V . This in-
duces a homotopy equivalence (V,A) ' (A,A). Therefore Hn(V,A) = Hn(A,A) =
0. The same fact appears on the quotient (V/A,A/A) ' (A/A,A/A), hence
Hn(V/A,A/A) = 0. That implies the existence of a commutative square

Hn(X,A)
∼= //

q∗

��

Hn(X,V )

q∗

��
Hn(X/A,A/A)

∼= // Hn(X/A, V/A)

where the horizontal arrows are the isomorphisms given by the long exact sequences
of the triple (X,V,A) and (X/A, V/A,A/A). The excision theorem gives us another
commutative square

Hn(X,V )

q∗

��

Hn(X −A, V −A)
∼=oo

q∗

��
Hn(X/A, V/A) Hn(X/A−A/A, V/A−A/A).

∼=oo
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One sees that the right vertical arrow is an isomorphism because X −A and V −A
are homeomorphic respectively to X/A−A/A and V/A−A/A. To finish the proof
consider the commutative diagram

Hn(X,A)
∼= //

q∗

��

Hn(X,V )

q∗

��

Hn(X −A, V −A)
∼=oo

q∗

��
Hn(X/A,A/A)

∼= // Hn(X/A, V/A) Hn(X/A−A/A, V/A−A/A).
∼=oo

The preceding arguments implies that all the arrows are isomorphisms. �

2. CW-Complexes

We define in this section the notion of CW-complexes. This class of spaces
forms a very interesting category with a lot of nice properties. The reader will see
that most of topological spaces that he has in mind are naturally CW-complexes.

Definition. Let X(0) be a discrete set of points. Suppose X(n−1) has been
defined, let (f∂e : Sn−1 → X(n−1))e∈En be a collection of maps indexed by a set
En, called attaching maps. Define a space Y ,

Y :=
∐
e

Dn
e

where Dn
e = Dn for each e, and another space B,

B :=
∐
e

Sn−1
e

where Sn−1
e = Sn−1 for each e.

The maps f∂e give us a continuous map

f : B → X(n−1) : x 7→ f∂e(x),∀x ∈ Sn−1
e .

Then define the space

X(n) := X(n−1) ∪f Y = (X(n−1) q Y )/x ∼ f(x),∀x ∈ B.

This space can also be describe as the pushout

B
f //

� _

i

��

X(n−1)

��
Y // X(n)

and is called the n-th skeleton. Finally, define the space X to be the union
⋃
nX

(n)

embedded with the weak topology, i.e. U is an open subset of X if U ∩ X(n) is
open in X(n) for all n ≥ 0. Such spaces are called CW-complexes (the C stands for
"closure finite" and the W for "weak topology").

Moreover, for each e we define the characteristic map of the cell e to be the
canonical map fe : Dn

e → X. The image of fe is denoted by Xe and is called a
closed cell and the image of the open disk Dn

e − Sn−1
e , denoted by Ue, is called an

open cell. However, open cells are generally not open in X, they are open in X(n).
We say that Y is a subcomplex of X if it is a union of some of the closed cells

which is a CW-complex with the same attachment maps. For example, the n-th
skeleton are subcomplexes.
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Remark. One can see that U is an open subset of X if and only if f−1
e (U) is

open for each e. And a function g : X → Y is continuous if and only if gfe : Dn
e → Y

is continuous for all e.
For reasons of convenience we identify e to the open cell Ue. Consequently,

we can write that X =
⋃
{e : e ∈ En, for some n}. We can naturally define the

dimension of any cell e, such that the n-th skeleton X(n) =
⋃
{e : dim(e) ≤ n}.

Sometimes, a cell of dimension n shall be denoted by en.

Proposition 2.13. Let X be a CW-complex, then
(1) for any subset A of X that has no two points in the same open cell (i.e for

all x, y ∈ A and for all e, x /∈ e or y /∈ e), then A is closed and discrete,
(2) for any compact C ⊂ X, C is contained in a finite union of open cells,
(3) for each closed cell e of X, there exists a finite subcomplex of X containing

it.

Proof. The reader shall find the proof in [Bre93, Chapter 4, Proposition
8.1] �

Corollary 2.14. Let X be a CW-complex and C a compact subset of X,
then there exists a finite subcomplex containing C.

To finish this section, we state a very useful theorem involving CW-complexes.
We have to say that this theorem is not trivial and requires a technical proof.

Theorem 2.15 (Cellular approximation). Let f : X → Y be a continuous
map between CW-complexes. Then there exists a map h : X → Y such that f is
homotopic to h, and h(Xn) ⊂ Y n for some n ≥ 0.

Proof. The reader shall find the proof in [Hat02, Chapter 4, Theorem 4.8].
�

There is many interesting theorems about CW-complexes. For example the
Whitehead theorem says that if we have a weak equivalence between CW-complexes
then it is a homotopy equivalence.

3. Cellular Homology

Singular homology is not always easy to compute, but for CW-complexes we
can use the information of its cell structure to calculate it. In this section our goal is
to define the cellular homology. This homology theory can also be used to compute
the homology of any cellular space.

Definition. Let X be a topological space. A filtration is a sequence of sub-
spaces (Xn)n∈Z such that Xn ⊂ Xn+1 for all n ∈ Z. A filtration is cellular if it
satisfies in addition:

(1) Hk(Xn, Xn−1) = 0 for all k 6= n,
(2) for all m ≥ 0 and σ : ∆m → X, there exists an integer n such that

imσ ⊂ Xn.
A topological space is a cellular space if it has a cellular filtration. For two

cellular spaces X and Y , a cellular map is a continuous map f : X → Y such that
f(Xn) ⊂ Y n for all n ∈ Z.

Remark. One can see that CW-complexes are cellular spaces. Indeed its skele-
tons form a cellular filtration.

Definition. Let X be a cellular space and k ≥ 0, we define

Wk(X) := Hk(Xk, Xk−1)
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and dk : Wk(X)→Wk−1(X) to be the composition

Hk(Xk, Xk−1)
∂−→ Hk−1(Xk−1)

i∗−→ Hk−1(Xk−1, Xk−2)

where i : (Xk, ∅)→ (Xk, Xk−1) is the inclusion and ∂ is given by theorem 2.4.

Lemma 2.16. For any cellular space X, W∗(X) = (Wk(X))k≥0 is a chain
complex with differentials (dk : Wk(X)→Wk−1(X))k≥0

Proof. We have to show that dkdk+1 = 0. Indeed, dkdk+1 is the composition

Hk+1(Xk+1, Xk)
∂→ Hk(Xk)

i∗→ Hk(Xk, Xk−1)
∂→ Hk−1(Xk−1)

i∗→ Hk−1(Xk−1, Xk−2),

and by theorem 2.4, we have that this sequence is zero. �

(W∗(X), (dk)k≥0) is commonly called the cellular chain complex of X.

Lemma 2.17. Let X be a cellular space and let p ≥ q. Then
(1) Hn(Xp, Xq) = 0 if n ≤ q or if n > p,
(2) Hn(X,Xq) = 0 if q ≥ n,
(3) Hn(X,Xq) ∼= Hn(Xn+1, Xq) if q < n,
(4) Hn(X,X−1) ∼= Hn(X,X−k) for all n and k ≥ 1.

Proof. The reader shall find the proof in [Rot88, Chapter 8, lemma 8.35]. �

Theorem 2.18. Let X be a cellular space and n ≥ 0, then

Hn(W∗(X)) ∼= Hn(X,X−1).

Proof. By theorem 2.6 (the long exact sequence for the triple (Xn+1, Xn, X−1))
we have the commutative diagram

Hn+1(Xn+1, Xn)
∂ //

∂′

��

Hn(Xn)

λ∗wwnnnnnnnnnnnn

Hn(Xn, X−1)

where λ∗ is induced by the inclusion (Xn, ∅) λ→ (Xn, X−1). Now take homology of
the sequence of pairs

(Xn, ∅) λ→ (Xn, X−1)
j→ (Xn, Xn−1).

This gives us the commutative diagram

Hn(Xn)

λ∗

vvmmmmmmmmmmmmm
u∗

��
Hn(Xn, X−1)

j∗
// Hn(Xn, Xn−1).

Therefore we have

Hn+1(Xn+1, Xn)
∂ //

∂′

��

Hn(Xn)

λ∗

uulllllllllllll
u∗

��
Hn(Xn, X−1)

j∗
// Hn(Xn, Xn−1)

which is commutative.
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Recall that the differential on the cellular chain complex appears here as dn+1 =
u∗∂. Hence, we have the commutative diagram

Hn+1(Xn+1, Xn)

dn+1

))RRRRRRRRRRRRR

∂′

��
Hn(Xn, X−1)

j∗
// Hn(Xn, Xn−1).

Argue in a similar way to obtain the commutative diagram

Hn(Xn, Xn−1)

dn ))SSSSSSSSSSSSSS
∂′′ // Hn−1(Xn−1, X−1)

i∗

��
Hn−1(Xn−1, Xn−2).

If we now put all together, we have a commutative diagram with exact columns
and an exact row

Hn+1(Xn+1, Xn)

dn+1

))RRRRRRRRRRRRR

∂′

��

0

��
0 // Hn(Xn, X−1)

��

j∗
// Hn(Xn, Xn−1)

dn ))SSSSSSSSSSSSSS
∂′′ // Hn−1(Xn−1, X−1)

i∗

��
Hn(Xn+1, X−1)

��

Hn−1(Xn−1, Xn−2)

0.

Indeed, the row is exact since it is a piece of the long exact sequence of the triple
(Xn, Xn−1, X−1) and the zero on the left is Hn(Xn−1, X−1) which is trivial by
lemma 2.17 part (1). The exactness of the columns is obtained by the long exact
sequence of the triples (Xn+1, Xn, X−1) and (Xn−1, Xn−2, X−1). Use again lemma
2.17 part (1) to have all the zeros.

We now have a usual diagram chase (for the first isomorphism, use lemma 2.17
part (3)):

Hn(X,X−1) ∼= Hn(Xn+1, X−1)

∼= Hn(Xn, X−1)/ im ∂′

∼= im j∗/ im(j∗∂
′)

= im j∗/ im dn+1

= ker ∂′′/ im dn+1

= ker i∗∂
′′/ im dn+1

= ker dn/ im dn+1 = Hn(W∗(X)). �

Corollary 2.19. If X is a cellular space with X−1 = ∅, then

Hn(W∗(X)) ∼= Hn(X)

for all n ≥ 0.

If X is now a CW-complex, one would like to describe the relative homology
groups using somehow its cell structure.
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Definition. Let X be a CW-complex and Y a subcomplex of X, define

Xk
Y := X(k) ∪ Y.

Proposition 2.20. The sequence (Xk
Y )k is a cellular filtration of X.

Proof. Let E and E′ be the cell decompositions of X and Y , hence E′ ⊂
E. Let Sk be the set composed by choosing exactly one point of each cell of
dimension k in E − E′. To reduce notation let Xk denote Xk

Y . Remark that
Hn(Xk − Sk, Xk−1) = 0 (this is true since Xk−1 is a strong deformation retract of
Xk − Sk, the unconvinced reader can find the proof in [Rot88, Chapter 8, lemma
8.28]). Consider now the long exact sequence of the triple (Xk, Xk−Sk, Xk−1) and
look at the piece

Hn(Xk−Sk, Xk−1)→ Hn(Xk, Xk−1)→ Hn(Xk, Xk−Sk)
∂→ Hn−1(Xk−Sk, Xk−1).

Therefore, we have an isomorphism (given by the inclusion (Xk, Xk−1) ↪→ (Xk, Xk−
Sk))

Hn(Xk, Xk−1) ∼= Hn(Xk, Xk − Sk).

Moreover, one can see that Xk−1 ⊂ (Xk − Sk)◦. By the excision theorem, we
have that

Hn(Xk, Xk − Sk) ∼= Hn(Xk −Xk−1, (Xk −Xk−1)− Sk).

Remark that Xk − Xk−1 =
∐
{e ∈ E − E′ : dim e = k} and the homology

group of a disjoint union is the sum of the homology groups, therefore

Hn(Xk −Xk−1, (Xk −Xk−1)− Sk) ∼=
⊕

{e:dim e=k}

Hn(e, e− Sk).

Let se ∈ Sk denote the point chosen in the cell e. Thus we have homeomorphisms
e ∼= Rk and e−se ∼= Rk−{0} ' Sk−1. Consider the long exact sequence in reduced
homology of the pair (Rk,Rk − {0})

· · · // H̃n+1(Rk) // H̃n+1(Rk,Rk − {0}) // H̃n(Rk − {0})
∼=��

// H̃n(Rk) // · · ·

· · · // 0 // H̃n+1(Rk,Rk − {0})
∼= // H̃n(Sk−1) // 0 // · · ·

Suppose n > 0, then we have

Hn(Xk, Xk−1) ∼=
⊕
e

Hn−1(Sk−1)

and
⊕

eHn−1(Sk−1) = 0 if k 6= n.
If n = 0, we can show by hands that H0(Xk, Xk−1) =

⊕
eH0(Rk,Rk−{0}) = 0

for k 6= 0.
To finish the proof, we need to prove that for any σ : ∆m → X there exists an

n such that imσ ⊂ Xn. Indeed, imσ is compact and lies in a finite subcomplex of
X, take n big enough to obtain the result. �

Definition. Let X be a CW-complex and Y a subcomplex of X, define the
relative cellular chain complex W∗(X,Y ) = (Wk(X,Y ))k∈Z to be the cellular chain
complex associated to the filtration (Xk

Y )k∈Z of X, i.e.

Wk(X,Y ) = Hk(Xk
Y , X

k−1
Y ),

and the differentials are defined by the composition

Hk(Xk
Y , X

k−1
Y )

∂−→ Hk−1(Xk−1
Y )

i∗−→ Hk−1(Xk−1
Y , Xk−2

Y ).
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Corollary 2.21. Let X be a CW-complex and Y a subcomplex, then we
have an isomorphism

Hn(W∗(X,Y )) ∼= Hn(X,Y ).

Proof. Clear by theorem 2.18 since X−1
Y = Y . �

Corollary 2.22. Let X be a CW-complex and Y a subcomplex, thenWk(X,Y )
is a free abelian group of rank equal to the number of k-cells e in E − E′.

Proof. Suppose k > 0, then we have seen in the proof of proposition 2.20 that

Wk(X,Y ) = Hk(Xk
Y , X

k−1
Y ) ∼=

⊕
e

H̃k−1(Sk−1) ∼=
⊕
e

Z[e].

For k = 0, the reader shall find the proof in [Rot88, Chapter 8, Theorem
8.39] �

We now have a nice way to compute the chain complex of any CW-complex.
We now need to understand our cellular differentials.

Definition. Let f : Sn → Sn be continuous and n > 0. The degree of f , is
the integer d = deg(f) such that f∗(σ) = dσ where f∗ : Hn(Sn) → Hn(Sn) is the
induced homomorphism and σ is any element of the cyclic group Hn(Sn).

This definition has a sense since any homomorphism Z → Z is of the form
x 7→ dx.

Remark. If f ' g then deg(f) = deg(g). And if f is a homotopy equivalence,
then deg(f) = ±1. Indeed, suppose fg ' Id, then deg(fg) = deg(f) deg(g) =
deg(Id) = 1.

Theorem 2.23. Let X be a CW-complex and eα ∈Wn(X) for n > 1 (where
we identify generators of Wn(X) with the n-cells via the isomorphism above). Then

dn(eα) =
∑
β

deg(pβf∂eα)eβ

where eβ are the cells of dimension n− 1 corresponding to generators of Wn−1(X),
f∂eα : Sn−1

eα → Xn−1 is the attaching map of the cell eα and pβ : Xn−1 → Sn−1
eβ

is
the quotient map identifying Xn−1 − eβ to a point.

Proof. Let eα be a cell of dimension n in X. For reason of convenience, write
Dα instead of Dn

eα . Moreover, let fα : Dn
α :→ Xn be the characteristic map of

the cell eα, f∂α : ∂Dn
α → Xn−1 the attaching map, q : Xn−1 → Xn−1/Xn−2 the

quotient map. We can see that the space Xn−1/Xn−2 is homotopic to the bouquet
of spheres

∨
Sn−1
β , hence we can define qβ : Xn−1/Xn−2 → Sn−1

β to be the quotient
map identifying to a point the subspace Xn−1 − eβ .

Now construct the diagram

Hn(Dn
α, ∂D

n
α)

∂
∼=

//

fα∗
��

H̃n−1(∂Dn
α)

qβ∗q∗f∂α∗ //

f∂α∗
��

H̃n−1(Sn−1
β )

Hn(Xn, Xn−1)
∂n //

dn ))SSSSSSSSSSSS H̃n−1(Xn−1)
q∗ //

jn−1

��

H̃n−1(Xn−1/Xn−2)

qβ∗

OO

∼=
��

Hn−1(Xn−1, Xn−2)
∼= // Hn−1(Xn−1/Xn−2, Xn−2/Xn−2).

The morphism ∂ is given by the long exact sequence of the pair (Dn
α, ∂D

n
α) and

is hence an isomorphism. The morphism ∂n is given by the long exact sequence
of the pair (Xn, Xn−1). The naturality of the connecting morphism ensure the
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commutativity of the upper left square. The commutativity of the upper right
square and the triangle is definitional. The commutativity of the last square is
given by proposition 2.12.

We now study the image by dn of our cell eα.

dn(eα) = jn−1f∂α∗∂[Dn
α] =

∑
β

dαβeβ

where [Dn
α] is a generator of Hn(Dn

α, ∂D
n
α) which is sent on eα via fα∗ and the dαβ

are some coefficients in Z. To characterize them, project on H̃n−1(Sn−1
β ) (via the

isomorphisms that are below in our diagram) to isolate dαβ . Hence, dαβ will be the
degree of the homomorphism qβqf∂α. �

Examples. We shall give two examples how one uses this formula to compute
the homology of some closed surfaces.

(1) LetMg be the closed orientable surface of genus g. One can construct it as
a CW-complex by taking X0 to be a point, X1 = S1

a1 ∨S
1
b1
∨· · ·∨S1

ag ∨S
1
bg

a wedge of 2g circles. One sees that π1(X1, x0) = ∗ai,bjZ is the free group
on generators ai, bj , and X2 = X1 ∪f∂ D2 where we attach the disk D2

by a continuous map f∂ : S1 → X1 which represent [a1, b1] . . . [ag, bg] ∈
π1(X1, x0) (here the brackets [x, y] denote the commutator xyx−1y−1).

We are now interested to use the formula to compute d2. Since we
have only one 2-cell, d2 is fully determined by the image of e2. We know
d2(e2) =

∑
β deg(qβqf∂e2)eβ . Remark that qβq∗f∂e2 is homotopic to the

trivial map for any β = ai or bi. Indeed, after passing to the quotient,
our attaching map becomes a representative of the word aia−1

i in Zai or
bib
−1
i in Zbi which is trivial. Therefore, the degree of such map is 0 and

d2 reveals to be the zero map. Moreover, d1 is the zero map because the
rank of the 0-th homology group is the number of path components.

We obtain the homology of this complex by taking the homology of
the chain complex

0→ Z d2=0−→
2g⊕
i=1

Z d1=0−→ Z→ 0,

i.e.

Hn(Mg) =


Z n = 0⊕2g

i=1 Z n = 1
Z n = 2
0 n > 2.

(2) Let Ng be the closed nonorientable surface of genus g. As in the preceding
example, it is a CW-complex by attaching this time a cell of dimension 2,
denoted e2, on the wedge of circles S1

a1 ∨ · · · ∨ S
1
ag by a representative f∂

of the word a2
1 . . . a

2
g. As above, we use the cellular boundary formula to

compute d2(e2). One see that qβqf∂ is homotopic to the map z → z2 for
each β. Taking the homology gives us a map of degree 2. Thus we have
d2(e2) = 2e1

a1 + · · · + 2e1
ag . We now want to take homology of the chain

complex

0→ Z d2−→
g⊕
i=1

Z d1=0−→ Z→ 0.
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We may modify our natural basis of
⊕g

i=1 Z to the one of the form
{e1
a1 , . . . , e

1
ag−1

, e1
a1 + · · ·+ e1

ag} to obtain the homology

Hn(Ng) =


Z n = 0

(
⊕g−1

i=1 Z)⊕ Z2 n = 1
0 n > 1.

We also can talk about cellular cohomology. We give here some results without
proof.

Definition. Let X be a cellular topological space and G an abelian group.
The cellular cochain complex (with coefficient in G) is the cochain complex

W k(X;G) := Hk(Xk, Xk−1;G),

with differentials δk defined as the composition

Hk(Xk, Xk−1;G)
jk→ Hk(Xk;G)

∂k→ Hk+1(Xk+1, Xk;G).

where j∗ is induced by the inclusion of pairs j : (Xk, ∅) → (Xk, Xk−1) and ∂k is
the connecting morphism of the long exact of a pair for cohomology (see theorem
2.5).

One can see that for a cellular spaceX, (W ∗(X;G), (δn)n) is a cochain complex.
To argue that, one can use similar arguments that are in the proof of lemma 2.16.

Theorem 2.24. Let X be a CW-complex, and G an abelian group. Then

Hn(X;G) ∼= Hn(W ∗(X;G)),

and the cellular cochain complex is isomorphic to the dual of the cellular chain
complex, more precisely

W ∗(X;G) ∼= Hom(W∗(X), G).

Proof. The reader shall find the proof in [Hat02, Chapter 3, Theorem 3.5].
�

4. K(G,n)

In this section we construct the Eilenberg-MacLane space. They will play an
important role in the last section since they give a topological interpretation of the
(co)homology of groups.

Definition. Let (X,x0) be a path connected topological space. We say that
(X,x0) is of type (G,n) if πn(X,x0) ∼= G and πk(X,x0) = 0 for all k 6= n, k > 0.
Moreover, if X has the homotopy type of a CW-complex, then we say that it is an
Eilenberg-MacLane space K(G,n).

Theorem 2.25. let G be a group and n ≥ 1. If n ≥ 2 suppose G is commu-
tative. Then there exists an Eilenberg-MacLane space K(G,n).

Proof. We prove first the case where n = 1. Let

1→ R→ F → G→ 1

be a presentation of G where F is a free group and R a normal subgroup of F . We
shall build a CW-complex with this data.

Take X1 to be a wedge sum of circles
∨
α S

1
α where α are the generators of F

as a free group. Hence π1(X1) ∼= F via the Seifert van-Kampen theorem. Let β be
generators of R as a normal subgroup of F . Each β corresponds to a unique element
in π1(X1, x0) which can be represented by a map β̃ : S1 → X1. This defines for all
β an attachment map

β̃ : ∂D2
β → X1.
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Put them together and obtain a map

f :
∐
β

∂D2
β → X1.

The 2-skeleton is defined naturally by

X2 := X1 ∪f (
∐
β

D2
β).

Via the Seifert van-Kampen theorem one can see that π1(X2, x0) ∼= F/R ∼= G.
Suppose by induction on m ≥ 2 that we constructed the m-skeleton Xm, such

that
πr(X

m, x0) =

{
G r = 1
0 1 < r < m.

Choose generators γ ∈ πm(Xm, x0), and look at some representatives

γ̃ : (Sm, s0)→ (Xm, x0).

As before, this defines an attachment map for each γ. Put them together to obtain

f :
∐
γ

∂Dm+1
γ → Xm

and define
Xm+1 := Xm ∪f (

∐
γ

Dm+1
γ ).

Draw the long exact sequence in homotopy of the based pair (Xm+1, Xm, x0)

· · · // πm+1(Xm+1, Xm, x0) ED
∂m+1

BC
GF@A

//___ πm(Xm, x0) // πm(Xm+1, x0) // πm(Xm+1, Xm, x0) ED
∂m

BC
GF@A

//__ πm−1(Xm, x0) // πm−1(Xm+1, x0) // πm−1(Xm+1, Xm, x0).

Remark that πr(Xm+1, Xm, x0) = 0 for all r ≤ m. Indeed, let [α] ∈ πr(Xm+1, Xm, x0)
i.e. α : (Sr, ∂Sr) → (Xm+1, Xm), by the cellular approximation theorem our
map α is homotopic to a cellular map. Hence α(Sr) ⊂ Xr ⊂ Xm, i.e. [α] = 0.
Therefore, we have an induced isomorphism πr(X

m, x0) ∼= πr(X
m+1, x0) for all

r = 1, . . . ,m− 1. We want to show that πm(Xm+1, x0) = 0 i.e. ∂m+1 is an epimor-
phism. We show that every generator in πm(Xm, x0) is the image of an element
in πm+1(Xm+1, Xm, x0). By construction the homotopy classes of our attaching
maps [γ̃] generate πm(Xm, x0). By the very definition of the boundary map ∂m+1,
we see that the class of the characteristic map of γ̃ is sent on the homotopy class
of the attachment map γ̃. Hence ∂m+1 is an epimorphism.

Therefore, we constructed a topological space Xm+1 whose homotopy groups
until the degree m are

πr(X
m+1, x0) =

{
G r = 1
0 1 < r < m+ 1.

Define X :=
⋃
mX

m, it is a CW-complex and of type (G, 1).
Suppose now n > 1 and G commutative. As before, take a free abelian resolu-

tion of G
0→ N → L→ G→ 0

and define Xn to be a wedge of n-dimensional spheres
∨
Snα where α are the gen-

erators of L. The n-th homotopy group of Xn is L. Hence for the generators β
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of N there exist continuous functions β̃ : Sn → Xn whose homotopy classes in
πn(Xn, x0) corresponds to β. This defines for each β an attachment map

β̃ : ∂Dn+1
β → Xn.

As before, use this data to construct Xn+1 by glueing
∐
β D

n+1
β on Xn. It remains

to show that πn(Xn+1, x0) ∼= L/N ∼= G. First we show Hn(Xn+1) = L/N . For
this consider the Mayer-Vitoris sequence associated to the push-out∨

Snβ� _

��

∨
β̃ // Xn

��∨
Dn+1
β

// Xn+1.

The exact sequence is

Hn(
∨
Snβ )︸ ︷︷ ︸

∼=N

→ Hn(
∨
Dn+1)︸ ︷︷ ︸

=0

⊕Hn(Xn)︸ ︷︷ ︸
∼=L

→ Hn(Xn+1)
∂→ Hn−1(

∨
Snβ )︸ ︷︷ ︸

=0

.

This implies Hn(Xn+1) ∼= L/N and by the Hurewicz theorem (see below) we have
πn(Xn+1, x0) ∼= L/N . By construction, we have also that πk(Xn+1, x0) = 0 for all
k < n (this is given once more by the cellular approximation theorem). The higher
homotopy groups are killed by induction as before. �

Theorem 2.26 (Hurewicz). Let X be a path connected topological space, then
there exists a homomorphism of groups

hn : πn(X,x0)→ Hn(X,x0)

defined as hn([Sn
α→ X]) := α∗(1), where α∗ : Hn(Sn) → Hn(X) is the induced

homomorphism and 1 is the generator of Hn(Sn) identified with the infinite cyclic
group.

If in addition πk(X,x0) = 0 for all k = 1, . . . n − 1 and n > 1, then hn is an
isomorphism of groups. If n = 1, then hn induces an isomorphism

π1(X,x0)/[π1(X,x0), π1(X,x0)]
∼=→ H1(X).

We have to say here that this theorem is totally non-trivial and a lot of work
must be done to show it. See for example [Hat02, Chapter 4, Theorem 4.32] and
[Spa66, Chapter 7, Sections 4 & 5].

We will see in the future that we can construct K(G,n) by a more conceptual
way using a group actions. For that we need to recall some facts about covering
spaces.

Definition. Let X be a topological space which is path connected and locally
path connected. A simply-connected covering space of X is a called a universal
cover of X.

Theorem 2.27. Let X be a path connected and locally path connected topo-
logical space. Then X admits a universal cover if and only if X is locally rela-
tively simply connected (i.e. each point x ∈ X has a neighborhood U such that
π1(U, u)

i∗→ π1(X,u) is trivial for all u ∈ U).

Proof. The reader shall find the proof in [Bre93, Chapter 3, Theorem 8.4].
�

Corollary 2.28. Any CW-complex admits a universal cover.
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Definition. Let p : (X̃, x̃0) → (X,x0) and p′ : (X̃ ′, x̃′0) → (X,x0) be two
covering space. We say that p is equivalent to p′ if there exists a homeomorphism
f : (X̃, x̃0)→ (X̃ ′, x̃′0) such that p = p′ ◦ f .

Theorem 2.29 (Classification of covering spaces). Let X be a path connected,
locally path connected and locally relatively simply connected. Then we have a one-
to-one correspondence between equivalence classes of path-connected covering spaces
p : (X̃, x̃0)→ (X,x0) and the set of subgroups of π1(X,x0). The correspondence is
given by associating the subgroup p∗(π1(X̃, x̃0)) to any covering space p : (X̃, x̃0)→
(X,x0).

Proof. The reader shall find the proof in [Hat02, Chapter 1, Theorem 1.38].
�

Remark. In view of the classification theorem, one sees that a universal cover
of a space X (path connected, locally path connected and locally relatively simply
connected) is unique up to homeomorphism. Indeed, it corresponds to the trivial
subgroup of π1(X,x0). Therefore, it has sense to say "the" universal cover of X.

We recall now some facts about group actions.

Definition. Let G be a group acting on a topological space X̃, i.e. there exists
a group homomorphism G→ Homeo(X̃, X̃). We say then that X̃ is a G-space. We
define the orbit space to be the space X̃/G := X̃/ ∼ where gx ∼ x for all g ∈ G
and x ∈ X̃. The action of G on X̃ is said to be a covering space action if for all
x ∈ X̃ there exists an open neighborhood U such that if gU ∩ U 6= ∅, then g = e.

There is a natural way to obtain such action for connected, locally path con-
nected spaces.

Definition. Let p : X̃ → X be a covering space. The group

G(X̃) := {g : X̃ → X̃ | g is a homeomorphism, and pg = p}
is called the group of deck transformations of p : X̃ → X. Moreover, we say that
the covering space p : X̃ → X is regular if G(X̃) acts transitively on the fiber
p−1(x) for all x ∈ X̃.

By the unique lifting property, one can see that the group of deck transfor-
mations acts freely on X̃, since only the identity deck transformation can fix a
point.

Proposition 2.30. Let p : (X̃, x̃0) → (X,x0) be a covering space of path
connected spaces, with X locally path connected. Then:

(1) The covering space is regular if and only if p∗(π1(X̃, x̃0)) ⊂ π1(X,x0) is
a normal subgroup.

(2) If p is regular, then G(X̃) ∼= π1(X,x0)/p∗(π1(X̃, x̃0)).

Proof. The reader shall find the proof in [Hat02, Chapter 1, Proposition
1.39]. �

Remark. With the same notation as in the proposition, if p : (X̃, x̃0)→ (X,x0)

is the universal cover and is in addition regular, then π1(X,x0) ∼= G(X̃).
The explicit isomorphism in (2) is given by the following. Take [λ] ∈ π1(X,x0)

and let λ̂ be the unique lift of λ with λ̂(0) = x̃0. Then we know that λ̂(1) ∈ p−1(x0).
Since the action of the group of deck transformations is free, there exists a unique
gλ ∈ G(X̃) such that gλ(x̃0) = λ̂(1). Define

ϕ : π1(X,x0)→ G(X̃)

[λ]→ gλ.
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This function is a group homomorphism, surjective, with kernel equal to p∗(π1(X̃, x̃0)).
We then have an induced isomorphism of groups π1(X,x0)/p∗(π1(X̃, x̃0))

∼→ G(X̃).

We state now a very useful theorem about G-spaces, it is somehow the gener-
alization of proposition 2.30.

Theorem 2.31. Let (X̃, x̃0) be a G-space with a covering space action. Then:
(1) The quotient map p : X̃ → X̃/G is a regular covering space.
(2) If X̃ is path connected, then G is isomorphic to the group of deck trans-

formations of p.
(3) If X̃ is path connected and locally path connected, then

G ∼= π1(X̃/G, x̃0)/p∗(π1(X̃, x̃0)).

Proof. The reader shall find the proof in [Hat02, Chapter 1, Proposition
1.40] �

In order to begin the "conceptual" construction of K(G, 1), we need an addi-
tional definition.

Definition. Let X be a CW-complex and let G act on X. We say that the
action is cellular if for each cell e, the image by g, ge is again a cell of X. This
action is free if our action freely permutes the (open) cells of X. Such a space X is
sometimes called a G-complex.

Let G be a group endowed with the discrete topology. We define En(G) and
Bn(G) to be the sets

EnG = Gn+1 BnG = Gn.

Moreover, define for i, j = 0, . . . , n

di : EnG→ En−1G

(g1, . . . , gn+1) 7→
{

(g2, . . . , gn+1) i = 0
(g1, . . . , gigi+1, . . . , gn+1) i = 1, . . . , n

sj : EnG→ En+1G

(g1, . . . , gn+1) 7→ (g1, . . . , gi−1, e, gi, . . . , gn+1)

and similarly

di : BnG→ Bn−1G

(g1, . . . , gn) 7→

 (g2, . . . , gn) i = 0
(g1, . . . , gigi+1, . . . , gn) i = 1, . . . , n− 1
(g1, . . . , gn−1) i = n

sj : BnG→ Bn+1G

(g1, . . . , gn) 7→ (g1, . . . , gi−1, e, gi, . . . , gn).

We now define pn : EnG→ BnG to be the projection on the first components.

Theorem 2.32. Let G be a group with its discrete topology, EnG, BnG and
pn as above for n ≥ 0. Then:

(1) E∗G = (EnG)n≥0 and B∗G = (BnG)n≥0 are simplicial spaces.
(2) E∗G is a G-simplicial space whose action by G is free, and B∗G ∼= E∗G/G

as simplicial space.
(3) E∗G is contractible as a simplicial set.
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(4) The realization of E∗G, denoted by EG, is a CW-complex and inherits a
free cellular G-action.

(5) The realization of B∗G, denoted by BG, is a K(G, 1).

Proof. (1) One checks easily the simplicial identities for B∗G and E∗G

didj = dj−1di if i < j

sisj = sj+1si if i ≤ j
disj = sj−1di if i < j

djsj = Id = dj+1sj

disj = sjdi−1 if i > j + 1.

(2) We define on EnG a right G-action as follow

EnG×G→ EnG : ((g1, . . . , gn+1), g) 7→ (g1, . . . , gn+1g).

Clearly, this action respects the faces and the degeneracies maps. This
action is without doubt a free action and it is easy to see that B∗G ∼=
E∗G/G as simplicial spaces.

(3) To show that E∗G is contractible (as simplicial set), we have to define
a morphism h∗ : E∗G × ∆[1] → E∗G of simplicial sets such that the
following diagram commutes for all n ≥ 0

EnG� _

ι0

��

ce

""
EnG×∆[1]

hn // EnG.

EnG
� ?

ι1

OO

IdEnG

<<

Define

hn((g1, . . . , gn+1), (0 . . . 0︸ ︷︷ ︸
k times

1 . . . 1)) := (e, . . . , e︸ ︷︷ ︸
k times

, gk+1, . . . , gn+1).

Clearly, the diagram above is commutative and hn commutes with the
faces and degeneracies maps.

(4) We first show that

EG = (
∐
k

EkG×∆k)/ ∼

(where the equivalences relations are (dix, t) ∼ (x, δit) and (sjx, t) ∼
(x, σjt)) is a CW-complex. Let EG(0) be G ×∆0 seen as a set of points
to which we glued for all of them a 0-cell. Suppose constructed EG(k−1)

for k ≥ 1. Consider (Gk+1\ ∪j im sj) × ∆k, i.e. to each non degenerate
point of EkG = Gk+1 we associated a k-cell. Since G is discrete, it also
can be seen as ∐

x∈Gk+1\∪im sj

∆k
x.

We define the attachment maps as

f : ∂((Gk+1\ ∪j im sj)×∆k) −→ EG(k−1)

(x, δit) 7−→ (dix, t).
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In fact, every element of the boundary is of this form so. Consequently,
the attachment map above is well defined. Hence, define

EG(k) := EG(k−1) ∪f ((Gk+1\ ∪j im sj)×∆k).

Moreover one sees that

EG(k) = EG(k−1) ∪f ((Gk+1\ ∪j im sj)×∆k)

∼= (
∐

0≤n≤k

EnG×∆n)/ ∼

because when we associate a cell to a degenerate element x ∈ Gn we have
that this cell collapses into an existing cell of lower dimension via the
equivalence relations (sjx, t) ∼ (x, σjt).

Therefore, EG = ∪kEG(k) and so is a CW-complex. Look now at the
action of G

EG×G→ EG

([x, t], g) 7→ [xg, t].

Our action is well defined since G respects the faces and degeneracies. It is
easy to see that the action is cellular. We now show that the action freely
permutes (open) cells. Let [x, t] be in EG, since EG is a CW-complex
there exists an n such that [x, t] ∈ EG(n), so we can suppose that x is
not degenerated. Since we are looking at how the action acts on open
cells, we may suppose t /∈ ∂∆n. Consequently, if [x, t] = [xg, t], then
g = e because we cannot reduce [x, t] via our equivalence relation and the
relation [x, t] = [xg, t] becomes (x, t) = (xg, t).

(5) Remark that the realization of p∗ : E∗G → B∗G is exactly the quotient
map p : EG → EG/G and since the action on EG is cellular, we have
that it is a covering space action. By theorem 2.31, p : EG → BG
is a normal covering space and π1(BG) ∼= G since any CW-complex is
locally path connected. Draw the long exact sequence of a fibration, to
see that πn(BG) = 0 for n > 1. Indeed, EG is contractible since E∗G
is contractible as a simplicial set, so πn(EG) = 0. Since the fiber of our
covering space is G, we then have

(∗) πq+1(BG, x0) = πq(G, e)

for all q ≥ 1. Since G is discrete we have πq(G, e) = 0 for all q ≥ 1.
Therefore BG is a K(G, 1). �

Remark. Let G,H be two topological groups, then we have an obvious iso-
morphism

(G×H)n ∼= Gn ×Hn.

This induces isomorphisms of simplicial spaces

(∗∗) E∗(G×H) ∼= E∗G× E∗H B∗(G×H) ∼= B∗G×B∗H.

We also know that the geometric realization commutes with products. So if we
suppose now that G is a commutative topological group which has the homotopy
type of a CW-complex, then we can define a structure of commutative topological
group on EG and BG which has a homotopy type of a CW-complex. It is not so
easy to see that EG and BG are CW-complex because we cannot give a trivial
cellular decomposition as in the point (4) above. Moreover, the multiplication on
BG is defined by the following

BG×BG ∼= B(G×G)→ BG.
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We remark that associativity of this multiplication is deduced by the fact that the
isomorphisms in (∗∗) commutes with projections.

To obtain a K(G,n) in a similar conceptual way (for a commutative discrete
group G), we have to iterate our previous construction. Set B0G = G and BnG :=
BBn−1G, therefore by (∗)

πq(B
nG, x0) ∼= πq−1(Bn−1G, x0) ∼= . . . ∼= πq−(n−1)(BG, x0) =

{
G q = n
0 q 6= n.

This construction is inspired by the one given in [May99, Chapter 16, Section
5] and [Dwy09].

We gave until now two different constructions of an Eilenberg-MacLane space
K(G,n) and it is legitimate to ask ourself if there is a link between them. That is
exactly the goal of the following theorem.

Theorem 2.33. Let n ∈ N, n > 0 and G be a group, commutative if n > 1.
Then all Eilenberg-MacLane spaces K(G,n) are homotopic.

Proof. First suppose n ≥ 2 and G commutative. Let [X,K(G,n)] denote the
set of homotopy classes of maps from X to K(G,n). Recall that we have a natural
isomorphism of groups given by the Hurewicz theorem

G ∼= πn(K(G,n), x0)
hn−→ Hn(K(G,n)).

Let in denote its inverse map. Remark that we have an isomorphism of abelian
groups between Hn(K(G,n);G) and HomZ(Hn(K(G,n)), G) given by the universal
coefficient theorem. Indeed, the direct summand Ext1

Z(Hn−1(K(G,n)), G) = 0 be-
causeK(G,n) is (n−1)-connected (the Hurewicz theorem impliesHn−1(K(G,n)) =

0). Therefore in : Hn(K(G,n))→ G can be seen in Hn(K(G,n);G), let în denote
the corresponding element. We can now define a map

[X,K(G,n)] −→ Hn(X;G)

[X
f→ K(G,n)] 7−→ f∗(̂in)

where f∗ : Hn(K(G,n);G) → Hn(X;G) is the induced map in cohomology with
coefficient in G by f . If g ' f then the induced homomorphisms are equal. There-
fore, the map above is well defined.

Suppose now n = 1 and G not necessarily commutative. Define the map

[X,K(G, 1)] −→ HomGrp(π1(X,x0), G)

[X
f→ K(G, 1)] 7−→ f∗

where f∗ : π1(X,x0) → π1(K(G, 1), x0) is the induced map. This map is clearly
well defined.

We assume those two maps are bijection of sets. I have to say here that this
statement is not a trivial result and is proved in [MT68, Chapter 1, Theorem 1]
using obstruction theory. One can find another proof of the claim in the case where
X is a CW-complex (which is sufficient in our case) in [Bre93, Chapter 7, Section
12].

Suppose first n > 1, if we replace X by a K(G′, n) Eilenberg-MacLane space,
via the universal coefficient theorem we have an isomorphism Hn(K(G′, n);G) ∼=
HomZ(Hn(K(G′, n)), G) (the direct summand Ext1

Z(Hn−1(K(G′, n)), G) = 0 by the
same reason as before). Moreover, the Hurewicz theorem statesHn(K(G′, n)) ∼= G′.
We then have a one-to-one correspondence

[K(G′, n),K(G,n)]
∼↔ HomZ(G′, G)
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where G,G′ are seen as Z-modules. If G′ = G let K ′(G,n) denote K(G′, n).
Then we can find continuous maps f : K ′(G,n) → K(G,n) and g : K(G,n) →
K ′(G,n) whose homotopy classes corresponds to IdG ∈ HomZ(G,G). Therefore
f ◦ g ' IdK(G,n) and g ◦ f ' IdK′(G,n) since IdG corresponds also to IdK(G,n) and
IdK′(G,n). Indeed, lets draw the sequence of bijections

[K(G,n),K(G,n)] // Hn(K(G,n);G)
β // Hom(Hn(K(G,n)), G)

h∗n // HomZ(G,G)

IdK(G,n)
� // Id∗K(G,n) (̂in) = în

� // in
� // h∗

n(in) = in ◦ hn = IdG

Where β is the isomorphism given by the universal coefficient theorem and h∗n is
the pullback of the Hurewicz map. If n = 1, one can argue in a similar way to
obtain the result. �

We have seen that EG has an action of G which is free and cellular. One may
ask if the Eilenberg-MacLane K(G, 1) constructed in theorem 2.25 has also a cover
with an action of G which is free and cellular. To understand totally what happens,
we need a characterization of universal covers of CW-complexes.

Theorem 2.34. Let X be a connected CW-complex and p : X̃ → X a covering
space. Then X̃ can be equipped with a structure of CW-complex such that p is a
cellular map and the dimension of X̃ is equal to the dimension of X.

Proof. Let be x ∈ X. Consider the fiber p−1(x) = {x̃i : i ∈ I, p(x̃i) = x} for
some index set I. Now, take e ∈ E a cell and let xe = fe(0) ∈ e, where fe : Dn → X
is the characteristic map of e. Consider the diagram

(X̃, x̃i)

p

��
(Dn, 0)

f̃ei
99

fe // (X,xe).

where f̃e is given by the lifting criterion. Indeed,

fe∗(π1(Dn, 0)) = 0 = p∗(π1(X̃, x̃i)).

Then let ẽi denote f̃ei. The reader shall find in [Rot88, Chapter 10, Theorem
10.43] the detailed proof that X̃ is a CW-complex with cells Ẽ = {ẽi : e ∈ E, i ∈ I}
and characteristic maps (f̃ei)e∈E,i∈I . �

Let nowX be an Eilenberg-MacLane spaceK(G, 1) and consider X̃ its universal
cover. Since X is CW-complex, X̃ is also a CW-complex. One can remark that the
fiber of any point x ∈ X is in bijection with G, i.e. p−1(x)

∼↔ G. Then the index set
I in the proof above is exactly G. By proposition 2.30, we have that π1(X,x0) ∼= G

is isomorphic to the group of deck transformations of X̃, G(X̃). And it is a matter
of fact that this group acts freely and cellularly on X̃.

5. Homology and cohomology of groups via topology

In this section we give the main result linking (co)homology of groups and the
Eilenberg-MacLane spaces K(G, 1).

Theorem 2.35. Let G be a group, M a trivial G-module, and K(G, 1) an
Eilenberg-MacLane space for G, then

Hn(G,M) = TorZGn (Z,M) ∼= Hn(K(G, 1);M),

Hn(G,M) = ExtnZG(Z,M) ∼= Hn(K(G, 1);M).



46 2. HOMOLOGICAL ALGEBRA AND TOPOLOGY

Proof. Take BG as model for our Eilenberg-MacLane space. Then one can see
that, W̃∗(EG), the augmented cellular chain complex of EG is a free ZG-resolution
of Z. Indeed, EG is a contractible CW-complex equipped with a free cellular G-
action, therefore Wn(EG) is a free ZG-module. Take now the deleted complex, i.e.
W∗(EG) and apply the functor (−)⊗GM . Since ZG⊗GM ∼= M , one sees that

W∗(EG)⊗GM = (
⊕
α

ZGenα)⊗GM ∼=
⊕
α

Menα = W∗(BG)⊗Z M.

Hence

Hn(G,M) = TorZGn (Z,M)

∼= Hn(W∗(EG)⊗GM)

∼= Hn(W∗(BG)⊗Z M)

∼= Hn(BG;M).

For cohomology, apply the functor HomZG(−,M). Since HomZG(ZG,M) ∼= M , we
have

HomZG(W∗(EG),M) = HomZG(
⊕
α

ZGenα,M) ∼= HomZ(W∗(BG),M).

Hence

Hn(G,M) = ExtnZG(Z,M)

∼= Hn(HomZG(W∗(EG),M))

∼= Hn(HomZ(W∗(BG),M))

∼= Hn(BG;M).

To finish the proof, use theorem 2.33. �

Remark. We can now use this theorem to transpose results from algebraic
topology to (co)homology of groups. Indeed, a topological proof of the theorem
1.25 in chapter 1 is given by the Hurewicz theorem in algebraic topology and the
theorem 2.35 above.

As a second example, we will prove the Universal Coefficient Theorem for ho-
mology of groups.

Theorem 2.36 (Universal Coefficient Theorem). Let G be a group and M a
trivial G-module. Then for n ≥ 0 there exist split exact sequences

0→ Ext1
Z(Hn−1(G,Z),M)→ Hn(G,M)→ HomZ(Hn(G,Z),M)→ 0,

and
0→ Hn(G,Z)⊗Z M → Hn(G,M)→ TorZ1 (Hn−1(G,Z),M)→ 0.

Proof. Let X be a K(G, 1) Eilenberg-MacLane space. By the Universal Co-
efficient Theorem for Homology and Cohomology, we have the exact sequences

0→ Ext1
Z(Hn−1(X),M)→ Hn(X;M)→ HomZ(Hn(X),M)→ 0,

and
0→ Hn(X)⊗Z M → Hn(X;M)→ TorZ1 (Hn−1(X),M)→ 0.

for all n ≥ 0 (we look here M as an abelian group)
By theorem 2.35 we haveHn(G,M) = Hn(X;M) andHn(G,M) = Hn(X;M).

Replace them in the exact sequences above to obtain the result. �
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Example. Let Z2 be the cyclic group of order 2, we will compute its homology
using theorem 2.35. First consider the space S∞ :=

⋃
n≥0 S

n with its Z2-action

Z2 × S∞ → S∞

(k, x) 7→ (−1)kx.

One can see that this action is a nice covering space action and since S∞ is con-
tractible, we have that S∞/Z2 is a K(Z2, 1) space. The space S∞/Z2 is commonly
called the real infinite projective space and is denoted RP∞. By theorem 2.35 we
have that Hn(Z2,M) ∼= Hn(RP∞;M) for any trivial Z2-module M .

We know that RP∞ has a CW-structure with one n-cell for each n ≥ 0. We
obtain it as a quotient from S∞, seen as a CW-complex with two n-cells (upper
and lower hemispheres) for each n ≥ 0, where we glue the points of the upper
hemisphere to those of the lower hemisphere via the antipodal map x 7→ −x.

Let en+ and en− denote the upper and lower hemispheres of Sn ⊂ S∞. We then
have the relations

Sn = en+ ∪ en−, Sn−1 = en+ ∩ en−.
Define π± : Sn → Sn/en∓

∼= en±/S
n−1 the quotient map which identifies the

lower or upper hemisphere to a point, and write an for the antipodal map from
Sn → Sn. Moreover, we have a homeomorphisms h : Dn/Sn−1 → Sn and p± :
en±/S

n−1 → Dn/Sn−1 where p± are induced by the projections of en± on Dn (seen
to as the equatorial plan). We then have a commutative diagram

Sn
π+ //

an

��

en+/S
n−1

an

��

p+ // Dn/Sn−1 h // Sn

Sn
π− // en−/S

n−1
p− // Dn/Sn−1 h // Sn.

By theorem 2.23, we have that for n ≥ 1

dn+1([en+1
+ ]) = deg(h ◦ p+ ◦ π+)︸ ︷︷ ︸

=1

[en+] + deg(h ◦ p− ◦ π− ◦ an)︸ ︷︷ ︸
=deg(an)=(−1)n+1

[en−]

= [en+] + (−1)n+1[en−].

We used the fact that the degree of the antipodal map Sn → Sn is (−1)n+1. Indeed,
it is composed of n+ 1 reflections each of degree −1.

By construction of RP∞, we have that en = en+ = en−. This implies for n > 1

dn+1([en+1]) = (1 + (−1)n+1)[en].

Hence, dn = 0 if n is even and dn = 2 (the multiplication by 2) if n is odd.
Therefore, the cellular chain complex of RP∞ is

· · · → Z[e2k+1]
0→ Z[e2k]

2→ Z[e2k−1]
0→ · · · → Z[e2]

2→ Z[e1]
0→ Z[e0]→ 0.

Take homology to have

Hn(Z2,Z) =

 Z n = 0
Z2 n odd
0 n even.

We have seen that the cohomology of a CW-complex can be computed by taking
the cohomology of the dual of the cellular chain complex. Hence we have

Hn(Z2,Z) =

 Z n = 0
0 n odd
Z2 n even.
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In fact, we can compute the (co)homology of any cyclic group via infinite lens
spaces; those spaces are K(Zm, 1) (cf. [Hat02, Chapter 2, Example 2.43]).

6. Cohomological dimension

In the preceding section we have seen that Eilenberg-MacLane spaces might be
useful to compute (co)homology of groups. In particular, when the group is "very
big" it gives us sometimes (when it has no torsion) "relatively small" projective
resolutions. In this section, our goal would be to clarify this notion of groups
which has "relatively small" projective resolutions and what happens with their
Eilenberg-MacLane spaces.

At the very end of this section, we will proof the theorem of Eilenberg-Ganea-
Wall and state the Eilenberg-Ganea conjecture. We will also mention some recent
work around this conjecture.

Definition. Let R be a commutative ring and M any R-module. We say that
proj dimRM ≤ n if M admits a projective resolution

0→ Pn → Pn−1 → · · · → P0 →M → 0

of length n.

Lemma 2.37. Let R be a commutative ring and M any R-module. Then the
following conditions are equivalent:

(1) proj dimRM ≤ n,
(2) ExtiR(M,−) = 0 for all i > n,
(3) Extn+1

R (M,−),
(4) let 0→ K → Pn−1 → · · ·P0 →M → 0 be an exact sequence of R-modules

such that each Pi is projective, then K is also a projective module.

Proof. It is very easy to see that (4) implies (1) implies (2) implies (3). We
show that (3) implies (4). Let

0→ K → Pn−1 → · · · → P0 → R→ 0

be an exact sequence as in the hypothesis. Complete this sequence to an R-
projective resolution

· · · // Pn+1
dn+1 //

q

��??????? Pn
p

��;;;;;;;
dn // Pn−1

// · · ·

L
0�

i

AA�������
K

/ �
j

??~~~~~~~

with p, q the cokernel of dn+2 and dn+1 respectively.
Apply now the functor Hom(−, N) to our resolution and remark that ker d∗n+2 =

im d∗n+1 by hypothesis. Therefore, if we have ϕ : Pn+1 → N such that ϕ ◦ dn+2 = 0
(i.e. ϕ ∈ ker d∗n+2) then there exists ψ : Pn → N such that ϕ = ψ ◦ dn+1. Apply
the argument for N = L and ϕ = q, we then have that the exact sequence

0→ L
i
↪→ Pn

q→ K → 0

splits. Let s : Pn → L denote the induced morphism, we have to show that
s ◦ i = IdL. Indeed,

s ◦ i ◦ q = s ◦ dn+1 = q = IdL ◦q,
since q is an epimorphism, s ◦ i = IdL. Therefore Pn ∼= L ⊕K and that shows us
K is projective because Pn is projective. �

Consider now a group Γ and set R = ZΓ, M = Z seen as a trivial ZΓ-module.
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Definition. The cohomological dimension of Γ is the integer

cd Γ := min{n : proj dimZΓ Z ≤ n}.

If proj dimZΓ Z > n for all n, then we say that cd Γ =∞.

By the lemma above, we have also

cd Γ = inf{n : Z admits a projective resolution of length n}
= inf{n : Hi(Γ,−) = 0, for all i > n}
= sup{n : Hn(Γ,M) 6= 0 for some Γ-module M}.

Proposition 2.38. If cd Γ <∞, then

cd Γ = sup{n : Hn(Γ, F ) 6= 0 for some free Γ-module F}.

Proof. Let n = cd Γ. The very definition of the cohomological dimension says
that Hn(Γ,M) 6= 0 for some Γ-module M . Therefore, we can find a free module F
which maps onto M . Consider then the long exact sequence in cohomology of the
exact sequence

0→ ker f → F
f→M → 0

to show that Hn(Γ, F ) 6= 0. �

Proposition 2.39. cd Γ = 0 if and only if Γ is the trivial group.

Proof. Suppose first that Γ = {1}. Then ZΓ ∼= Z. Therefore, we have a
projective ZΓ-resolution of Z

· · · → 0→ ZΓ
∼→ Z→ 0.

We then have H1(Γ,−) = 0, and that implies cd Γ = 0.
Conversely, suppose cd Γ = 0 and consider the exact sequence

0→ Z ∼→ Z→ 0.

By the very definition of the cohomological dimension we have that Z is a projective
Γ-module. Consider now the augmentation morphism

ZΓ
ε
� Z

and extend it onto an exact sequence

0→ K ↪→ ZΓ � Z→ 0

where K is the kernel of ε. Since Z is projective, the sequence splits. Therefore,
there exists a retract s : Z → ZΓ such that ε ◦ s = IdZ. Let

∑
finitemxx = s(1),

since it is a morphism of Γ-modules,∑
mxgx = g

∑
mxx = s(g1) = s(1) =

∑
mxx.

since ZΓ is a free module, we have that mg−1x = mx for all g ∈ Γ. Hence mx = m
for all x ∈ Γ. Therefore,

1 = ε(s(1)) = ε(m
∑
finite

x) = mn

and since n ∈ N, that implies m = n = 1, so s(1) = x for some x ∈ Γ. Since it is a
morphism of Γ-modules, we have gx = x for all g ∈ Γ. That shows Γ is trivial. �

As we have seen in the last section, any Eilenberg-MacLane spaceK(Γ, 1), gives
us a projective ZΓ-resolution of Z (induced by the free action on the cells). So we
can consider a similar notion of dimension.
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Definition. The geometric dimension, denoted geom dim Γ, is defined to be
the minimal dimension of an Eilenberg-MacLane space K(Γ, 1) (for its structure of
CW-complex).

It is totally clear that for any group Γ, we have

cd Γ ≤ geom dim Γ.

We are now interested to know when the equality holds, i.e. cd Γ = geom dim Γ.

Corollary 2.40. If cd Γ = 0, then geom dim Γ = 0.

Proof. It is clear by the previous proposition and if we take K(Γ, 1) to be a
point. �

Theorem 2.41 (Stallings - Swan). cd Γ = 1 if and only if Γ is free and
non-trivial.

Proof. Suppose Γ is free and non-trivial, then there exists a set of generators
S ⊂ Γ. Then consider the free ZΓ-resolution of Z

0→ ZΓ[S]
d1→ ZΓ

ε→ Z→ 0

where ε is the augmentation map, ZΓ[S] is the free ZΓ-module generated by S and
d1(s) := s − 1 for all s ∈ S. Clearly H2(Γ,−) = 0. That implies cd Γ ≤ 1, but
cd Γ 6= 0 since Γ is non-trivial. Hence cd Γ = 1.

The converse is proved for finitely generated groups by Stalling in [Sta68] and
by Swan in [Swa69] for the general case. �

Corollary 2.42. If cd Γ = 1, then geom dim Γ = 1.

Proof. By the previous theorem, we know that Γ is free and non-trivial. Con-
struct the wedge of circles composed with one circle for each generator of Γ. That
gives us an Eilenberg-MacLane K(Γ, 1) of dimension 1. �

We give now some group theoretic results about the cohomological dimension.
We will come back later to our problem.

Proposition 2.43. If Γ′ ⊂ Γ, then cd Γ′ ≤ cd Γ. Moreover, if cd Γ <∞ and
|Γ : Γ′| <∞, then cd Γ′ = cd Γ.

Proof. The first inequality is clear since a ZΓ-projective resolution can be
seen as a ZΓ′-projective resolution. For the second part, the reader shall find the
proof in [Bro82, Chapter 8, Proposition 2.4 (a)]. �

Corollary 2.44. If cd Γ <∞, then Γ is torsion free.

Proof. Suppose Γ contains a nontrivial finite cyclic subgroup Γ′, then cd Γ′ =
∞ (cf. proposition 1.28) and by the preceding proposition that implies cd Γ =
∞. �

Remark. This corollary justifies the change of notion in this section for our
group. We had in mind that the group Γ must be infinite (if 1 ≤ cd Γ <∞) and is
torsion free.

Proposition 2.45. For any group Γ, there exists a free ZΓ-resolution of Z
of length equal to cd Γ.

To proof this proposition we need before a lemma.

Lemma 2.46 (Eilenberg trick). Let P be a projective module over a ring R,
then there exists a free module F such that P ⊕ F ∼= F .
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Proof. Since P is projective there exists a R-module Q such that P ⊕ Q is
free. Define the module

F :=
⊕
n∈N

P ⊕Q.

F is free and if we add a copy of P it does not change anything because we can
write F as (

⊕
n P )⊕ (

⊕
nQ), hence F ⊕ P ∼= F . �

Proof of the proposition. Take a partial free ZΓ-resolution of Z

Fn−1
dn−1→ Fn−2 → · · · → F0 → Z→ 0.

Let P = ker dn−1. Since cd Γ = n, P is projective and by the Eilenberg trick there
exists F such that P ⊕ F ∼= F . Replace Fn−1 by Fn−1 ⊕ F and set dn−1|F = 0 we
then have a free ZΓ-resolution. If we complete it with the kernel of our new dn−1.
This kernel is free since P ⊕ F is free. �

We might now be interested in another type of finiteness, where each Pi in
our projective resolution are finitely generated. That leads us to the following
considerations.

Proposition 2.47. Let R be a ring and M a R-module. Then the following
conditions are equivalent:

(1) there exists an exact sequence Rm → Rn →M → 0 for some m,n ∈ N,
(2) there exists an exact sequence P1 → P0 →M → 0 where P1, P0 are finitely

generated projective R-modules,
(3) M is finitely generated and given any exact sequence 0 → K → P →

M → 0 with P finitely generated and projective, implies that K is also
finitely generated.

If the conditions holds, we then say that M is finitely presented and an exact
sequence as in (1) is said a finite presentation of M with n generators and m
relations.

To show the proposition, we need a lemma.

Lemma 2.48 (Schanuel). Let

0→ K
i→ P

q→M → 0

and
0→ K ′

i′→ P ′
q′→M → 0

be two exact sequences with P and P ′ projective R-modules. Then P⊕K ′ ∼= P ′⊕K.

Proof. Let Q be the pullback of the diagram

P ′

q′

��
P

q // M.

We then have an induced map j′ : K ′ → Q given by the commutative solid diagram

K ′
i′

##

0

��

∃!j′

##
Q //

��

P ′

q′

��
P

q // M.
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Same for j : K → Q. Therefore, we have a commutative diagram

0

��

0

��
K ′

j′

��

K ′

i′

��
0 // K

j // Q //

��

P ′

q′

��

// 0

0 // K
i // P

q //

��

M //

��

0

0 0

with exact rows and columns, and since P and P ′ are projective modules, the
sequences in our diagram containing Q splits. Hence P ⊕K ′ ∼= Q ∼= P ′ ⊕K. �

Proof of the proposition. We have clearly that (3) implies (1) implies (2).
We show that (2) implies (3). Suppose (2), then looking at the sequence P1 →
P0 →M → 0 gives us clearly that M is finitely generated. Now, consider the exact
sequences

0→ K ′ → P0 →M → 0

and
0→ K → P →M → 0

where K ′ is the kernel of P0 →M , and apply Schanuel’s lemma to obtain P ⊕K ′ ∼=
P0 ⊕K. Since the lefthand side is finitely generated, it implies that P0 ⊕K is also
finitely generated, and so is K. �

The Schanuel’s lemma can be generalize to the following lemma.

Lemma 2.49. Let

0→ Pn → · · · → P0
q→M → 0

and
0→ P ′n → · · · → P ′0

q→M → 0

be two exact sequences such that Pi and P ′j are projective R-modules for all i, j =
1, . . . , n− 1. Then

Pn ⊕ P ′n−1 ⊕ Pn−2 ⊕ · · · ∼= P ′n ⊕ Pn−1 ⊕ P ′n−2 ⊕ · · ·

We can the deduce as before the following proposition.

Proposition 2.50. Let M be an R-module and n ≥ 0 an integer. Then the
following conditions are equivalent:

(1) there exists a partial resolution Fn → Fn−1 → · · · → F0 → M → 0 with
each Fi free and finitely generated,

(2) there exists a partial resolution Pn → Pn−1 → · · · → P0 → M → 0 with
each Pi projective and finitely generated,

(3) M is finitely generated and given any exact sequence 0 → K → Pk →
· · · → P0 → M → 0 with k < n and each Pi finitely generated and
projective, implies that K is also finitely generated.

If the condition holds, then we say that M is of type FPn. An exact sequence as
in (2) is said a to be of finite type.
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Proof. The reader shall find the proof in [Bro82, Chapter 8, Proposition
4.3]. �

Remark. With this definition, a module is finitely presented if and only if it
is of type FP1. The condition FP0 says just that the module is finitely generated.

Proposition 2.51. Let M be an R-module. Then the following conditions
are equivalent:

(1) M admits a free resolution of finite type,
(2) M admits a projective resolution of finite type,
(3) M is of type FPn for all n ≥ 0.

If the condition holds, we say that M is of type FP∞.

Proof. It is clear that (1) implies (2) implies (3). Suppose we have (3) and
suppose in addition that we constructed a partial free resolution of finite type

Fn
dn→ · · · → F1 → F0 →M → 0.

Extend the exact sequence with the kernel of dn, i.e.

0→ K → Fn
dn→ · · · → F1 → F0 →M → 0.

SinceM is of type FPn+1,K is finitely generated, that means thatK is of type FP0.
Therefore, there exists a free finitely generated module Fn+1 such that Fn+1

p→
K → 0. Then one can build the exact sequence (of finite type)

Fn+1
//

p �� ��>>>>> Fn // · · · // F0
// M // 0.

K
1� i

BB�����

By induction, we obtain a free resolution of M of finite type. �

Definition. Let Γ be a group. We say now that Γ is of type FPn (resp of type
FP∞) if Z is of type FPn (resp. FP∞) as a Γ-module.

We say that Γ is of type FP (resp. of type FL) if Z admits a projective (resp.
free) ZΓ-resolution of finite type and of finite length.

Proposition 2.52. Γ is of type FP if and only if cd Γ <∞ and Γ is of type
FP∞.

Proof. First suppose Γ is of type FP , then it admits a projective ZΓ-resolution
of finite type and of finite length. Hence cd Γ <∞ and clearly Γ is of type FP∞.

Conversely, let n = cd Γ. Take a partial projective resolution of Z over ZΓ

Pn−1 → Pn−2 → · · · → P0 → Z→ 0,

and extend it with the kernel into an exact sequence of the form

0→ K → Pn−1 → · · · → P0 → Z→ 0.

By the very definition of the cohomological dimension, we have that K is projective
and since Γ is of type FP∞, K is projective. That implies Γ is of type FP . �

We see here that a group which is of type FP is not necessarily of type FL. To
understand better what is a group of type FL, we need to introduce before some
tools.

Definition. Let P be a finitely generated projective R-module. We say that
P is stably free if there exists a free R-module F of finite rank such that P ⊕ F is
free.
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Suppose Γ to be of type FP and let n = cd Γ. Take a partial resolution of Z,
Fn−1 → · · · → F0 → Z→ 0 where each Fi is free and finitely generated. Extend it
to the resolution

0→ P
i→ Fn−1 → · · · → F0 → Z→ 0.

Since the cohomological dimension is n we have that P is projective and since Γ is
of type FP∞, P is in addition finitely generated.

Proposition 2.53. With the above notation, Γ is of type FL if and only if
P is stably free.

Proof. If P is stably free, there exists a free module F of finite rank such that
P ⊕ F is free. Since P is finitely generated, P ⊕ F is also finitely generated. Set
the differential dn = i⊕ 0 : P ⊕ F → Fn−1 to obtain a free resolution of finite type
and finite length.

Conversely, let

0→ F ′n → F ′n−1 → · · · → F ′0 → Z→ 0

be a free ZΓ-resolution of finite type (given by the fact that Γ is of type FL and
cd Γ = n). Then

P ⊕ F ′n−1 ⊕ Fn−2 ⊕ · · · ∼= F ′n ⊕ Fn−1 ⊕ F ′n−2 ⊕ · · ·

by the generalization of the Schanuel’s lemma. �

Proposition 2.54. For a group Γ, if there exists an Eilenberg-MacLane
space K(Γ, 1) which is a finite complex, then Γ is of type FL.

Proof. The proof is obvious. �

We now return to our first problem; when does the cohomological dimension
and the geometric dimension coincide?

Theorem 2.55 (Eilenberg-Ganea-Wall). Let Γ be an arbitrary group, and
n = max{cd Γ, 3}. Then there exists an Eilenberg-MacLane space K(Γ, 1) of di-
mension n. Moreover, if Γ is finitely presented and of type FL then K(Γ, 1) can be
taken finite.

To obtain such Eilenberg-MacLane space K(Γ, 1) we will need a slightly differ-
ent construction of the one given in theorem 2.25. We will have to use the universal
cover. That is not surprising since we will need to deal at the end with some finite
cellular Γ-complex (which will give us our desired free resolution of Z). We do this
construction in the following lemma.

Lemma 2.56. (Alternative construction) Let Γ be a group, then there exists
an Eilenberg-MacLane space K(Γ, 1).

Proof. We construct it inductively. As in theorem 2.25 we construct a 2-
skeleton, associated to our favorite presentation of Γ, to obtain a path connected
space X2 with π1(X2, x) ∼= Γ. Note that its universal cover, denoted by X̃2 has a
trivial first homology group by Hurewicz theorem.

Suppose now that we constructed a space Xk−1 with

π1(Xk−1, x) = Γ, and πi(X
k−1, x) = 0

for all 1 < i < k − 1 and its universal cover, denoted by X̃k−1, has Hi(X̃
k−1) = 0

for 0 < i < k − 1. By the Hurewicz theorem, we have

πk−1(X̃k−1, x̃) ∼= Hk−1(X̃k−1).
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Let (zα)α be generators of Hk−1(X̃k−1) seen as a Γ-module, then there exist con-
tinuous maps

g∂α : Sk−1 → X̃k−1

which corresponds via the Hurewicz morphism to the generators zα. Define the
attaching maps as the composition

∂Dk
g∂α

//

f∂α

))
X̃k−1

p
// Xk−1.

The k-skeleton is then the space

Xk := Xk−1 ∪f
∨
α

Dk
α.

Let the universal cover of Xk be denoted by X̃k. We must show that Hi(X̃
k) = 0

for all 1 < i < k. Remark first that X̃k−1 ⊂ X̃k. Indeed, if we look carefully at
the proof of theorem 2.34, one can see that X̃k is obtained by attaching k-cells to
X̃k−1 by the attaching maps g∂α,γ := γ ◦ g∂α where γ is a deck transformation of
X̃k−1 and hence corresponds to an element in Γ. Draw the long exact sequence of
the pair (X̃k, X̃k−1)

· · · // Hk(X̃k, X̃k−1) ED
∂k

BC
GF@A

// Hk−1(X̃k−1) // Hk−1(X̃k) // Hk−1(X̃k, X̃k−1) ED
∂k−1

BC
GF@A

// Hk−2(X̃k−1) // Hk−2(X̃k) // · · ·

Since Hi(X̃
k, X̃k−1) = 0 for 0 < i < k, we then have Hi(X̃

k) ∼= Hi(X̃
k−1) = 0 for

all 0 < i < k − 1.
We must now verify that Hk−1(X̃k) = 0. We will show that ∂k in the following

exact sequence is surjective

· · · // Hk(X̃k, X̃k−1) ED
∂k

BC
GF@A

// Hk−1(X̃k−1) // Hk−1(X̃k) // 0.

Remark that Hk(X̃k, X̃k−1) = Wk(X̃k) is the cellular chain group which is a free
Γ-module with basis one element for each k-cell in Xk (it is in fact a free abelian
group with basis one element for each k-cell in X̃k, but we prefer to look at it as a
Γ-module with a different basis). Let (vα)α be such a basis of Hk(X̃k, X̃k−1). To
be precise, we define vα to be the image by the induced map of the characteristic
map gα. Explicitly, we have for all α

gα∗ : Hk(Dk
α, ∂D

k
α)→ Hk(X̃k, X̃k−1)

[Dk
α] 7→ vα
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where [Dk
α] is a generator of Hk(Dk

α, ∂D
k
α) ∼= Z. We then have the commutative

diagram

Hk(Dk
α, ∂D

k
α)

∂k
∼

//

gα∗

��

Hk−1(∂Dk
α)

g∂α∗

��
Hk(X̃k, X̃k−1)

∂k // Hk−1(X̃k−1).

We then have zα = ∂kvα for any generators zα of Hk−1(X̃k−1). Indeed, we defined
above zα to be exactly the image by g∂α∗ of the generator of Hk−1(∂Dk

α). Hence ∂k
is surjective and a posteriori Hk−1(X̃k) = 0. (Remark that we have already seen
the diagram above in the proof of theorem 2.23.)

Remark that this implies by the Hurewicz theorem that πi(X̃k, x̃) = 0 for all
0 < i < k. By the long exact sequence of a fibration, we deduce that πi(Xk, x) = 0
for all 1 < i < k, and we then finished the inductive step. Now define X = ∪kXk,
it is an Eilenberg-MacLane space K(Γ, 1). �

Remark. One can see that by construction Hi(X̃
k) = 0 for all 0 < i < k and

it is easy to see that we always have Hi(X̃
k) = 0 for all i > k (use the long exact

sequence for the pair drawn above). So the only nontrivial homology group would
be in degree k. Now suppose Hk−1(X̃k−1) is a free ZΓ-module with basis (zα), then
∂k would be an isomorphism and that would imply Hk(X̃k) = 0.

So if this happens, we will have a contractible covering space of Xk, conse-
quently Xk is a K(Γ, 1).

Proof of the theorem. We consider first the case where n =∞. Then use
the preceding lemma to obtain an infinite K(Γ, 1)-complex.

Let us now consider the case where 3 ≤ n <∞. We use the construction in the
preceding lemma to obtain X̃n−1 (this makes sense by hypothesis on n). Consider
its (reduced) cellular chain complex

Wn−1(X̃n−1)→Wn−2(X̃n−1)→ · · · →W0(X̃n−1)→ Z→ 0.

It is a partial free Γ-resolution of Z of length n− 1. Since cd Γ ≤ n, we have that

Hn−1(X̃n−1) = ker{Wn−1(X̃n−1)→Wn−2(X̃n−1)}
is a projective Γ-module. Use the Eilenberg trick to obtain a free Γ-module F such
that Hn−1(X̃n−1)⊕ F ∼= F . Choose a basis (fω)ω∈Ω of F and replace Xn−1 by

X
n−1

:= Xn−1 ∨ (
∨
ω∈Ω

Sn−1
ω ).

Let X̃
n−1

be the universal cover of X
n−1

. One can see that via the proof of theorem
2.34 we can describe the universal cover of X

n−1
as the universal cover of Xn−1 to

which we added #Ω ·#Γ (n− 1)-spheres, i.e.

X̃
n−1

= X̃n−1 ∨ (
∨
ω∈Ω
γ∈Γ

Sn−1
ω,γ ).

Therefore, its cellular chain complex will be the same in degrees smaller than n− 1
and in degree n − 1 it will be Wn−1(X̃n−1) to which we added F . Moreover
dn−1|F = 0 since the degree of the attachment maps followed by the collapse is
0 for all (n − 1)-sphere that we attached. Remark that the homotopy groups
of X

n−1
and Xn−1 are the same in degrees smaller than n − 1, in particular

π1(X
n−1

, x0) = π1(Xn−1, x0) since we added spheres of dimension 2 or greater
(we use again strongly our hypothesis that n ≥ 3).
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We now have thatHn−1(X̃
n−1

) is free (as a Γ-module) with a certain basis (zα).
As in the preceding lemma, we attach to it α cells of dimension n to obtain a complex

X
n

= X
n−1 ∪f

⋃
αD

n
α. Since Hn−1(X̃

n−1
) is free, X

n
is a K(Γ, 1), and so we can

stop our inductive construction and enjoy this CW-complex of geom dim = n.
We now prove the case where Γ is finitely presented and of type FL. We have to

show that we can finish with a finite CW-complex X
n
. Since Γ is finitely presented,

we can construct a finite X2 with the same technique as in the lemma above. For
the inductive step, suppose that we constructed a finite Xk−1. We now have to
build a finite Xk. By the very definition of FP , Hk−1(X̃k−1) is a finitely generated
projective Γ-module since it is the kernel of the partial free Γ-resolution

Wk−1(X̃k−1)→Wk−2(X̃k−1)→ · · · →W0(X̃k−1)→ Z→ 0.

If k = n, then Hn−1(X̃n−1) is in addition stably free (using the fact that the
group is of type FL, cf. proposition 2.53). Hence there exists a finitely generated
free Γ-module F such that Hn−1(X̃n−1)⊕ F is free and finitely generated. Define
as above X

n−1
and X

n
to obtain the desired finite complex. �

Corollary 2.57 (Eilenberg-Ganea). If cd Γ ≥ 3, then cd Γ = geom dim Γ.

We now know that cd Γ = geom dim Γ almost every time except when cd Γ = 2.
It might happen that cd Γ = 2 and geom dim Γ = 3 but we don’t have at this day
any proof of it nor any counter-example.

Conjecture 2.58 (Eilenberg-Ganea). Let Γ be a group, then

cd Γ = geom dim Γ.

Some recent work made by M.Bestvina and N.Brady in [BB97] have shown
that this conjecture is related to the following conjecture.

Conjecture 2.59 (Whitehead). Any connected subcomplex of an aspherical
2-complex is aspherical.

Recall that an aspherical 2-complex X is a CW-complex of dimension 2 which
has πk(X,x0) = 0 for all k > 1. It is equivalent to say that X is a K(Γ, 1) of
dimension 2 for some group Γ.

They constructed a group HL (using right angled Artin group associated to a
finite flag complex L) which is a potential counter-example of the Eilenberg-Ganea
conjecture, if not there exists a counter-example of the Whitehead conjecture.
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