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ABSTRACT

We propose an approach for the estimation of sparse filters from
a convolutive mixture of sources, exploiting the time-domain spar-
sity of the mixing filters and the sparsity of the sources in the time-
frequency (TF) domain. The proposed approach is based on a wide-
band formulation of the cross-relation (CR) in the TF domain and on
a framework including two steps: (a) a clustering step, to determine
the TF points where the CR is valid; (b) a filter estimation step, to
recover the set of filters associated with each source. We propose for
the first time a method to blindly perform the clustering step (a) and
we show that the proposed approach based on the wideband CR out-
performs the narrowband approach and the GCC-PHAT approach by
between 5 dB and 20 dB.

Index Terms— Blind filter estimation, sparsity, convex optimi-
sation, cross-relation, source separation

1. INTRODUCTION

Blind source separation (BSS) has applications in several fields
such as speech and music processing, wireless communications or
biomedical signal processing. In a general setting, we consider M
mixtures xi(t), i = 1 . . .M of N source signals sj(t), j = 1 . . . N ,
given by the convolutive model

xi(t) =

N∑
j=1

(aij ∗ sj)(t) + vi(t) (1)

where aij(t) is a filter of length L that models the impulse response
between the jth source and the ith microphone, and vi(t) is the noise
at the ith microphone. For brevity, we denote the sources, filters,
noise and mixtures by sj , aij , vi and xi respectively, by dropping
the time index.

BSS systems attempt to estimate the sources given only the mix-
tures. This is often done in two stages: the mixing filters are es-
timated first, and subsequently they are used for source estimation.
In case of instantaneous and anechoic mixtures, the filters are sim-
ply scalars or time-delayed scalars, and several methods (see [1] and
references therein) have been proposed to estimate the mixing pa-
rameters.
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The problem gets complicated with convolutive mixtures. Fre-
quency domain techniques transform convolutive mixtures into mul-
tiple complex-valued instantaneous mixtures, under the narrowband
approximation. However, this approach suffers from the ambigui-
ties of arbitrary scaling and permutations of the sources, and solving
these ambiguities is a challenging problem in itself [2].

On the other hand, when there is only one source, the problem
of blindly estimating filters from the filtered versions of the source
is well studied [3]. The main approach, described in section 2, ex-
ploits a cross relation (CR) in the time-domain and recast the filter
estimation problem as a linear inverse problem. In addition, if the
filters are sparse, e.g. in underwater acoustic communication, the
problem can be regularized with a sparsity promoting norm (e.g. `p
norm with p ≤ 1) [4]. With that a priori, good reconstruction [5] is
possible with observations xi(t) of small duration compared to the
filter length L.

Recently a framework has been proposed for Sparse Filter Es-
timation (SFE) when multiple sources are active simultaneously. It
assumes that the filters are sparse in the time domain and the sources
are sparse in the frequency domain [6]. This SFE framework is com-
posed of two steps: a first step where for each source, the set of
frequencies where only this source is active is determined; a second
step where the filters are estimated by solving a convex optimization
problem. Note that to the opposite of most methods for MIMO chan-
nels identification in communication such as the subspace methods
[7, 8], we assume that the filters are sparse and can be quite long1.
As opposed to the subspace methods which require the number N
of sources to be less than the number M of mixtures, our proposed
framework can also deal with determined and underdetermined mix-
tures (i.e. mixtures where N ≥M ).

In this paper, we extend the SFE framework for sparse filter esti-
mation by introducing a new formulation of the CR called wideband
CR. Unlike the narrowband CR, the wideband CR which we present
in section 3, is exact as long as there is no interference of the other
sources in the selected time-frequency regions. Unlike our previous
work [6], where the selection of these TF regions was done with
an oracle estimator, we propose in Section 4, a simple method to
blindly select the TF regions in the case where we have a mixture of
one sparsely filtered source with one or more instantaneously filtered
sources. In Section 5 we evaluate the performance of the proposed
approach to recover the convolutive filters in a scenario where we
have two audio sources mixed on two channels.

1The length of the filters is more than 250 samples in our case while it is
typically between 0 and 3 samples in MIMO subspace methods as in [7, 8].



2. SPARSE FILTER ESTIMATION USING THE CROSS
RELATION (CR)

Before we present our contributions, let us first describe some exist-
ing work on blind estimation of sparse filters in single and multiple
sources settings.

2.1. CR in the time domain:

Assume that there is only one source active s, and two outputs x1 and
x2. This is the single-input-two-output (SITO) case and we have:

x1(t) = (a1 ∗ s)(t), x2(t) = (a2 ∗ s)(t).

Let T be the length of s and L the length of the filters, then the
length of xi will be T +L−1. We have the following cross-relation
(CR)[9]:

(x2 ∗ a1)(t) = (x1 ∗ a2)(t) = (a1 ∗ a2 ∗ s)(t). (2)

For convenience, let us associate the signal ai to the column vector
ai = [ai(t)]

L
t=1 and likewise s to s and xi to xi.

The convolution (xi ∗ ai)(t) is associated to the multiplication
between the Toeplitz matrix

Xi =



xi(1) 0 · · · 0
xi(2) xi(1) · · · 0

...
...

. . .
...

xi(L) xi(L− 1) · · · xi(1)
xi(L+ 1) xi(L) · · · xi(2)

...
...

. . .
...

0 0 · · · xi(T + L− 1)


(3)

and the vector ai. Define also the two-channel data matrix Btd =[
X2,−X1

]
, where the subscript td stands for time-domain, and

the two-channel filter vector a =

[
a1

a2

]
, we can write the time-

domain CR as:
Btd · a = 0. (4)

This relation has inspired several methods (named CR methods) to
estimate the filters blindly from the observations [9, 3]. These meth-
ods generally do not assume anything about the nature of the filters,
however in scenarios such as underwater/wide band wireless com-
munications, the filters that model the channels are often sparse in
the time domain.

2.2. Sparsity of the filters

With the additional sparsity assumption, the SITO filter estimation
problem can be formulated as the following `1 minimization prob-
lem [4, 6]:

minimize ‖a‖1 s.t. ‖B · a‖2 ≤ ε and a1(t0) = 1 (P1)

The notation B is our general notation for the CR matrix. A par-
ticular case is the time domain CR matrix Btd we defined in Sec-
tion 2.1. The normalisation a1(t0) = 1 (where t0 is an arbitrarily
chosen time index, as mentioned in [6]) is to avoid the trivial zero-
vector solution. The resulting problem is a noise-aware variant of
Basis Pursuit [10, 5] and can be solved using any standard convex
optimization algorithm. We chose to use the CVX software package
[11].

2.3. CR in the TF domain: the narrowband approach

When dealing with multiple sources, i.e. in the multiple inputs two
outputs (MITO) case, the CR formulation (2) cannot be directly used
without further assumptions. The SITO approach has been extended
to N sources [4], by assuming that it is possible to identify time
segments where only one source contributes to the mixtures. Then a
SITO problem can be formulated locally at such segments and solved
to obtain the filters for that particular source.

However, in general, the sources may overlap in time. Hence
this approach might not be suitable for the filter estimation task,
even if the filters are sparse. Instead of disjoint time supports, it
is a common assumption to consider sources almost disjoint in the
TF domain [12]. This fact motivates the following formulation of
the CR in the TF domain:

Let x̂i be the short-time Fourier transform (STFT) of the vector
xi, and âi be the Fourier transform of ai (appropriately zero padded)
such that x̂i = [x̂i(τ, f)]τ,f and âi = [âi(f)]f . Let us consider
STFT frames 1 ≤ τ ≤ T . Using the narrowband approximation,
the CR in the TF domain can be expressed by:

x̂2(τ, f) · â1(f) ' x̂1(τ, f) · â2(f), ∀(τ, f). (5)

Defining X̂i,τ = diag
(

[x̂i(τ, f)]f

)
, the CR in the STFT domain

will be

Bnb · a ' 0 with Bnb =

 X̂2,1, −X̂1,1

...
...

X̂2,T , −X̂1,T

[ F∗ 0
0 F∗

]
,

(6)
where F∗ is the Fourier matrix of appropriate size. The optimization
problem (P1) with B := Bnb can be solved to obtain the filters. This
defines the narrowband CR approach.

2.4. A two-step framework for MITO

In the case of multiple sources, the approach in the TF domain is
better than in the time-domain because the sources are often sparser
in the TF domain, and thus it is more likely that the CR holds in
some regions of that domain.

A two-step approach for sparse filter estimation was proposed in
[6]. Its principle is that if we can identify a set Ωj of TF points (τ, f)
for each source j where the CR holds, then these sets can be used to
build the matrices BΩj such that BΩj · a(j) ≈ 0, by selecting rows
of Bnb indexed by the points in Ωj . Then we can estimate the filters
a(j) by solving (P1) with B := BΩj . The algorithm we present in
section 4 is based on this framework with a new definition of the CR
which is introduced in section 3.

3. WIDEBAND FORMULATION OF THE
CROSS-RELATION

To build the narrowband CR [6] we first performed a STFT and then
formulated the CR based on the narrowband approximation. Thus,
the narrowband CR is intrinsically approximate. The first main con-
tribution of this paper is to propose an accurate wideband expression
of the CR where we formulate the CR in the time domain and then
take the transformation. It is based on the following lemma:

Lemma 3.1. Let x(t) be a bounded signal, a(t) and ψ(t) two finite
support signals, and let 〈f, g〉 =

∑+∞
t=−∞ f(t)g∗(t) be the inner

product between two signals f and g.
Then: 〈x ∗ a, ψ〉 = 〈a, x̄ ∗ ψ〉 with x̄(t) = x∗(−t).



Proof. This equality is verified using Fubini’s Theorem and a
change of variable2.

Using this lemma, the projection of the time-domain CR (2) on
a signal or atom ψ, that is 〈x2 ∗ a1− x1 ∗ a2, ψ〉 = 0 can be written
as:

〈x̄2 ∗ ψ, a1〉 = 〈x̄1 ∗ ψ, a2〉. (7)

Unlike the narrowband CR of (5), we have in (7) a perfect equal-
ity if the time domain CR (2) holds. To capture the TF regions where
the CR holds, we can use a dictionary D of atoms ψ adapted to the
signal type, e.g. for audio signal we can use a Gabor dictionary
D = {ψτ,f}τ,f where ψτ,f is a Gabor atom [13] with time shift τ
and frequency f . Note that the time-domain CR given by (2) is the
particular case of the wideband CR given by (7) with a dictionary
D = {δτ}τ composed of translated Dirac δτ (·) = δ(· − τ).

Let us express the wideband CR (7) more explicitly. As the fil-
ters ai are real-valued with support [0, L − 1], the inner product in
(7) can be written as

〈x̄i ∗ ψ, aj〉 =

L−1∑
τ=0

〈xi, ψ−τ 〉aj(τ)

with ψτ (·) = ψ(· − τ). Thus the row of Bwb corresponding
to the atom ψ is given by concatenating the vector ϕLx2,ψ =

[〈x2, ψ−τ 〉]L−1
τ=0 with −ϕLx1,ψ (defined likewise).

For example, if D is a highly redundant STFT dictionary with
an overlapping shift of one sample, then the vector ϕLxi,ψτ,f corre-
sponding to the TF point (τ, f) is:

ϕLxi,ψτ,f = [x̂i(τ, f), x̂i(τ − 1, f), . . . , x̂i(τ − L+ 1, f)]T .

4. BLIND METHOD TO IDENTIFY THE SET Ωj

Previous work [6] addressed the estimation of the filters when the
TF regions Ωj are given by some oracle. In this paper, we propose
a practical way (summarized in algorithm 1) to blindly estimate Ωj
from a mixture, in a scenario where all sources but one are associ-
ated to linear instantaneous filters. Let k be the index of the “convo-
lutive” source of the mixture. The length of the instantaneous filters
is Lj = 1, ∀j 6= k, and each such source is associated to an intensity
parameter (IP) θj = tan−1(a2j(0)/a1j(0)).

Existing algorithms such as DEMIX [1] can both estimate the
IP θj of the instantaneous sources and the TF regions Ωj where they
are prominently active based on a spatial criterion:

Ωj 6=k =
{

(τ, f) :
∣∣tan−1 (|(x̂2(τ, f)/x̂1(τ, f)|)− θj

∣∣ ≤ η} .
(8)

We build the set Ωdj , ∀j 6= k containing all the TF points close
in time or in frequency to points in Ωj using a dilation operation
applied on Ωj in the TF plane, and obtain the set Ωk corresponding
to the convolutive source as the complement of ∪j 6=kΩdj .

Fig. 1 shows an example of STFT of two sources (where k = 2),
and Fig. 2(a) displays the STFT of one of the mixture x1 (black cor-
responds to high energy, white to low energy). Fig. 2(b) illustrates
the set Ω2 obtained with the described approach, and we can see that
as expected Ω2 only contains TF points where source s1 has a very
small energy.

2It is possible to extend this lemma into other specific spaces where a(t)
and ψ(t) have an infinite support.

Algorithm 1 for estimating the sparse filter a(k) and θj , ∀j 6= k.

1. Compute the STFT x̂i of the mixtures xi, ∀i ∈ {1, 2}.
2. Estimate the IP θj of the instantaneous source(s) using

DEMIX [1].

3. Build the sets Ωdj of the instantaneous sources using (8) and
a dilation operation applied on Ωj in the TF plan.

4. Build the set Ωk of the convolutive source: Ωk = ∪j 6=kΩdj .

5. Build the wideband matrix B
Ωk
wb as explained in section 3.

6. Solve the convex optimization problem (P1) with B := B
Ωk
wb .

5. EXPERIMENTS ON AUDIO SOURCES

We compared the new wideband CR method with the narrowband
CR method in a scenario where two sources are simultaneously ac-
tive in the time domain. As we consider only one “convolutive”
source per mixture, we dropped the source index (j) from the filter
for the sake of legibility. The performance measure was the filter
SNR corrected from unknown arbitrary time shift and scaling, de-
fined by:

SNR = 10 log10

( ∑
i,t ‖ai(t)‖

2
2

mint′,µ
∑
i,t (‖ai(t)− µ · ãi(t− t′)‖22)

)

where ãj is the estimated filter.
Note that this implies that our goal is to recover the filters up to

a time shift and scaling, and not up to a global filter as targeted by
convolutive ICA. To our knowledge, there is no other method that
can address this problem when the sparsityK = ‖ai‖0 of the filters,
i.e. the number of nonzero coefficients of ai, is larger than one3.
However, in the anechoic case (i.e. when K = 1), GCC PHAT [14]
performs state-of-the-art results to estimate the delay between the
two channels. Then the magnitudes of the peaks can be estimated by
averaging the IP of all the TF points of Ω [1].

The experiment was conducted using the two audio sources
whose STFT is displayed on Fig. 1: s1 is a flute sound, while s2

is a guitar sound. The sources are mixed on two channels, s1 with
a IP θ1 = 0.2 radian, s2 with two sparse filters a12(t) and a22(t).
We varied the filter sparsity from K = 1 to K = 8, for a total filter
length L = 256. For each sparsity, 20 random sparse filters were
generated as in [6]. The STFT was computed using a Blackman-
Harris window of 512 samples with a one-sample shift between
each frame. We blindly built the sets Ω1 and Ω2 with η = 0.1 as
explained in Section 4. Fig. 2(b) represents the selected TF points
Ω2. As the number of points in Ω2 is very large, we only kept the
points between τ = 4000 and τ = 5000, which is a segment where
the two sources are simultaneously active. We reduced the number
of rows of the matrix B by merging rows corresponding to the same
frequency bin f . This merging was done by averaging for each
frequency bin f the normalized rows of B corresponding to f . The
filters were then estimated by solving (P1) for both the wideband
matrix Bwb and the narrowband matrix Bnb, with the parameter4

ε = 0.0006. Results of the experiment showing the average SNR

3Note that the sparsity of a, which is the concatenation of a1 and a2, is
thus 2K.

4This value of ε was tuned empirically on two examples of the database,
one with a small sparsity and one with a larger sparsity. The same value was
then used for all sparsities and all draws of filters.
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Fig. 1. Spectrograms of the two sources: (a) source s1 which is a
flute playing and (b) source s2 which is a guitar playing.
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Fig. 2. (a) Spectrogram of mixture x1. (b) TF mask. The white
pixels correspond to the points of the set Ω2

are plotted in Fig. 3. The wideband approach outperforms the
narrowband one by between 5 and 20 dB. The GCC PHAT worked
better than the wideband approach in the anechoic case, but if we
perform a “debiasing” (DB) step [15] after solving (P1), i.e. after
selecting the support of the K largest coefficients of the estimated
filters we solve a least squares problem to readjust those coefficients,
then the wideband CR with DB improves the performance by 20 dB
for K < 4 and outperforms GCC PHAT by more than 10 dB in the
anechoic case.

6. CONCLUSION

We proposed a method to blindly estimate the sparse filters of a con-
volutive mixtures of sources. Our approach assumes that the fil-
ters are sparse and is based on a wideband formulation of the cross-
relation. The approach contains a clustering step followed by a filter
estimation step. We illustrated on a stereo mixture that this method is
able to blindly estimate the convolutive sparse filters even when the
sources overlap in the time-domain. Future work includes an exten-
sion of the clustering step so as to deal with more complex mixtures
composed of several convolutive sources and the use of a fast solver
(instead of CVX) for sparse recovery so as to deal with more points
and longer filters. We also want to do more extensive experiments to
assess the performance of the approach in various audio scenarios.
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