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Introduction

In the context of global warming, extreme environmental phenomena such as heavy rainfall,
avalanches, windstorms or high tides happen to occur more often and could cause major
problems for human beings living in the affected regions. Scientists of various backgrounds
want to be able to manage the risks induced by these rare events.

In statistics, spatial models are required to analyse extreme observations and to base
predictions on them. Recently, max-stable processes ( ( ) and ( )
have been considered for modelling extremal spatial data as these processes allow us to
generalize extremal dependence structure in space. The analysis of a series of extremes
observed at locations in a spatial domain can be based on different types of max-stable
processes. Unfortunately, the multivariate density of these processes is intractable and
different methods need to be considered. A possible approach is to consider composite
likelihoods which are constructed by compounding marginal densities as suggested by

( ) and many others. ( ) and
( ) have lately applied this method to extreme data observed in a spatial domain. Their
findings indicate that the composite likelihood methodology allows reliable model fitting
and that models can be compared through modified likelihood criteria.

This project aims to give an approach to prediction, rather than model fitting, for
extreme events in space based on composite likelihood methods. More specifically, pairwise
likelihood is considered as obtaining higher-order joint densities for max-stable processes is
non-trivial. Prediction methods for spatial extremes were already investigated by

( ). In their article, predictors based on loss functions are compared to different
types of kriging. More specifically, a predictor minimizing the integrated weighted quantile
squared error loss is suggested whereas in this project, the predictors aim to minimize the
mean square prediction error.

As traditional geostatistical tools for prediction, mostly based on multivariate normal
theory, are not well established for extreme values, Gaussian processes are considered
initially (section 3.4). On the Gaussian scale it is possible to compute the best linear
predictor, that means the one minimizing the mean square prediction error, and to compare
it to the suggested pairwise predictor. In addition, the influence of parameter estimation
on the prediction is investigated. This is of particular interest as pairwise likelihood is then
used for obtaining both the parameter estimates and the predictors and so there are two



potential sources of error. The results indicate that even though the parameter estimation
does not influence the mean predictor it affects the prediction error. An illustration of the
method is given by the analysis of mean precipitations in north-east Switzerland.

The pairwise method is adapted to simulated extremal data in a spatial domain. In
this context, however, it is not possible to find the analytical form of the pairwise predictor
and the composite likelihood needs to be optimized numerically. Moreover, the analysis
of the prediction cannot be based on mean square prediction errors as on the one hand
max-stable processes do not have finite moments and on the other the distribution of the
predictors is not close to being normal. Therefore a more robust measure, the median
square prediction error, is considered.

Both the ‘random storm’ and the ‘random process’ models, suggested by ( )
and ( ), respectively, are considered in the simulation study. The properties
of the predictors are poor if there is weak correlation or if few gauged locations are available.
As the predictors are constantly underestimating the true values at the ungauged locations
other methods are suggested. In particular, it turns out to be useful to transform the data
to the Gaussian scale and then compute the best linear predictor. Back-transforming this
predictor to the unit Fréchet scale yields then a predictor for the ungauged location. Even
if the predictor is much more precise, there is a practical problem with this approach. In
fact, for the bivariate Gaussian distribution, two extreme observations are asymptotically
independent for a fixed correlation ( ( )). This is not realistic in applications.

Seasonal maximum precipitations in Switzerland are considered to exemplify the method
in the extremal spatial domain. Both the predictors on the unit Fréchet and the back-
transformed predictors are considered. The back-transformed predictors allow more precise
predictions but justifying the independence between the extrema is problematic.



Chapter 1

Composite marginal likelihood

In several applications it is hard to compute the likelihood as the datasets might be large
or the model very complex, sometimes the likelihood is not even known analytically. In
these cases it is useful to reduce the computational complexity by using composite likeli-
hoods (see for example ( ), ( ) or ( ).
Basically, composite marginal likelihoods correspond to likelihoods that are constructed
by compounding marginal densities. Therefore, using composite marginal likelihoods can
be seen as a particular case of model under-specification.

1.1 Maximum composite marginal likelihood estimator

Definition 1. For a parametric statistical model {f(y;0),y € Y,0 € ©}, where Y C R,
©CRP, d>1andp>1,let {A4;: A; CF,je€ J} be aset of events, where J C N and
F is some sigma algebra on ). Then, for a set of independent observations (yi,...,y,) a
composite marginal likelihood is defined as

Lo(®) = [T 11 £ wi € A3 0)5,

i=1jeJ
where f(y; € Aj;0) = f({y;, € Y 1 yi, € Aj};60) and {wj, j € J} is a set of suitable weights.
The corresponding composite log likelihood is thus

Lc(0) = log Leo(0).
The full log likelihood .
(0) = _log f(i; )
i=1

is a special case of a composite likelihood. Generally, two classes of composite likelihoods
are distinguished; the subsetting methods and the omission methods. In the following, we
will concentrate on the subsetting methods, which are based on taking for example only



pairs of observations into account ( ( )). The omission methods, however,
are constructed by omitting components of the full likelihood.
Under usual regularity conditions, the estimating equation

dlc(bc)
00
is unbiased as each component of L (60;y) is a likelihood object. In addition, the maximum
composite likelihood estimator fc is consistent and asymptotically normal with mean 6°
and covariance matrix H(6°)~1J(0°)H (#°)~!, which is the inverse of the sandwich infor-
mation matrix, where

=0

H(0") = E{Vc(0"Y)},

J(0%) = var {Vic(6";Y)}.
In a more compact form, we can write

fc ~ N(0°, H(0)"La(0°) H (%) ™).

If the additional condition that k~'J tends to a finite non-zero limit as k& — oo holds, the
covariance matrix can be estimated consistently by

R = H(0c)™" J(0c)H(0c) ™,
where H(A¢) and J(f¢) are estimators of the matrices H(6°) and J(6°), respectively.
Under usual regularity conditions, a consistent estimator for H(6") is obtained by taking

H(bc) = V*c(bc).

However, finding an appropriate estimator for J(6°) is much harder. Difficulties arise as
the naive estimator
J(0) = Vec(0;Y)VEa(0; V)"
vanishes at 0 = O (Y) as VLo (0c;Y) = 0.
Therefore a different estimator for J(°) is considered. As 6° satisfies the estimating
equation we have that

JO%) = var {Vic(0%Y)}

n

= YO var{Vea(6%yi € A;)}
i=1 jeJ

= DD B{VLe(0%yi € A)VLc(®®iyi € AT

i=1 jeJ

Therefore its empirical counterpart can be used to estimate J(6°). More explicitly, this
means

J(0c) = Zzn; {jGZJVfc(éc;yi € Aj)}{ ;}Vﬁc(éc;yi € Aj)}T

is an estimator for J(6°).



Chapter 2

Model selection

Once different models are fitted to a random sample Y71, ..., Y, we are interested in making
inference about the goodness of fit and in comparing them. The following approaches are
described in ( ).

2.1 Information criteria for full likelihoods

Assume that the random sample comes from an unknown true model g(y) and that a
candidate model f(y;#) is fitted. The maximum likelihood estimator can be found for this
model and is denoted as 6.

Moreover, it is possible to choose f based on the Kullback—Leibler divergence which is

defined as
KL(fo,9) = / log < f?;%» 9(y)dy.

The property that KL(f,g) > 0 with equality if f = ¢ indicates that f should be chosen
such that KL(fp, g) is minimal, yielding an estimate 6,. However, there are infinitely many
models such that KL(fg,,g) = 0.

If we suppose that in addition the candidate model contains the true one, we must
have f(y;0y) = g(y) for some §,. In this case, fy is called a correct model. Any correct
model can be distinguished from the true one as g has fewer parameters than f. Among
the correct models, we would like to find the one with fewest parameters having an equally
good fit.

In order to compare g with fy at 6 = 0 for a different random sample Y*, ..., Y from g
which is independent of Y7, ...,Y,, the expected likelihood ratio statistic can be computed

E; | > log (M> = nKL(fy,9) > nKL(fy,,9)

=\ F(v70)

In order to remove the dependency on 6 of this quantity, its distribution is averaged, leading



to
9(Y})
F(Y750)

n
Eg ¢ Ej Zlog(
j=1

Expanding a Taylor series for log f(y; é) about 6, yields

) = nEy(KL(f3, 9))-

log f(y;0) = log f(y; 99)+(é—99)T‘W

1 70%log f(y;0y) >
3 9) —apeer (0~ b9)-

+=(8

Furthermore,
/ dlog f(y;0y)
ol

as 6, minimizes KL(fg, g). The previous two results allow one to compute

nKL(fz.9) = n/log{%}g(y)dy

= WKL(fo,. ) + 5 0r{(0 ~ 0,00 — ) 1y(6,)}

g(y)dy =0

The results obtained for misspecified models imply that

Wy (KL(f3, 9)) = nKL(fs, ) + 3tr{T,(09) " K(6,), (21)

where the last term on the right penalizes for the dimension of 6. This trace is equal to p
if fp is a correct and regular model because in this case I4(6,) = K(6,).

The aim is now to obtain an estimator for (2.1). For this, two facts are to be considered,
first that [log{g(y)}g(y)dy is constant and can therefore be ignored, second that we can
write £(A) = £(,) + {£(8) — £(8,)}. Thus, denoting the likelihood ratio statistic by W, we
have

B{~L0)}) = ~E,{U0,)+ ;W)
= nKL(fa,9) — 0 [ lo{o(w)alu)dy — 5er{1,(6,) K (6,)

as under the wrong model we have that E,{W (6,)} = tr{I,(6,) 1K (6,)}.
Finally, an estimator of (2.1) is given by

—(0) + ¢,

where c is an estimator of tr(I,(6,) 'K (6,)). In fact, there are two possible choices for ¢,
either take it to be p, the model is supposed to be correct, or tr(J(6) 1K (6)) where the
model is misspecified.



2.2. INFORMATION CRITERION FOR COMPOSITE LIKELIHOODS

This yields therefore directly two information criteria

AIC
NIC

2{—£(0) + p}
2| —0(0) + tr{J(0) 'K ()},

where the factor 2 is introduced in order to have the same scale as the likelihood ratio
statistic. Model selection can then be based on choosing the one with minimal AIC,
respectively NIC.

It is important to notice that model selection using AIC or NIC might be inconsistent.
Consider the example where the true and a correct model are fitted yielding ¢(6,) and 0(6)
with a number of parameters ¢ and p respectively (¢ < p). The correct model fy will be
preferred to g if £(8,) —q < E(é) — p. If g is nested within fy, the likelihood ratio statistic

implies that
pr{{(fy) — q < £(6) — p} = pr{x;_, > 2(p — q)}-

In this case the model selection using AIC or NIC is not consistent as
pr(true model is selected) - 1  as n — oo.

If the difference of penalty is however between O(1) and O(n) the criteria suggested above
are consistent.

2.2 Information criterion for composite likelihoods

Based on composite likelihood methods, ( ) suggest a new information
criterion. The composite Kullback—Leibler divergence is their starting point to develop this
information criterion.

For a random variable Y = (Y7, ...,Y,,) having density f(y), the composite Kullback—
Leibler divergence of a density g(y) relative to f(y) is defined as

KLo(g,f) = Egy) [log { ég((% }]

= > By {logg(Y € A) —log f(Y € Aj)}wi,

iel

where Lo (f) = [L;e; f(Y € Ai)*™ and Lo(g) = [T 9(Y € Ai)™.

Notice that the composite Kullback—Leibler divergence is a linear combination of the
ordinary Kullback—Leibler divergences.

For a given sample Y = (Y1,...,Y,), the objective is to find a model which predicts
best another random variable Z having the same distribution. Let therefore {f(y;0),y €
V,0 € ©} be a parametric statistical model specified by this family of density functions.
The estimated density f(y) = f(y;0c) under this assumed model can then be used for
model selection. The following information criterion, based on the expected composite




Kullback—Leibler information between the true density g(y) and f (y) selects the model
which minimizes

Eg(y) {KLC (gv f)}7

or equivalently, which maximizes

2(9.1) = 3" By [Boiotlog £(7 € (A)5:60)} | wi. (22)

iel

This selection criterion is based on the knowledge of the true density ¢g(y) which is unfor-
tunately not often the case in practice. Therefore, we should rather maximize a statistic
&(g, f) which is an estimator of ¢(g, f) based on the sample Y. The counterpart of (2.2)
is X . .
tc(0c) =log La(0c) = ) log f(Y € Ai; fo)w;
el
and yields therefore an estimator.

( ) use the standard likelihood theory under misspecification
for the composite likelihood. Under usual regularity assumptions, they have shown that
the estimator above is biased and have introduced a modification in order to correct the
first-order bias. They suggest the composite likelihood information criterion under the
form stated below. If 6, is a pseudo-true parameter value that minimizes the composite
Kullback-Leibler divergence and Y a random sample, let g(y) = f(y;6°) be the correct
model. For J(6,) and H(f,) which are defined as follows

J(eg) = Varg(y){vgc(eg; Y)]’? H(eg) = Eg(y){VQZC'(eg? Y)}7
the composite likelihood information criterion selects the model minimizing

=2 [te(Be) + r{J (0o) H (00) Y] (2.3)

where J(0c) and H(0¢) are consistent and first-order unbiased estimators of J (0y), re-
spectively H(6,).

10



Chapter 3
Spatial prediction

In this chapter the problem of predicting unobserved signals based on observed data is
discussed. In geostatistics, the standard approach to obtain a predictor at ungauged loca-
tions is called kriging (see ( ), ( ),

( ) and ( )). This approach is based on finding the minimum
mean square error predictor which is equivalent to basing the predictor on the full condi-
tional density. However, in more complex models, for example if the underlying process is
a max-stable process, the full likelihood is not available. Only lower order joint densities
can be obtained.

It is thus interesting to develop a predictor for Z(x) using pairwise likelihood and apply
it to processes for which the full likelihood is not available. In order to study the behavior
of such a predictor, the Gaussian case is first considered as the full likelihood is known and
the predictors can be compared directly through the mean square prediction error.

3.1 Ordinary kriging in the Gaussian case

Before discussing the kriging estimator, recall the definition of a stationary isotropic Gaus-
sian process.

Definition 2. A stationary isotropic Gaussian process can be defined as a stochastic
process Z(x), where € X and X C R% and the joint distributions of (Z(x1), Z(x2),..".)
are multivariate normal with

E[Z(x1)] = E[Z(x2)] = --- = p,
cov[Z(w;), Z(x;)] = y([|lzi — z;])),

where z; € X C R? and 7(+) is a covariance function.

Consider now the problem of predicting the value of the random variable Z at an
ungauged location = € X', Z(z), based on observed data Z(x1), ..., Z(x,) which are sup-
posed to be generated by the Gaussian model defined above. In the following the covari-
ance matrix of the process Z = {Z(x1),...,Z(x,)} will be denoted as V = 2R where

11



0? = var{Z(z;)} and R;; = p(||z; —x;||) corresponds to the correlation between Z(z;) and
Z(wj) . R

The predictor Z(x) of Z(x) which is of interest is that minimizing the mean square
prediction error of Z(x)

MSE {Z(x)} —-E [{Z(x) — 722, (3.1)

where the expectation is with respect to the joint distribution of Z(z) and Z(z) or, equiva-
lently, the joint distribution of Z(x) and Z(z1),..., Z(z,). In prediction, the unconditional
mean square error defined in (3.1) is distinguished from the conditional mean square error;

MSE {Z(m)} —E [{Z(x) — Z@N?|Z(x1) = 2(21), ..., Z(zy) = z(xn)] .

In the following, mean square prediction error refers to the one defined in (3.1).
The following theorem gives the minimum mean square predictor.

Theorem 1. ( ( ), page 135). The mean square prediction
error of Z(x), MSE{Z(Q:)}, is minimized at

Z(x) = B[Z(@){Z(x1)..... Z(xn))].

As in the Gaussian setting the multivariate conditional distribution is also multivariate
normal, the minimum mean square error predictor Z(z) and its variance can be obtained
immediately. More formally, the following well-known result applies.

Theorem 2. ( ( ), page 136). If X = (X1,X2) ~ N (1, %)
are jointly multivariate normal, with p = (p1, p2) and
Xn E12]
¥ = ,
[221 Y92

then the conditional distribution of X1 given Xo is also multivariate normal
X1] Xz ~ N (1 + Z12855 (X2 — p2), B11 — 12855 Do)

Denoting r = (r1,...,7,)7 where r; = p(||z — 2;]|), i = 1,...,n, the minimum mean
square error predictor Z(z) is readily obtained when applying the theorem to the joint
distribution of X; = Z(z) and X9 = Z with mean vector u1 and covariance matrix

o T
X = [021‘ 02R] ’
This yields the minimum mean square error predictor for Z(x)
Z(z) = p+rTR7YZ — p1}. (3.2)

Notice that the predictor obtained in (3.2) is also obtained considering a full likelihood
approach. The corresponding prediction variance is equal to the mean square prediction
error in this particular setting

~

MSE {Z(:p)} = var {Z(J:)} =o’(1—r"R7'r). (3.3)

12



3.2. EXTENSION TO K OBSERVATIONS

3.2 Extension to k& observations

The kriging concept can be extended to datasets Z;(z1),...,Zj(xyn), j =1,...,k, where k
observations at each location are available.

Here a further assumption needs to be made. The observation to be predicted is
supposed to be, say, Z;(z) and is therefore only correlated with the first observations at
the other locations. The minimum mean square error predictor can thus be found using a
cokriging approach ( ( ), Section 3.2.3).

The estimator is thus a linear combination of all available observations and can be

written as
n k
=22 MiiZi(ai).

i=1 j=1
This estimator is required to be uniformly unbiased, E{Zl (z)} = u, yielding the condition
n k
D) IRV
i=1 j=1
The minimisation problem to be solved now can thus be written as

2

n k
min  E [{ Zy(z) — ZZAjizj(%)

i=1 j=1

k
such that z": Z Aji = 1.

i=1 j=1
Let m be the Lagrange multiplier of the problem and rewrite it as
var {zl(x) - Zl(;g)} + [E {zl( ) — Zi(x H —m ZZM —1]. 34
i=1 j=1

Notice that the second term will vanish as the estimator is chosen to be uniformly unbiased.
Moreover, the first term can be expanded and, as Z;j is not correlated with Z, for j # p,
is equal to

n k
var {Z1(z)} + Z Z )\?ivar {Z;(z;)}

i=1 j=1
—i—ZZZAﬂ/\ﬂCOV{Z (i), Zj(xr) —QZZ)\TLCOV{Zl Zj(x;)}
i<l j=1 i=1 j=1
= 0 +U2ZZA2 +2aQZZAﬂA]lRZz 207 ZAM
i=1 j=1 i<l j=1

13



Differentiating (3.4) with respect to m, A;j for i =1,...,n and j = 1,...k in order to
find the optimal values yields the following system of equations

n

20°> ARy —20"ri—m=0 i=1,...,n (3.5)
=1
n

20°> NgRy—-m=0 j=2..ni=1,..n (3.6)
=1

In this case the mean square prediction error equals
n
MSE {Zl(:z)} =02 —o? Z AT + m. (3.7)
i=1

Intuitively, as Z; is not correlated with Z,, for j # p, one would assume that A;; = 0 for
7=2,...,n,9=1,...,n and thus that this predictor is equivalent to the one obtained in
(3.2). However, under these assumptions, denoting A = (A11,...,A1p), the optimal value
of A would equal

A=rTR7Y

where r = (r1,...,m)T with r; = p(Jlz — 2i]|), i = 1,...,n and Ri; = p(||z; — zj]|)
corresponds to the correlation between Z(x;) and Z(zj). Thus the optimal predictor
would be equal to

Z(z) =rTR7'Z,.

This intuition is however misleading as the condition ) , Z?:l Aji = 1 is not satisfied
because Y ", r" R~ # 1. There is thus an influence of the observations j = 2,...,n on
the predictor Z;(x) for the ungauged location z.

3.3 Kiriging in the Gaussian case using pairwise likelihoods

Several problems may arise with the kriging approaches seen previously. It may not al-
ways be easy to solve the cokriging system of equations, especially for large datasets. As
an alternative, the full likelihood approach yielding the predictor defined in (3.2) may be
considered. However, for complicated models the full likelihood may not be known ana-
lytically or requires too much computational effort. A different approach to the kriging
problem which relies on the knowledge of pairwise densities only is therefore considered.

As before, the observation to be predicted is Zi(x) and is thus only correlated with
the first observations of the other locations. The corresponding pairwise likelihood can be
written as

kE n
Le{Zi()} = [T T H2 @)1 2 ()},

j=1i=1

14



3.3. KRIGING IN THE GAUSSIAN CASE USING PAIRWISE LIKELIHOODS

and the corresponding log likelihood as

k n
le{Zi(2)} = ) wjilog f{Z1(x)|Z;(x:)}

j=1 =1
= Z <w1i [—; log{2mc?(1 — r2)} — W(ll—rz) (Z1(z) = [+ ri{ Z;(z;) — MH)Q
i=1 v

1
+ Z Wi |: 10g{27ra2} - 0_2 {Zl(x) - M}Q
The objective is to maximize this likelihood with respect to Z;(x). The score equation

e 3 Zo(x) n L
Ca{Zl(Cx)} = _Z 02 ' Zl( ) — [,u+ri{Z1(fL‘i)—M}])—FZTJ;{Zl(iﬂ)_M}
i=1 j=2

= 0

allows us to obtain the maximiser Zc(aj) Solving this equation with respect to Zc(x)
gives the following composite likelihood predictor for Z(x)

i (e e - i + T )
Zo(x) = .
Y (7t +z] 2?;)

This predictor only takes into account observation 1. Therefore the weights wj;, j =
..k, i =1,...,n can be set to be equal to 0. Consequently, the change of notation
wi; = w;, ¢ = 1,...,n is introduced. This yields the following pairwise predictor

. 2imt 1oz I ritZi(@i) — p]
ZC(‘T) = Zn w; :

=1 1—7",L-

(3.8)

This formula illustrates that if the parameters are known in advance, as for the first
part of the simulation study, the additional observations are wasted. However, they may
indirectly influence the predictor if the parameters of the Gaussian process are estimated.

The predictor obtained in (3.8) yields a sub-optimal linear predictor for Z(x). As we
are interested in finding the mean square prediction error of this predictor, its variance

15



needs to be calculated;

var {Zc(a:)}

( Wirg 1+ ri{ Z1(2i) — MH)

§

7<i J

" WiT; Wy
e ) 22 Tt g 1alm), i)
2
2

n
wzr
—i—; 1= var{Zl(xl)}]
n
2 Wy
= ag <Zl_r2> 221_7'21 rj"”zR]l
=1 ? 1<t ?
n 2.9
wAr
) (L=r7)

The mean square prediction error then equals

MSE {Zc(a:)} -

as the predictor is unbiased. The aim is to find weights such that the mean square predic-
tion error is minimal. Different weights are considered for the simulation study because it

E [{Z(l‘) — Zc(aj‘)2}:|
var {Z(m) — Zc(x)} +E{Z(z) - Zc(x)}2

{
var{Z(x)} + var {Zc(x)} — 2cov {Zc(x), Z(ZL’)}

i=1
n
cov {Z<x>, ; 2 i) - u}]}
n -1 n
o2 + var {ZC(:U)} -2 (Z 1 Z_UT2> cov {Z(x), Z 17"%74;12 Zl(xl)}
: o w ) w.r;l
o? 4 var {Zc<$)} — 202 (; N —17"1-2> 2.1 _Z ;3

is intractable to obtain the optimal weights analytically.

It would be interesting to compare the above mean square prediction error to the mean
square prediction errors obtained in equations (3.3) and (3.7).
analytical problem, a numerical example is provided here. As described in section 3.4, a
Gaussian process with underlying powered exponential covariance function observed at 6
locations as well as at the location to be kriged is simulated. The parameter values are

16
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3.4. SIMULATION STUDY

assumed to be known in order to calculate the predictors and their mean square prediction
errors. Applying the different prediction methods, the following averages for the mean
square prediction errors over 10,000 simulations are obtained; the one corresponding to
the best linear predictor based on one observation at each location (see equation (3.3))
equals 0.239, whereas the one based on all 25 observations (see equation (3.7)) is equal
to 0.240. Finally the mean square prediction error for the pairwise likelihood approach
described above equals 0.309. These results indicate that if all observations are taken into
account, there is only little improvement in the mean square prediction error comparing to
the full likelihood approach. However, there is the expected loss in precision if the pairwise
predictor is considered.

3.4 Simulation study

The objective of this chapter is to investigate the behavior of the pairwise kriging predictor
and compare it to the optimal kriging predictor. For the simulation study, let us consider
three different covariance functions, the exponential, the Whittle-Matérn and the Cauchy
covariance function. This allows to discover differences in the performance of the predictors
due to the underlying covariance function.

Recall first the definition of the powered exponential covariance function

~(h; 6,02) = o2 exp { <—Z>V} , h>0,

which depends on the parameters 02 > 0, 8 > 0, v > 0 and on the euclidean distance
h between two positions Z(z;) and Z(z;). In this case, the parameter 3 determines how
long the dependence range is.

Another possible choice is the Whittle-Matérn covariance function which is given by

o 2R\ (h
’Y(h70' 7&71/)*0- F(V) <ﬁ> Kl/<ﬂ>7 h>07

where K, (+) is the modified Bessel function of third kind of order v > 0 and T'() is the
gamma function.
Moreover, the Cauchy covariance function is given by

2\ —V
’V(h;027ﬂ,1/)=02{1+(g>} . h>0,

where 8 > 0 and v > 0 are the range and the smooth parameters, respectively.

The parameter values of p and o2 are fixed to be equal to 0 and 1, respectively.
Moreover, assume that there are 6 or 15 locations which are either uniformly distributed on
[0, 15] or form a regular grid on the same interval. Figure 3.1 shows the different parameter
settings for covariance functions that are considered for the simulation studies. The code
was implemented in R and, in order to reduce the computation time, the computation of
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Figure 3.1: From left to right: Powered exponential, Whittle-Matérn and Cauchy covari-
ance functions for different dependence configurations.

the pairwise likelihood, its gradient as well as the pairwise predictor and its mean square
prediction error were implemented in C.

As already mentioned earlier, it is not obvious how to choose the weights for the pairwise
predictors in order to minimize the mean square prediction error. Different choices of
weights, all normalized such that they sum up to one, are therefore considered for the
construction of the pairwise kriging predictor Zc(x) The first choice of weights is the
most basic one, setting

wi:l, i=1,...,n, (3.9)
n
and yielding the corresponding predictor denoted ch (z). A second pairwise predictor,
Zc,(x), is obtained by taking weights that are monotonic decreasing in ||z; — z||;

1|z —z|| = #=x
w; X { [llwi =2l @i # (3.10)
1 T, =T
fori=1,...,n, where || - || denotes the euclidean distance between the two locations. This

choice seems plausible as stations that are located closer to the one being kriged should be
given more weight than stations that are further apart from x. A third predictor, Z¢, (),
can be computed considering a normalized version of the weights given by the formula

s — {1 if || — | < 0Ly Il — ] (3.11)

0 if [l — al] > 5 X0y [l — .

In the following sections, different types of simulations are performed. In a first part, the
predictors are calculated under the assumption that the true parameters of the Gaussian
process are known. Later, they will be estimated and the effect of the estimation on the
kriging predictor analysed.
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3.4. SIMULATION STUDY

3.4.1 Prediction of an observation at an ungauged location

This section investigates the simulation output for Gaussian processes where the underlying
correlation structure as well as the corresponding parameters are supposed to be known.

Consider first the particular parameter setting where n = 6 locations, z1,...,xg, are
uniformly but randomly distributed on the interval [0, 15]. The location x to be interpo-
lated is uniformly, randomly generated at each simulation on the same interval. Suppose
moreover that the underlying correlation structure is powered exponential with parameter
settings corresponding to short, medium and long range dependence on the interval [0, 15]
(Figure 3.1).

For each of the 10,000 simulations, k¥ = 25 observations of the Gaussian process are
reported at each location including location . Based on the observations at x1,...,xg it
is possible to compute predictors at x. As discussed in chapter 3, different predictors are
to be compared to the best linear predictor, Z (z), which can be obtained by solving the
system of equations (3.5)—(3.6). One alternative predictor, denoted Zi(x), is based on the
full conditional density or, equivalently, on a full likelihood approach as defined in (3.2). In
the particular case where the process is only observed once at each location, this predictor
is equal to Z(z). Finally, the pairwise likelihood predictor as defined in (3.8) is calculated.
For the simulation study, three different pairwise predictors, Z¢, (), Zc,(2) and Zg, (z),
corresponding to the weight functions (3.9)—(3.11) are considered.

Figure 3.2 shows the boxplots of the true value of Z(x) as well as the different predictors
for the different strengths of correlation. It is immediate that if the observations are only
weakly correlated, the predictions tend to be close to the mean of the process whereas the
true values may not be. As the observations get more strongly correlated, the shapes of
the boxplots become more similar, thus the distribution of the predictors is closer to the
distribution of the true values observed at x.

7 ‘“’i A T "”i P
e 11 I I

L

-2

-3

]
]

Figure 3.2: Boxplots of true values and predictors for Z(z) based on 10,000 simulations of
25 observations at 6 locations which are uniformly distributed on [0, 15]. From left to right:
powered exponential covariance function with short, medium and long range dependences.

In addition, there are differences in the behavior of the prediction methods. It is most
obvious that the pairwise predictor Z¢, (z) has always the smallest interquantile range.
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The predicted values seem too much shrunk to the mean of the process. The other two
pairwise predictors are similarly distributed, but slightly more spread, and get closer to
the distribution of the true value as the dependence range increases. Similarly, there seems
to be no distributional difference between the best linear predictor and the full likelihood
predictor. There seems to be little improvement in the prediction when all observations
are considered for the construction of the predictor.

For a more detailed analysis of the predictors, the performance of the predictors may
be compared to the best linear predictor through the analysis of the ratio of the mean
square prediction errors

MSE{Z(:U)}
MSE[p{Z;(z;) :i=1,...,n,5=1,...,k}]

where p{-} stands for a specific predictor. The mean square prediction error for each
predictor are calculated in two ways, either using the formulae obtained in sections 3.1, 3.2
and 3.3 or the empirical mean square prediction error [Z(z) — p{Z(x)}]?. Tables 3.1-3.3
show the simulation results, where the gauged locations are also considered to be regularly
spaced on [0,15]. In addition, predictors are also calculated if the underlying covariance
function is Cauchy or Whittle-Matérn.

In general, the empirical and the theoretical mean square error are equivalent, reflecting
that using 10,000 simulations is adequate. In addition, the average predictors are nearly
always equal for the different approaches. However, there is a persistent difference in the
minimum mean square prediction error between the two grids. The minimum mean square
prediction error is greater if the locations are uniformly distributed.

For all correlation functions and strengths of correlation the full likelihood approach
is equivalent to the best linear predictor. This shows that the influence of observations
with which Z(z) is not correlated is negligible. This was also confirmed when performing
simulations with 50 observations per location.

RMSE =

Table 3.1: Average predictors for uniformly, randomly generated locations, [MSE, empir-
ical MSE| and (RMSE, empirical RMSE) respectively, based on 10,000 simulations of 25
observations at 6 locations. Short range dependence.

Regular Uniform

Exponential Whittle-Matérn Cauchy Exponential Whittle-Matérn  Cauchy
Z(x) 0.01 0.00 0.01 0.00 0.00 0.00
Z(m) -0.01 [0.31, 0.30] -0.01 [0.16, 0.16]  0.00 [0.28, 0.27]  0.00 [0.45, 0.45]  0.00 [0.33, 0.33]  0.00 [0.43, 0.43]
Zg(:])) -0.01 (1.0, 1.0) -0.01 (1.0, 1.0) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0)
ch (z) 0.00 (1.7, 1.6) 0.00 (2.0, 1.9) 0.00 (1.7, 1.6) 0.00 (1.5, 1.3) 0.00 (1.7, 1.3) 0.00 (2.0, 1.3)
202 (z) 0.00 (1.1, 1.2) 0.00 (1.3, 1.3) 0.00 (1.1, 1.2) 0.00 (1.1, 1.1) 0.00 (1.3, 1.2) 0.00 (1.5, 1.1)
203 (z) 0.00 (1.3, 1.3) 0.00 (1.4, 1.4) 0.00 (1.3, 1.3) 0.00 (1.2, 1.1) 0.00 (1.4, 1.2) 0.00 (1.6, 1.1)

If the dependence range is small (Table 3.1), the inflation of the mean square error
ratio is considerably low when considering composite likelihoods. Especially the second
and the third composite likelihood approaches yield very reasonable results.
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3.4. SIMULATION STUDY

Table 3.2: Average predictors for uniformly, randomly generated locations, [MSE, empir-
ical MSE| and (RMSE, empirical RMSE) respectively, based on 10,000 simulations of 25
observations at 6 locations. Medium range dependence.

Regular Uniform
Exponential Whittle-Matérn  Cauchy Exponential Whittle-Matérn ~ Cauchy
Z(x) 0.00 0.00 0.00 0.00 0.00 0.00
Z(ac) 0.00 [0.13, 0.13]  0.00 [0.04, 0.04] 0.00 [0.04, 0.04] 0.00 [0.24, 0.24] 0.00 [0.13, 0.13]  0.00 [0.12, 0.13]

Ze(x)  0.00(1.0,1.0) 0.0 (1.0, 1.0)  0.00 (1.0, 1.0)  0.00 (1.0,1.0)  0.00 (1.0, 1.0)  0.00 (1.0, 1.0)
Zey(z)  0.00 (1.7,1.7)  0.00 (2.2,2.2)  0.00 (3.4,2.7)  0.00 (1.5, 1.3)  0.00 (1.9, 1.5)  0.00 (2.0, 1.8)
Zoy,(x)  0.00 (1.1, 1.1)  0.00 (1.5, 1.4)  0.00 (2.3, 1.7)  0.00 (1.1, 1.1)  0.00 (1.6, 1.3)  0.00 (1.7, 1.7)
Zo,(x)  0.00(1.2,1.3)  0.00 (1.5,1.6)  0.00 (2.4, 1.8)  0.00 (1.2, 1.1)  0.00 (1.6, 1.3)  0.00 (1.8, 1.7)

Table 3.3: Average predictors for uniformly, randomly generated locations, [MSE, empir-
ical MSE| and (RMSE, empirical RMSE) respectively, based on 10,000 simulations of 25
observations at 6 locations. Long range dependence.

Regular Uniform

Exponential Whittle-Matérn  Cauchy Exponential Whittle-Matérn  Cauchy
Z(x) 0.00 0.00 0.00 -0.01 -0.01 -0.01
Z(a:) 0.00 [0.05, 0.05]  0.00 [0.01, 0.01]  0.00 [0.002, 0.002] 0.00 [0.11, 0.12]  0.00 [0.05, 0.05]  0.00 [0.01, 0.01]
Zy(x) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0)
ch (z) 0.00 (1.6, 1.6) 0.00 (2.1, 2.3) 0.00 (42.6, 7.7) 0.00 (1.4, 1.3) 0.00 (2.1, 1.8) 0.00 (51.1, 6.6)
Zcz (z) 0.00 (1.1, 1.1) 0.00 (1.6, 1.6) 0.00 (37.3, 5.0) 0.00 (1.1, 1.1) 0.00 (1.8, 1.6) 0.00 (44.9, 5.9)
203 (z) 0.00 (1.2, 1.2) 0.00 (1.6, 1.7) 0.00 (34.0, 5.7) 0.00 (1.2, 1.1) 0.00 (1.9, 1.5) 0.00 (45.3, 5.7)

Considering the medium correlation configuration (Table 3.2), the most striking obser-
vation is the decrease of the mean square prediction error of the optimal predictor. The
ratios of the mean square prediction errors have nearly the same values as before mean-
ing that the pairwise predictor improves the same way as the best linear predictors if the
observations are more correlated. The only exception is when the underlying covariance
function is Cauchy and the grid is regular.

Finally, when the observation are strongly correlated the optimal predictor becomes
even more precise in terms of mean square prediction error (Table 3.3). In particular, with
an underlying Cauchy covariance function the mean square error is very small and thus the
ratios of mean square errors are much more inflated for the composite predictors. For the
other covariance functions, the ratio of mean square prediction errors remain again nearly
the same as for the medium covariance setting.

Increasing the number of sites on [0, 15] to 15 for the medium range dependence (Table
3.4) yields a significant improvement of the mean square prediction error compared to
the ones obtained for 6 sites shown in Table 3.2. Due to particularly small minimum
mean square prediction errors in the case of an underlying Cauchy covariance function the
theoretical mean square prediction error ratios are very large.
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Moreover, it is interesting to observe that the inflation of the mean square error due to
the use of pairwise predictors is greater if there are 15 locations except for Zcz. This sug-
gests that the other two pairwise predictors are not able to use the additional information
as efficiently as the best linear predictor does.

The analyses for the short and long range dependences are not provided here as the
results are similar, but scaled.

Table 3.4: Average predictors for uniformly, randomly generated locations, [MSE, empir-
ical MSE| and (RMSE, empirical RMSE) respectively, based on 10,000 simulations of 25
observations at 15 locations. Medium range dependence.

Regular Uniform

Exponential Whittle-Matérn ~ Cauchy Exponential Whittle-Matérn Cauchy
Z(x) 0.00 0.00 0.00 0.00 -0.01 -0.01
Z(x) 0.00 [0.05, 0.05]  0.00 [0.01, 0.01]  0.00 [0.001, 0.001] -0.01 [0.08, 0.08] -0.01 [0.01, 0.01] -0.01 [0.001, 0.001]
Zy(x) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0) 0.00 (1.0, 1.0) -0.01 (1.0, 1.0) -0.01 (1.0, 1.0) -0.01 (1.0, 1.0)
ch (z) 0.00 (3.0, 3.1) 0.00 (4.0, 4.7) 0.00 (> 102, 29) 0.00 (2.4, 2.3) 0.00 (3.6, 4.0) 0.00 (> 102, 64)
Zey(z) 000 (1.2,1.2)  0.00 (1.8, 1.8)  0.00 (> 102, 9) 0.00 (1.2, 1.3) 0.00 (2.2, 2.3) 0.00 (> 102, 35)
an (z) 0.00 (1.9, 2.0) 0.00 (2.5, 2.9) 0.00 (> 102, 17) 0.00 (1.6, 1.6) 0.00 (2.5, 2.6) 0.00 (> 102, 41)

The previous results show that the first choice of weights is clearly the most inappro-
priate. The other two weight functions yield nearly equivalent predictors if there are only
6 locations. However, increasing the number of sites shows that the second weight function
is yielding best results.

In order to try improving the third pairwise likelihood predictor, consider a more elabo-
rated version of the third weight function related to the approach suggested by

( ) and ( ). In their approach the cut-off weights are defined as

1 i =2l <6
o e — ]| > 6,

such that J is the value minimizing the mean square prediction error. Figure 3.3 shows
how the mean square prediction error evolves as a function of § for a fixed number of
observations, replications and sites.

These plots show that there is nearly no change in the mean square prediction error
as ¢ increases. There seems to be no point in considering different values of ¢ in order to
choose the weights such that the mean square error is minimal.
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3.4. SIMULATION STUDY
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Figure 3.3: Mean square prediction errors computed for different values of § for simulated
samples based on 25 observations, 6 locations and 10,000 simulations. The parameters
of the covariance functions are assumed to be known. From left to right: Exponential,
Whittle-Matérn and Cauchy covariance functions.

3.4.2 Influence of parameter estimation on the prediction

This section investigates the situation where the parameters of the Gaussian process need
to be estimated first. This can either be done by full likelihood estimation or by pairwise
likelihood estimation where all the pairs are given a common constant weight. The number
of times the process is observed at each location is likely to play a more important role as
it improves the quality of the parameter estimates. Based on these estimates, it is then
possible to establish predictors for ungauged locations. Hence, there are two potential
sources of errors, the estimation error and the prediction error.

Consider first a process with underlying powered exponential covariance function. Only
the results for the medium correlation are shown as parameter estimation for Gaussian
processes by means of pairwise likelihood was already investigated by ( ).
Table 3.5 indicates the maximum likelihood and the maximum pairwise likelihood estimates
as well as the corresponding normalized standard errors for the parameters of the Gaussian
process. The standard errors are calculated by means of the inverse of the sandwich
information matrix as described in section 1.1. They are therefore referred to as sandwich
estimates. Detailed calculations of the gradients for the pairwise likelihoods can be found
in the appendix.

It is interesting to observe in Table 3.5 that the estimates do not get significantly
more precise as the number of observations increases. Even more observations would be
required to improve the quality of the estimates ( ( )). In addition, there
is no remarkable difference in the estimation due to the distribution of the locations on
[0, 15].

Comparing the two methods, maximum likelihood estimation is, as expected, superior
to pairwise. Nevertheless, the pairwise approach seems competitive as it yields reasonable
estimates.

Consider now the parameter estimates obtained for a process with underlying Whittle-

23



Table 3.5: Average parameter estimation for powered exponential covariance function with
medium range dependence using full and pairwise likelihood based on 1000 simulations
of 25 and 50 observations, respectively, at 6 locations. Standard errors for the pairwise
likelihood estimates are obtained through sandwich estimates. True values: u =0, 02 = 1,
f=8and v=1.

k  grid likelihood i (VE-se(ir)) 62 (Vkse(6?)) B (VEkse(B)) v (Vk-se(D))
25 regular  full 0.00 (0.73) 0 98 (0.88) 8.47 (16.0) 1.02 (0.99)
pairwise  0.00 (0.76)  0.98 (0.90) 9.22 (54.3)  0.99 (2.43)
uniform ~ full 0.00 (0.78)  0.98 (0.96) 8.41 (15.7) 1.01 (0.63)
pairwise  0.00 (0.81)  0.98 (0.94) 8.84 (22.8) 1.01 (0.90)
50 regular  full 0.00 (0.74)  0.99 (0.88) 8.14 (13.8) 1.01 (0.98)
pairwise  0.00 (0.76)  0.99 (0.90) 8.85 (33.6)  0.97 (1.88)
uniform  full 0.00 (0.79)  0.98 (0.97) 8.09 (14.3) 1.01 (0.63)
pairwise  0.00 (0.81)  0.98 (0.98) 8.35 (19.8) 1.00 (0.89)

Matérn covariance function (Table 3.6). It is not possible to compute a standard error for
the pairwise estimates as the gradient of the log likelihood is not known analytically.

If there are only 25 observations, the estimation of 3 is not very precise for neither of
the methods when the gauged locations are on a uniform grid. Furthermore, the pairwise
likelihood does not yield precise parameter estimates for v unless there are 50 observations.

A general issue with the Whittle-Mattérn covariance function is the identification prob-
lem of v ( ( )). As the considered sample is of size 1000, however,
the identification of the parameter v is good. Nevertheless, for smaller samples it may be
preferable to choose the shape parameter v from several values, in this case for example
from the discrete set {0.75,1,1.25}, such that the likelihood is maximal.

Table 3.6: Average parameter estimation for Whittle-Matérn covariance function with
medium range dependence using full and pairwise likelihood based on 1000 simulations of
25 and 50 observations, respectively, at 6 locations. True values: =0, 0> =1, 3 =5 and
v=1.

k  grid likelihood i (Vk-se(r)) 62 (Vkse(6?) B (Vkse(B)) v (Vkse(®))

25 regular  full 0.00 (0.79) 0.92 (0.52) 4.97 (9.03) 1.08 (1.66)
pairwise  0.00 (-) 0.91 (-) 5.14 (<) 1.63 ()

uniform  full 0.01 (0.85)  0.92 (0.55) 5.45 (9.90) 0.9 (0.81)
pairwise  -0.01 (-) 0.90 (-) 4.51 (-) 1.92 (-)

50 regular full 0.00 (0.75)  0.94 (0.55) 195 (8.48)  1.03 (1.40)
pairwise  0.00 (-) 0.93 (-) 5.01 (-) 1.19 ()

uniform  full -0.01 (0.81)  0.93 (0.59) 4.82 (5.56) 1.01 (0.61)
pairwise  -0.01 () 0.93 (-) 491 () 1.06 (-)
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3.4. SIMULATION STUDY

Similar analyses can be carried out when investigating the estimates (Table 3.7) for the
process with underlying Cauchy covariance function. The parameters pu and o2 are well
estimated by both the full and the pairwise likelihood approaches even if there are only
25 observations. The shape parameter v gains precision as the number of observations at
each location increases. The same is true for the range parameter g if the full likelihood
estimation is considered. In contrast, the estimation of § by pairwise likelihood yields
much larger values than the true one.

Table 3.7: Average parameter estimation for Cauchy covariance function with medium
range dependence using full and pairwise likelihood based on 1000 simulations of 25 and
50 observations, respectively, at 6 locations. Standard errors for the pairwise likelihood
estimates are obtained through sandwich estimates. True values: u =0, 0?2 =1, f = 3
and v =0 — 5.

k  grid likelihood i (VE-se(i)) 62 (Vkse(6?)) B (VEse(B)) v (Vise(D))
25 regular  full 20.0L (0.73) 0 93 (0.87) 3.31 (5.20)  0.90 (3.16)
pairwise  -0.01 (0.76)  0.98 (0.85) 778 (29.2)  0.68 (43.8)
uniform  full 0.00 (0.77) 0.98 (0.95) 3.32 (3.30) 0.70 (2.92)
pairwise  0.00 (0.81) 0.98 (0.95) 8.35 (36.9) 0.53 (74.5)
50 regular  full 0.00 (0.74) 0.95 (0.89) 3.05 (3.92) 0.55 (1.46)
pairwise  0.00 (0.77)  0.98 (0.90) 7.29 (154) 053 (13.2)
uniform ~ full 0.00 (0.78)  0.99 (0.98) 3.00 (2.66)  0.56 (1.30)
pairwise  0.00 (0.81) 0.99 (0.99) 7.04 (26.9) 0.51 (28.2)

As the objective is to predict an observation at an ungauged location, the obtained es-
timates can be used to compute different predictors. The best linear predictor is calculated
in two ways, using the estimates obtained through full and pairwise likelihood methods
yielding Z fe(x) and Zpe(ac), respectively. Moreover, the full likelihood predictor and the
three pairwise predictors introduced previously are again considered. Naturally, the corre-
sponding estimates are used for the calculations. The theoretical mean square prediction
error becomes a plug-in mean square prediction error using the estimates.

The results for 25 observations with medium correlation configuration are indicated
in Table 3.8. Comparing Z fe(x) and Zye(), there is no significant difference between the
best linear predictors obtained through replacing the true values by the different estimates.
The pairwise estimates imply however a loss in efficiency.

The full likelihood predictor is equivalent to the best linear predictor. Even if the
estimation of the parameters may not be very precise in the pairwise setting, its influence
on the predictors is negligible. In contrast, the plug-in mean square prediction errors are
very sensitive to the estimated values of parameters. Plugging-in the pairwise estimates
turns out to be very inappropriate. The ratios of mean square prediction errors are not
reasonable at all for most of the considered settings. Therefore inference should not be
based on the pairwise plug-in mean square prediction error.

In this context, the Whittle-Matérn and the Cauchy covariance functions are the ones
yielding most precise results in terms of mean square prediction errors. In addition, the
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pairwise predictor calculated with the second weight function is most efficient.

Increasing the number of observations to 50 changes the obtained predictors only
slightly (Table 3.9). The only remarkable improvement is in the ratios of the empiri-
cal mean square prediction errors for uniformly distributed locations where a process with
underlying exponential or Whittle-Matérn covariance function is observed.

A comparison of the predictors for a random location of a Gaussian process can now
be provided. For all considered correlation structures, the predictors are reasonable even
if the estimates of the covariance parameters may not be very close to the true values.
However, the plug-in mean square prediction errors are not reliable.

As already discussed in section 3.4.1, the empirical mean square prediction errors for
the pairwise predictors are, as expected, inflated. The mean square prediction error is
minimal if the weights are inversely proportional to the distance to the kriging location. In
addition, the most competitive results in terms of the mean square prediction are obtained
using the Whittle-Matérn or the Cauchy covariance function.

Table 3.8: Average predictors for uniformly, randomly generated locations, [MSE, empir-
ical MSE| and (RMSE, empirical RMSE) respectively, based on 1000 simulations of 25
observations at 6 locations. Medium correlation function.

Regular Uniform
Exponential Whittle-Matérn ~ Cauchy Exponential Whittle-Matérn ~ Cauchy
Z(x) 0.06 0.05 0.06 0.02 0.02 0.01

Zse(x)

Zpe(x)  0.04 (1.21,1.05)  0.05 (1.39, 1.03)  0.04 (0.83,1.23)  0.01 (1.01, 1.01)

Zy(z) 0.04 (1.00, 1.00)  0.05 (1.00, 1.00)  0.04 (1.00, 1.00) 0.01 (1.00, 1.00)  0.01

ch () 0.03(<0,1.82) 0.04 (<0,2.25) 0.04 (>102% 2.62) 0.00 (2.37, 1.28)  0.00

Zcy(x)  0.04(<0,1.18)  0.05(<0,1.39) 0.04 (> 102, 1.67) 0.01 (1.89,1.12)  0.00
.(z) 003 (<0,1.30) 0.04 (<0, 1.56) 0.04 (>102%,1.83) 0.00 (1.98, 1.15)  0.00

1.00, 1.00)  0.01
<0,1.51) 0.00
<0,1.37) 0.01
<0,1.38) 0.01

,_\,_\AA
—~ e~~~
o~~~ —~

0.04 [0.13, 0.13]  0.05 [0.04, 0.04]  0.04 [0.04, 0.04] 0.01 [0.24,0.24]  0.01 [0.13, 0.13]  0.01 [0.12, 0.12]
0.02 (0.93, 2.85)  0.02 (0.99, 1.76)

Table 3.9: Average predictors for uniformly, randomly generated locations, [MSE, empir-
ical MSE| and (RMSE, empirical RMSE) respectively, based on 1000 simulations of 50
observations at 6 locations. Medium correlation function.

Regular Uniform

Exponential Whittle-Matérn ~ Cauchy Exponential Whittle-Matérn Cauchy
Z(x) 0.00 0.00 0.02 0.00 0.00 -0.02
Zje(x)  0.00[0.13, 0.14]  0.00 [0.04, 0.04]  0.02 [0.04, 0.04] -0.01 [0.23, 0.24]  -0.01 [0.12, 0.13]  -0.01 [0.12, 0.13]
Zpe(z)  0.00 (1.21,1.02) 0.00 (1.14, 1.04)  0.03 (0.75, 1.46)  -0.01 (1.01, 1.00) -0.01 (1.05, 1.03) -0.01 (0.83, 1.04)

Ze(x)  0.00 (1.00, 1.00)  0.00 (1.00, 1.00)  0.02 (1.00, 1.00)  -0.01 (1.00, 1.00)  -0.01 (1.00, 1.00)  -0.01 (0.99, 1.00)

( (
(z) 0.01 (2.71,1.86) 0.01 (<0, 2.58) 0.02 (> 102, 2.86) 0.00 (<0,1.24)  0.00 (<0, 1.39)  -0.02 (> 102, 2.94)
Zey,(z)  0.01 (1.91,1.20)  0.01 (<0, 1.56)  0.02 (> 102, 1.84) -0.01 (<0, 1.09)  -0.01 (<0, 1.26)  -0.02 (> 102, 2.14)
( ( (

Zo,(x)  0.01(2.09,1.35) 0.01(<0,1.77)  0.02 (> 10%,2.05) -0.01 (<0,1.10) -0.01 (<0, 1.27)  -0.02 (> 102, 2.09)
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3.4. SIMULATION STUDY

The evolution of the mean square prediction error as a function of  for a fixed number of
observations, replications and sites is again investigated (Figure 3.4). As already observed
in Figure 3.3, where the parameters were known, there is nearly no change in the behavior
of the mean square prediction error if the parameters are estimated first. This approach
of finding minimal weights will therefore no longer be pursued.
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Figure 3.4: Mean square prediction error computed for different values of § for simulated
samples based on 25 observations, 6 locations and 1’000 simulations. The parameters of
the covariance functions are estimated. From left to right: Exponential, Whittle-Matérn
and Cauchy covariance functions.
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3.5 Parameter estimation and prediction when assuming a
wrong underlying correlation structure

As the underlying correlation structure is not known explicitly in applications, it is inter-
esting to check whether the predictors are sensitive to this. A single simulation setting, 6
sites, 25 observations and 1000 replications, is considered as the behavior of the predictors
is known as the values change.

Table 3.10 indicates the predictors, the empirical mean square prediction error and
the ratios of empirical mean square prediction errors, respectively, for Gaussian processes
observed at uniformly distributed locations. As the previous analyses have shown that
the plug-in estimates for the mean square prediction errors are not reliable due to the
estimated parameters, only the empirical mean square prediction errors are indicated.

All combinations of true and fitted models work well. The predictors are very close
to the true values. The empirical ratios of mean square prediction errors are about the
same for most of combinations of fitted and true models. The least precise predictors are
obtained when fitting a model with Cauchy covariance function to data that is generated
by a model with a different covariance function. As before, the pairwise predictor with the
second choice of weight does best among the three pairwise predictors that are investigated.

To conclude, assuming an underlying correlation structure that might not be the true
one does not cause particular problems, the predictors and the mean square prediction
errors still look reasonable.

Table 3.10: Average predictors for a random site [empirical MSE| and (empirical RMSE)
based on 6 uniformly distributed sites, 25 observations, 1000 replications, model fitted with
an incorrect covariance function.

Fitted model:  Exponential Whittle-Matérn Cauchy

True model: Cauchy Whittle-Matérn  Exponential Cauchy Exponential ~ Whittle-Matérn
Z(x) 0.02 0.02 0.02 0.02 -0.03 -0.01

Zte() 0.01 [0.14] 0.01 [0.13] 0.01 [0.24] 0.02 [0.13]  -0.02 [0.26]  -0.02 [0.27]
Zpe() 0.01 (1.46)  0.01 (1.08) 0.01 (1.01) 0.02 (1.26) -0.03 (1.30)  -0.03 (1.23)
Zo(x) 0.01 (1.00) 0.01 (1.00) 0.01 (1.00) 0.02 (1.00) -0.02 (1.00)  -0.02 (1.00)
ch (z) 0.00 (1.72) 0.00 (1.50) 0.00 (1.32) 0.00 (1.88) -0.03 (1.27)  -0.01 (1.24)
202 (z) 0.00 (1.60) 0.00 (1.38) 0.01 (1.14) 0.00 (1.72) -0.03 (1.10)  -0.01 (1.08)
203 (z) 0.00 (1.65) 0.00 (1.40) 0.00 (1.16) 0.00 (1.77)  -0.03 (1.08)  -0.00 (1.07)
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3.6. ANALYSIS OF THE MEAN PRECIPITATION DATA

3.6 Analysis of the mean precipitation data

The considered data are mean annual summer precipitations based on daily measurements
in the region of Ziirich (Figure 3.5). The distances between the 51 respective measurement
stations are given in kilometres. The range of distances reaches from 2 kilometres up to
nearly 60 kilometres. For each of these stations 47 annual means are reported. The mean
observations can therefore be described as Y;;, where j € 1,...,47and i € 1,...,51.

Switzerland

48.5
|

scale approx 1:2,400,000

46.0
|

Figure 3.5: Locations of the measurement stations.

The hypothesis that the mean precipitation data is normally distributed is checked by
graphical means (Figure 3.6). The histogram shows that the data are skewed and this is
confirmed by the normal QQ-plot. This may be due to strong dependences of the daily
rainfall and in addition, there may be another source of dependence through the spatial
component as all the locations are investigated simultaneously. Nevertheless, a Gaussian
process is fitted to the data and predictions at random locations calculated.

The parameter estimation is done by full and pairwise likelihood for different covari-
ance functions (Table 3.11). For a given covariance function, the different approaches yield
unexpectedly different parameter estimates. The shape of the profile likelihoods was inves-
tigated to make sure that the algorithm converged to the global maximum. The model fit
is thus assessed by means of the information criteria for full and pairwise likelihood (Table
3.12) described in sections 2.1 and 2.2, respectively.

As for the Whittle-Matérn covariance function it is not possible to calculate the gradient
for the shape parameter v, this parameter is first estimated using the profile likelihood. In a
second step, the other parameters are estimated and their gradients calculated. Considering
a fixed value for v allows thus to compute the information criterion.

If the models are fitted by full likelihood estimation, the AIC is minimal for the Whittle-
Matérn covariance function, indicating the best fit. According to the composite likelihood
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Figure 3.6: Histogram and QQ-plot of mean summer precipitation data.

information criterion, the powered exponential covariance function yields the most appro-
priate pairwise fitted model.

Table 3.11: Parameter estimation for Gaussian processes using full and pairwise likeli-
hood. Standard errors for the pairwise likelihood estimates are obtained through sandwich
estimates.

Covariance function Qo (se(fr)) 52 (se(6?)) B (se(p)) v (se(D))
Exponential full 4.72 (0.28) 5.19 (0.88) 123.79 (28.28) 0.88 (0.03)
pairwise 4.23 (0.11)  2.35 (0.16)  22.09 (1.41)  1.49 (0.04)
Whittle-Matérn full 4.71 (0.26) 4.70 (0.74) 131.0 (27.02) 0.41 (0.01)
pairwise  4.23 (-) 2.35 (-) 12.9 (-) 1.03 (-)
Cauchy full 4.49 (0.31) 5.62 (0.97) 2.38 (0.13) 0.04 (0.01)
pairwise 4.23 (0.11) 2.36 (0.16) 22.72 (3.84)  1.80 (0.57)

Predictors can thus be obtained for random ungauged locations (Table 3.13). Only the
full likelihood and the pairwise predictors are calculated. The best linear predictor is not
considered as the computational effort is too large compared to the improvement on the
full likelihood predictor.

Comparing to the full likelihood predictor, the second weight function yields the most
reasonable predictors among the pairwise predictors, despite the fact that the ratio of mean
square prediction errors is greater than the ones of the other pairwise predictors. Generally,
there is a massive increase, much more pronounced than in the simulation study, of the
ratio of mean square prediction errors when considering the pairwise setting. A probable
reason for this may be that the data are not properly normally distributed as discussed
before.

In order to check whether these prediction results are sensible, a cross-validation is
used. In this context, the parameters of the process are estimated using two-thirds of the
stations, meaning 34 stations, only. Based on these same stations, the observations at
the 17 remaining stations are predicted. Only the best linear predictor and the pairwise
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3.6. ANALYSIS OF THE MEAN PRECIPITATION DATA

Table 3.12: Information criterion (AIC and CLIC) scores for models fitted by full and
pairwise likelihood, respectively.

Covariance function AIC CLIC

Exponential 5289 2003
Whittle-Matérn 5274 2067
Cauchy 5738 2059

Table 3.13: Average predictors [MSE| and (RMSE) for 10,000 uniformly randomly gener-
ated ungauged locations, parameters of the Gaussian process estimated.

Exponential Whittle-Matérn  Cauchy

Zy(x)  3.85[0.29]  3.86 [0.30] 3.86 0.04]

Ze(z) 401 (6.96)  4.02 (6.77) 4.01 (51.25)
Zey(z)  3.93(7.52)  3.94 (7.23) 3.93 (56.25)
Zo,(z)  3.94 (7.14)  3.95 (6.87) 3.04 (52.75)

predictor based on the second weight function are considered. Figure 3.7 shows that there is
a considerable difference in the distributions of the best linear predictors and the pairwise
predictors. The distributions of the predictors indicate that they are not very close to
the true values for both approaches, but less in the pairwise setting. Besides, there is no
particular difference in the predictors due to the assumed correlation structure.

The prediction for the mean precipitation data turns out to be problematic. The mean
square prediction errors are very large if a pairwise predictor is considered. Moreover, the
pairwise predictors are often inappropriate. A reason for this may be that the data are not
exactly normally distributed and that the method is very sensitive to this hypothesis.
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Figure 3.7: Boxplots of true mean precipitation values (red), best linear and pairwise
predictors, Z fe(x) and Zc, (), respectively, for 17 randomly chosen stations based on
observations at remaining 34 locations. Green: exponential covariance function, blue:
Whittle-Matérn covariance function, light blue: Cauchy covariance function.
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Chapter 4

Max-stable processes

Extreme values observed at locations in a spatial domain may be modelled by max-stable
processes. Actually, these processes are the spatial analogues of multivariate extreme
value models. However, inference can only be based on composite likelihood methods as
the multivariate density function is intractable. Two special cases, the ‘random storm’
and the ‘random process’ formulations, for which the bivariate densities are available are
considered here.

Definition 3. Let {Z;(x)}pecx k = 1,..., K be independent replications of a continuous
stochastic process for an index set X' and assume that there are sequences of continuous
functions ag(z) > 0 and bi(z) € R such that

Z() = lim %1 Z6(@) — bila)

e X.
k—o0 ap(x) !

Provided that this limit exists, the limit process Z(z) is a max-stable process (

(1954)).

Without loss of generality, Z(z) is assumed to be stationary and if ax(xz) = k and
br(z) = 0 the margins of Z(z) are unit Fréchet with distribution function

1
pr(Z(xz) < z) = exp <_z> , xeX z>0.

Consider the particular canonical representation of a max-stable process where II is
a Poisson process on R of intensity s 2ds and {Ys(z) : z € X,s € R,} a collection
of independent identically distributed non-negative random processes with measure v on
Y =R satisfying E{Y;(z)} = 1 for all x. ( ) showed that

Z(x) = Y. X
(37) I?eai'}[cs s(aj)’ TE A,

is max-stable with unit Fréchet marginal distributions.
The ‘random storm’ model was first considered by ( ). More recently,
( ) applied composite likelihood approaches to this formulation in order to model
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spatial extremes. In this setting, let X = R? and Y,(2) = f(z — X,), where f is a
density function on X and X a point of a Poisson process of unit rate in X. The physical
interpretation of this process is as follows. If s is the magnitude of the storm at location
x, centred at X and of shape f, then sY,(x) is the impact of the storm at x. Therefore,
Z(z) is the impact of the largest storm observed at x.

( ) showed that if f is chosen to be multivariate normal with covariance
matrix ¥, the bivariate marginal distribution equals

1 a(h) 1 Zj 1 a(h) 1 2
Z(x) < 2, Z(x;) < 2} = _® g ) - Zo — log ) L
pr{ (.%' ) >z (IE‘]) — ZJ} exp{ 2 ( 9 + a(h) og Zi) Zj ( 2 + a(h) 0og Zj
(4.1)
where h = z; — z;, a(h)? = hTY7'h and ®(-) the standard normal distribution function.

By taking second-order partial derivatives of (4.1) the bivariate density function can
be obtained

Q{wh)}  {v(h)}] [ P{wh)}  o{wh)} of{v(h)}

fanz) = o {_ iz ] < 2 an):? _ah)zz’j>
(@{v(h)} L o)) ¢{w<h>}> . <v<h>¢{w<h>} . w<h>¢{v<h>})]
z]2 a(h)zjz a(h)z;z; a(h)2z2z; a(h)2ZiZ]2- ’

where w(h) = a(h)/2 + log(z;/zi)/a(h), v(h) = a(h) — w(h) and ¢(-) is the standard
normal density function.

Let us now investigate the ‘random process’ formulation suggested by ( )
considering the particular setting Y () = max{0, v2me(z)}, where {e(x)} is a stationary
Gaussian process with zero mean, unit variance and correlation function p(x). It is then
possible to obtain the marginal bivariate distribution function

pr{Z(x;) < z;, Z(x;) < zj} = exp [—; <Zl + 1) {1 + \/1 - QWW}] , (4.2)

7 Zj (Zz + Z’j)2

where h = ||z; — z]|.
Again, the pairwise density of Z(z;), Z(z;) is computed by differentiating partially with
respect to z;, zj,

N aV(Zi, Zj) 8V(Zi, Zj) o 82V(ZZ', Zj)
f(Z“ Z]) N { azi aZj 8zi6zj

}exp{—V(zi,zj)}, zi,zj >0,  (4.3)

V(%) = % (1 N 1>

Zi Zj (zi + 2j)?

1+¢1_2{p<h>+1m],
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4.1. PREDICTION BASED ON PAIRWISE LIKELIHOOD

4.1 Prediction based on pairwise likelihood

Similar to chapter 3, the pairwise likelihood can be considered in order to obtain a predictor
for an ungauged location of a max-stable process

le{Zi(2)} = Zwilogf{zl(xﬂzl(xi)}
=1

= Zwi [2 log Z (x;) + Zl(lx) +log f{Zi(x), Z1(z:)}| ,
i=1 !

where the second equality follows from the fact that the marginal bivariate distributions
are unit Fréchet.

The predictor Zc(z) cannot be computed as an analytical solution of the composite
score equation. Composite maximum likelihood estimates can however be obtained through
numerical maximization routines.

Due to non-existence of moments of max-stable processes, median predictors are con-
sidered instead of average predictors. Similarly, a useful quantity to describe the precision
of the predictor is the median square prediction error

MDSE {Z(az)} — med [{Z(:c) - Z(x)}y?],

where Z(z) is a predictor for Z(z).

4.2 Simulation study

As the simulation study for Gaussian processes indicates that the pairwise predictors are
of reasonable quality, they are considered for a simulation study in the case of max-stable
processes. Model fitting through pairwise likelihood for both the ‘random process’ and
the ‘random storm’ models is possible using the R package SpatialExtremes by Mathieu
Ribatet.

Similar to the simulation study on the Gaussian scale, different strengths of correlations
between the observations are considered.

4.2.1 ‘Random process’ model

As previously, the initial parameter setting is the following, there are n = 6 uniformly
but randomly distributed locations 1, ..., x¢ on the interval [0, 15]. The underlying cor-
relation structure is again assumed to be powered exponential with different strengths of
dependence as depicted in Figure 3.1.

The corresponding max-stable process is simulated 10,000 times at each location in-
cluding z. Predictors at x can now only be based on composite likelihood as the full
density is intractable. Thus, as previously, the pairwise predictors corresponding to the
weight functions (3.9)—(3.11) are considered. Only one observation is generated at each
location as the pairwise predictors do not take into account the other observations anyway.
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The boxplots of the true value of Z(z) and the pairwise predictors for Z(z) for different
correlation configurations are shown in Figure 4.1. If there is short range dependence,
the predictors are very imprecise and tend to be too small compared to the true values.
Increasing the dependence improves the predictors, but still, for medium range dependent
observations, the predictors are clearly underestimating the true values. A possible reason
for this behavior is the small number of pairs available to predict the observation at the
ungauged location.
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Figure 4.1: Boxplots of the true values and the pairwise predictors for Z(x) based on
10,000 simulations of one observation at 6 locations which are uniformly distributed on
[0,15]. From left to right: powered exponential covariance function with short, medium
and long range dependences.

Consider therefore a max-stable process on [0, 15] observed at 15, 25 or 50 uniformly,
randomly distributed locations. Only the medium range dependence is considered to ana-
lyze the predictors as the number of observations increases.

The distributions of the predictors are shown in Figure 4.2. Compared to the middle
panel of Figure 4.1 where there were 6 observations at each location for the same corre-
lation structure, there is no noticeable change of the boxplots for Z¢, (z) and Zg, (). In
contrast, an improvement in the precision of the pairwise predictor 202 (x) is observed.
However, as the number of observations is greater than 15, the gain in precision is not
very remarkable. The additional information provided by the additional locations cannot
be used very efficiently by the pairwise predictors in this case.

The previous analyses were performed for the Whittle-Matérn and Cauchy covariance
functions, too. The details are not shown as the same conclusions can be drawn.

However, a detailed analysis of the prediction results based on 6 or 15 observed, medium
range dependent extremes is performed for all the covariance functions. The median pre-
dictors and the median square prediction errors, which are displayed in Table 4.1, indicate
again that the pairwise predictors are of bad quality if there are only 6 observations al-
though the median square prediction errors are small. It is interesting that in the context
of Gaussian processes, reasonable results were obtained for the same parameter settings.

If there are 15 locations, the predictors Z¢, () and Z¢, (x) do not become more precise.
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4.2. SIMULATION STUDY
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Figure 4.2: Boxplots of true values and pairwise predictors for Z(z) based on 10,000
simulations of one observation at 15, 25 and 50 locations, respectively, which are uniformly
distributed on [0, 15], exponential covariance function with medium range dependence.

In fact, only 202 (z) improves in terms of the median prediction as well as the median square
prediction error. Nevertheless, this best pairwise predictor still underestimates the true
value.

Table 4.1: Median predictors for uniformly, randomly generated locations (empirical
MDSE) based on 10,000 simulations of one observation at 6 or 15 locations, respectively.
Medium range dependence.

Regular Uniform
n Exponential =~ Whittle-Matérn  Cauchy Exponential ~ Whittle-Matérn ~ Cauchy
6 Z(x) 1.46 1.45 1.41 1.40 1.45 1.47
Zo, () 0.66 (0.26)  0.78 (0.06) 0.73 (0.06)  0.68 (0.20)  0.81 (0.07) 0.75 (0.07)
Zo,(x)  1.05 (0.09)  1.28 (0.02) 1.20 (0.02)  0.89 (0.10)  1.12 (0.04) 1.03 (0.04)
203 (z) 0.91 (0.11) 1.17 (0.03) 1.08 (0.03) 0.91 (0.12) 1.13 (0.04) 1.04 (0.04)
15 Z(x) 1.46 1.43 1.43 1.42 1.42 1.48
ch (z) 0.66 (0.28) 0.78 (0.03) 0.73 (0.04) 0.65 (0.26) 0.76 (0.04) 0.72 (0.05)
Zcz (z) 1.26 (0.03) 1.38 (0.004) 1.37 (0.004)  1.09 (0.04) 1.29 (0.01) 1.30 (0.01)
ch (z) 0.87 (0.09) 1.14 (0.01) 1.09 (0.01) 0.90 (0.08) 1.14 (0.01) 1.12 (0.01)

Again, it is worthwhile to investigate the influence of parameter estimation in the
context of pairwise prediction. The parameter o2 is not estimated as the ‘random process’
is not measurable if o2 is strictly smaller than 1. Only the process consisting of observations
at 6 locations with a medium range dependence is considered. The quality of the estimates
is however improved if the process is observed at more locations or if there is a stronger
correlation structure.

Consider the parameter estimates obtained for the medium range dependence (Table
4.2). As expected, the number of observations influences the accuracy of the estimates.
Moreover, the grid type is also an important factor, more precise estimates are obtained
if the locations are uniformly distributed on [0, 15]. For example, the shape parameter of
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the Whittle-Matérn covariance function is poorly identified if the grid is regular.

Particular attention needs again to be paid to the Cauchy covariance function as the
parameters of the process are not close to the true values. The estimated covariance
functions tend to have a shorter dependence range than the true one has.

Table 4.2: Average parameter estimation based on k = 25,50 observations at each of the
6 locations using full and pairwise likelihood. Standard errors for the pairwise likelihood
estimates are obtained through sandwich estimates.

Covariance function %  grid B (se(B)) ¥ (se(D))
Exponential 25 Regular 124 (32.4) 1.05 (0.36)
Uniform 9.86 (7.2)  1.01 (0.22)
50 Regular 8.99 (3.9) 1.02 (0.25)
Uniform  8.72 (3.2)  1.00 (0.15)
Whittle-Matérn 25 Regular 6.78 (-) 2.14 (-)
Uniform  5.45 (-) 1.36 (-)
50 Regular 5.59 (-) 1.60 (-)
Uniform  5.27 (-) 1.12 (-)
Cauchy 25 Regular 7.94 (16.6) 18.0 (88.9)
Uniform  9.35 (20.8)  22.0 (105.7)
50 Regular 4.11 (6.0)  2.65 (17.0)
Uniform 5.59 (11.9) 7.5 (56.2)

Based on these parameter estimates, pairwise predictors can be calculated (Table 4.3).
The results reveal that the parameter estimation has little effect on the predictors. There is
no significant difference between the predictors obtained through the different parameter

estimates. The predictors remain nearly the same as when the parameters are known
(Table 4.1).

Table 4.3: Median predictors for uniformly, randomly generated locations (empirical
MDSE) based on 1000 simulations of & = 25,50 observations at 6 locations. Medium
range dependence.

Regular Uniform
k Exponential ~ Whittle-Matérn  Cauchy Exponential ~ Whittle-Matérn  Cauchy
25  Z(x) 1.37 1.53 1.51 1.43 1.42 1.45
ch (z) 0.66 (0.19) 0.77 (0.06) 0.74 (0.09) 0.69 (0.18) 0.82 (0.06) 0.80 (0.07)
ZCQ (z) 1.01 (0.07) 1.29 (0.02) 1.28 (0.03)  0.91 (0.09) 1.12 (0.04) 1.05 (0.04)
ch (z) 0.88 (0.08) 1.22 (0.03) 1.15 (0.03)  0.90 (0.10) 1.13 (0.04) 1.06 (0.05)
50  Z(z) 1.36 1.49 1.40 1.44 1.22 1.49
ch (z) 0.65 (0.18) 0.78 (0.07) 0.72 (0.06) 0.67 (0.21) 0.76 (0.04) 0.73 (0.09)
Zcz (z) 1.04 (0.08) 1.25 (0.02) 1.14 (0.03)  0.89 (0.09) 1.02 (0.03) 1.01 (0.04)
203 (z) 0.87 (0.10) 1.14 (0.03) 1.08 (0.03)  0.87 (0.12) 0.99 (0.03) 1.04 (0.05)

As suggested by the analysis where the parameters are known, it is advantageous to
observe the process at more locations. The number of observations is now fixed to be 25
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4.2. SIMULATION STUDY

as there seems to be no improvement in the prediction even if the parameter estimates get
more precise. Figure 4.3 shows the boxplots of the true values of the max-stable process
with underlying medium range powered exponential covariance function and the pairwise
predictor 202 (x) for 6, 15, 25 and 50 locations, respectively. The other pairwise predictors
are not considered here as they are of lower quality.

These boxplots indicate that the pairwise predictors constantly underestimate the true
value of the process and that a lot of locations are required to improve the quality of the
predictor. Similar results are provided if the underlying covariance functions are either
Whittle-Matérn or Cauchy. Naturally, the predictors are also becoming more precise if the
correlation between the extremes is stronger.
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Figure 4.3: Boxplots of the true values (red) and the pairwise predictors Z¢, () (green) for
Z(z) based on 1000 simulations of 25 observations at 6, 15, 25 and 50 locations, respectively,
which are uniformly distributed on [0, 15], powered exponential covariance function with
medium range dependence.

Nonetheless, it would be preferable to have a different method which improves the
predictors. As the prediction on the Gaussian scale results in more precise predictors,
observations of max-stable processes may be transformed to the Gaussian scale and pre-
dictions calculated based on the formulae described in chapter 3. This approach is discussed
in section 4.3.

4.2.2 ‘Random storm’ model

A one dimensional simulation study is also carried out for the ‘random storm’ model where
the parameter o2 of the normal distribution is chosen from the discrete set {2.5,5,10}. Ini-
tially, a simulated process of size 10,000 observed a single time at 6 locations on [0, 15] is
considered. The predictors are again calculated corresponding to the three weight func-
tions defined in (3.9)—(3.11). Figure 4.4 depicts the distributions of the true values of the
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processes as well as the predictors for the different values of 2. As ¢? increases, the quality
of the predictors does, too. In accordance to the previous conclusions, the second weight
functions yields predictors that mimic best the true distribution of the process.
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Figure 4.4: Boxplots of true values and pairwise predictors for Z(x) based on 10,000
simulations of one observation at 6 locations which are uniformly distributed on [0, 15].
From left to right: 02 = 2.5, 02 = 5 and o2 = 10.

For a more profound analysis, the medians and the median square prediction errors are
shown for both predictions based on 6 and 15 observed extreme values (Table 4.4). As for
the ‘random process’ model, there is a general underestimation of the true value and the
predictors are preciser if the gauged locations are regularly distributed.

Moreover, the increase of the number of locations yields an improvement in the median
prediction as well as in the median square prediction errors. Given that the 15 gauged
locations are on a regular grid, the pairwise approach using the second weight function gives
a very precise predictor if the variance of the underlying normal distribution is greater or

equal to 5.

Table 4.4: Median predictors for uniformly, randomly generated locations (empirical
MDSE) based on 10,000 simulations of one observation at 6 and 15 locations.

Regular Uniform

n 02 =25 c2=5 02 =10 02 =25 02=5 02 =10

6 Z(x) 1.44 1.45 1.43 1.41 1.44 1.39
Zco,(z)  0.76 (0.18)  0.91 (0.10)  1.08 (0.05)  0.65 (0.19)  0.78 (0.12)  0.94 (0.05)
Zo,(z)  0.97 (0.08) 1.14 (0.05) 1.26 (0.02) 0.77 (0.10)  0.92 (0.07)  1.09 (0.03)
Zcy(x)  0.89 (0.10)  1.06 (0.06) 1.22 (0.03) 0.75 (0.12)  0.92 (0.07)  1.08 (0.04)

15 Z(x) 1.43 1.46 1.40 1.50 1.41 1.43
Zo,(z)  1.03(0.07) 1.20 (0.03) 1.28 (0.01) 0.86 (0.10)  1.00 (0.04) 1.19 (0.02)
Zo,(z)  1.32(0.01) 1.42 (0.01) 1.40 (0.01) 1.14 (0.03) 1.22 (0.01)  1.34 (0.01)
Zog(x)  1.17(0.03)  1.32 (0.01) 1.35(0.01) 1.04 (0.05) 1.16 (0.02) 1.31 (0.01)

The quality of the prediction based on uniformly distributed locations is likely to im-
prove if there are more gauged locations. The boxplots for the max-stable process with
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4.2. SIMULATION STUDY

02 = 5 and different numbers of locations are shown in Figure 4.5 and indicate that the
distributions of the predictors get very similar, especially for the second weight function. In
the extreme setting where there are 50 gauged locations, 202 (z) even tends to overestimate
the value of Z(x).

In contrast to the Gaussian processes and the ‘random process’ model, all the weight
functions improve significantly as the number of locations increases. Still, the second one
yields the most appropriate results.

If the number of locations is changed for other values of o similar conclusions can be
drawn; if o2 is smaller, even more locations are required to be able to predict an observation
at an ungauged location more precisely.
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Figure 4.5: Boxplots of the true values and the pairwise predictors for Z(z) based on 1000
simulations of 25 observations at 25 and 50 locations, respectively, which are uniformly
distributed on [0,15], 0% = 5.

As the parameter o is estimated through pairwise likelihood, the estimation error may
also affect the quality of the pairwise predictors. The parameter estimates obtained based
on max-stable processes observed k = 25,50 times at n = 6, 15 locations are displayed in
Table 4.5. Independent of the number of observations, the parameter estimates are very
imprecise if there are only 6 locations. Increasing the number of gauged locations to 15, the
estimation is improved but still not very precise. More locations are required to improve
the quality of the predictors.

Predictors for an ungauged location x can then be calculated using the obtained pa-
rameter estimates. The resulting median predictors based on 1000 simulations are shown
in Table 4.6.

Compared to the results where the parameter value is known, the median predictions
are equivalent. Even the median square prediction errors are nearly the same as before.
This shows that the pairwise predictors are robust and give reliable results even if the
parameter estimation is not very precise. As expected, increasing the value of o2 or the
number of gauged locations implies a gain of precision.

These considerations give evidence that the pairwise methods require a lot of data in
order to yield precise predictors. Different prediction approaches are therefore considered
in the following section and compared to the pairwise approach given above.
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Table 4.5: Average parameter estimation based on k = 25,50 observations at each of the
n = 6,15 locations using full and pairwise likelihood. Standard errors for the pairwibe
likelihood estimates are obtained through sandwich estimates. True values: o? = 2.5,
03 =5 and O'g = 10.

n_k_ grid o1 (se(67)) 03 (se(63)) 03 (se(63))
6 25 Regular 4.5 (0.97) 9.2 (1.84) 183 3.73)
Uniform 4.6 (0.91) 8.9 (2.02) 18.5 (3.50)

50 Regular 4.4 (L04) 9.0 (2.00)  18.6 (3.43)
Uniform 4.6 (0.86) 9.1 (1.89) 17.9 (4.07)

15 25 Regular 3.1 (0.96) 6.0 (1.85)  11.7 (3.72)
Uniform 2.9 (0.96) 5.9 (L78)  11.5 (3.76)

50 Regular 3.0 (0.90) 5.7 (1.87)  11.6 (3.68)
Uniform 2.9 (0.93) 5.7 (1.98)  11.6 (3.67)

In addition, the second weight function is most efficient according to the obtained
results for the ‘random process’ and the ‘random storm’ storm models. This confirms the
observation already made for Gaussian processes.

4.3 Gaussian anamorphosis

As kriging on the unit Fréchet scale does not yield predictions that are as precise as the
ones obtained for Gaussian processes, max-stable processes may be transformed to the
Gaussian scale, where standard multivariate normal approaches apply. It is possible to
calculate predictors based on classical Gaussian geostatistics and back-transform them to
the unit Fréchet scale in order to get predictors for max-stable processes.

More specifically, for every observation Z(z;) = z, x; € X the marginal cumulative

distribution function is .
F =e — ],
@)= (-1)

and therefore the data can be transformed to the standard Gaussian scale by taking

2 () = G HF(2)}, (4.4)

where G is the cumulative distribution function of a standard normal random variable.
Hence, a predictor Z* (x) for this transformed process can be obtained the same way as
in chapter 3. Applying the inverse transformation of (4.4) to Z*(x), a predictor Z1(z) for
the max-stable process can be obtained. Like that, it even is possible to base predictors
on the full conditional likelihood as it is known for Gaussian processes.

In the case of the Schlather model, the quantities required for predicting on the Gaus-
sian scale are implicitly given through the definition of the model. For the Smith model
however, the correlation function needs to be calculated. Consider therefore the geometric
Gaussian model where Y;(z) = exp{te(z) — t?/2} and &(-) is a standard Gaussian process
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4.3. GAUSSIAN ANAMORPHOSIS

Table 4.6: Median predictors for uniformly, randomly generated locations (empirical me-
dian square prediction error) based on 1000 simulations of one observation at 6 locations.

Regular Uniform
n k 02 =25 0?2 =5 02 =10 02 =25 0?2 =5 02 =10
6 25  Z(z) 1.58 1.50 1.40 1.24 1.39 1.43

Ze,(z) 091 (0.14)  1.08 (0.06) 1.22 (0.03) 0.75 (0.10) 0.91 (0.08)  1.07 (0.05)
Zo,(x) 115 (0.10)  1.31 (0.04) 1.34 (0.02) 0.87 (0.07) 1.07 (0.05) 1.20 (0.04)
Zeg(z)  1.08 (0.11)  1.24 (0.04) 1.31 (0.02) 0.86 (0.08) 1.06 (0.06) 1.2 (0.04)

50 Z(x) 1.39 1.52 1.41 1.48 1.44 1.41
Zo,(z)  0.85 (0.11)  1.05 (0.07) 1.18 (0.03) 0.76 (0.13)  0.88 (0.09) 1.07 (0.05)
Zey,(z)  1.05 (0.07) 125 (0.04) 1.30 (0.02)  0.90 (0.09) 1.03 (0.07) 1.19 (0.03)
Zog(z)  0.89(0.08) 1.21 (0.05) 1.27 (0.02) 0.91 (0.09) 1.03 (0.07) 1.20 (0.04)

15 25 Z(x) 1.32 1.40 1.39 1.52 1.43 1.48
Zey(z)  1.02 (0.05)  1.23(0.03) 1.31 (0.01)  0.90 (0.09) 1.03 (0.04) 1.19 (0.02)
Ze,(x)  1.27(0.01)  1.41(0.01) 1.43 (0.01) 1.18 (0.03) 1.25 (0.01)  1.38 (0.01)
Zog(z) 115 (0.02) 1.34 (0.01) 137 (0.01) 1.10 (0.05) 1.18 (0.02) 1.32 (0.01)

50 Z(x) 1.37 1.46 1.46 1.46 1.44 1.55
Ze,(z)  1.04 (0.06) 120 (0.03) 1.31 (0.01) 0.86 (0.07) 1.03 (0.03)  1.26 (0.02)
Zoy,(z)  1.29 (0.02) 1.40 (0.01) 1.44 (0.01) 1.10 (0.03) 1.28 (0.01) 1.44 (0.01)
Zo,(z) 118 (0.03) 1.31(0.01) 1.39 (0.01) 1.00 (0.04) 1.20 (0.02) 1.38 (0.01)

(personal communication from Anthony C. Davison). The bivariate distribution of this
process is equal to the one of the Smith model and the following identity holds

2 2
a(h)” = 2t°{1 — p([|h[)}.
This allows to find the correlation function for the Smith process as a function of the
euclidean distance between two locations and the parameter t;
a(h)?
2t2

p(|[h]],t) =1 - (4.5)

4.3.1 Transformed Gaussian predictors for the ‘random process’ model

For the same parameter setting as in section 4.2.1 pairwise kriging predictors directly com-
puted on the unit Fréchet scale are compared to transformed kriging predictors calculated
on the Gaussian scale. More precisely, the best linear predictor as well as the pairwise
predictor based on the second weight function (see (3.10)) are calculated based on extreme
data that is transformed to the Gaussian scale. These two predictors are back-transformed
to the unit Fréchet scale and compared to Zcz (z) which is calculated directly from the
data on the unit Fréchet scale.

The comparison is performed for 10,000 simulated processes observed at 6 and 15
gauged locations as well as at the ungauged location (Table 4.7). As previously, different
distributions of the locations as well as covariance functions, all corresponding to medium
range dependence, are considered.

In general, there is a large discrepancy between the predictors calculated on the different
scales. The transformed predictors ZT(z) and 282 (x) are both very close to the true values
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observed at the ungauged location z. As expected, the median square prediction error is
much smaller if the best linear predictor is considered.

Observe that the values of the transformed predictors are not more precise if there are
more gauged locations, however, there is a reduction of the corresponding median square
prediction error for the back-transformed pairwise predictions. In contrast, the pairwise
predictors calculated on the unit Fréchet scale improve a lot as already seen in section 4.2.1.
As well, if the locations are on a regular grid, the predictors at x are more appropriate.

Table 4.7: Median predictors for uniformly, randomly generated locations (median square
prediction error) based on 10,000 simulations of one observation at 6 and 15 locations.
Medium range dependence.

Regular Uniform

n Exponential Whittle-Matérn  Cauchy Exponential Whittle-Matérn  Cauchy

6  Z(x) 1.46 1.45 1.41 1.40 1.45 1.46
Zt(z) 1.43 (< 1073)  1.44 (< 1079) 1.43 (< 1073) 141 (<1073) 1.44 (<1073) 1.46 (< 1073)
2*02 (x) 1.43 (0.10) 1.44 (0.02) 1.42 (0.02) 1.40 (0.11) 1.43 (0.04) 1.45 (0.04)
Zoy(x)  1.05 (0.09) 1.28 (0.02) 1.20 (0.02) 0.89 (0.10) 1.12 (0.04) 1.03 (0.04)

15  Z(x) 1.46 1.43 1.43 1.43 1.42 1.48
Zt(x) 1.43 (< 1073)  1.43 (< 1079) 1.43 (< 1073) 142 (<1073) 141 (<1073) 1.48 (< 1073)
Z;Z (x)  1.43 (0.04) 1.42 (0.004) 1.41 (0.004) 1.42 (0.05) 1.41 (0.01) 1.46 (0.01)
Zoy,(x)  1.26 (0.03) 1.38 (0.004) 1.37 (0.01) 1.09 (0.04) 1.29 (0.01) 1.30 (0.01)

The details of the analyses for other strengths of correlations are not discussed as the
behavior of the transformed predictors is very similar to the one of the predictors on the
unit Fréchet scale which was described in section 4.2.1.

Similarly, confirming what was already observed in the previous sections, the pairwise
kriging predictors are robust to imprecise parameter estimates. Therefore the results where
the parameters of the process are estimated are not shown here.

4.3.2 Transformed Gaussian predictors for the ‘random storm’ model

The same approach is applied to the ‘random storm’ model. However, for this model
another parameter, ¢, needs to be fixed in order to be able to obtain the correlation (see
equation (4.5)) between two extremes.

Figure 4.6 shows the correlation functions for different values of the parameter o2.
Furthermore, different values for ¢ are considered in order to have different correlation
ranges.

For none of the parameter settings, it was possible to invert the correlation matrix as the
determinant equals 0. Therefore a generalized inverse, calculated using the singular value
decomposition, is considered for calculating the best linear predictor. Only the results for
the medium correlation range are shown here as the predictors are equivalent if the value
of ¢ changes according to the ones shown in Figure 4.6.

The results for 10,000 simulations (Table 4.8) suggest that the transformed predictors
are very powerful and yield reasonable predictors even as there are only 6 gauged locations.
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Figure 4.6: Correlation functions for the ‘random storm’ process for 0% = 2.5, 02 = 5 and
02 = 10 and for different values of ¢.

Interestingly, the transformed pairwise predictors yield median results that are much closer
to the median true values of the process than the best linear predictors.

The direct pairwise approach is not competitive at all, even if the number of gauged
locations is increased to 15. Naturally, there is a decrease in the median square prediction
errors related to the increase of locations for both approaches.

It is also important to notice that the transformed predictions are very precise for small

values of 02 whereas the quality of the pairwise predictors on the unit Fréchet scale are
affected by this.

Table 4.8: Median predictors for uniformly, randomly generated locations (empirical
MDSE) based on 10,000 simulations of one observation at 6 and 15 locations.

Regular Uniform

n 02 =25 a2 =5 a2 =10 02 =25 o2 =5 0?2 =10

6 Z(x) 1.44 1.45 1.43 1.41 1.44 1.39
Z1 () 1.40 (0.004)  1.40 (0.003) 1.39 (0.001) 1.38 (0.001) 1.43 (< 1073) 1.42 (< 1073)
252 (r) 1.44 (0.07)  1.44 (0.03)  1.43 (0.02)  1.42 (0.10)  1.42 (0.06) 1.41 (0.03)
Zc,(z) 097 (0.08)  1.14 (0.05)  1.26 (0.02)  0.77 (0.10)  0.92 (0.07) 1.09 (0.03)

15 Z(z) 1.43 1.46 1.40 1.50 1.41 1.43
Zt () 1.38 (0.003)  1.41 (0.003) 1.36 (0.002) 1.42 (0.004) 1.37 (0.002) 1.38 (0.001)
252 (r) 1.43 (0.01)  1.46 (0.01)  1.40 (0.002) 1.48 (0.02)  1.40 (0.01) 1.42 (0.004)
Zc,(z)  1.32(0.01) 142 (0.01)  1.40 (0.01)  1.14 (0.03)  1.22 (0.01) 1.34 (0.01)

As a conclusion, this method yields for both the ‘random process’ and the ‘random
storm’ models, as expected, very precise predictors for ungauged locations. In fact, they
perform much better than the pairwise predictors on the unit Fréchet scale. This ap-
proach has however the disadvantage that extremes of bivariate Gaussian distributions
occur asymptotically independently for any fixed correlation ( ( )). In applica-
tions such as the rainfall data this might not be realistic.
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4.3.3 Alternative predictor for max-stable processes

It might be worth looking at another more intuitive predictor that may improve on the
pairwise predictors on the unit Fréchet scale. The approach, analogue to the way max-
stable processes are constructed, is to consider a predictor at x of the form

Zx) = max {u(z,)Z(x)),
i=1,...,n
where the weights are set to be monotonic increasing in ||z; — z|| in order to give more
weight to observations made closer to the ungauged location. An appropriate choice of
weights may therefore be the second weight function defined in (3.10).
This approach was tested on both the ‘random process’ and the ‘random storm’ model,
10,000 simulations were performed for different parameter settings (Tables 4.9 and 4.10).
For the ‘random process’ model, the predictors Zi(x) are of very low quality for all
covariance functions and both distributions of the gauged locations. In particular, observe
that, counterintuitively, the median predictors and thus the median square prediction errors
get less precise as the number of gauged locations increases.

Table 4.9: Median predictors for uniformly, randomly generated locations (empirical
MDSE) based on 10,000 simulations of one observation at 6, 15, 25 and 50 locations,
‘random process’ model.

Regular Uniform
n Exponential ~ Whittle-Matérn ~ Cauchy Exponential ~ Whittle-Matérn  Cauchy
6 Z(x) 1.46 1.42 1.47 1.46 1.48 1.42
Zi(z) 0.94 (0.30) 0.91 (0.31) 0.93 (0.30) 0.91 (0.32) 0.86 (0.39) 0.91 (0.27)
15 Z(x) 1.48 1.45 1.47 1.45 1.47 1.47
Zt (z) 0.77 (0.45) 0.77 (0.43) 0.73 (0.45)  0.63 (0.57) 0.60 (0.68) 0.58 (0.68)
25  Z(x) 1.43 1.42 1.46 1.42 1.39 1.47
Zi(a:) 0.66 (0.50) 0.65 (0.50) 0.66 (0.52)  0.56 (0.65) 0.50 (0.67) 0.51 (0.73)
50 Z(x) 1.43 1.43 1.46 1.47 1.40 1.43
Zi(z) 0.58 (0.62) 0.58 (0.60) 0.59 (0.63)  0.43 (0.90) 0.44 (0.74) 0.43 (0.81)

The obtained predictors for an ungauged location of the ‘random storm’ have the same
properties; the predictors are constantly underestimating the true values and are even less
precise if there are more gauged locations. It is interesting to notice that unlike the pairwise
predictors on the unit Fréchet scale, there is only little difference between the predictors for
processes with different values of o2, the variance of the underlying normal distribution.

This analysis indicates thus that the ad-hoc predictor Z¥(z) of Z(x) is not powerful.
The pairwise predictor on the unit Fréchet scale seems to be more appropriate.
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Table 4.10: Median predictors for uniformly, randomly generated locations (empirical
MDSE) based on 10,000 simulations of one observation at 6, 15, 25 and 50 locations,
‘random storm’ model.

Regular Uniform
n 02 =25 02=5 02 =10 02 =25 02 =5 02 =10
6  Z(x) 1.43 1.45 1.39 1.43 1.43 1.44
ZY(z) 1.07 (0.23) 0.97 (0.26) 0.86 (0.25) 0.95 (0.34) 0.95 (0.22)  0.74 (0.37)
15  Z(x) 1.44 1.41 1.44 1.42 1.44 1.41
Z%¥(z) 0.77 (0.44) 0.71 (0.43) 0.70 (0.44) 0.69 (0.51) 0.57 (0.63) 0.48 (0.70)
25  Z(x) 1.45 1.42 1.44 1.42 1.43 1.40
Z¥(x) 0.66 (0.53) 0.64 (0.53) 0.63 (0.52) 0.52 (0.73) 0.55 (0.65) 0.52 (0.65)
50 Z(x) 1.43 1.41 1.43 1.43 1.46 1.43
Zi(z) 0.58 (0.62) 0.55 (0.59) 0.57 (0.64) 0.46 (0.82) 0.45 (0.85) 0.39 (0.88)

4.4 Analysis of the extreme precipitation data

The observations of extreme rainfall are reported at the same stations as the means pre-
cipitations discussed in section 3.6. There are again 47 observations measured at each
location. In this context, annual summer and winter maxima are observed. These spatial
data can thus be modelled by the means of max-stable processes.

Both the ‘random process’ and the ‘random storm’ models are considered. Before a
model can be fitted to the data, they need to be transformed to the unit Fréchet scale. This
is done by considering the use of generalized extreme value marginals. More specifically,
consider the bijection (Yj;, Yjk) = 9(Zji, Zji), where the inverse function is

@(m—m)}”& Zy = {ka(m—uk)}”fk
Ak )

)

Zﬁ:{1+

+ +

The constants g, £ and A > 0 ensure that Z; is unit Fréchet distributed. Denoting
I2;0.2,.(2jis z;1) the density of the given model, the bivariate density can be written as

fYﬂ,Y]k (yjia yjk) - iji7ij {g_l(yjiv yjk)}’J(yjiv yjk)’a

where the Jacobian of the transformation equals

1 &V — ) |5 & (Vik — ) | /5
)| = 1 1 .

+ +

This configuration allows the pairwise likelihood to estimate the location, scale and shape
parameters of the marginal distribution at each location as well as the unknown quantities
of the underlying model.

Tables 4.11 and 4.12 indicate the parameter estimates and their estimated standard
errors for the different underlying processes. In contrast to the simulation study, it is now
possible to fit a two-dimensional ‘random storm’ model to the data.

In case of the ‘random process’ model, for a fixed covariance function the parameter
estimates are very similar for the two seasons. However, for the ‘random storm’ model,
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there is an interesting difference between the estimates obtained. Actually, the estimated
values of the covariance matrix are smaller if the winter extremes are considered. This
means that the diffusion in space is different in summer than it is in winter.

Table 4.11: Parameter estimation for the ‘random process’ model using pairwise likeli-
hood. Standard errors for the pairwise likelihood estimates are obtained through sandwich
estimates.

Season  Covariance function [ (se(f)) v (se(?))

Summer Exponential 26.1 (5.7)  0.89 (0.12)
Whittle-Matérn 31.9 () 0.40 (-)
Cauchy 4.94 (1.10)  0.30 (0.09)

Winter  Exponential 21.00 (6.8) 0.83 (0.14)
Whittle-Matérn 28.6 (-) 0.36 (-)
Cauchy 433 (1.10)  0.33 (0.14)

Table 4.12: Parameter estimation for the ‘random storm’ model using pairwise likelihood.
Standard errors for the pairwise likelihood estimates are obtained through sandwich esti-
mates.

Season G11 (se(611)) 012 (se(612))  Gaa (se(622))
Summer 233.6 (2.8)  14.3 (1.9) 101.2 (3.8)
Winter ~ 160.2 (4.8)  -3.9 (L.8) 54.2 (1.9)

The goodness of fit for the different models may be compared through the composite
likelihood information criterion defined in (2.3). Again, if the Whittle-Matérn covariance
function is considered, the information criterion is obtained by a model fitting in two steps,
estimating first the parameter v and then estimating the range parameter § along with its
standard error.

The information criterion scores are shown in Table 4.13 and indicate that the best
model for both seasons is a ‘random process’ with underlying Whittle-Matérn covariance
function although the other ‘random process’ models give appropriate fit, too. In contrast,
the ‘random storm’ model, having larger values for the composite likelihood criterion, does
not fit the data as well as the ‘random process’ model.

Once the model is fitted, the objective is to check the prediction properties of the dif-
ferent models. Therefore 10,000 ungauged locations are uniformly but randomly generated
and the unobserved values at these locations are predicted based on the given observations.
As for the simulation study, the predictions are based on the most recent measurements,
meaning on observation 47 only. For a fixed season, the median pairwise predictors (Ta-
ble 4.14) are very similar for all the ‘random process’ models. In agreement with the
simulation study, the second weight function yield the largest predictor. Generally, the
predictors based on the ‘random storm’ model are larger than the ones yielded by the
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‘random process’ model.

Table 4.13: Composite likelihood information criterion scores for the ‘random process’ and
the ‘random storm’ models.

Season Model Covariance function CLIC
Summer ‘random process’ Exponential 489908
Whittle-Matérn 489861
Cauchy 490124
‘random storm’ 496961
Winter  ‘random process’ Exponential 497324
Whittle-Matérn 497281
Cauchy 497423
‘random storm’ 505124

Table 4.14: Median predictors for 10,000 uniformly randomly generated ungauged loca-
tions, parameters of the max-stable process estimated through pairwise likelihood.

‘random process’ ‘random storm’
Exponential Whittle-Matérn ~ Cauchy
Summer Zg, (z) 19.2 19.2 19.2 21.7
Ze, (z) 19.8 19.7 19.8 22.8
Ze, (z) 19.5 19.5 19.4 22.2
Winter  Zg, () 17.3 17.3 17.3 19.0
Ze, (z) 18.0 17.8 17.8 20.7
Ze, (z) 17.9 17.8 17.8 20.0

In order to judge the quality of the predictors, a cross validation is performed. The
predictions are based on the same 34 stations as for the mean data cross-validation. The
predictors, along with the true values of the process at the left-out stations are displayed
in Figure 4.7. These Figures depict that the properties of the pairwise predictors are
very poor. Hspecially for the ‘random process’ model, the predictions stick to a single
value. Even if the ‘random storm’ predictors behave in a less erratic way than the ‘random
process’ ones do, they are still far for being appropriate.

The cross-validation shows that the pairwise predictors for max-stable processes are
not reliable. They constantly underestimate the true values at the locations. In addition,
the values are strongly shrunk to a common value.

The application of the pairwise prediction approach to the rainfall datasets shows that
the predictions on the unit Fréchet scale are not precise at all. As the simulation study
has shown that the properties of the pairwise predictors are better on the Gaussian scale,
it may be essential to transform the data, calculate predictors on this scale and then
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Figure 4.7: Boxplots of true extreme precipitation values (red) and pairwise predictors,
ZCQ (z), respectively, for 17 randomly chosen stations based on observations at remaining
34 locations. Left panel: summer data, right panel: winter data. Green: exponential co-
variance function, blue: Whittle-Matérn covariance function, light blue: Cauchy covariance
function, purple: ‘random storm’ model.

back-transform them to the unit Fréchet scale in order to get predictors for max-stable
processes.

As then the aim is to model the data as a Gaussian process, the observed maxima
need to be transformed. Initially, a generalized extreme value (GEV) model is fitted to the
data for each station ( ( )). Recall that the generalized extreme value distribution
corresponds to a family of models where the distribution functions are of the form

G(2) = exp [— {1 : (Z;“> };1/1 (4.6)

defined on the set {z : 1+&(z—p)/o > 0}, where —co < u < 00, 0 > 0 and —oo0 < £ < 0.
This model depends on three parameters, the location, scale and shape parameter, u,o
and &, respectively.

Thus, for each station 4, a generalized extreme value distribution is fitted to the ob-
servations {le}glil This yields maximum likelihood estimates 0; = (ﬂi,@-,&) for each
stationz € 1,...,51.

Finally, the transformed values of Y;; can be computed as follows

Y = FH{G(Y;:00)} ~ N(0,1),
where G is the cumulative distribution function of a GEV random variable and F' is the
cumulative distribution function of a standard normal random variable.

Figure 4.8 shows the histogram as well as the QQ-plot of the transformed summer and
winter rainfall data. The histograms match well with the theoretical distribution whereas
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Figure 4.8: Histograms and QQ-plots of transformed summer (left) and winter data (right).

the QQ-plots indicate that the transformed data are slightly heavy-tailed for both data
sets.

The objective is now to apply different models to the transformed data in order to
obtain predictors for a random station located between the other stations. Initially, assume
that the underlying model is the ‘random process’ model. In this case, the parameters of
the Gaussian process are estimated by full and pairwise likelihood for different covariance
functions (Table 4.15).

In order to be able to judge to model fit, information criteria are calculated the same
way as for the mean precipitation data (see Table 4.16). Concerning the full likelihood
approach, both the Whittle-Matérn and the powered exponential covariance functions give
good fit. If the models are fitted by pairwise likelihood estimation, the Whittle-Matérn
covariance function gives rise to the smallest value of the information criterion and thus
the best fit.

For the ‘random storm’ model, it is not possible to obtain parameter estimates on the
Gaussian scale. Therefore the model is fitted on the unit Fréchet scale (for parameter
estimates see Table 4.12). As described in section 4.3, the additional parameter ¢ needs
to be fixed in order to calculate the best linear predictor on the Gaussian scale. For the
extreme value data, two values for ¢ are chosen according to the empirical correlation
(Figure 4.9). However, the corresponding correlation functions do not fit the empirical one
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Table 4.15: Parameter estimation for the transformed data using full and pairwise likeli-
hood. Standard errors for the pairwise likelihood estimates are obtained through sandwich
estimates.

Season ) 8 eeeD) D)) b ()
Summer Exponential full 0 0015 (0.11) 1.00 (0.12)  83.0 (26.8) 0.54 (0.03)
pairwise  0.0013 (0.11) 1.00 (0.12) 73.4 (25.6) 0.59 (0.06)
Whittle-Matérn ~ full 0.0014 (0.11) 0.98 (0.11) 141.4 (42.8)  0.235 (0.015)
pairwise  0.0013 (-) 1.00 (-) 135.5 (-) 0.246 (-)
Cauchy full 0.0014 (0.12) 1.10 (0.15) 1.16 (0.13)  0.07 (0.013)
pairwise  0.0013 (0.11) 1.00 (0.12) 2.34 (0.42)  0.12 (0.025)
Winter  Exponential full 0.00 (0.11) 1.00 (0.12)  83.0 (29.28)  0.51 (0.03)
pairwise  0.00 (0.11)  1.00 (0.15)  89.48 (45.8)  0.50 (0.05)
Whittle-Matérn ~ full 0.00 (0.10) 091 (0.08) 111.5 (26.18) 0.23 (0.014)
pairwise  0.00 (-) 1.00 (-) 207.0 (-) 0.20 (-)
Cauchy full 0.00 (0.12) 108 (0.14) 0.9 (0.13)  0.07 (0.013)
pairwise  0.00 (0.11)  1.00 (0.15)  1.75 (0.33)  0.10 (0.026)

very well as its shape is not close to being quadratic.

Based on the parameter estimates, predictors for uniformly randomly generated un-
gauged locations can be computed for both models. Table 4.17 summarizes the back-
transformed predictors. The full likelihood predictors are generally different than the
pairwise predictors. For the ‘random storm’ model, they are constantly lower than the
pairwise predictors. This is unexpected as the simulation study indicated that the pair-
wise predictors usually yield smaller estimates. The pairwise predictors do not depend on
the value of ¢ in the ‘random storm’ model and are thus equal. It is however interesting
how much the value of the back-transformed best linear predictor changes as a function of
t. If the dependence range is shorter (¢ = 5), the predictor is very large whereas for longer
range dependence it is even smaller than the ones obtained based on the ‘random process’
model.

In order to confirm these results, a cross validation is carried out. Again, only the
second choice of weights is considered, as it has so far been suggested to be the most
reasonable one.

Figure 4.10 indicates that the back-transformed predictors based on the ‘random pro-
cess’ model are much more precise than the ones obtained on the unit Fréchet scale, but
compared to the true values they are still not very precise for neither of the assumed corre-
lation structures. Moreover, the best linear predictor is preferable to the pairwise predictor
in terms of the spread of the values. The pairwise predictors are still shrunk to the median,
but less than when predicting on the unit Fréchet scale. The best linear predictor for the
‘random storm’ model is very sensitive to the value of ¢, the interquartile range is too large
for t = 10 comparing to the true values. The predictors stemming from this model based
on pairwise likelihood behave however well. Their distribution is nearly the same as the
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4.4. ANALYSIS OF THE EXTREME PRECIPITATION DATA

Table 4.16: Information criterion (AIC and CLIC) scores for models fitted by full and
pairwise likelihood, respectively.

Season Covariance function AIC  CLIC

Summer Exponential 3949 3837
Whittle-Matérn 3944 3768
Cauchy 3985 3822

Winter  Exponential 4111 4737
Whittle-Matérn 4110 4675
Cauchy 4136 4723

distribution of the back-transformed best linear predictors obtained based on the ‘random
process’ model.

The data analysis leads to the conclusion that pairwise predictors calculated on the
unit Fréchet scale have poor properties. They do not manage to mimic the behavior of the
true values. More precisely, the prediction is constantly underestimating the true value
and sticks to a common value. When the data are transformed to the Gaussian scale and
predictors computed, results become more appropriate. For the ‘random process’ model,
the best linear predictor is most precise. In contrast, the best linear predictors based
on ‘random storm’ model are strongly influenced by the value of ¢. Astonishingly, better
results are obtained based on pairwise likelihood approaches for this model.

-t=5
- t=10 )
0 Empirical Correlation

p(h)

Figure 4.9: Correlation functions for t = 5, t = 10 and empirical correlation for the ‘random
storm’ model.
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Table 4.17: Back-transformed median predictors for 10,000 uniformly randomly generated
ungauged locations, parameters of the Gaussian process estimated.

‘random process’

‘random storm’

Exponential Whittle-Matérn ~ Cauchy t=5 t=10
Summer Zj(m) 214 214 214 24.9 20.8
75 (x) 23.6 23.6 23.6 21.6 21.6
ZL (@) 23.1 23.1 23.1 21.6 21.6
Z (x) 23.0 23.0 23.1 21.6 21.6
Winter  Z{ (2) 21.9 21.9 21.8 24.5 21.2
75, (x) 22.4 22.4 22.4 21.4 21.4
7}, (@) 22.5 22.5 22.5 21.4 21.4
2}, (@) 22.8 22.8 22.8 21.4 21.4
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Figure 4.10: Boxplots of true extreme precipitation values (red), best linear and pairwise
predictors, Z}e(m‘) and 282 (z), respectively, for 17 randomly chosen stations based on
observations at remaining 34 locations. Left panel: summer data, right panel: winter
data. Green: exponential covariance function, blue: Whittle-Matérn covariance function,
light blue: Cauchy covariance function, purple: ‘random storm’ model with ¢ = 5, yellow:
‘random storm’ model with ¢ = 10.
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Conclusion

As it is not possible to obtain the full conditional density for max-stable processes, predic-
tors for ungauged locations of such processes cannot be calculated by means of standard
Geostatistics procedures. Moreover, as standard approaches in spatial statistics are all
based on Gaussian distributions, predictions for extreme observations need to be com-
puted in a different way.

It is already known that the composite likelihood approach allows reliable model fit-
ting for max-stable processes ( ( )). Therefore, the performance of this
approach is explored when it comes the predict observations at ungauged locations. The
behavior of such predictors can be investigated when looking at Gaussian processes as the
full conditional density is available for such processes. Based on traditional Geostatistics,
it is possible to calculate the best linear predictor as well as pairwise predictors which
depend on a weight function. These quantities can be compared through mean square pre-
diction errors. A simulation study allows to conclude that for Gaussian processes, pairwise
predictors induce a loss in precision but that they build nevertheless a reliable alternative
to the best linear predictors in cases where the full conditional density is not available.
Furthermore, the quality of the pairwise predictors depends on the given weight function.
The weight function, of those studied, yielding the best pairwise predictor is the one which
is inversely proportional to the distance between the ungauged location and the considered
location.

The properties of the pairwise predictors can also be compared to the ones of the best
linear predictor in a data analysis. The considered dataset consists of annual mean summer
precipitations observed at 51 location in Switzerland for a period of 47 years. Predicting
10, 000 observations at ungauged locations shows that the mean square prediction error is
likely to be very inflated if the pairwise predictors are considered. In addition, a cross-
validation indicates that the pairwise predictors are slightly shrunk to a common value
compared to the true values. However, this analysis needs to be considered carefully as the
data do not seem to be properly normally distributed. In fact, there may be different factors
causing the non-normality of the means; there may be strong dependence in the daily
rainfall as well as dependence caused by considering the different locations simultaneously.

In a second part, prediction for max-stable processes based on pairwise approaches
is investigated. Both the ‘random process’ and the ‘random storm’ models are fitted
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to simulated data and predictions based on it. The quality of predictors based on this
approach is analyzed through median square prediction errors as the Fréchet distribution
does not have finite moments. Considering thus the median predictors and the median
square prediction errors, it appears that the loss in precision is considerably higher than
for Gaussian processes. The true values are constantly underestimated. The predictors
can be improved by having more data, that means more locations where the process is
observed. However, as extreme data are scarce this may be problematic. An alternative is
to predict on the Gaussian scale using transformed data. Back-transforming the predictors
obtained, yields very precise results although this approach has the major drawback that,
for any fixed correlation, extremes of bivariate Gaussian distributions are asymptotically
independent ( ( ).

The approaches investigated by the simulation study are again applied to a dataset.
Extreme observations are observed at the same locations as the mean summer precipitation
data. Two datasets are available, the summer and winter extremes over a period of 47 years.
Once the models are fitted it is possible to calculate predictors for ungauged locations.
The results can be checked by performing a cross-validation. Especially for the ‘random
process’ model, the predictors are concentrated to a common value and do not correspond
to the true value. The transformation of the data to the Gaussian scale yields a significant
improvement in the predictors. As it is possible to obtain the best linear predictor, the
back-transformed predictors for the ‘random process’ model are of better quality than
the pairwise predictors. Both predictors allow more precise prediction than on the unit
Fréchet scale. Due to an additional parameter in the ‘random storm’ model, the best
linear predictors give not very precise predictions but vary a lot. In this case the pairwise
predictors are preferable as they give results that are nearly equivalent to back-transformed
linear predictors for the ‘random process’ model.

It would be very interesting to pursue the composite likelihood approach and improve
it. In this context, it may be reasonable to consider the triplewise density. Obtaining
the closed form for the triplewise density of a max-stable process is a non-trivial problem.

( ) suggest a way to calculate higher order densities for max-stable
processes.

In addition, it may be worthwhile to compare the pairwise likelihood approach to
Bayesian approaches such as predictive likelihood ( ( )). More specifically,
approximate conditional prediction may lead to reasonable predictors for max-stable pro-
cesses. There may be a link between these procedures as predictive likelihood approaches
are based on repeating likelihood maximization of a posterior likelihood.
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Appendix

A.1 Gradient of pairwise log likelihood for Gaussian processes

The covariance matrix of the bivariate normal distribution and its inverse are denoted as

o=l W] g

where the determinant of ¥ is |¥| = 6* —v(h)? and h corresponds to the euclidean distance
between two positions where the Gaussian process is observed. This allows one to write
the pairwise log likelihood for y;, y;

1
log f(yi,y;) = —log2m — 5 log X

(i — ) = 29(h) (yi — )y — ) + 0 (y; — w)®
2{c* —~(h)*} '

In order to get an estimate for the covariance matrix of the maximum composite likeli-
hood estimate 6, the matrix J needs to be estimated as described in section 1.1. Therefore
the gradient of the pairwise log likelihood needs to be calculated.

The gradients with respect to  and o2 can be obtained as functions of the covariance
function ~y(h).

(yi —p) + (y; — )
a2 +~(h)

o? i — 2 _ P — P 2(y: — u)?
L T

Vilog f(yi,y;) =

g

For the powered exponential covariance function the following results are obtained for
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the gradients with respect to 8 and v:

Vslog f(yi,y;) = W—Uz{(w—u)QHw—M)Z}W
By (h)/OB{o* — 4(h)2} + 2v(h)29y(h) /O
(s — 1) — 1) v(h) /054 {UZ(_)V]('};}’QY( )20v(h)/ 9B

h)ovy(h)/ov h)oy(h)/ov

V. log f(yi,y;) = %—02{(yi—u)2+(yj—u)2}w

01()[0v{o" = ()} + 24(h)?0 (k) O
ot = (02 |

+(yi — 1) (Y5 — 1)

where

oy(h hY
T - g

- o (2) ()

Concerning the Cauchy covariance function, the following identities hold:

2vh2~(h)? [1 N (yi — 1)y — )
8 {14+ B ot () 7(h)

oy — ) — 2 — )y — w)y(h) + o (ys — N)T
ot —v(h)?

Vglog f(yi,y;) =

(h)*log {1+ (%)° D s —
Vylog f(yiry;) = - {04%{7(11)2? }[1+(yl M = 1)
Aoy = 1)* = 2(yi — 1) (y; — Wy (h

ot —(h)?

Finally, for the Whittle-Matérn covariance function the gradient with respect to 8 can
be obtained as follows

V(h)0v(h)/0B
ot —v(h)?

+(yi — 1) (Y5 — 1)

nov(h) /0
— o {(yi — 1)* + (y; — M)Q}W

0(h)/0B{c* — (n)?} + 2v(h)*0~(h) /98
{o* —~(h)?}? ’

Vglog f(yi,y;) =

where
T [y s+ (1) +mnt -y (5],
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where I'(+) is the gamma function and K, (-) is the modified Bessel function of third kind
of order v > 0.

As the modified Bessel function of third kind of order v > 0 is not differentiable with
respect to the parameter v, it is not possible to obtain the gradient of the pairwise log
likelihood with respect to v.
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