
Semester Project

An Maxflow Algorithm for Directed
Planar Graphs

Supervisor:
Dr. Andreas Karrenbauer

andreas.karrenbauer@epfl.ch

Author:
Luca Furrer

luca.furrer@epfl.ch

Chair of Discrete Optimization (Prof. F. Eisenbrand)

January 2010

Abstract

In this paper we present the maximum flow algorithm in O(n log n) for directed
planar graphs of Glencore Borradail and Philip Klein published in 2009 in [1]. Further
we are going to present and analyse an implementation of this algorithm.

To analyse the maximum flow algorithm we also use an algorithm to find the
maximal running time of a an algorithm for planar graphs which is based on trans-
forming maximal planar graphs to other maximal planar graphs by Lawson flips.
This algorithm will be presented and analyzed as well.

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Graph Theory 4

3 Triangulations 10

4 Maximum s-t-flow algorithm for planar graphs 12
4.1 LeftMostCirculation . 12
4.2 LeftMostFlow . 13
4.3 Running time . 15

5 TestGraph algorithm 16

6 Implementation 18
6.1 Graph classes . 18
6.2 MaxFlow algorithm . 18
6.3 TestGraph algorithm . 19
6.4 Executables . 19

7 Results 20
7.1 Graphs . 20
7.2 Convergence of TestGraph . 23
7.3 Simulated maximal running time for MaxFlow 25

8 Conclusion 28

A Graphs 30
A.1 Graph with 5 nodes . 30
A.2 Graph with 10 nodes . 30

B Running time data 32

2

1 INTRODUCTION

1 Introduction

In this paper we are going to discuss an maximum flow algorithm for planar flow which has

been introduced by Glencora Borradaile and Philip Klein in [1]. This algorithm is running

in O(n logn). Further we are going to analyze an implementation of this algorithm.

This paper results out of an semester project at the Ecole Polytechnique fédérale de

Lausanne (EPFL) under supervision of Dr. Andreas Karrenbauer of the Chair of Discrete

Optimization of Prof. Friedrich Eisenbrand.

The problem of finding a maximum flow algorithm is by history connected to planar

graphs as it is discussed by Schrijver in [8] and it appeared in around 1955 in researched

lied to the cold war. A development of the running time for maximum flow algorithm

is present in Schrijvers textbook [9, p.160-161]. In 1997 Karsten Weihe presented an

O(n log n) algorithm to find the maximal flow in a directed planar graph. However it

seems that there is an small error in his proof as stated by Borradaile and Klein in [1,

p.9:4], which also have published an O(n log n) algorithm for directed planar graph in this

paper.

So in this paper we present the algorithm of Borradaile and Klein and perform several

tests on a implementation of this algorithm. So we will analyse the observed running time

of the implementation using an algorithm to find the graph with the highest running time.

But to do so we need first to introduce some theory about graphs and triangulations.

3

2 GRAPH THEORY

2 Graph Theory

In this section we introduce some graph theory which is needed to understand the following

chapters of this report. We are mainly following Chapter 3 of Schrijver [9]. This book is

recommended for further reading on graph theory since it gives a good overview over this

topic.

Definition 1 An undirected graph is a pair G = (V, E), where V is a finite set and E is

a set of unordered pairs of elements in V . The elements of V are called vertices, nodes or

points. The elements of E are called edges.

But somehow in this paper we are more interested in directed graphs.

Definition 2 A directed graph or digraph is a pair G = (V, A) where E is a finite set and

A is a set of ordered pairs of elements in V . The elements of V are, as in a undirected

graph. called vertices, nodes or points. The elements of A are called arcs or directed edges.

Definition 3 A graph G′ = (V ′, A′) is a subgraph of G = (V, A) if V ′ ⊆ V and A′ ⊆ A.

Definition 4 Let a = (u, v) ∈ A be an arc from u to v of the graph G. So −a denotes the

arc from v to u, i.e. −a = (v, u). −a is called the reverse arc. With −A we denote the set

of the reversed arcs of A.

One may see that G = (V, A ∪ −A) has the same properties as an undirected graph.

Therefore it is possible to represent a undirected graph as a directed graph.

Often one may be interested which is the couple (u, v) which defines an arc.

Definition 5 Let a = (u, v) ∈ A be an arc. Then u is called tail of a and v is called head

of a. We note u = tail(a) and v = head(a)

Definition 6 We denote with δ(u), u ∈ V the set of incident arcs of u, i.e. {a = (v, w) ∈

A|a∩u 6= ∅}. We denote with δin(u), δout(u) the set of incoming respectively outgoing arcs

of u.

There are several important subsets of graphs which are needed to understand the

problem of a maximal flow.

Definition 7 A subset {a1, . . . , an} of A is called walk if for all 1 < i < n tail(ai) =

head(ai−1) and head(ai) = tail(ai+1).

4

2 GRAPH THEORY

Definition 8 A walk is called path every arc contained in the walk appears only once. A

path from s to t is called an s-t-path.

Definition 9 A path {a1, . . . , an} is called cycle if a1 = an. A cycle is called simple if

every node contained in the cycle is only head to one arc in the cycle.

Definition 10 Walks, path and cycles are said to be directed if all arcs have the same

directions. Otherwise we call them undirected.

Definition 11 Two nodes u and v are called connected if there exists an undirected path

between u and v.

Definition 12 A tree is a connected subgraph T of G without cycles. A tree containing

all nodes of G is called spanning tree.

Definition 13 A graph G is called planar, if there exists a continuous injection of G to

R2.

This means that if we represent a graph G in the plane, it is possible to draw him in such

manner that there are no edges crossing each other. The maximum s-t-flow algorithm

presented later works only with a directed planar graph.

Definition 14 A subdivision of a graph G is a graph obtained from G by inserting new

vertices into the edges of G.

Theorem 1 (Kuratowski’s theorem) A graph G is planar if and only if no subgraph

of G is a subdivision of K5 or K3,3 (Figure 1).

Definition 15 The topological components of R2\G are called faces. We denote the set of

faces with F .

There is also a combinatorial way to define the faces: From a starting node and arc, we will

follow always the next arc in counter-clockwise direction until we get back to the starting

node. The face is the area to the right of the path. We will also get the same result by

choosing the next clockwise arc and considering the area to the right.

One face, normally the outer face, of a connected graph is called infinity face and

denoted by f∞. One may see, that depending on the graphical representation chosen for

the graph, the outer face changes, so by denoting the infinity face we choose also which

face is the outer face, but at the end it is arbitrary.

5

2 GRAPH THEORY

Figure 1: K5 (left) and K3,3 (right)

Theorem 2 (Euler’s formula) By Euler’s formula, for every connected graph G = (V, A)

and its face collection F , it holds that

|V |+ |F | = |E|+ 2.

Definition 16 A graph is simple if it contains no arc a = (u, v) u, v ∈ V such that u = v

and there are no multiple arcs connecting the same pairs of nodes i.e ∄a = (u, v), a′ =

(u′, v′) a, a′ ∈ A such that u = u′ and v = v′.

Definition 17 A simple planar graph is called maximal if it is not possible to add an arc

to A without violating the properties of a simple planar graph.

It is important to see, that there is no unique maximal planar graph for a fixed number of

nodes. The get an overview on the number of non-ismorphic undirected planar graphs we

recommend to consult the article of G. Birkmann and B. D. McKay [2].

Lemma 1 A maximal planar graph has only triangular faces.

Since a maximal planar graphs have only triangular faces they is also often called planar

triangulations.

Proof: Consider a simple planar graph G = (V, A). Suppose that G is maximal. It is

obvious that a face with only two nodes cannot appear in a simple graph. Suppose now

that there exists a face with more than three nodes on the border. Hence there exists two

nodes u, v ∈ V such that there is no arc (u, v) ∈ A. Since u and v are at the same face

it is possible to draw an arc a′ between u and v without crossing an other arc. Hence

G′ = (V, A∪a′) is a simple planar graph. This implies that G was not maximal. Therefore

every face of G is triangular.

6

2 GRAPH THEORY

�

Theorem 3 The maximal number of arcs for a planar graph with is |A| = 3|V | − 6.

Proof: Consider the planar graph G = (V, A). To simplify the notations we set |A| = n,

|V | = m and |F | = f .

To every arc there are two corresponding faces. Lemma 1 implies that f = 3m for the

maximal number of arcs, hence 2m = 3f By Euler’s formula m− n + f = 2 we get

n−m +
2

3
= 2

3n− 3e + 2e = 6

3n− 6 = e

Therefore the maximal number of arcs in a planar graph is 3n− 6.

�

Definition 18 Given a directed planar graph G, the dual graph of G is the graph D =

(F, A) where F are the faces of G. There is an one to one connection between the arcs of

the primal and the dual graph. To get the direction of the arcs in A one turn the arc in G

around 90◦ clockwise.

To detect the directions of the arcs in the dual graph it is possible to apply the left hand

rule: Take your left hand with the palm downwards. If the index points in direction of the

arc in the primal graph, the thumb points in direction of the arc in the dual graph.

Definition 19 The function c : A → R× R, c(a) = [l, u] is called capacity function. We

define c(−a) = −l(a) ∀a ∈ A

In this paper we will often set l = 0 and denote c(a) = u. It is also possible to interpret

this function as length function of the arc depending on the context.

Definition 20 An s-t-flow f in a graph G = (V, A) is a function f : A→ R such that

1. l(a) ≤ f(a) ≤ u(a)∀a ∈ A

2. f(δin(v)) = f(δout(v))∀v ∈ V \{s, t}

The value of an s-t-flow f is defined by

value(f) = f(δout(s))− f(δin(s)) = −f(δin(t))− f(δout(s)).

We set f(−a) = −f(a) for all a ∈ A.

7

2 GRAPH THEORY

We will sometime call an s-t-flow just flow for simplicity.

Definition 21 The residual graph Gf = (V, Af) is defined by

Af = {a ∈ A : f(a) < c(a)} ∪ {−a ∈ −A : f(a) > l(a)}.

The residual capacity function cf is defined by

cf(a) = c(a)− f(a) ∀a ∈ Af

Definition 22 We define excessf (v) = f(δin(v))− f(δout(v)) for v in V .

Definition 23 A s-t-cut in a graph G = (V, A) is a subset S of arcs such that there exists

no path from s to t in the graph (V, A\S). The value of a cut is equal to c(δout(S)).

With this two last definitions the following important theorem makes sense.

Theorem 4 (Max-Flow-Min-Cut-Theorem) The value of the minimal s-t-cut is equal

to the value of the maximal s-t-flow.

With this problem we know the dual problem to the maximal flow problem. It allows also

to check if a given solution is optimal. The proof is omitted and can be found in every

standard book about graph theory. Further connected to the definition of the s-t-flow it

follows the definition of a circulation.

Definition 24 A function f : A→ R is called circulation if excessf (v) = 0∀v ∈ V .

It can be seen as an s-t-flow with s = t.

Definition 25 Let G = (V, A) be a graph ant let l : A → R. A function p : V → R is

called a potential if for all a = (u, v)

l(a) ≥ p(v)− p(u)

We are going to use a potential function which was introduced by Miller and Naor [7, p.6].

In this case l(a) = c(a) and the potential of a node is the length of the shortest path to

this node from a fixed source node with, by convention, potential 0. We are using this

potential mainly in the dual graph as for example in the following definition.

Definition 26 A directed cycle is called clockwise if all included faces have non-negative

potentials. In the same way we say that a cycle is called counterclockwise if the potential

of every included face is non-positive.

8

2 GRAPH THEORY

One may check that this definition corresponds to the movement of the hand of a clock.

It is also possible that a cycle is neither clockwise nor counterclockwise. But on the other

side a cycle is always clockwise or counterclockwise.

Definition 27 A s-t-walk A is said left of an other s-t-walk B if the cycle A − B is

clockwise.

In the same way we can also define that A right of B is the cycle is counterclockwise.

Definition 28 A s-t-walk A is leftmost if for all other s-t-walk B, A is left of B

In the later presented LeftMostFlow algorithm we use the definition of leftmost path quite

extensively.

9

3 TRIANGULATIONS

3 Triangulations

Since we will be interested later on to generate different maximal planar graphs we are going

to consider triangulations and investigate a possibility to transform one transformation to

an other.

We consider a finite set of points S in the euclidian two-dimensional space.

Definition 29 The convex hull of a set of points is the smallest convex region containing

the set.

Definition 30 An point in S is an extreme point if he is on the boundary of the convex

hull and the interior angle two the next two points on the boundary is smaller than π.

Definition 31 A basic triangle is a non-degenerated triangle whose sides line segments

not intersected by other segments and there is no element of except the three defining the

triangle contained in the triangle.

Definition 32 If the convex hull of S is covered by non-overlapping basic triangles, this

is called a triangulation of S.

Definition 33 We define a flip as the transformation of two triangles abd and bcd with

common side bd to the triangles abc and acd with common side ac. Those flips are often

called Lawson Flips

Theorem 5 Given any two triangulations of S, say T ′ and T ′′, there exists a (finite)

sequence of flips by which T ′ can be transformed to T ′′

This theorem is due to Lawson [6] in which he also introduces the flips, called exchanges,

who appears later under the name of Lawson Flips.

The proof, which is omitted in this report, can be found either in the paper of Lawson

mentioned before, or a shorter version in Felsner [4, p.119] which uses Delaunay trian-

gulations. The main idea of both proofs is to fix a reference triangulation and to show

that it is possible to transform every triangulation into this reference triangulation. Law-

son uses constructs his reference triangulations from the outside of the convex set to the

inside by removing extreme points. Felsner uses the Delaunay triangulation as reference

triangulation. He shows as well that this triangulation can be reached in at most (n
2) flips.

Corollary 1 It is possible to transform every maximal planar graph by flipping edges to

any other maximal planar graph with the same number of nodes.

10

3 TRIANGULATIONS

Proof: By Lemma 1 we know that every maximal planar graph has only triangular faces

and hence it is also a triangulation. Hence by Theorem 5 we have that it is possible to

reach every triangulation of a node set by flipping edges starting at one triangulation.

�

This corollary is going to be very useful in the section 5 since it allows us to transform one

maximal planar graph to an other by flipping arcs. Therefore for every maximal planar

graph there exists a set of flips to transform it to another maximal planar graph.

11

4 MAXIMUM S-T -FLOW ALGORITHM FOR PLANAR GRAPHS

4 Maximum s-t-flow algorithm for planar graphs

In this section we preset the O(n logn) maximum s-t flow algorithm for planar graphs of

Glencora Borradaile and Philip Klein [1].

For this algorithm we consider a directed planar graph G = (V, A) with positive capac-

ities c : A→ R+and given source s and sink t.

The algorithm called MaxFlow consists mainly out of two steps, one is LeftMostCircu-

lation and the other is LeftMostPath.

Algorithm 1 (MaxFlow)

1. Designate a face incident to s as f∞

2. Saturate the clockwise cycles (LeftMostCirculation)

3. While there is a residual s-t-path, saturate the leftmost such path (LeftMostFlow)

In the following sections the two sub-algorithm for Algorithm 1 will be presented. It

follows a short discussion about the running time.

4.1 LeftMostCirculation

The second step of the MaxFlow algorithm is the LeftMostCirculation. It is due to S.

Khuller, J. Naor and P. Klein in [5].

In this step we saturate all the clockwise cycles of the graph G. This is done by

searching for the shortest path from f∞ to the other faces in the dual graph and interpret

this distance as node potentials. The flow over an arc is interpreted as the difference

between the two nodes in the dual graph.

Let D = (F, A) denote the dual graph of G. In order to avoid confusion between the

notations for faces and the one for the flow. We use here flow instead of f to denote the

function f : A→ R for the circulation.

Algorithm 2 (LeftMostCirculation)

1. Interpret capacities c(a), a ∈ A as length of the arc in the dual graph D.

2. Let Φ(f) = dist(f∞, f) for all f ∈ F .

3. Let flow(a) = Φ(headD(a))− Φ(tailD(a)) for all a ∈ A

4. Return flow.

12

4.2 LeftMostFlow4 MAXIMUM S-T -FLOW ALGORITHM FOR PLANAR GRAPHS

The LeftMostCirculation algorithm presented in [5] and the one in [1] differ slightly. We

presented here a version which follows [5].

At step 2 of Algorithm 2 one may for example use the Dijkstra algorithm to obtain the

shortest path tree. This is possible since we have positive length. The Dijkstra algorithm

can be found for example in Schrijver [9, p.97] or in de Werra, Liebling and Hêche [3,

p.179]. The Dijkstra algorithm can have a running time of O(n log n + m).

Further a lemma due to Khuller Naor and Klein gives us that this algorithm really

saturates clockwise cycles as claimed in Algorithm 1.

Lemma 2 The graph has no clockwise cycle that is residual with respect to the circulation

returned by LeftMostCirculation.

Proof: Let C be a clockwise cycle. Let a be an arc in C which is in the shortest path tree

computed in Step 2. Since every face enclosed to C is connected to f∞ this arc exists. By

definition of the residual capacity, we have

cflow(a) = c(a)− flow(a).

By the definition of flow in step 3 we get

cflow(a) = c(a)− Φ(headD(a))− Φ(tailD(a))

= c(a)− (dist(f∞, headD(a))− dist(f∞, tailD(a)))

= c(a)− c(a) = 0.

Therefore there is no clockwise cycle in the residual graph with respect to flow.

�

4.2 LeftMostFlow

The LeftMostFlow algorithm takes the circulation returned by LeftMostCirculation and is

searching for the leftmost s-t-path in order to saturate it until there is no s-t-path left.

Algorithm 3 (LeftMostFlow)

1. Initialize f = flow

2. While there is an s-t-path in Gf , saturate the leftmost residual s-t-path and modify

f .

3. Return f

13

4.2 LeftMostFlow4 MAXIMUM S-T -FLOW ALGORITHM FOR PLANAR GRAPHS

To discuss the running time of Algorithm 3, we present first the following theorem.

Theorem 6 (Usability Theorem) Consider the Algorithm 3. Suppose that an arc a

is augmented and some time later his reverse arc is augmented. Then arc a cannot be

augmented again.

The proof of theorem can be found in the paper of Borradaile and Klein [1].

But even with this theorem it is not assured that the LeftMostFlow algorithm runs in

the wanted O(n log n) time. For this reasen Borradaile and Klein present a more specific

algorithm which runs in the wanted time.

Algorithm 4 (LeftMostFlow, specific)

1. Initialize f = flow

2. Initialize T to be the right-first search tree searching backwards from t in Gf

3. Let Ḡ be the graph obtained by deleting all vertices not in T

4. Initialize T ∗ to consist of the egdes not in the dual D of Gf that are not in T .

5. Repeat:

6. If the s-t path in T is residual, saturate it, modifying f .

7. Let d be the last non-residual arc in the path from s to t.

8. If the tail of d in D is a descendent in T ∗ of the head(d) in D; return f

9. Let e be the parent arc in T ∗ of headD(d)

10. Eject e from T ∗ and insert d into T ∗.

11. Eject d from T and insert e into T .

Theorem 7 Algorithm 4 takes O(n log n) time.

The proof of Theorem 7 can be found in the article of Borradaile and Klein [1]. With this

algorithm number of pushes over an arc is minimized

14

4.3 Running time 4 MAXIMUM S-T -FLOW ALGORITHM FOR PLANAR GRAPHS

4.3 Running time

The running time of the MaxFlow algorithm is O(n logn). For that is true we must analyse

the LeftMostCirculation as well as the LeftMostFlow algorithm.

What concerns the LeftMostCirculation algorithm, one may observe that the construc-

tion of the dual graph is not a problem of this algorithm. It is obvious that the limiting

part in terms of running time is the computation of the shortest path tree which can, by

choosing a appropriate algorithm be handeld in the O(n logn). The computation of flow

can be done in O(m) which is, since we are in a planar graph bounden by 3n−6 (Theorem

3). Hence the first part of the MaxFlow algorithm holds the wanted running time.

For the LeftMostFlow, by Theorem 7 Algorithm 4 has running time O(n logn). Hence

the MaxFlow algorithm has running time O(n log n).

15

5 TESTGRAPH ALGORITHM

5 TestGraph algorithm

We are interested to find the graph and capacities for a graph such that it takes the longest

time possible to run an algorithm in order to find the worst case graph and as well to check

if the proposed upper bound for the running time is valid.

Since the number of different planar graph with a fixed number of vertices is increasing

quite fast. It is impossible to test all different graphs, even without considering the problem

of generating all of them. When even different capacities for the arcs are involved this gets

impossible.

Hence one must find an other way to find this worst case graph. In this section we

present one approach which we call the TestGraph algorithm.

The goal of this algorithm is to allow to test an directed planar graph algorithm and

to find a worst case graph as well as its running time. In this case the tested algorithm

will be the MaxFlow algorithm of section 4.

To test the algorithm we create a maximal planar graph G with n nodes since every

planar graph with at most n nodes is a subgraph of G. Hence the graph with maximum

running time is a subgraph of a maximal planar graph and can hence be obtained by setting

the capacities of the arcs not included in the subgraph to zero. Further we use Corollary

1 to transform one maximal planar graph to an other.

Algorithm 5 (TestGraph)

1. Create a maximal planar graph G.

2. For large n ∈ N do

(a) G′ ← Transform(G)

(b) If running time of G′ is higher than the one of G

• G← G′

• If running time of G is bigger than the previous maximum. Stock G as

graph with maximal running time.

(c) Else: G←Markov(G, G′)

3. Return the graph with maximal running time.

In Algorithm 5 in Step 2a we call Transform(G). This algorithm chooses one arc in the

graph G and flips it as well as it changes its capacity. The flip corresponds to the flip of

Definition 33. By Corollary 1 we know that the new graph is also maximal. Like this we

transform G to an other maximal planar graph which differs from G only in one arc.

16

5 TESTGRAPH ALGORITHM

Algorithm 6 (Transform(G))

1. Choose randomly an arc a of G

2. Flip or inverse arc a

3. Change capacity of arc a.

4. Return G

As we change the capacity in Algorthim 6 in step 3, it is suggested to do this in a using a

Random Walk with several steps and in each step probability 1/2 to go up and probability

1/2 to go down. Since we choose the arc over an uniform distribution we can apply some

results of the coupon collector problem to estimate the number of iteration are needed, such

that every arc is changed at least once. This number is given approximately by m log m.

Note that this number does not give an approximation of needed iterations since flipping

every arc at least once does not automatically lead to the graph with maximal running

time. But it shows already that the number it will not be enough to augment the number

of iteration linearly to get a similar good resulat with a bigger number of nodes.

In TestGraph at step 2c, there is an Algorithm Markov(G,G’) called. This algorithm

is only called if the running time for G is higher than the one of G′. In this case we want

sometimes to keep the previous graph since he has higher running time, but it might also

by an advantage to change the graph to get an higher run time. The choice whether to

change to an other graph G′ or not is done by this algorithm.

Algorithm 7 (Markov(G,G’))

1. Let E, E ′ be the running time of G resp G′

2. With probability eβ(E′
−E) return G′, otherwise return G

In step 2 we use a β it can be chosen such that the acception rate is bigger or smaller, as

it is prefered.

One may observe that we get the following probability to change from G to G′ in

TestGraph:

P (G→ G′) =

{

1 ifE′ > E
eβ(E′

−E) ifE′ ≤ E

Further in one iteration of TestGraph the Markov property is fulfilled, that is the change

made in iteration i is independent of iteration i − 1. So we get finally a Markov-Chain-

Monte-Carlo algorithm.

17

6 IMPLEMENTATION

6 Implementation

In this section we are presenting some specifications for the implementation of MaxFlow

and TestGraph algorithm (Algorithms 1 and 5). We will not discuss the the exact form of

the implementation which can be found in the code documentation.

6.1 Graph classes

The class Directed Planar Graph and the class Annotated Graph with the type definition

for Annotated Planar Graph to add annotations to a graph are based on a code written

by Martin Niemeier for directed graphs. To store the planarity of the graph there is

embedding imposed which specifies the order of out and incoming edges of a node. This

order is counterclockwise. To read in a graph a special data format is imposed. The format

demands first the number of nodes followed the number of arcs of the graph followed by the

arcs (tail head index). It is necessary to keep track also of reversed arcs for the embedding.

For annotated graphs the annotations for the graphs follows after an * of the form (arc

capacity flow). For an example see the files in Appendix A.1 and A.2 where a graph with

5 respectively 10 nodes is represented. It is possible to read out just the graph of a data

structure for an annotated graph. Further it is not possible to modify the graph of an

annotated graph and for this reason it is also not possible to copy them.

If a maximal planar graph is created he has initially the following form:

1

3 4 n

2

Hence if one wants an random maximal planar graph it is suggested to use the rndFlip

function of maxgraph.h several time to obtain a random maximal planar graph.

6.2 MaxFlow algorithm

The implemented algorithm follows the algorithm described in section 4. In order to

compute the shortest path tree in Algorithm 2, the dijkstra algorithm is used since the the

capacities and therfore the length of the arcs arcs are positive.

18

6.3 TestGraph algorithm 6 IMPLEMENTATION

For the LeftMostFlow algorithm, the implemented version is not the specific one (Algo-

rithm 4) but Algorithm 3 with a simple depth first search to find the left most path. This

is less efficient than the specific version but lets more space open for further improvements.

6.3 TestGraph algorithm

The implemented algorithm follows the algorithm TestGraph (Algorithm 5 of Section 5.

We use β = 1. The computed flow is a flow from node 3 to node n where n is the number

of nodes. It is important to notice that this algorithm only works with maximal planar

graphs as input since it uses the function dual rotate arc which is only working for maximal

planar graphs. Further this algorithm produces two files maxGraph.graph and max.dot

where maxGraph.graph is the maximal graph obtained at the end of the algorithm in the in

the form such that the graph classes can read it and max.dot is the graph in dot language.

6.4 Executables

In this section finds a short description of the executables delivered with the code.

• project n1 n2 it: Runs the TestGraph algorithm for all graphs with between n1

and n2 nodes with it iterations. Output: maxGraph.graph, max.dot and stat.dat.

• project file it: Runs TestGraph with initial graph from file and with it iterations.

Output: maxGraph.graph, max.dot and stat.dat.

• project: As the previous function but the parameters are asked by a terminal input.

• maxflow file s t: Computes the maximal s-t-flow for the given graph in the file

and prints it with intermediate steps to the terminal.

Attention: The input for the files will not be checked by the program. If the given data

type does not correspond with the wanted type, the program will crash.

19

7 RESULTS

7 Results

In this chapter we analyse the results of the implementations of MaxFlow and TestGraph.

So we present different observations. In particular we will have a look on the graphs retured

by TestGraph. This graphs should be the graphs that have the longest running time in the

MaxFlow algorithm. We will have a look at running time observed in simulations as well

as the convergence of the TestGraph algorithm to the graph with highest running time

with respect to the number of iterations.

7.1 Graphs

In this section we present some graphs which have been returned form TestGraph algorithm

(Algorithm 5).

The arcs in the graphs have an annotation of the form x/y, where x corresponds to

the flow over the arc and y corresponds to the capacity of the arc. We recall also that

the flow computed is an 3-n-flow where n is the number of nodes (n = 5, 10). Since graph

visualizations programs like Graphviz do not support planar graph drawing, the biggest

graph with 20 nodes will not be presented planar form. The other two graphs are drawn

according to the embedding returned by the algorithm. The face f∞ is the outer face.

The first presented graph is a maximal planar graph with 5 nodes in Figure 2. The

value of the flow is 676. The number of needed pushes to obtain this flow is 34. The file

describing the graph is in Appendix A.1. This graph is not containing any directed cycles.

Further there is a path from node 3 to every other node as well as there is an arc from

every node to node 5 and hence also a paht.

MaxFlow algorithm the 5 node planar maximal graph We will present how the

MaxFlow algorithm works with help of the graph presented before (Figure 2). Since there

are no cycles in the graph, LeftMostCirculation does not add any flow to the initial graph

with f = 0. Then the algorithm saturates the following path in this order:

• 3→ 4→ 1→ 5

• 3→ 4→ 2→ 1→ 5

• 3→ 4→ 2→ 5

• 3→ 4→ 5

• 3→ 5

20

7.1 Graphs 7 RESULTS

3

5

2

1 4

244/244

280/280

36/36

0/143 36/152

152/152

0/29

280/774

208/246

Figure 2: Graph with 5 nodes

• 3→ 1→ 5

• 3→ 1→ 2→ 5

• 3→ 1→ 2→ 4→ 5

• 3→ 1→ 4→ 5

Those path are in this order always left most in the actual residual graphs which are not

displayed here. One observe that as well that the algorithm pushes 4 times over the arc

(3, 4) as well over the arc (3, 1) and that over every arc there is at least push.

Next we consider a graph with 10 nodes, which is shown in Figure 3. This graph has

24 arcs. The value of the obtained flow is 5317 and to obtain the graph the algorithm

perform 160 pushes. The file describing the graph is in Appendix A.2. Due to the facts

discussed in Section 7.2, we can not be totally sure that this is the graph with absolute

highest running time but observations show that it is really closed to. We have not seen a

graph with 10 nodes with higher running time.

As in the graph with 5 nodes there is no incoming arc for the source node, node 3,

and no outgoing nodes for the sink node, node 10. Further there is an arc between node

3 and node 10. There are 3 cycles in this graph which are 6 → 8 → 4 → 1 → 6,

6 → 8 → 4 → 9 → 1 → 6 and 6 → 8 → 4 → 5 → 6. In LeftMostCirculation those

21

7.1 Graphs 7 RESULTS

3

6

8 10

5 4 7

1 9

2

420/420

0/2509

997/997

1404/1537

0/478

2845/3034

0/565

420/685

1475/1475

0/298

420/818

643/1172
1441/1441

0/1249

0/1060

0/368

0/166

0/165

1252/1252

0/882

1252/1252

420/671

0/960

0/1684

Figure 3: Graph with 10 nodes

circulations are going to be blocked by saturating the first one since this saturates the arc

6→ 8 which appears in every circulation.

Every node is reachable from the source node and the sink node is reachable from every

node in the graph.

After there are 24 s-t-paths which are going to be saturated in the order followed by

LeftMostFlow. The arcs with the most pushes are the arc 3 → 2 (11 pushes) and 3 → 6

(10 pushes) which are in the set of outgoing arcs of the source node as well as the arcs

6→ 10 (10 pushes) and 2→ 10 (12 pushes) of the set of incoming arcs to the sink node .

Hence there the arcs incident to the source respectively sink are augmented often which is

not surprising but this leads to an high number of total performed pushes.

If one compares the graph with 5 nodes and the graph with 10 nodes one observe that

there is in both graphs a direct arc from source to sink, this appears surprising in the first

moment but this allows to have longer other s-t paths and hence a higher number of total

pushes and running time which is maximized in those two graphs. It is also important to

see that there are no incoming respectively outgoing arcs in the sink respectively source

22

7.2 Convergence of TestGraph 7 RESULTS

node. The graphs are created such that there are s-t-paths which are close the the possible

maximum of n− 1 arcs.

Since every node is reachable from the source node and it is possible to reach the sink

node from every node this leads to a hight number of possible paths and the fact that

there are paths where first there is flow pushed in one direction and after in the opposite

direction, this increases the number of possible paths. Further with the found structure

LeftMostFlow augments several times over the same arc. With the specific version of the

LeftMostFlow algorithm this is minimized which leads afterwards to a smaller number of

pushes.

One may observe that the usability theorem is not violated by performing the algorithm,

7.2 Convergence of TestGraph

In this section we discuss the convergence or the test graph algorithm with help of the

output of a simulation of TestGraph algorithm for a graph with 5 nodes and a graph with

10 nodes.

1 10 100 1000 10000 1e+05 1e+06 1e+07
Iterations (log)

10

15

20

25

30

35

40

R
un

ni
ng

 ti
m

e

Figure 4: Convergence of the running time in the number of iterations for a graph with 5
nodes

23

7.2 Convergence of TestGraph 7 RESULTS

Let us consider first the result fo the graph with 5 nodes which is presented in Figure

4. One observe that he convergence is quite slow. Note that the scale of the x-axis is

logarithmic. The slope of the convergence curve gets flat around 10’0000 iterations. So an

approximate maximum is reached after 10’000 iterations since there is no noise it seems

that around this value the real maximum for the running time is reached.

As we consider a graph with 10 nodes we get Figure 5 where one may observe that it

is less obvious to tell if we reached the maximum. At 10’000’000 iterations the maximum

1 10 100 1000 10000 1e+05 1e+06 1e+07
Iterations (log)

0

50

100

150

200

R
un

ni
ng

 ti
m

e

Figure 5: Convergence of the running time in the number of iterations for a graph with 10
nodes

is not reached yet. The running time does increase slowly as it can be seen in the log-lin

plot. One may also observe effect of the randomized algorithm by the noise of the different

observations.

By the observations of the development of the maximal running time by increasing

number of iterations for the graphs with 5 and 10 nodes, we deduce that a high number

of iterations is needed in order to obtain an approximation of the maximal running time

with the algorithm TestGraph. Further one may also observe that the result is influenced

by the fact that the algorithm is randomized.

24

7.3 Simulated maximal running time for MaxFlow 7 RESULTS

The number of iterations needed to obtain an approximate maximal running time is

increasing at least at factor 100 comparing a graph with 5 nodes with a graph with 10

nodes. Hence the number of needed iterations is increasing in a enorm number for an

increasing number of nodes and the convergence of TestGraph gets worse and worse. Its

possible that this bad behaviour comes from the fact that some graphs are visited several

times.

It would hence be interesting and useful to analyse the TestGraph algorithm better and

improve its convergence for further investigations.

7.3 Simulated maximal running time for MaxFlow

In this section we investigate the simulated maximal running time of our implementation

of the MaxFlow algorithm and compare it to the theoretical bound of Theorem 7 which is

O(n log n). The data used are the returned values of the TestGraph algorithm. Note that

the number of iterations is 20’000’000. This works for the smaller number of nodes but

for bigger number of nodes this might not be sufficient following the discussion of Section

7.2. The results are displayed in Figure 6 and are available in Appendix B. First one may

10 20 30 40 50 60
Nodes

0

500

1000

1500

2000

2500

3000

R
un

ni
ng

 ti
m

e

Figure 6: Simulated maximal runtime

25

7.3 Simulated maximal running time for MaxFlow 7 RESULTS

observe that the acceptance rate is between 50% and 60%. However changes of β did not

have leed to big changes for the acceptance rate. This implies that most of the time the arc

flips lead already to higher running time. Which is corresponding to the slow convergence

since this implies that the changes are rather small. The curve of the different graphs is

clearly not linear. We will now consider some fitting curves.

As our hypothesis is that the running time is O(n log n) we consider first a linear

function in n log n. This function can be obtained by an regression analysis. The obtained

function is

y = 11.17 · x log x− 124.23. (1)

The highly negative second term indicates that this function is probably not good for the

small values.

In Figure 7 we can compare the linear function with the obtained data in a log-log plot.

As expected the curve fits bad for small values but also for the biggest value, the value of

10
Nodes (log)

10

100

1000

R
un

ni
ng

 ti
m

e
(l

og
)

Figure 7: n log n-linear approximation (Eq.(1))

the function (1) is smaller than the value obtained in the simulation. But following the

discussion in the previous section this value is smaller than the real value. And so the

function linear in n log n is not as good function to describe the data.

26

7.3 Simulated maximal running time for MaxFlow 7 RESULTS

Since function (1) fits not good the data, we continue to find a fitting function. Since

we rejected the linear hypothesis we consider now a power function. The power function

which fits the data best is

y = 2.69 · x1.71. (2)

The power is in between 1 and 2 and hence if this function fits this algorithm is better

than a O(n2) algorithm since its O(n1.71). In Figure 8 the power function is drawn in a

lin-lin and a log-log plot with the data in order to compare it to the data obtained in the

simulation. The power function (2) fits the data well and it is, unlike the n log n linear

10 20 30 40 50 60
Nodes

500

1000

1500

2000

2500

3000

R
un

ni
ng

 ti
m

e

10
Nodes (log)

10

100

1000

R
un

ni
ng

 ti
m

e
(l

og
)

Figure 8: n-power approximation (Eq.(2))

function bigger than the data for the graph with 60 nodes, which is to be more likely. It

follows that the data obtained by the simulation is well described by the power function

(2). Hence our MaxFlow algorithm has approximately a maximal running time of O(n1.71).

And it is hence not linear in n log n.

This is in contradiction with what we expected from Theorem 7, but it is not contra-

dicting it. Since we didn’t implement the specific version of the LeftMostFlow algorithm

(Algorithm 4) but the general Algorithm 3. Hence one must implement the specific Left-

MostFlow algorithm to obtain an real O(n log n) algorithm. But still an maximum flow

algorithm in O(n1.71) is quite good and the not specific implementation would allow on a

easier way to improve the algorithm.

27

8 CONCLUSION

8 Conclusion

We presented the maximum flow algorithm of Borradaile and Klein as well as the al-

gorithm to find the maximal planar graph with highest running time. There is also an

implementation of those to algorithm in C++ which we discussed in Section 6.

We implemented not the specific version of the LeftMostFlow which leads to an O(n log n

algorithm but only the generic version which leads to an longer running time but it is less

strict and easier to improve at the moment an new idea arises.

We observed that the implemented maximum flow algorithm has in the worst case a

running time which is approximately O(n1.71) which is still decent but not O(n log n). This

algorithm will improve if instead of the actual used, with an error, algorithm one uses the

specific algorithm.

For the TestGraph algorithm we observed that the convergence is slow and hence it

needs high number of iterations compared to the number of nodes to obtain worst running

time graph. This has some drawbacks to the interpretations of the maximal running time

graphs since one may not be sure that it is, specially for a big number of nodes, the graph

with the maximal running time or just a graph which is close to. We also observed that

the acceptance rate is between 50% and 60%.

We also made some observation about the graphs which have maximal running time

and there one could see why the specific version of the LeftMostFlow version is needed to

obtain an O(n log n) algorithm

Overall we got a decent maximum flow algorithm for directed planar graphs and a

algorithm to find the maximal running time which could even with small modifications be

used to approximate any other searched value, but at least with respect to the implemented

maximum flow algorithm the convergence is slow and it would be interesting to improve

this property.

28

REFERENCES REFERENCES

References

[1] Glencora Borradaile and Philip Klein. An O(n log n) algorithm for maximum st-flow

in a directed planar graph. J. ACM, 56(2):Art. 9, 30, 2009.

[2] G. Brinkmann and Brendan D. McKay. Construction of planar triangulations with

minimum degree 5. Discrete Math., 301(2-3):147–163, 2005.

[3] Dominique de Werra, Thomas M. Liebling, and Jean-Franois Hêche. Recherche opra-

tionnelle pour ingnieurs I. Enseignement des mathmatiques. PPUR, Lausanne, 2003.

[4] Stefan Felsner. Geometric graphs and arrangements. Advanced Lectures in Mathe-

matics. Friedr. Vieweg & Sohn, Wiesbaden, 2004. Some chapters from combinatorial

geometry.

[5] Samir Khuller, Joseph Naor, and Philip Klein. The lattice structure of flow in planar

graphs. SIAM J. Discrete Math., 6(3):477–490, 1993.

[6] Charles L. Lawson. Transforming triangulations. Discrete Math., 3:365–372, 1972.

[7] Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources and

sinks. SIAM J. Comput., 24(5):1002–1017, 1995.

[8] Alexander Schrijver. On the history of the transportation and maximum flow problems.

Math. Program., 91(3, Ser. B):437–445, 2002. ISMP 2000, Part 1 (Atlanta, GA).

[9] Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A,

volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003. Paths,

flows, matchings, Chapters 1–38.

29

A GRAPHS

A Graphs

A.1 Graph with 5 nodes

5 9
1 3 −8
1 4 −7
1 2 −4
1 5 2
2 4 −5
2 5 3
2 1 4
3 1 8
3 5 6
3 4 1
4 1 7
4 3 −1
4 5 9
4 2 5
5 4 −9
5 3 −6
5 1 −2
5 2 −3
Capac i t i e s and f l ows ∗
1 244 244
2 280 280
3 36 36
4 143 0
5 152 36
6 152 152
7 29 0
8 774 280
9 246 208

34

A.2 Graph with 10 nodes

10 24
1 6 12
1 3 −21
1 2 4
1 9 −22

30

A.2 Graph with 10 nodes A GRAPHS

1 4 −18
1 5 −20
2 10 6
2 6 23
2 7 2
2 9 15
2 1 −4
2 3 −13
3 1 21
3 6 19
3 10 3
3 2 13
4 6 10
4 5 7
4 1 18
4 9 11
4 7 −17
4 8 −8
5 4 −7
5 6 24
5 1 20
6 3 −19
6 1 −12
6 5 −24
6 4 −10
6 8 1
6 7 −5
6 2 −23
6 10 9
7 4 17
7 9 −14
7 2 −2
7 6 5
7 8 16
8 6 −1
8 4 8
8 7 −16
9 1 22
9 2 −15
9 7 14
9 4 −11
10 2 −6
10 3 −3

31

B RUNNING TIME DATA

10 6 −9
Capac i t i e s and f l ows ∗
1 420 420
2 2509 0
3 997 997
4 1537 1404
5 478 0
6 3034 2845
7 565 0
8 685 420
9 1475 1475
10 298 0
11 818 420
12 1172 643
13 1441 1441
14 1248 0
15 1060 0
16 368 0
17 166 0
18 165 0
19 1252 1252
20 882 0
21 1627 1627
22 671 420
23 960 0
24 1684 0

160

B Running time data

5 34 20000000 11925828 15.2477
6 55 20000000 11657198 21.9116
7 77 20000000 11458987 29.158
8 101 20000000 11315512 36.9968
10 160 20000000 11081146 54.625
15 300 20000000 10985310 105.227
20 493 20000000 10922611 166.948
25 689 20000000 10909792 238.251
30 904 20000000 10884723 319.587
40 1394 20000000 10891723 506.74
50 2111 20000000 10924491 723.933
60 2740 20000000 10917509 979.505

32

