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Abstract

In this PhD thesis, new imaging techniques have been developed in order to explore
the physics of semiconductor microcavities. In these structures, composite bosons
called exciton polaritons are the result of strong coupling between the cavity mode
and quantum well excitons. A spectroscopic imaging technique has been developed
to image the eigenstates of polaritons confined in the traps of a patterned GaAs
microcavity. Polariton probability densities have been reconstructed in three di-
mensions - two spatial dimensions and energy - allowing to retrieve two-dimensional
probability density mappings of the eigenstates. In order to image the wave func-
tions (and not the probability densities only), a phase-resolved imaging setup has
been built. Interfering the near field or far field of the polariton emission with a ref-
erence laser beam allowed to retrieve the full information (amplitude and phase) of
the polariton wave functions. This tool allowed to evidence the effect of trap elliptic-
ity on the confined polariton wave functions. Polariton vortices were also identified
as a superposition of eigenmodes of the elliptical traps, and a selective excitation
method has been used to optically control the sign and value of the vortex charge.
Combining phase-resolved imaging with ultrafast optics allowed to probe the time
evolution of coherent superpositions of confined polariton states. In particular, Rabi
oscillations between vortex and anti-vortex states have been observed. Eventually,
the time and phase resolved imaging tools have been used to explore the physics of
quantum fluids. The scattering of polariton wave packets on a structural defect has
been studied. Different flow regimes have been identified, and, in particular, quan-
tum turbulence has been observed in the form of quantized vortices nucleating in the
wake of the defect. The nucleation conditions have been established in terms of local
fluid velocity and density on the obstacle perimeter. The results were successfully re-
produced by numerical simulations based on generalized Gross-Pitaevskii equations.

Keywords: I1I-V semiconductors, microcavities, polaritons, excitons, photolumi-
nescence, quantum confinement, quantum optics, quantum fluids, ultra-fast optics,
turbulence, non-equilibrium, vortices, digital holography, Bose gases, superfluidity
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Résumé

Dans cette these de doctorat, de nouvelles techniques d’imagerie ont été développées
afin d’explorer la physique des microcavités semiconductrices. Dans ces structures,
des bosons composites, appelés polaritons excitoniques, sont le résultat du couplage
fort entre le mode de cavité et les excitons de puits quantique. Une technique
de spectroscopie résolue spatialement a été développée pour imager les états pro-
pres de polaritons confinés dans les pieges d'une microcavité en arsenure de gallium
spécifiquement nanostructurée. Les densités de probabilité des polaritons ont été
reconstruites en trois dimensions - en deux dimensions spatiales et en énergie - per-
mettant d’extraire les images des densités de probabilités des états propres. Afin
de pouvoir imager la fonction d’onde elle-méme, et pas uniquement son carré, une
expérience d’imagerie résolue en phase a été mise au point. En faisant interférer
I’émission des polaritons avec un faisceau laser de référence dans le plan image ou le
plan de Fourier, nous avons pu extraire I'information compléte (amplitude et phase)
de la fonction d’onde des polaritons. Cet outil a permis de mettre en évidence les
effets de D'ellipticité des pieges sur la fonction d’onde des polaritons confinés. Des
vortex de polaritons ont aussi été identifiés comme la superposition des états propres
du piege elliptique. Une méthode d’excitation sélective a été utilisée pour controler
optiquement le signe et la valeur de la charge topologique du vortex. En combinant
I'imagerie résolue en phase et des impulsions optiques ultra-courtes, I’évolution tem-
porelle d’une superposition cohérente d’état polaritoniques confinés a pu étre sondée.
En particulier, des oscillations de Rabi entre des états de vortex et d’anti-vortex ont
été observée. Finalement, les outils d’imagerie résolus en temps et en phase ont été
utilisé pour étudier la physique des fluides quantiques. La diffusion d’'un paquet
d’onde de polaritons sur un défaut structurel a été investiguée. Différents régimes
d’écoulement ont été identifiés, et, en particulier, des turbulences quantiques ont été
observées sous la forme de vortex quantifiés se formant dans le sillage du défaut. Les
conditions de formation des vortex ont été établies en termes de vitesse et densité
locale du fluide sur le périmetre de I’obstacle. Les résultats on pu étre reproduis avec
succes par des simulations numériques basées sur les équations de Gross-Pitaevskii
généralisées.

Mots-clés: semiconducteurs III-V, microcavités, polaritons, excitons, photolu-
minescence, confinement quantique, optique quantique, fluides quantiques, optique
ultra-rapide, turbulences, systémes hors-équilibres, vortex, holographie digitale, gaz
de bosons, superfluidité
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Introduction

For almost two decades, semiconductor microcavities in the strong light matter
coupling regime have been attracting an ever growing interest. These structures,
are rather simply described, though: two semiconductor distributed Bragg reflectors
(DBR) sandwiching an active layer made of one or several quantum wells (QW).
Nevertheless, since the first measurement of the normal mode splitting between the
excitonic resonance of the QW and a GaAs-based microcavity optical mode by C.
Weisbuch et al. [I] in 1992, thousands of publications have explored the extremely
rich physics of these hybrid light matter waves.

The eigenmodes of the system, the exciton polaritons (also called microcavity
polaritons, in order to differentiate them from bulk exciton polaritons) are indeed
a very peculiar mixtureE]. Partly excitonic, partly photonic, these two-dimensional
quasi-particles are gathering advantages of their two components. From their light
part, and a one-to-one coupling to the extra-cavity field, with conservation of in-
plane momentum, energy and phase [2], exciton polaritons can be easily optically
injected, manipulated, and detected. They also inherit the very small effective mass
of the cavity photon. Through their excitonic part, polaritons can interact with each
other, opening the way to non-linear and parametric processes. Eventually, exciton
polaritons are composite bosons, as long as their excitonic oscillator strength is not
screened.

The first demonstration of the potential of polaritons came with the parametric
amplifier [3], 4, 5], which exploited at the same time the polariton-polariton interac-
tion for scattering from a pump state into a pair of signal and idler state, and the
bosonic stimulation to spectacularly amplify a weak probe pulse resonant with the
signal state. This kind of experiment allowed to evidence quantum degeneracy with
up to 10° polariton in the signal state. The strong non-linearities inherited from the
exciton component were also exploited to evidence optical bistability, under resonant
optical excitation of the polariton modes [6].

Under non-resonant excitation (i.e. creating hot electron-hole pairs above the
photonic band gap of the DBR), several works reported stimulated relaxation mech-
anisms towards the bottom of the polariton dispersion [7, 8]. In 2006, stimulated
relaxation towards the macroscopically occupied lowest energy state was shown to
be accompanied with the appearance of long range order within the polariton gas
in a CdTe microcavity [9], allowing to identify the process as a phase transition
to a non-equilibrium Bose-Einstein condensate (BEC). This phase transition differs

IThe fact that light and matter can no longer be considered as separated entities would certainly
be of interest for philosophers as well, but the philosophical aspect of the strong light matter
coupling is not treated in the present work



from atomic condensates by its non-equilibrium nature: the coupling of cavity po-
laritons with extra-cavity photons yielding to a polariton lifetime of the order of
10ps, the condensate needs to be constantly replenished by the laser pump. The
other main difference, which is a major experimental advantage, comes from the very
small polariton effective mass, allowing for the phase transition to be observed at
cryogenic temperatures. Numerous interesting works have followed the demonstra-
tion of polariton BEC, like the observation of quantized vortices in the condensed
phase [10} 1], or the demonstration of spontaneous coherent oscillations in coupled
polariton condensates [12].

Beside these works under non-resonant excitation, where the coherence of the
condensed phase spontaneously appears with the phase transition, it has been shown
that coherent macroscopic polariton populations can be injected using a resonant
laser field [I3]. If the coherence of the quantum degenerate state is in this case
inherited from the driving field, the created polariton gas can nevertheless be treated
as a coherently driven weakly interacting boson gas, and described in the framework
of Gross-Pitaevskii equations (GPE) [I4]. The coherent polariton gas, formally
similar to an atomic BEC (except for its two-dimensional geometry and its non-
equilibrium properties), is thus an ideal tool for the study of quantum fluids effects
such as superfluidity [I5]. Far from being a drawback, the non-equilibrium nature
of the polariton gas not only provides a direct optical access to the polariton field,
but also yields to a very rich and unexplored physics. The recent demonstration
of superfluidity and Cerenkov-like radiations in a polariton fluid [I6] showed the
enormous potential of polaritons for fundamental physics experiments.

On the side of applications, theoretical works have proposed to use polaritons
for the generation of single photons [I7) 18], or for new kind of logical elements
exploiting the polarization (or spin) degree of freedom of the polariton field [19]
20]. These proposals require particular lateral confinement shapes and sizes. The
most established technique for the lateral confinement of polaritons is the etching
of micropillars [21], which led to the demonstration of polariton lasing [22]. An
alternative confinement mechanism using shallow mesas has been developed in our
group [23]. The high quality of the confinement in these structures led to the recent
demonstration of spinor multistability and efficient spin switches [24], a required
building block for subsequent optical memory devices.

All the experiments performed in GaAs or CdTe based microcavities must be
conducted at cryogenic temperatures, as the exciton binding energy Eg is in the
order of 10meV in GaAs [25], and 25meV in CdTe [26], to be compared to the
thermal energy kT at room temperature (~ 25meV’) and liquid helium tempera-
ture (~ 0.5meV’). If cryogenic temperatures are much more comfortable than the
nanokelvins required for atomic BEC, they hinder the implementation of practical
devices, though. The development of high exciton binding energy materials holds
therefore great promises for the practical implementation of polaritonic devices. Let
us mention is this respect microcavities based on GaN (Ep ~ 40meV) [27], ZnO
(Ep ~ 60meV) [28,29] or organic materials (Ep ~ 0.2 —0.5¢V) [30, BI]. Moreover,
these materials feature a large exciton oscillator strength, which is essential for the
robustness of the strong coupling regime. Eventually, let us also mention that in-
coherent pumping has recently been demonstrated by means of electrical injection



[32, 33| [34], which is an other step towards practical applications.

The central theme of this thesis is the imaging of exciton polaritons. Various
spectroscopic and imaging techniques allow to explore several aspects of the physics
of polaritons.

e Part I of the manuscript is an introductory part. In Chapter [I] we review
the basics of the physics of semiconductor microcavities. In Chapter [2| we
describe the confinement of polaritons in patterned microcavities, and present
the sample which is used in the experiments of this thesis.

e In Part II, we present several experiments involving spectroscopy and phase-
resolved imaging in order to characterize and manipulate the polariton modes
confined in the traps of a patterned microcavity. In Chapter [3| we show a
spatially resolved spectroscopy method which allows to fully characterize the
distribution of polariton modes in traps of different sizes and shapes. In Chap-
ter[d] it is demonstrated how the eigenstates of elliptical traps can be selectively
excited using a resonant laser field. Phase-resolved images of their emission
patterns are successively compared to the analytical solutions of the Helmholtz
equation on an elliptical domain. In Chapter [f it is shown how the driving
laser field can be tuned to selectively excite different types of superpositions
of the trap eigenstates. In particular, the excitation of integer orbital angular
momentum states (or vortices) is demonstrated, with control over the vortex
topological charge. In Chapter [6] we present a time and phase resolved imag-
ing setup, and use it to image the free evolution of a coherent superposition
of confined polariton states on a picosecond time scale. The observed dynam-
ics features an oscillation between vortex and anti-vortex states, remarkably
well described within the Poincaré sphere representation of a state containing
orbital angular momentum.

e In Part III, we address the physics of quantum fluids by studying the prop-
agation of a polariton wavepacket in the microcavity plane. Using our time
and phase resolved imaging setup we probe the scattering of the polariton
wavepacket on an obstacle, for several wavepacket velocities and densities.
Several flow regime are characterized, and, in particular, the hydrodynamic
nucleation of polariton quantized vortex pairs is observed in the wake of the
obstacle. A quantitative analysis of the nucleation conditions in terms of local
fluid velocity and density on the perimeter of the obstacle is presented.

e Perspectives and outlook of the present work are presented in Part IV. Pro-
posals of short-term experiments on the same patterned microcavity sample
and direct follow-ups of this work are presented in Chapter [§ In Chapter
O a prospective work on the design, growth and characterization of future
patterned microcavity samples is presented.

Eventually, a conclusion summarizes the main results of this thesis, and outline some
perspectives for polariton physics.






Units

Throughout this work we generally use “natural” units which are scaled to the
processes we are looking at. Energies are given in meV’, lengths in ym and times in
ps. Masses are then given in units of meV - ps? - ym™2. In these units the universal
constants are

h= 0.658 meV -ps
kp= 8.6-10"2 meV -K!
c= 300 pm - ps—!
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Chapter 1

Exciton polaritons

In this chapter we describe the different elements which constitute a semiconductor
microcavity, and how the strong light matter coupling leads to the formation of
“quasi-particles” called exciton polaritons. Examples will be given using a GaAs-
based microcavity, such as the one which is used in the experimental work of this
thesis. However, the concepts developed in this chapter can be applied to all other
direct gap semiconductors, such as GaN or C'dTe.

1.1 Excitons in semiconductors

1.1.1 Bulk excitons

In direct gap semiconductors, the promotion of an electron to the conduction band
leaves a hole in the valence band. Coulombic interaction between the oppositely
charged electron and hole leads to the formation of a bound state called exciton.
This elementary excitation appears as a new line in the absorption spectrum, sep-
arated from the band gap £, by the exciton binding energy Ej. The exciton can
be seen as a hydrogenoic quasi-particle, whose binding energy is analogous to the
hydrogen Rydberg energy (although much smaller [35]). Semiconductor excitons are
generally of the Wannier type, meaning that the electron-hole relative wavefunction
is delocalized over many lattice sites. The exciton dispersion is given by

h?k?

2mX

(1.1)

Ex(k)=E, — B, +

where Ak is the momentum of the exciton center of mass. The exciton effective mass
mx is given by the combination of electron and hole effective masses m. and my, as
1 L4 mih In GaAs, the exciton effective mass is typically 20 times smaller

E Me )
than the free electron mass [35].

1.1.2 Excitons in quantum wells

Semiconductor quantum wells (QWSs) consist in a thin layer of semiconductor ma-
terial, inserted between an other semiconductor material of higher band gap, e.g.
10nm of IngosGaggsAs inserted in bulk GaAs. Excitations are then confined in
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one direction (that we call z), forming a two-dimensional system in the QW plane.
Localization of electron and holes in the QW leads to an enhanced exciton binding
energy [30, B7]. An other consequence of the QW confinement is that a QW ex-
citon, which has a given momentum in the QW plane, is coupled to a continuum
of photons which have the same in-plane component of momentum. It is therefore
possible to compute an intrinsic exciton lifetime 7x using the Fermi golden rule
[38], and a corresponding homogeneous linewidth vx = % This latter is propor-
tional to the exciton oscillator strength f,s., which characterizes the strength of the
excitonic transition (or the probability for a photon of given polarization to be ab-
sorbed and to create an exciton). However, the measured linewidth ~% is essentially
inhomogeneous, due to imperfections of the QW layer.

1.1.3 Coupling with light

The coupling of light with QW excitons must of course satisfy conservation laws for
energy and in-plane momentum. Emission and absorption must also conserve the
angular momentum. Excitons can be of two kinds, depending if their are constituted
of a heavy hole or a light hold} In QWs, the confinement along the growth direction
leads to a degeneracy lifting of the heavy an light hole bands. The resulting lowest
energy transition occurs with the heavy hole band, whose projection of the total
angular momentum on the growth axis is m, = £3/2. On the other hand, for the
conduction band, the value of m, is £1/2. The total value of the projection of the
angular momentum on the growth axis for the exciton is obtained from the sum of
the electron and hole momentums. The four possibilities are +2,+1, —1,—2. The
+1 and —1 excitons can be coupled to circularly polarized o and ¢~ photons,
respectively, and are therefore called bright excitons. The 42 and —2 excitons are
optically inactive, as they can not satisfy the conservation of angular momentum
with light, and are consequently called dark excitons.

1.2 Semiconductor microcavities

1.2.1 Distributed Bragg reflectors

A distributed Bragg reflector (DBR) is a periodical succession of layers of two ma-
terials with different refractive indexes. Reflection by the structure is based on an
interferometric principle. The optical thickness of every layer is matched to be a
quarter of the desired reflected wavelength g, so as the reflections on every interface
constructively interfere. The result is the opening of a photonic band gap, centered
at \g, within which propagation is forbidden in the direction perpendicular to the
layers (called z direction). It can be seen as a one-dimensional photonic crystal, and
results in a very high quality reflector. Figure [1.1] shows typical reflectivity spectra

!The reader can refer to Ref. [35] for more details on the influence of spin-orbit coupling on the
valence band, on the heavy and light holes, or on the band mixing phenomenon that appears in
QWs in the framework of Luttinger theory. The value of the effective hole mass is not so important
for microcavities in the strong coupling regime, where the mass of polaritons is dominated by the
cavity photon effective mass
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Figure 1.1: DBR reflectivity spectrum, computed using a transfer matrix method for
Ao = 900nm, with 10 periods of GaAs/AlAs (red line) and 20 periods of GaAs/AlAs
(black line). The layer thicknesses correspond to i‘—g, where the refractive indexes have
been taken to be ngeas = 3.5 and naas = 3. Note that band gap absorption and
wavelength dependence of the refractive index have not been taken into account here.
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Figure 1.2: Microcavity reflectivity spectrum, computed using a transfer matrix method
for Ag = 900nm, With two DBRs of 20 periods of GaAs/AlAs each, around a GaAs
spacer of lenght —=0— v A . Note that band gap absorption and wavelength dependence of the
refractive index have not been taken into account here.

for alternate layers of refractive indexes corresponding to those of GaAs and AlAs.
This example shows that increasing the number of GaAs/AlAs pairs increases the
reflectivity on the photonic band gap.

1.2.2 Microcavities

When two DBRs are placed face to face around a spacer, they form a Fabry-Pérot res-
onator. In this structure, electromagnetic waves are confined in the z direction, but
are still free to propagate in the in-plane directions, forming thus a two-dimensional
system. The only optical modes admitted in the cavity are those satisfying the
boundary conditions of the resonator. These modes will be allowed to be transmit-
ted through the resonator. In this way, the microcavity spacer acts as an impurity
in the one-dimensional photonic crystal [39]. A typical reflectivity spectrum is pre-
sented in Figure [I.2] for a A-cavity. A computed intensity plot of the cavity field is
presented in Figure [1.3]
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Figure 1.3: Transfer matrix simulation of the A-microcavity EM field intensity (normal-
ized), with a GaAs spacer. The blue line shows the succession of GaAs and AlAs layers.
The green line corresponds to the cavity mode, which forms a standing wave pattern in
the cavity. Anti-nodes of the field are formed at the GaAs spacer boundaries, due to the
reflexion of a lower index material. The red line shows a wavelength which is not admitted
in the cavity, and thus gets reflected on the top DBR.

The finite width of the cavity mode ~¢ is proportional to the cavity photon escape
rate, or inversely proportional to the photon lifetime in the cavity 7. The quality
factor @ of the cavity depends therefore of the quality of the mirrors, and is given
by Q = %, where E' is the emission energy. Depending on the area of measurement,
the measured cavity linewidth 77 can be inhomogeneous due to thickness variations
of the cavity spacer and DBRs [40)].

1.2.3 Photonic mode dispersion

Let us define k = (k., kg, ky) the cavity field wave-vector and k;,; = (kg, k) the
cavity field in-plane wave-vector, where z is the confinement direction and (z,y) the
directions in the plane of the layers. The optical modes allowed in the Fabry-Pérot
resonator correspond to

Nm=k,L, (1.2)
where N is an integer, L. is, in first approximationﬂ the thickness of the cavity
spacer, and k, = 2/’{—0”, with n the cavity spacer refractive index. The in-plane

photonic dispersion is then given for small &/, by

he r———— . hc k??/ he he
z ~—— z

he

Ao

where k, is linked to the cavity parameters by equation 1.2, This allows to define a

2In fact, the effective cavity length depends also of the DBRs composition, due to the finite
penetration length of the cavity field in the DBRs, as can be seen on Figure
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Figure 1.4: Scheme of the semiconductor microcavity, with one embedded quantum well.
Only a few DBR periods are shown.

cavity photon effective mass:

hk.n hn?

c cho

me = (1.4)

For a GaAs M-cavity, with Ao = 835nm, we find m¥ = 22 = 0.2meV - ps® - pm 2.

cAo

1.3 Strong light-matter coupling in microcavities

1.3.1 Exciton-photon coupling

In the cavity spacer are embedded one or several QWs (see Figure |1.4]), whose exci-
tonic resonance will interact with the microcavity optical mode. As the QW exciton
and the microcavity electromagnetic field are both two-dimensional (2D) objects,
there is a one-to-one coupling, with conservation of in-plane momentum and en-
ergy, between photons and excitons. As explained in section [[.1.3] there is also a
one-to-one correspondence between the exciton spin and the photon polarization.
Light-matter coupling in the microcavity can thus be modeled by two coupled os-
cillators [2]. The light-matter coupling Hamiltonian for a given in-plane momentum
k,, reads then :

h$)
Ho(k‘//) = Ec(k//)al//ak// + Ex(k//)bz//bk// + 5 (a;//bk// + ak//b,t//) (1.5)
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Figure 1.5: Polariton dispersions for ¢ (k:/ /= 0) = 0. Bare exciton and photon modes

are indicated with dashed lines. The eigenmodes are the lower polariton (LP) and upper
polariton (UP) branches, indicated with plain lines.

where az// and ay,, are the creation and annihilation operators for a cavity
photon of given in-plane momentum k,, and polarization, bL// and by, the creation

and annihilation operators for the corresponding QW exciton and % is the exciton-
photon coupling energy. In the matrix form, the Hamiltonian reads :

M%m=<ﬂqgﬁlkém>. (1.6)

2

Diagonalizing H, allows to find the normal modes of the system:

where pL// and uL// are the creation operators for the lower polariton (LP) and
upper polariton (UP), respectively. These normal modes are the new eigenmodes of
the system, while the bare exciton and photon modes are not stationary solutions

any more. The energies of the polariton branches can be found by diagonalizing
M(kyy):

Ex(k//) + EC(
2

where 0(k//) = Ec(k;/) — Ex(k//) is the detuning of the excitonic resonance with
respect to the cavity field. Figure shows the polariton in-plane dispersion, for
5(0) = 0.

As the exciton effective mass is much larger than the photon’s, it appears con-
stant on this wavevector range. At zero exciton-photon detuning, the energy split-
ting is given by Af), and is called the vacuum Rabi splitting, by analogy with atomic

Ey (k) =

k 1
/»iZWWM0+WKﬁ (1.8)
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optics. The first measurement of this splitting was performed by Weisbuch et al.
in 1992 [I], by taking advantage of the varying E¢ along the microcavity sample
wedge. A further work by Houdré et al. [41] allowed to measure the polariton dis-
persion through angle-resolved photoluminescence measurements. Due to in-plane
momentum conservation, the polariton wavevector k,, is simply related to the extra
cavity photon emission angle 6 and wavelength Ay by k/,/ = ?\—g sin 6.

Hopfield coefficients The transfer matrix from the exciton-photon basis to the
polariton basis is given by:

< k), ) — ( —Ck)y Xy, ) ( Uy, ) (1.9)
Pk, Xk, Cky, bk,

where Xy, and Cj,, are called the Hopfield coefficients, in memory of the first
treatment of strong coupling by J.J. Hopfield for bulk excitons [42] in 1958. These
coefficients satisfy

X2

0, TCr, =1, (1.10)

with X ,f// and C,f// representing the excitonic and photonic contents of the lower

polariton, respectively. For zero exciton-photon detuning, X ,f// = C,?// = %
Polariton effective mass For small in-plane wavevectors polariton dispersions
can be approximated by parabolas, allowing to define an effective mass for the
polaritons. Neglecting the curvature of the excitonic dispersion, effective masses for
the lower and upper polaritons are given for small k,, by

mc

= 1.11

mrp Cg ( )
me

—. 1.12

myp Xg ( )

We can therefore calculate the polariton effective mass for a GaAs A-cavity, with
Ao = 835nm, for zero exciton-photon detuning: mppyp = 2mg = 0.4meV - ps? -
um~2. This effective mass is four orders of magnitude smaller than the exciton

effective mass, and five orders of magnitude smaller than the free electron mass.

1.3.2 Strong and weak coupling

If polaritons are eigenstates of the system, bare exciton and photon states are not
stationary solutions any more. In the exciton-photon basis, a polariton state cor-
responds to a periodical energy exchange between photon and exciton, at the Rabi
frequency 2. If one now consider the cavity photon and exciton lifetimes 7o and
Tx, one can identify two regimes: if the Rabi period is shorter than 7x and 7o, the
system is in the strong coupling regime; if, on the other hand, the Rabi period is
longer than 7x and 7¢, the system is said to be in the weak coupling regime. In the
energy domain, the strong coupling condition reads :

h& > vo, vx. (1.13)
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The finesse of the cavity and quality of the QW layer are therefore of crucial impor-
tance, as well as the value of the exciton-photon coupling. This latter is proportional
to [41]

foscNQW

Q
X I

(1.14)

where fo5. is the QW exciton oscillator strength, Ngw is the number of QWs in
the cavity, and L. is the cavity length. This shows that the strong coupling can
be saturated when the exciton oscillator strength is saturated (see next section).
The exciton-photon coupling is also proportional to the overlap integral between
the QW excitons wavefunction and the cavity electromagnetic field [43]. One has
then to make sure to position the QWs at anti-nodes of the cavity field, in order to
maximize the coupling.

1.4 Polaritonic nonlinearities

Polaritonic nonlinearities arise from their excitonic component. The exciton-exciton
interactions are due to elastic coulomb scattering, a process which is dominated
by the inter-exciton exchange of carriers [44]. The Hamiltonian term describing
the elastic scattering processes of two excitons with initial wavevectors k£ and &/,
respectively, reads [45] :

1
Hy_x == > Vx_xbl, bl brbe, (1.15)
k.k'.q

where Vx_x is the effective interaction potential. The main consequence of this
interaction is a blue-shift of the polariton energy. Another source of nonlinearities
is the bleaching of the exciton-photon coupling due to a screening of the exciton
oscillator strength [46]. This nonlinear effect is expected at high exciton densities
(Nsat ~ 10Mem™2 for InGaAs QWs) [47, 48]. In the polariton basis, these two
contributions (exciton-exciton interaction and saturation) can be merged into an
effective interaction term for the LP branch [3], [45], providing a repulsive interaction
between co-circularly polarized polaritons’]

1.5 Generalized Gross-Pitaevskii equations

The most successful way of simulating the behavior of a coherent polariton gas is
the framework of the mean field theory, which consider fully coherent excitonic and
photonic fields ¢ (x)(r,t) = [Yoix)(r,t)][e?®). The time evolution of the mean
polariton and exciton fields ¥¢ and 1y, in the presence of a resonant pump field
E,c(r,t) = |F,cleikex=«r) (where hw, and hik, are the driving laser field energy
and momentum, respectively) is described by the two coupled equations [15], [14]:

3The value and sign of the effective interaction potential between cross-circularly polarized
polaritons is currently subject to debate and investigation in the polariton community [49] [24].
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Ld [ x(rt) | 0
i ( bolr, ) ) - ( Fpe(r.1) ) (1-16)
n < hwi,x + Vx (r) + gx x> — % m > ( Yx(r,t) )
% hwk,(; + VC(I') — Z’YTC ¢c(r, t)

where hwy, x is the exciton energy (considered as constant in the small wavevector
limit), hwy ¢ is the cavity photon energy, as defined in eq. gx is the exciton-
exciton interaction constant, A2 is the vacuum Rabi energy, and % is the photonic
(excitonic) decay rate. The excitonic and photonic potential landscapes are defined
by Vx(r) and Vi (r), respectively. The excitonic landscape can be due to growth
inhomogeneities of the QW layer. The photonic landscape can be due to disordered
thickness variations of the cavity spacer or to disorder in the DBRs. More interest-
ingly, it can be engineered, as it will be shown in the next chapters. If the excitation
conditions are such that only the LP branch is excited, this set of equation can be

restricted to a single equation for the LP branch ):

B ) = (i) 4 bt gl (e D),
+VY(r,t) + Fy(r, 1), (1.17)

21.2

where hw, = zka/ ; is the lower polariton energy. The other parameters can be
expressed through the Hopfield coefficients C' and X: g = gx|X|*, 7= M
is the polariton decay rate, and F, = F,¢|C|?>. Similarly, V(r) is the effective
potential landscape for the polaritons. This equation is formally a Gross-Pitaevskii
equation, plus pump and decay terms. It describes therefore a non-equilibrium gas of
weakly interacting bosons. Except for the non-equilibrium nature, we can therefore
expect to observe the same physics in the coherent polariton gas than in a two-
dimensional atomic BEQE Moreover the non-equilibrium character of the polariton
field can be taken as an advantage. Indeed, under a cw pump field, the steady
state solution of the polariton field inherits the pump field energy and wavevector.
The polariton field energy, velocity and density can therefore be controlled by the
driving field. Eventually, the decay of polaritons into extra-cavity photons allows to
optically access the polariton field.

1As long as the exciton oscillator strength is not screened due to phase space filling by the
fermionic components of the exciton (see section |1.4)).
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Chapter 2

Polaritonic confinement in a
patterned microcavity

In this chapter we explain why and how exciton polaritons are confined in semi-
conductor nanostructures. In particular, we detail the polaritonic confinement in
a patterned microcavity. Eventually, we describe the (up to now only one) pat-
terned microcavity sample, on which all the experimental work of this thesis has
been performed.

2.1 Confining exciton polaritons

2.1.1 Why confining exciton polaritons?

Research on the lateral confinement of exciton exciton polaritons has been trig-
gered by the quest of polariton Bose-Einstein condensation (BEC) in microcavities.
Formally forbidden in uniform two-dimensional gases, BEC is allowed in spatially
confined systems, which feature discrete energy levels (see Savona & Sarchi in [50]).
The role of confinement by disorder landscape has indeed been highlighted for the
condensation experiments in CdTe microcavities [51], [52]. Other experimental works
have demonstrated the role of confinement in this perspective, using local strain on
the sample [53], a metallic grid on the sample surface [54] or by etching micro-pillars
[22]. In case of stimulated relaxation towards the discrete states of fully confined
system, as in Ref. [22], one talks about polariton lasing rather than condensation,
as long range order cannot be defined for zero-dimensional (0D) objects.

Polaritonic confinement can however be exploited for many other purposes, as
shown by numerous theoretical and experimental works. For the study of fundamen-
tal physics, let us mention the proposals for controlled Josephson oscillations [55] and
fermionized photons in coupled cavity arrays [56], or the study of one-dimensional
interacting quantum gases [57].

On the side of applications, polaritonic confinement is expected to facilitate
the generation of entangled photon pairs, due to the relaxation of the momentum
conservation condition [58] [59]. The exploitation of few-confined-states structures
for quantum blockade and single photon emission has also been proposed [17, 60].
Recent theoretical works also proposed specific lateral confinement geometries in
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order to perform logical operations [19] 20]. In this scope, the realization of shape
controlled polaritonic confinement is required.

Eventually, a very interesting aspect of lateral confinement is the increase of the
cavity quality factor, as confinement allows to get rid of lateral inhomogeneities. An
increase of the quality factor by a factor of three has been measured in micro-pillars
microcavities [61].

2.1.2 State of the art

The most established technique for polaritonic confinement is definitely the etching
of micro-pillar microcavities [2I]. In these structures, polariton lasing [22], para-
metric luminescence [62] and oscillation [63], and condensation in a one-dimensional
guide [57] were demonstrated. Other interesting lateral confinement techniques have
been developped in different groups. The deposition of a metallic pattern on the
microcavity sample surface [54], 64] allows to confine polaritons by perturbing the
boundary condition of the cavity resonance. Strain induced by the pressure of a
needle on the sample [53], [65] confines polaritons by shifting the excitonic resonance.
Eventually, a very promising technique using surface acoustic waves has been re-
ported recently [66]. In our group, a different approach has been developed, con-
sisting in patterning the microcavity. This technique is presented in the following
section.

2.2 Sample: a patterned microcavity

2.2.1 Confinement in a patterned microcavity

The growth of patterned microcavities is done is two steps (the whole process is
described in detail in Ounsi El Daif’s thesis [67]). The bottom DBR and GaAs
cavity spacer, including the QW, are grown first by molecular beam epitaxy (MBE).
The structure is then taken out of the MBE machine and brought to the clean room.
A mask is deposited on the sample surface using photolithography, and a selective
wet etching (controlled with etch-stops made of thin AlAs layers) of the structures
is realized. After a standard cleaning of the surface, the patterned structure is
reinserted in the MBE chamber, where an in-situ hydrogen plasma cleaning of the
patterned surface is realized, before the growth of the top DBR.

The result is a patterned microcavity, where the confining structures are local
extensions of the cavity spacer thickness (or mesas), as shown in Figure (a).
The local extension of the spacer length provides a slightly longer cavity resonance,
and therefore a lower local electromagnetic field energy. When the optical modes
confined in this potential well are strongly coupled to the QW exciton, they give
rise to confined polariton modes for the upper and lower polariton branch (Figure
(b)). The main particularity of this kind of structure is the coexistence of the
confined polariton states with the two-dimensional polaritons, still present around
the traps. The lithographic method allows the realization of traps of virtually any
shape.
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Figure 2.1: (a) Scheme of the lateral confinement structure using mesas, which provide a
local extension of the cavity length of AA = 6nm, providing a confinement potential of
9meV for the photonic mode. (b) Scheme of the normal mode splitting (or Rabi splitting)
arising from the strong coupling between the quantum well excitonic resonance and the
confined photonic modes. It results in discrete confined states for the upper and the lower
polariton branches. The excitonic component of the polariton is by this way confined as
well, through the strong-exciton photon coupling.

2.2.2 Sample description

The sample under scrutiny is the only one patterned microcavity realized so far
[23]. It consists in a GaAs cavity spacer with one embedded 8nm thick InGaAs
QW, sandwiched between two semiconductor Al/GaAs DBRs made of 22 and 21
pairs for the bottom and top DBR respectively. The QW exciton emission wave-
length is 835.15mm at liquid helium temperature (7' < 10K), corresponding to an
energy of F, = 1.4845eV. The exciton (inhomogeneous) linewidth is measured to
be 7% = 500peV. The cavity mode FWHM is measured at large exciton-photon
detuning to be 7% = 220ueV, corresponding to a quality factor of @ = 7-103. On
the other hand, confinement in the mesas allows allows to get rid of most of the
inhomogeneous broadening due to photonic disorder, and FWHM of the confined
photonic modes are measured down to 70ueV corresponding to a quality factor of
Q = 2.1-10*. The sample features a thickness wedge (mainly on the GaAs compo-
nent), providing a optical resonance varying along the radius of the wafer. It is made
such that the exciton can be in resonance with either the two-dimensional funda-
mental photon mode A, either with the confined photonic modes, depending on the
position on the sample. Two-dimensional and confined polaritons at zero exciton-
photon detuning are thus present on the same sample. Anticrossing between the
photonic and excitonic modes, signature of the strong exciton-photon coupling can
be measured along the sample wedge. A Rabi splitting of 3.5meV has been mea-
sured for the two-dimensional polaritons, and of 3.35meV for the confined polariton
modes. The major advantage of using InGaAs QWs is that their emission energy is
smaller the GaAs band gap. Resonant optical excitation of the polariton modes can
therefore very conveniently be performed from the back side of the sample, through
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a: 22,75 pm. a: 9.27 pm. a: 2.70 pm.
b: 23.50 pm. b: 10.78 pm. b: 3.49 pm.

10 pm.

Figure 2.2: Photographs of the mask used for the photolithographic process. Different
confinement geometries are shown. (a) Intended to be circular, these traps are actually

elliptical. The measured length of the minor and major axis are indicated on the picture.
(b) to (d) Exotic shapes.

the GaAs substrate. The detection can then be performed from the front side, in a
transmission configuration, without being dazzled by the laser light reflected on the
DBR.

Confinement geometries The height of the confining structures is AX = 6nm,
providing a confinement potential of 9meV for the photonic mode. The resulting
effective confining potential for the polariton depends then on the exciton-photon
detuning. Various trap shapes have been etched on the sample. Photographs of the
mask used for the photolithography are shown in Figure The structures that
will be used for the experiments presented in Chapters and [0] are mainly
the one of Figure (a). Intended to be circular traps, they are slightly elliptical
due to an asymmetry of the laser used to write the mask. The consequences of
this ellipticity will be widely discussed in the next chapters. Their mean diameters
are 3um, 10um and 22um respectively. Other structures, such as rings (Figure
(b)) or more exotic structures which were primarily intended to facilitate relaxation
of the polaritons into the traps, are shown in Figure (c) and (d). All of them
suffered from the mask asymmetry. Moreover, it can be seen that the writing of
the mask was not totally uniform, and slight differences can be observed between
structures that were intended to be identical, like those shown in Figure (c). In
addition to this, variations from structure to structure must be accounted for due to
the non-homogeneous deposition of the photoresist on which the mask is imprinted
during the photolithography, and to crystal defects and sample aging. The images
of the mask shown in Figure Figure [2.2] represent therefore the average shape of
the actual confining potentials found on the microcavity sample. We will present in
Chapter [3| a method that allows to characterize the effective confinement geometry
of individual structures.
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Figure 2.3: Experimentally measured dispersion of the cavity mode of the patterned mi-
crocavity sample (see section [3.4] for the experimental method). The fit (blue dashed line)

allows to determine the cavity photon effective mass. We find mg, = 0.35meV - ps? - pm=2.

Measurement of polariton effective mass The value of the cavity photon
effective mass my, can be measured from the photonic dispersion (measured at large
21.2
exciton-photon detuning) E,, = r;mﬁ This dispersion is measured using Fourier
space imaging spectroscopy (see sectionfor details), and shown in Figure . The
fit of the curve allows to extract a cavity photon effective mass of 0.35meV -ps?- um =2
(corresponding to a polariton effective mass at zero exciton-photon detuning of
0.7meV x ps? x um~2, according to eq. [1.11). This measured photon effective
mass is of the order of the theoretical value of 0.2meV - ps? - um =2 found in section
[1.2.3] At this stage we do not have an explanation for the small discrepancy between

the theoretical and measured values.

2.2.3 Previous works on the sample

Several works were already published on the patterned microcavity sample which
is used in this thesis. The polaritonic confinement in the nearly circular mesas was
demonstrated with the measurement of the multiple anti-crossing (i.e. anticrossing
of each confined states with the excitonic resonance, measured along the sample
wedge on a series of periodically aligned similar mesas) [23], 68].

Angle-resolved spectra and preliminary measurements of spatially resolved spec-
tra were measured in traps of various sizes [69], allowing to show different confine-
ment cases, from full confinement (with few, well separated confined states) in the
3um diameter mesas, to a quasi-continuum of states in the large 20um diameter
mesas. These spectra where successfully reproduced by a model that considered the
strong coupling of the confined photonic modes with excitons [69, [70].

Studies of the non-linear emission of the confined states were also conducted.
Under non-resonant pumping, non-linear emission in the form of a quadratic de-
pendence to pump power was observed in the strong coupling regime [71], but no
stimulated relaxation could be obtained, due to a bleaching of the strong coupling
before reaching the condensation or polariton lasing threshold. This was attributed
to a saturation of the active medium (excitonic transition - see sections and
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, due to the presence of only one QW in the cavity Eﬂ A transition to standard
lasing on the confined photon modes was observed instead. In a parametric config-
uration (using three confined states of the lower polariton branch as pump, signal
and idler states), a quadratic regime -sign of polariton-polariton interactions- fol-
lowed by an optical limiter regime, was also reported [72]. Although no stimulated
relaxation could be observed in this sample, the confinement has been demonstrated
to enhance the thermalization and linear relaxation mechanisms (through scattering
with phonons) towards the low energy states of the traps [73].

!The subsequent achievement of polariton lasing in micropillar micorcavities [22] was realized
with 21 embedded QWs.

2Under non-resonant excitation, the saturation is enhanced due to the presence of hot electron-
hole pairs, which contribute to the screening of the exciton oscillator strength [46], but not to the
final state population
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Spectroscopy and imaging of
confined polaritons
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Chapter 3

Probability density tomography of
confined polaritons

3.1 Motivations

Probing wavefunctions or probability densities (PDs) of confined carriers in semi-
conductor nanostructures is a very elegant way of retrieving textbook solutions of
quantum confinement. Moreover, it can be of practical importance to precisely de-
termine the spatial and energetic extensions of the confined states in a particular
structure, in order, for example, to evaluate the coupling between different nanos-
tructures. In the past, sophisticated techniques such as the insertion of probe layers
[74, [75] have been developed to reconstruct the spatial variation of confined carrier
PDs in the growth (vertical) direction of a quantum well (QW). Nevertheless, such
techniques are dedicated to the study of PDs along a single confinement axis. They
cannot be applied in the case of 2D or 3D confining potentials. The study of the
in-plane (lateral) spatial extension of electronic wavefunctions is generally restricted
to metallic surfaces and films, using scanning tunneling microscopy [76}, [77]. In the
following chapter, we demonstrate a technique that allows to image the probabil-
ity density of laterally confined polariton states. Taking advantage of the strong
coupling regime, we can image the light-matter waves confined in micrometer-scale
traps, above the resolution of optical microscopy. Moreover, as intra-cavity po-
laritons are directly coupled to extra-cavity photons, with energy and momentum
conservation [2], polaritonic states can be directly imaged through optical detection
of the polariton emission at the surface of the sample. This technique will be used
to characterize different confining structures of the patterned microcavity described
in section [2.2] The work presented in this chapter corresponds to the following
publications [78, [79].

3.2 Imaging spectroscopy setup

The sample is held in a cold finger cryostat at liquid helium temperature. We
excite non-resonantly the system using a Ti:Sapphire cw laser, tuned at a far higher
energy than the confined polariton states. The laser is focused on the sample with
an excitation spot of 30um diameter. This hot excitation creates electron hole pairs
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Figure 3.1: Imaging spectroscopy setup. The sample is held in a liquid helium cryostat
(not shown).
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Figure 3.2: 2f—2f configuration. The imaging lens, of focal length f = 25¢m can easily be
positioned in order to image real space or Fourier space emission patterns. In the second
configuration, a Fourier plane is formed at a distance f, of the microscope objective, where
fo is the microscope objective focal distance.

which relax to the confined and delocalized polariton states [23] [73]. Then, due
to the coupling with extra-cavity photons, the eigenmodes emit photoluminescence
(PL), which is collected with a 0.5 NA microscope objective and imaged on the slit
of a spectrometer using a lens of f = 25c¢m focal length, with a diffraction limited
spatial resolution (see Fig. [3.1). Using a 2f — 2f imaging configuration, we can
conveniently image the near or the far field emission pattern (see Fig. . At the
output of the spectrometer, a liquid nitrogen cooled CCD camera records images of
the PL with one spectral dimension and one spatial dimension. The magnification
of the setup is given by the ratio of the microscope objective effective focal length
(f, = 3.6mm) and the imaging lens focal length: M =~ 70x. The spectral resolution
of the spectrometer is ~ 25ueV. We keep a low excitation power in order to prevent
non-linear effects to take place.  Examples of spatially resolved spectra, as well
as the “tomography” process, are detailed in the next section for quasi-cylindrical
polaritonic traps of various sizes.
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Figure 3.3: Spatially resolved photoluminescence (PL) spectra of polaritons confined in
quasi-cylindrical cylindrical traps of different sizes (approximatively (a) 3um, (b) 10um,
and (c) 20um diameter). The PL intensity is plotted in a normalized log color scale. Con-
fined lower polariton states are visible below 1.484eV . Confined upper polariton states are
found between 1.485eV and 1.490eV. The two-dimensional excitonic-like lower polariton

energy is 1.4845eV, and the two-dimensional photonic-like upper polariton is visible above
1.492eV.

3.3 Tomography in quasi-cylindrical traps

3.3.1 Experimental results

Spatially resolved PL spectra are presented in Fig[3.3] for the three different trap
sizes detailed in Fig. (approximatively 3um (a), 10um (b), and 20um (c) diam-
eter). These images allow to see discrete states for the lower and upper polariton
branches. The traps are surrounded by two-dimensional (2D) polaritons at 1.4845eV
for the lower 2D polariton (excitonic-like at this detuning), and above 1.492¢V for
the upper 2D polariton (photonic-like). The number of confined states depends on
the trap size. The 3um diameter trap contains only a few, well defined confined
states [Fig (a)]. The larger traps house more states, which tend to form a quasi-
continuum in the largest trap of 20um diameter [Fig (c)]. The linewidth of the
confined states is measured to be 80uel . Such spectra already allow to observe the
PD distribution for all eigenstates along one spatial direction, which is the direction
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Figure 3.4: (x,y,E) view of the photoluminescence intensity of the system, for a trap
of (a) 3um and (b) 10um (only lower polariton states are shown in (b)). Isosurfaces
of same intensity are plotted, allowing to map the 2D spatial PD distribution of every
confined and extended state for the upper and lower polaritons at the same time. For the
sake of visibility, the energy scale is stretched on the lower polariton energy range. To
observe easily all confined states PDs, the PL intensity at every energy was multiplied by
a Boltzmann factor with 7" = 30K for (a) and T' = 70K for (b), in order to compensate
for the quasi thermal intensity distribution.

of the spectrometer slit. Indeed, the image of the polariton traps being larger than
the spectrometer slit opening, the polariton emission is filtered by the slit. On Fig.
3.3 we have centered the image of the trap on the slit, in order to select a diameter
of the trap. In this case, the spatial resolution provides a direct access to the radial
part of the probability density.

The variations of emission intensity between the different confined states in Fig-
ure (a), (b) and (c) are due to the different photonic fraction of the confined
states and to thermalization towards the lower energy states [73]. Reference [73]
shows as well that relaxation mechanisms and thermalization are enhanced as the
trap size decreases.

In order to perform a full tomography of the system, i.e. to obtain a 2D mapping
of the PL at all energies in the same set of data, we shifted the position of the imaging
lens perpendicularly to the optical axis. By this way we scanned the collected PL
across the slit of the spectrometer, thus providing the second spatial dimension. We
obtain in this way a 3-dimensional mapping (x,y,energy) of the PL intensity, which
is presented in a 3D contour plot for the 3um trap in Figure (a) and for the lower
polariton of a 10um trap in Fig. [3.4] (b). For the sake of visibility, we corrected the
PL intensity at each energy by a Boltzmann factor, in order to counterbalance the
thermalization towards the lower energy states. On Fig. 3.4] (a), all confined states
of the upper and lower polaritons are visible, as well as the extended 2D polaritons,
at a glance. For both the 3um trap and the 10um trap, one can clearly observe that
the luminescence of the 2D polaritons vanishes at the exact position of the mesa.
This feature is particularly meaningful for the lower 2D polariton, as it is nearly
100% excitonic at this position. It is a straightforward experimental demonstration
that, although the confinement is initially acting on the photonic modes only, the
excitonic component (and a fortiori the entire polariton) is eventually confined as
well, thanks to the strong coupling between the light and the matter wave.
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Figure 3.5: Two-dimensional PL. mappings at different energies in a 3um diameter trap,
in a normalized linear color scale. These mappings provide the probability density pat-
terns for lower polariton states (left column) and upper polariton states (central column).
Corresponding solutions of the wave equation for a cylindrical confinement are displayed
in the right column. The lower row shows a (n = 1, m = 0) state pattern. The two central
rows show two (n = 1,m = 1) state patterns, the symmetry breaking being due to the
elliptical shape of the trap. The upper row shows a (n = 1,m = 2) state pattern. An
angular variation of the type cos(m¢) has been manually added in the computation of the
(n =1,m = 1) doublet state in order to reproduce the effect of the symmetry breaking.

By cutting slices in the (z, y) plane of this set of data we can retrieve 2D mappings
of the probability distribution ||¥(r,0)||* of any eigenstate. These are plotted for
the 3um diameter trap in Fig. for the ground state and first two excited states
of both the lower (left column) and upper (central column) polaritons. We can see
that lower and upper confined states have similar PD patterns.

In order to understand these patterns, let us consider in first approximation the
traps as circular. We will see further on the effect of the deviations from cylindrical
symmetry on the spectrum and the wavefunctions. In polar coordinates (r, ¢), the
wavefunction can be written as

() @) = Ry me™? (3.1)

where R, is the radial part of the wavefunction, and e*™? is an angular phase
term. The radial part is a Bessel function inside the trap, and a modified Bessel
function outside the trap. The confined states are labeled by two quantum numbers
(n,m), with n = 1,2,3... and m = 0,1,2.... In polar coordinates, n gives the
number of lobes of the wavefunction in the radial direction. For a perfect cylindrical
symmetry, +m and —m states are degenerate. The U, ,,,(r, ¢) are plotted in the last
column of Fig.

The bottom row of Fig. shows a ground confined state pattern, with quantum
numbers (n = 1,m = 0). For this state, the experimental patterns corresponds to
the solution of the wave equation in a cylindrical trap. Let us now consider the
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PD patterns displayed on the two central lines of Figure We must point out
here that in principle in a system with a perfect cylindrical symmetry, +m states
are degenerate with no fixed phase relation between each other. In time integrated
measurement of PL intensity of the eigenstates, this symmetry prevents one from
observing any azimuthal variation of the wavefunction. This is obviously not the
case for this (n = 1,m = 1) state, which is split into two. The two state patterns are
featuring two lobes, aligned along two orthogonal axes. This is an unambiguous sign
of symmetry breaking, already observed spectrally by El Daif et al. [23], due to the
elliptical shape of the mesa. This gives rise to a lift of the degeneracy for the m =1
states. The two states are separated by an energy of 200ueV and exhibit lobes which
are pinned along the main axes of the elliptical confinement potential. The breaking
of the cylindrical symmetry mainly affects m = 1 states, because the perturbation
on the confinement potential scales as cos(2¢) (this point will be detailed further
on in section [3.3.2)). Indeed, for the (n = 1,m = 2) states displayed in the top row
of Fig. we do not observe lobes, neither a doublet structure.

5 0 5 -5

o 5 -5 0 5
X [um]

Figure 3.6: Two-dimensional PL mappings at different energies for the lower polariton
states in a 10um diameter trap, in a normalized linear color scale. These mappings
provide the probability density patterns for different polariton states, whose quantum
numbers (n,m) are indicated with white letters.
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Figure 3.7: Two-dimensional PL mappings at different energies for the lower polariton
states in a 20pum diameter trap, in a normalized linear color scale. These mappings
provide the probability density patterns for different polariton states, whose quantum
numbers (n,m) are indicated with white letters.

The ellipticity of the potential is less pronounced for the 10um mesa. One
can indeed see in Figure that cylindrical symmetry is virtually respected for
the confined states. However, comparing spatially resolved spectra for different
positions allows to notice a very small degeneracy lift for the (n = 1,m = 1) state.
The splitting, of the order of 50ueV (with a spectral resolution of 25ueV), is smaller
than the linewidth (=~ 80ueV’). The two split states can therefore not be imaged
properly, as for the 3um trap of Fig3.5

Eventually, Figure 3.7 shows the state patterns obtained for a 20um trap. For
this mesa size, the ellipticity is even less pronounced. This has for result that all
confined states present a cylindrical symmetry, within our spectral resolution limit.

3.3.2 Computation of the spectrum
Approximation with a cylindrical trap

Approximating the traps as cylindrical, previous theoretical works [70} [69] were able
to accurately reproduce the spectra and wavefunctions of the confined polaritons. It
consisted in solving Maxwell equations for the confined electromagnetic modes, and
then to strongly couple the obtained modes to the excitonic resonance. In order to
intuitively understand the observed spectra in terms of a quasiparticle confined in
a box, we are considering in the following a simpler approach.

We solve the linear time-independent Schrodinger equation for the polariton in
a cylindrical finite potential. The polariton effective mass is given by eq.
and therefore depends of the exciton-photon detuning. Its value is 0.7meV - ps? -
um~2 at zero exciton-photon detuning, as measured in section We use an
effective potential barrier, which is different for upper and lower polaritons. We
follow the method described by Leyronas & Combescot [80] in order to compute the
eigenenergies and eigenstates of the cylindrical finite potential barrier. Figure
shows the the comparison between measured and computed spectra for a 3um trap.
We have assumed the exciton-photon detuning to be zero, as it is the case for the
confined ground state.
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Figure 3.8: Comparison between (a) experimental spectrum, and (b) spectrum computed
using the linear time-independent Schrédinger equation, for a 3um diameter trap. In (b),
we have assumed the exciton-photon coupling to be zero, and therefore used a polariton

effective mass of 0.7meV - ps? - pm=2.

In this example, the overall agreement is good. The most obvious discrepancy
is the splitting of the (n = 1,m = 1) state, due to the breaking of the cylindrical
symmetry. One can however also notice discrepancies for the energies of the high
energy states. This is explained by the fact that there is a different exciton-photon
detuning for these states, and therefore a different effective mass. This shows the
limit of this simple model. In particular, it is not able to predict accurately the
number of confined states for larger traps, as those traps contain numerous high
energy states.

Deviations from cylindrical symmetry

When the cylindrical symmetry is broken due to the ellipticity of the trap, U,, ,,(r, ¢) =
R, m€T™? are no longer the eigenstates of the trap. Let us consider the effect of
the ellipticity on the angular part of the wavefunction v¥4,, = e*™?. The sym-
metry breaking introduces off-diagonal matrix elements that are coupling ¥, and
Y_,, states. We express the confinement potential as V(r,¢) = Vy(r) + oV (r, @),
where dV (r, ¢) is the elliptical perturbation of the potential. The characteristic cou-
pling energy is given by the perturbation matrix elements W, ,,,y, whose azimuthal

components are given by

Wnaar(6) = (nloV (6)|tome) = [ 8V (8)e"™ ™% (3.2

which is nothing but the Fourier transform of the angular variation of the potential
with respect to the transform variable (m — m')/2w. The angular perturbation
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Figure 3.9: Absolute value of the fast Fourier transform (FFT) of the the angular ex-
pression of the elliptical confinement potential 6V"™(¢) (defined in equation , with
n = 100, and using a and b as measured for a 10um trap). The FFT is plotted with
respect to the parameter |m — m/| in order to express the coupling between states v, and
. We can see that the coupling is non-zero only for states satisfying |m — m/| = 2u,
where u € N, and that it is monotonically decreasing over this set of values. The ampli-
tude of the FFT is normalized to its cw component. Inset: Picture of the mask used for
the photolithography of the 10um polariton traps. We measured the elliptical major and
minor axes 2a and 2b to be 2a = 10.78um and 2b = 9.27um.

of the potential V' can be evaluated in the following way: let us describe, as an
example, the confinement potential as an infinite elliptic potential well V (r, ¢) =

lim,, o0 (ﬁ)”v*, where 7, is the azimuthal dependence of the potential radius,
ab

\/(a sin ¢)24(b cos ¢)?2

the elliptical confinement), and V* has the dimension of energy. It is then possible

to express the perturbation of the confining potential as

o - van(2) ()]

. 1 N N AN
= V" lim |r {T¢ —<2> } (3.3)

=6V (¢)

given by r4 = (with a and b the semimajor and semiminor axes of

The Fourier transform of the angular variation of the confinement potential 6V (¢)
is presented in Fig. , for n = 100, and a,b measured from the photolithographic
mask used for a 10um trap. It shows that the coupling is non-zero only for states
satisfying |m — m’| = 2u, where u € N, and that it is monotonically decreasing over
this set of values. Therefore, the most important coupling occurs between states
with quantum numbers satisfying |m —m’| = 2. This simple analysis allows us
to understand why the most significant coupling is observed between the m = +1

!The absolute value of the fast Fourier transform (FFT) has to be taken because of a numerical
artifact of the FFT algorithm, which gives successively positive and negative values, whereas only
positive values are expected for this Fourier transform.
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Figure 3.10: Fourier space imaging spectroscopy. The photoluminescence (PL) intensity is
plotted with respect to emission energy and in-plane momentum k/,, for (a) a 10um trap
and (b) a 20um trap, in a normalized log color scale. k/, is related to the emission angle by
k= % sin @, where \g is the emission wavelength. On these spectra are visible the lower
confined polaritons (LP 0D), upper confined polaritons (UP 0D), the excitonic-like lower
two-dimensional polariton branch (LP 2D) and the photonic-like upper two-dimensional
branch (UP 2D).

and m = —1 states, leading to two new states ¢, = % {e*i‘f’ + e‘i‘f’}. These new
eigenstates feature |2m| = 2 lobes in the azimuthal direction, aligned along the

ellipse axes, as observed in Fig. [3.5]

To go beyond this simple geometrical analysis, we need to solve the wave equation
on the actual elliptical domain. This is realized in section [4.4] and allows to obtain
the wavefunction patterns as well as accurate predictions for the energy splittings.

3.4 Fourier space tomography

As mentioned in section [3.2] it is possible to image the polariton emission in the
Fourier space (or momentum space) instead of the real space. Using the imaging
spectroscopy setup, we can record E vs k/, diagrams in a single shot, k,, being linked
to the emission angle ¢ by k/,, = ?\—z sin 6, where ) is the emission wavelength.
Figure m shows the E vs k;, diagrams for 10pum and 20pm diameter traps.
Whereas the 10um trap houses well defined discrete confined states, the 20um trap
contains a quasi-continuum which tends to form 2D polaritonic dispersion. As the
excitation spot is larger than the trap, the emission of two-dimensional polaritons
is also visible on the same graphs. With the same procedure than for real space
imaging spectroscopy, we can perform a tomographic measurement, which provides
a three-dimensional (k, k,, £) view of the PL and allows to retrieve two-dimensional
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distributions of the confined states in the reciprocal space (shown for a 10um trap
in Fig. [3.11). The observed PD patterns are similar to real space patterns, but
differently scaled, as shown for (n = 1,m = 0) and (n = 2,m = 0) states in Fig.
3.11| (b). This trap is particularly asymmetric, as it is indicated by the rather large
degeneracy lift of the (n = 1, m = 1) state, in Fig. [3.11] (¢). We measure a splitting
of 75ueV; comparable to the linewidth, between the two eigenstates (indicated with
a green square in the figure). The PL distribution is shown for different energies
(indicated in the figure by the energy difference to the lower eigenstate). Looking
at the high energy spectral tail of the upper eigenstate makes it appear cleaner,
as there is no more contribution from the lower eigenstate at this energy. On the
other hand, at intermediate energies, the two states are mixed, recovering thus a
cylindrically symmetric pattern. These two points will be of importance for the
resonant excitation of single confined states in chapter [4, and for the excitation of
superposition of states in chapter

Figure 3.11: Fourier space tomography, in an elliptic trap of 10um mean diameter. (a)
(kg, ky, E) contour plot view of the photoluminescence. (b) Two-dimensional momentum
distributions of the PL for (n = 1,m = 0) and (n = 2,m = 0). (c) Two-dimensional
momentum distributions of the PL at different energies allow to observe a degeneracy
lifting of the (n = 1,m = 1) state, due to the breaking of the cylindrical symmetry.
The eigenstates are indicated with green squares. The splitting being of the order of the
linewidth, a mixing of the states is visible at intermediate energies. Energies are indicated
with respect to the lower eigenstate energy. The PL intensity is plotted in a normalized
linear color scale.

3.5 Tomography in exotic structures

While the tomographic tool allowed us to evidence deviations from the cylindrical
symmetry in circular traps, it can be used with more exotic confinement potential
as a true diagnosis tool. Indeed, in complicated confinement geometries, slight
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Figure 3.12: Real space tomography in a ring shaped trap. (a) Spatially resolved PL
spectrum, showing several discrete levels for the upper and lower confined polaritons.
PL intensity is plotted in a normalized linear color scale. (b) Photography of the mask
used for the photolithography, showing that the ring structure is asymmetric. (c)-(j) Two
dimensional mappings of the PL at different energies, in a normalized linear color scale.
Energies of the mappings in a color square are indicated with a corresponding color arrow
in (a). PL intensity is plotted in a normalized linear color scale. The mappings allow to
see the PD distributions for the two-dimensional upper polariton (c), a confined UP state
(d), and several confined lower polariton states (e)-(j).

variations may lead to dramatic changes in the spectrum and spatial distribution
of the wavefunctions. One may want to know if the wavefunctions confined in
a particular structure satisfies some geometrical properties. In the following, we
are realizing tomographies in exotic structures which are present on the sample
(rings and coupled structures), and show the potential of imaging spectroscopy as a
diagnosis tool.

3.5.1 Rings

Ring structures are an interesting example of confinement potential. Perfectly sym-
metric rings are one-dimensional traps with periodic boundary conditions. However,
a photography of the mask used for the etching of the ring trap, displayed in Fig.
3.12| (b), shows that the ring is asymmetric. In Fig. , the two-dimensional PD
distributions obtained with the tomography technique reveal us the radial harmon-
ics expected in a cylindrical symmetric ring (three radial harmonics can be counted
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Figure 3.13: Real space tomography in a ring shaped trap, with strong azimuthal localiza-
tion. (a) Spatially resolved PL spectrum, showing several discrete levels for the upper and
lower confined polaritons. PL intensity is plotted in a normalized log color scale. (b)-(g)
Two dimensional mappings of the PL at different energies, in a normalized linear color
scale. Energies of the mappings in a color square are indicated with a corresponding color
arrow in (a). This structure is supposed to be similar than the one of Fig. as it is
made using the same photolithographic mask. Different localization patterns can however
be observed between this figure and Fig. In particular, strongly localized states can
be seen in (b), (c¢), (d), (f) and (g).

on Fig. (e), two on Fig. (f)). Beside this radial quantization, the spa-
tially resolved spectrum also shows several azimuthal harmonics that arise from
the periodical boundary conditions of the ring. Fig. (h), (i) and (j) display
for example three different azimuthal harmonics of the first radial harmonic. The
two-dimensional PD distributions also allow to observe some localization in the az-
imuthal direction, as visible in Fig. (g) and (j). Despite this observed symmetry
breaking, one can see that the azimuthal localization is rather weak, and that some
states like those shown in Fig. (d),(f),(h) and (j) are nearly one-dimensional.
The tomographic tool has thus allowed to fully characterize the wavefunction distri-
bution, spatially and energetically, for that particular structure. We will show now
that the tomography technique can be used to discriminate between structures that
are a prior: similar.

The same tomographic analysis is performed on a ring structure processed using
the same photolithography mask, and presented in Fig. It shows that the
wavefunctions are distributed differently, and that the localization in this structure
is stronger than in the structure of Fig. In particular, the localization along
two orthogonal diagonal direction of the two nearly degenerate states shown in
Fig. (c) and (d) indicates a breaking of the symmetry for 7 rotations. This
demonstrates the potential of imaging spectroscopy as a diagnosis tool, allowing
to evidence differences in the spectrum and wavefunctions localization in a priori
similar structures.
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3.5.2 Coupled structures

Eventually we show the tomographic measurement realized on a very exotic struc-
ture, primarily intended to play the role of a Fresnel lens. The asymmetry of the
photolithographic mask led however to the peculiar confinement potential which is
shown in Fig. [3.14] (b). It consist in a central trap, similar to the 10um diameter
traps, surrounded by four one-dimensional curved traps. The tomographic process
allows to probe the eigenstates confined in the different sub-structures. In the one-
dimensional traps, several standing waves can be observed due to the finite size of
the trap. The first longitudinal mode can be seen in (Fig. |3.14| (j)). Higher longi-
tudinal modes, featuring more lobes, can be observed in Fig. |3.14] (d), (f), (g), (h)
and (i) for 8, 5, 4, 3 and 2 lobes respectively. A second transverse harmonic is also
shown in Fig. [3.14] (¢). Looking now at the central circular trap, it is interesting
to note that although it has a similar ellipticity than the standard 10pum traps of
section [3.3] the splitting due to the deviation from cylindrical symmetry is much
more important here, leading not only to the splitting of the (n = 1,m = 1) state
(Fig. [3.14] (k)-(1)), but also of the (n = 1, m = 2) (Fig. [3.14] (h)-(i)). This indicates
that the proximity of the one-dimensional traps influences the wavefunctions in the
central trap, and constitutes an indirect proof that there is some coupling between
the different sub-structures.

3.6 Conclusion

In conclusion, we have demonstrated in this chapter a method to probe the eigen-
states of exciton polaritons confined in confinement potentials of different geome-
tries. This technique offers a complete view over the spectrum as well as the dis-
tribution of the probability densities in the real and momentum spaces. It allowed
to confirm that, although the confinement mechanism is initially acting of the pho-
tonic part of the polariton, the excitonic part is also confined thanks to the strong
light-matter coupling. We could successfully compare the observed eigenstates with
the solution of a wave equation in a cylindrical resonator, and were able to identify
the effect of deviations from cylindrical symmetry. Eventually, we showed that the
tomographic process can be used as a diagnosis tool for probing particular struc-
tures and exotic confinement potentials, like quasi-one-dimensional geometries or
coupled structures. These technique will definitely be useful for characterizing the
new structures present on the future sample, presented in chapter [9} It can also be
used in the field of polariton BEC, in order to spectrally filter the condensate energy
(see Ref. [II] for an example).
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Figure 3.14: Real space tomography in an exotic coupled structure. (a) Spatially resolved
PL spectrum, showing several discrete levels for the upper and lower confined polaritons.
PL intensity is plotted in a normalized log color scale. (b) Photography of the mask
used for the photolithography. (c)-(m) Two dimensional mappings of the PL at different
energies, in a normalized linear color scale. Energies of the mappings in a color square are
indicated with a corresponding color arrow in (a).
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Chapter 4

Phase-resolved imaging of
polariton states

4.1 Motivations

In this chapter, we are going one step further in the imaging of confined polariton
states, by imaging not only the probability densities but the wavefunctions them-
selves. Contrarily to the tomographic technique, that allowed to image the unper-
turbed states under non-resonant pumping, we will this time selectively excite the
confined polariton modes with a laser tuned to the polariton state energy. A homo-
dyne detection setup is designed and used in order to retrieve the phase information
of the polariton state coherent emission. We will use this tool to probe the eigen-
states of the quasi-circular traps already presented in section [3.3] and show that the
observed wavefunctions can be successfully compared to the standing wave patterns
on an elliptical domain. Elliptical geometries are a topic of interest in optics when
one wants to characterize the transverse patterns of elliptical laser beams. In this
scope, Gutiérrez-Vega et al. have predicted and demonstrated Mathieu and Ince-
Gaussian beams [81, 82, [83], [84]. However the measurement of the phase structure
still remains a missing component. We will show here that the measured amplitude
and phase structures of our confined microcavity polaritons are in very good agree-
ment with analytical solutions expressed in terms of even and odd Mathieu functions.
The work presented in this chapter corresponds to the following publication [85].

4.2 Phase-resolved imaging setup

We resonantly excite the polariton states (i.e. with the laser wavelength tuned to the
polariton state energy, around 835nm), using a camera objective which provides a
diffraction limited spot of ~ 15um diameter. Thanks to a retro-reflector mounted on
a lateral translation stage, we can translate the incoming laser beam on the camera
objective, and thus control the excitation angle on the sample (see Fig. (a)).
A resonantly excited polariton state inherits the coherence of the excitation laser.
A coherent emission patternﬂ, whose intensity depends of the overlap in real space,

'We can equivalently see the light as transmitted by the polariton modes, or absorbed and
coherently re-emitted by the polariton field. However, in the microcavity polariton community,

43
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Figure 4.1: (a) Homodyne imaging setup, allowing for the retrieval of the phase infor-

mation. (b) Image of the coherent emission of a (n = 1, m = 0) state in a 10um mean
diameter trap. (c) Only the reference arm is sent to the CCD. (c¢) Coherent emission and
reference interfere. The straight interference fringes come from the slight incidence angle
Af of the reference arm on the CCD.

momentum space and energy between the laser field and the polariton state [86], is
collected using a 0.5 NA microscope objective, and imaged on a CCD. Depending
on the position of the imaging lens, real or reciprocal space images can be obtained.
However, when the coherent emission is imaged on a CCD, we only have access to
its intensity. We have developed a homodyne detection setup, based on a Mach-
Zehnder-like interferometer, allowing to retrieve the phase information.

Let us mention that the phase-resolved measurement technique demonstrated
in this chapter might also be applied to probe the eigenmodes of empty optical
resonators. Indeed, although all our measurements are performed in the strong
coupling regime, similar patterns would be observed for the scattering of light on
empty micropillars. Let us also note that all the results of this chapter have been
obtained under low power optical pumping, in the linear regime.

An image of the coherent emission of the lower polariton ground state (n =
I,m = 0) of a 10um mean diameter trap is shown in Fig. (b). In this case,
only the intensity (E(x,y)?) of the emitted coherent field E(z,y) = Eo(x,y)e @)
is detected, and the phase information is lost ({...) denotes the temporal average).

theoreticians commonly model the physics of microcavities using a polariton field formalism, rather
than a transfer matrix formalism (see e.g. [I5], or [86]), and the use of “coherent emission of
polaritons” is generally admitted to refer to the resonant Rayleigh scattering.
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In order to retrieve the phase information, we built a homodyne imaging setup (Fig.
(a)). The cw excitation laser beam is split into two parts: one part is used to
resonantly excite the polariton state, the other part serves as a phase reference. The
reference arm is directed through a telescope for beam enlargement and wavefront
tuning. In the beam waist of the telescope is positioned a 10um diameter pinhole
for spatial filtering. The collimated reference arm is then interfered with the signal
on the CCD (Fig. (a)), with a slightly different incidence angle Af, in order to
provide straight?] interference fringes (Fig. (d)).

When an interferogram is recorded by the CCD camera, the detected intensity
is proportional to

((B(x,y) + E.)*) = (E(2,9)*)+(E2)+2Eo(2,y) By cos ($(x,y) — &r + A(x,y)) .

(4.1)

where E, = E, e is the reference field (assumed to be constant on the mea-

surement of area). A®(z,y) is the phase component induced by the reference arm
incidence angle A#:

= —sin(A0). (4.2)

k. T . k.
A@(w,y):(kw>.(y>,w1th |<kry> N

The phase of the signal is not accessible from its intensity, but can be extracted
from the interference term 2FEyE,, cos(¢(x,y) — ¢, + AP (z,y)).

2

Numerical retrieval of the phase information We use a numerical method,
known as digital off-axis holography [87], in order to extract the phase information
from the interference term. This method is depicted in Fig. [4.2] We perform a
numerical Fourier transform of the interferogram. In the Fourier plane, the inter-
ference term is an off-axis contribution, while the continuous terms are situated at
the origin, and can be filtered out. By this way, we filter out as well all incoher-
ent contributions. We keep then the interference term only and perform an inverse
Fourier transform, from which we obtain E(x,y), including its amplitude and phase
informations. The phase gradient A® induced by the setup alignment is determined
using this measurement of the (n = 1,m = 0) state, shown in Fig. [£.2] as we expect
a constant phase for this state. The obtained phase gradient can be used in further
measurements, as it depends of the setup alignment only.

4.3 Imaging the wavefunctions in elliptical traps

We use the homodyne detection setup to image the wavefunctions in a 10um mean
diameter trap. This size is a good compromise, as the trap contains a quite important
number of confined states, which are at the same time well separated in energy.
Scanning the excitation energy allows to selectively excite the eigenstates of the
trap. In cylindrically symmetric systems, a linear superposition of the degenerate

2The distance between the output lens of the telescope and the pinhole needs to be finely tuned
in order to obtain a flat reference phase front, and therefore straight interference fringes.
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Figure 4.2: Numerical retrieval of the phase information. The fast Fourier transform
(FFT) of the interferogram is central symmetric, as the interferogram is real. While the
cw part of the emission is located at the origin of the Fourier plane, the interference term
is situated around the reference arm in-CCD-plane wavevector (k,, kry). Filtering out the
continuous terms allows to retrieve the fringes of the interferogram only. Filtering out half
of the Fourier plane as well allows to transform the real signal into a complex one, whose
magnitude and phase are the amplitude and phase of the polariton wavefunction. The
phase gradient A® induced by the setup alignment is determined using this measurement
of the (n = 1,m = 0) state, as we expect a constant phase for this state. The amplitude of
the reference field can either be assumed to be constant, either separately measured and
eliminated from the signal.

+m states is always excited. In that case, tuning the excitation angle and position
allows to determine the contribution of the +m and —m states in the superposition.
This point will be discussed in detail in chapter 5} Now, in slightly elliptical traps,
where the eigenstates are no longer the +m states, it is possible to take advantage of
the degeneracy lift AFE between the new eigenstates. In very elliptical traps, these
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upper state
Excitation

AE

lower state
Excitation

Figure 4.3: (a)-(b) Real space coherent emission of the (n = 1,m = 1) lower polariton
doublet state in a 10um mean diameter mesa, interfered with the reference beam. (c)-(d)
Amplitude and (e)-(f) phase of the state wavefunctions, extracted using off-axis filtering.
In (e) and (f), a clear m-phase shift is visible between the two lobes, indicating that the
two lobes of the wavefunction are of opposite sign. The combination of the amplitude
and phase information provides a full information on the confined polariton wavefunction.
Interferograms and amplitude patterns are in a linear gray scale from minimal (black) to
maximal (white) intensity. Phase patterns are in a linear gray scale from 0 (black) to
27 (white). (g) Selective excitation technique. Slightly red or blue-shifting the excitation
energy allows to excite only one of the nearly degenerate doublet, even if the energy
splitting is smaller than the linewidth.

eigenstates would be well separated in energy, and easy to excite selectively. In
the 10um traps, though, the degeneracy lift AFE is of the order or smaller than the
linewidth. In this case, one can slightly red-shift of blue-shift the excitation energy
with respect to the doublet energy, in order to selectively excite the upper or lower
energy state, respectively, as depicted in Fig. (g) (the FWHM of the laser is
smaller than our resolution limit of 25ueV’).

As a result, we can measure the coherent emission of the eigenstates of the
elliptical trap. The resulting interferograms for the (n = 1,m = 1) doublet are
presented in Fig. (a)-(b), and the corresponding numerically extracted amplitude
and phase in Fig (c)-(d) and (e)-(f), respectivelyf’] The phase structure shows
a clear m-phase shift between the two lobes of the wavefunction, indicating that
the two lobes are of opposite sign with respect to each other. We have therefore
succeeded in measuring the full wavefunction, and not its squared magnitude only.

Using the selective excitation technique depicted in Fig. 4.3| (g) allows to probe
the higher energy eigenstates as well. We have seen in section that, even if
less pronounced than for the 41 states, there should be a finite coupling between
the m = +2 and m = —2 states. This is what we actually observe on the states
characterized by the quantum numbers (n = 1,m = 2), presented in the first two
rows of Fig. [£.4 Moreover, a significant qualitative deviation from the patterns

3The phase-gradient A® induced by the reference arm incidence angle is determined from the
measurement of the ground state presented in Fig.
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expected in a circular geometry is observed on the low energy state presented in the
first row.

In order to understand this feature, we need to solve the wave equation on the
actual elliptic domain. The two-dimensional wave equation is a Helmholtz equation

V2 + k%) =0 (4.3)

whose eigenvalues k? are proportional to the energy of the eigenmodes 1. In terms
of the elliptical coordinates (£,7n), variables can be separated and one obtains two
equations known as the angular and radial Mathieu equations [88]] Each of them
has two families of independent solutions, namely the even and odd Mathieu func-
tions. The complete two-dimensional even (odd) solutions, analogous to the standing
wave patterns of a vibrating membrane, are then given by the product of the angular
even (odd) Mathieu function by the radial even (odd) Mathieu function [89, 90, 91].
These eigenstates are also characterized by two quantum numbers, which also pro-
vide the number of zeros in the radial and azimuthal directions, respectively. For
these reasons we will still use the quantum numbers n and m, and indicate the parity
of the state (e.g (n = 1,m = 2,¢e) for the (n = 1,m = 2) even state), to describe
the eigenstates. These eigenstates should not be confused with the (n, £m) states,
which were eigenstates of the circular trap. The even and odd two-dimensional so-
lutions of Mathieu equations for the quantum numbers (n = 1,m = 2) have been
computed, and are presented in the two first rows of Fig. [£.4] in front of the corre-
sponding experimental patterns. We have used the elliptical semi-axes measured on
the photolithography mask for defining the confinement geometry (with a Dirichlet
condition). There is an excellent qualitative agreement between these analytical
solutions and the experimentally observed patterns, for both the phase and the am-
plitude. It can be observed that the nodal lines of the wavefunctions follow confocal
ellipses (§ =constant) and hyperbolas (7 =constant). Several confined states from
the same trap are presented in Fig. [£.4] and an excellent overall agreement between
the experimentally observed patterns and the analytical solutions is observed as
well.

Solving the wave equation on the elliptical domain also allows to obtain a theo-
retical energy spectrum. The most straightforward physical approach is to describe
the system with the time-independent Schrodinger equation, as shown in section
m The eigenvalues k of equation (4.3) are then related to the physical param-
eters by k? = erfg” E where myp is the effective mass of the polariton and E is
the eigenenergy with respect to the bottom of the confinement potential. However,
using these physical parameters, the experimental spectrum cannot be satisfacto-
rily reproduced. This is probably due to the two following reasons: first, with the
Dirichlet condition, we have assumed an infinite potential barrier created by the
trap, whereas the effective confinement potential for the lower polariton is finite,
of the order of 3meV ; second, as discussed in section [3.3.2] the effective mass of
the polariton depends of the detuning of the given polariton mode with respect to
the excitonic resonance, and is therefore different for each confined polariton mode.
Using the approach developed in [69, [70], consisting in first solving the Maxwell
equation to find the confined optical modes and then strongly coupling these modes

4Mathieu equations and their resolution are detailed in the next section
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Experiment Theory

(n=2,m=1,e) | (n=2,m=0) | (n=1,m=2,0) | (n=1,m=2.¢)

(n=2,m=1,0)

(n=2,m=2,¢)

(n=2,m=2,0)

Figure 4.4: First two columns: real space experimental images of the amplitude and phase
of several states confined in a 10um trap. The phase-gradient reference used is the one
that provides a constant phase for the (n = 1,m = 0) state of the trap. Amplitude
patterns are in a linear gray scale from minimal (black) to maximal (white) intensity.
Phase patterns are in a linear gray scale from 0 (black) to 27 (white). Last two columns:
Corresponding amplitude and phase structures obtained from the analytical solutions of
the wave equation. The amplitude structures are given by the absolute value of the
wavefunction. For the phase structures, black is plotted for the negative parts of the
wavefunction and white for the positive parts.

to the exciton , would allow to overcome the issue of the variable effective mass,
but not of the finite potential boundary. Taking into account the finite size of the
confinement potential would require to use the evanescent Radial Mathieu Func-
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Figure 4.5: (a)-(b) Experimental amplitude and phase emission patterns measured when
the (n = 1,m = 1,0) state in a 20pum mean diameter trap is dominantly excited. (c)-
(d) (n = 1,m = 2,¢e) upper polariton state in a 3um mean diameter trap. Amplitude
patterns are in a linear gray scale from minimal (black) to maximal (white) intensity.
Phase patterns are in a linear gray scale from 0 (black) to 27 (white). The round shape at
the bottom of (c) and (d) is an experimental artifact due to a dust particle on the CCD.

tions (RMF) of the second kind Ke,, and Ko,,. Nevertheless, without going further
into the physical modeling of the system in order to obtain absolute values for the
eigenenergies, we can learn qualitative information about the splitting between the
even and odd states with respect to the quantum numbers (n, m). The computation
of the RMF (see Fig. indicates that for a given n, the energy splitting between
the even and odd states is higher for m = 1 than for m = 2. Using the values
for the elliptical axes a and b measured from the photolithography mask for 10um
traps, we find through the computation of the RMF a splitting of 48ueV for the
(n = 1,m = 1) doublet and of 31ueV for the (n = 1,m = 2) doublet. These val-
ues are in very good agreement with the values generally measured for 10um traps
(~ 50ueV and ~ 30ueV respectively).

Let us also mention that the phase-resolved imaging of confined states can also
be realized in different trap sizes, and for the upper polariton states as well, as shown
in Fig. [4.5. For the larger traps (20pm mean diameter), featuring a quasi-continuum
of states (and a smaller ellipticity), it is difficult to selectively excite a single state, as
the energy spacing between the neighbor states is very small. However, it is possible
to excite dominantly a given state, as shown for the (n = 1,m = 1, 0) state of Fig.
(a)-(b).

Eventually, it is also possible to image the polariton emission in the Fourier
plane. Interference of reciprocal space images with the reference arm provides the
same type of interferograms than for real space imaging, from which we can extract
amplitude and phase of the wavefunctions as well. A series of reciprocal space
patterns for four different states in a 10um trap is presented in Fig. [£.6, We can see
that patterns in the Fourier plane are very similar than real space patterns, except
for the fact that higher-order diffraction is visible around the zero order pattern.
The homodyne detection allows to observe the expected m-phase shift between two
consecutive diffraction orders.

4.4 Mathieu equations and functions

In this section we show the tools that we used to plot the eigenmodes of the polaritons
confined in elliptical traps. A detailed description of the method can also be found
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Figure 4.6: Experimental amplitude and phase patterns in the Fourier plane, for the (a)-
(b) (n = 1,m = 0) state, (c)-(d) (n = 1,m = 1,e) state, (e)-(f) (n = 1,m = 2,e) state
and (g)-(h) (n = 2,m = 0) state, in a 10um trap. Higher diffraction orders can be seen
around the main patterns. Amplitude patterns are in a linear gray scale from minimal
(black) to maximal (white) intensity. Phase patterns are in a linear gray scale from 0
(black) to 27 (white). The small vertical lines that one can see on the amplitude patterns
are measurement artifacts, due to the saturation of the CCD.

in Ref [90], and a comprehensive overview of Mathieu functions is available in Ref
[91].

In order to find the eigenmodes of polaritons confined in an elliptical trap, we
need to solve the Helmholtz equation (4.3) in elliptical coordinates (§,7), which are
linked to Cartesian coordinates by

xr = g cosh & cosn (4.4)
Y= g sinh £ sinn (4.5)

where ¢ is the distance between the two foci of the ellipse, and is given by 5 =

va? — b2, with a and b the semi-major and semi-minor axes of the elliptical confine-
ment, respectively (see Fig. (a)). The eccentricity € of an elliptical domain is

@

Figure 4.7: (a) Elliptical coordinate system (reproduced from [91]). Ensembles of points
with & = const represent confocal ellipses, and ensembles of points with 1 = const rep-
resent confocal hyperbolas. (b) and (c) Comparison with the experimentally observed
amplitude and phase patterns of a (n = 2,m = 2, e) state in a 10um mean diameter trap
shows that the wavefunction nodal lines follow constant elliptical coordinates.
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given by € = o-. The domain boundary is defined by { = &, such as a = $ cosh &

or b = £ sinh §. Ensembles of points with £ = const represent confocal ellipses, and
ensembles of points with 1 = const represent confocal hyperbolas. After performing

the separation of variables 1) = R(£)®(n), one obtains two equations:

d*®
el + (d — 2g cos2n)P = 0, (4.6)
d*R

where ¢ = £c*k? and d is a separation variable. Equation (4.6) is known as the

ordinary or angular Mathieu equation and equation (4.7) as the modified or radial

Mathieu equation. Solutions of the angular Mathieu equation (4.6) form two inde-

pendent families of solutions, the even and odd angular Mathieu functions (AMF)

o cem(n,q), m=0,1,2..., (even AMF) (4.8)

") sem(n,q), m=1,23,..., (odd AMF) '

where m is the order of the function. The AMF satisfy the periodic boundary

conditions on 1 € [0, 7], and features m zeros on this interval. Solutions of the

radial Mathieu equation (4.7) which satisfy the continuity conditions at £ = 0 are

the even and odd radial Mathieu functions (RMF) of the first kind

R Jem(n,q), m=0,1,2..., (even RMF) (4.9)

" Jom(n,q), m=1,23,..., (odd RMF) '

In order to find the eigenmodes of the Helmholtz equation (4.3)) we need to find the
values of ¢ that satisfy the Dirichlet condition:

Jem(&o,q) =0 or Jo,(&o,q) =0 (4.10)

There is an infinite family of solutions g, ,,, that satisty this condition. We denote
gen,m and qoy,,, the n™ zero of Je,, and Jo,,, respectively. Figure displays
Jem (o, q) and Joy, (&, q)ﬁ for m = 0, 1,2, where the elliptical boundary &, = 1.2931
is obtained using the major axis 2a = 10.78 and minor axis 2b = 9.27 measured on
the photolithography mask for a 10um trap, providing an eccentricity of e = 0.51.
To every g, can be associated an eigenvalue k, solution of the Helmholtz equation
, that can be linked to a frequency or energy by using the physical parameters
of the problem. The even and odd eigenmodes are given by the product of radial
and angular Mathieu functions:

Venm = Jem(E, q)cen(n, q), with ¢ = genm (4.11)
Vonm = Jom(&, q)sen(n, q), With ¢ = qop, m. (4.12)

Even and odd AMF and RMF, as well as the even and odd eigenmodes resulting
of their product, are plotted in Fig. for quantum numbers n = 1 and m = 2 in
a 10pm mean diameter trap.

5Numerical evaluation of the Mathieu functions was obtained using the specfun package, avail-
able on www.mathworks.com.
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Figure 4.8: Plot of the even and odd Radial Mathieu Functions (RMF) Je,,(&o,q) and
Jom (&0, q), as a function of the parameter ¢, at the boundary of the potential trap (§y =
1.2931), for m = 0,1,2. The parameter g of the eigenmodes satisfying the Dirichlet
condition are given by the zeros of the RMF. ge,, ,,, and qo,, ,, are the nt" zero of the even
and odd RMF of order m. The energies or frequencies of the eigenmodes are proportional
to ¢. We can see that for a given n, the energy splitting between the even and odd states
is higher for m = 1 than for m = 2. For a given order m, the energy splitting is increasing
with n.

4.5 Conclusion

To summarize, we have developed in this chapter a homodyne detection setup that
allows for the imaging in real and reciprocal space of the complete wavefunction
patterns (amplitude and phase) of microcavity polaritons. We have used this setup
to record images of polariton states confined in the elliptical traps of a patterned
microcavity. We could observe very clearly the effects of the ellipticity of the con-
fining potential on the wavefunction patterns, which were successfully compared to
analytical solutions described in terms of even and odd solutions of Mathieu equa-
tions.
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Figure 4.9: Plot of the even and odd angular Mathieu functions (AMF) and radial Mathieu
functions (RMF), as well as the even and odd eigenmodes resulting of their product, for
quantum numbers n = 1 and m = 2 and the parameters of a 10um mean diameter trap.
The AMF satisfy the periodic boundary conditions on 7 € [0, 7], and features m zeros on
this interval. The RMF satisfies Je, 0,,(€0,q) = 0 and the continuity conditions at & = 0.



Chapter 5

Selective excitation of confined
polariton vortices

5.1 Motivations

In the following chapter, we are showing that it is possible to excite superpositions
of confined polariton states in the quasi-circular traps. We are demonstrating that
tuning the excitation conditions allows to control the resulting emission pattern. In
particular, selective excitation of integer orbital angular momentum states is shown,
with control over the sign and the value of the orbital charge m. The homodyne
imaging setup allows us to evidence the phase singularity which characterizes these
states featuring the topology of vortices. In the scope of the exploitation of polariton
states in confined geometries for logical applications [19, [20], it is interesting to see
to which extend confined polariton wavefunctions can be tailored. Moreover, in the
context of the extremely active research on polariton vortices [10], 92, 1T, 93|, 94, [95],
96, 97], this example also shows that vortices in the polariton field can be created in
the linear regime, by pure geometrical means. It confirms that quantized polariton
vortices in themselves are not a demonstration of any superfluid behavior. The work
presented in this chapter corresponds to the following publications [85] [O8].

5.2 Poincaré sphere representation of the degen-
erate state

Generation of optical vortices has been demonstrated in different types of lasers like
ring resonators [99], diode lasers [I00] and Vertical Cavity Surface Emitting Lasers
(VCSELs) [101]. They have been identified as the transverse modes of cylindrically
symmetric optical resonators and often called the T'E My~ “donut” mode, which
can be obtained as a superposition of the TEMjq and T'EMy; modes [102], 103].
As we mentioned it in the previous chapters, there is, in cylindrically symmetric
systems, a two-fold degeneracy between states of opposite angular orbital momentum
m. Using resonant excitation, one creates a coherent superposition of the +m and
—m states (hereafter denoted |m,) and |m_)). The superposition of these two
counter-propagating waves gives rise to the formation of a standing wave in the

95
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Figure 5.1: (a) Poincaré sphere representation of the degenerate (n = 1,m = 1) state.
Coherent superpositions (with equal weigths) of the integer angular orbital momentum
states |my) and |m_) yields to a two-lobe pattern, whose orientation depends of the
relative phase between |m4) and |m_). For this m = 1 state, the same Poincaré sphere
can be used to represent the elliptical case, for which |x) and |y) are the even and odd
eigenstates. (b) This scheme shows how it is possible to overcome the cylindrical symmetry
breaking by exciting a superposition of the even and odd eigenstates, when their energy
splitting is of the order of or smaller than the linewidth.

azimuthal direction, or , in other words, to a wavefunction pattern made of |2m|
lobes. This degenerate structure can be represented in a Poincaré sphere picture
(Fig. [p.1] (a)), where we can see that the lobes can be aligned along any direction,
depending of the relative phase between the |my) and |m_) states. Now, we have
seen in chapter {| that in our elliptical structures, |my) and |m_) are no longer
the eigenstates, and there is an energy splitting between the new even and odd
eigenstates. However, when this splitting is of the order of or smaller than the state
linewidths, the ellipticity can be overcome by exciting at an intermediate energy,
as depicted in (Fig. [5.1] (b). In this way, both eigenstates are excited, allowing for
the recovering of all the states depicted in Fig. |5.1| (a) -including |my) and |m_)-,
which can be seen as superpositions of the even and odd eigenstates. This situation
is a geometrical analogy with transverse laser patterns, where the T'E My« mode
can be obtained as a superposition of the T EMjq and T E My, modes[104, [105]. For
the quantum number m = 1, the even and odd eigenstates feature two-lobe patterns
which are similar to the |x) and |y) states of Fig. (a). The same Poincaré sphere
can therefore be used to describe the |m,), |m_), |d) and |d') states in terms of
superpositions of |z) and |y)[[|

In the following, as the ellipticity of the system is overcome by the excitation
scenario of Fig. (b), we chose to express the created superpositions in the
(|lm4),|m_)) basis. The superposition reads thus as:

) = Almy) + Blm._) (5.1)

where A and B are complex coefficients. The value of coefficients A and B is given

IThis is however not valid for larger m, where the shape of the eigenstates are qualitatively
modified by ellipticity, as it was showed in chapter [df We will show in section [5.4] that in this case
a superposition of the even and odd states does not allow to recover pure |m,) and |m_) states.
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by the overlap (in real space, reciprocal space and energy) between the +m states
and the pump field. It is therefore possible to tailor the emission pattern by tuning
the excitation angle and spot position with respect to the trap. For example, it
is shown in Ref. [86] that directing the excitation beam on the trap and rotating
the excitation angle around the optical axis yields to a rotation of the emission
pattern in the momentum space. This corresponds to a rotation on the equator of
the Poincaré sphere of Fig. [5.1] (a).

5.3 Excitation of vortex states

We are now going to show that by carefully selecting certain pumping conditions
one can also recover the |m ) and |m_) states, carrying an integer angular orbital
momentum. First of all, we show how such a state is characterized using our ho-
modyne imaging setup. Fig. shows a (n = 1,m = +1) state in a 10um mean
diameter trap. In the interferogram displayed in Fig. (a), one can observe a
very clear fork-like dislocation, indicating the presence of a phase singularity. We
extract from this interferogram the amplitude (Fig. [5.2| (b)) and phase (Fig. [5.2/(c))
of the polariton field. The two characteristics of quantized vortices are observed:
the intensity minimum at the center of the trap (b) and the 27-phase shift around
the core (c) are straightforwardly visible. The core of this vortex is situated at the
center of the trap, and the size of the vortex is delimited by the mesa diameter.
This state is geometrically analogous to a T'E'Mjy;- “donut” transverse laser mode.

In order to create such a state, one needs to find excitation conditions to max-
imize the coupling of the laser field with the |m,) state only, and minimize the
coupling with |m_). This can be done by focusing the excitation laser on the side
of the trap, with a finite excitation angle , such as only the spatial tail of the ex-
citation spot is reaching the trap. This corresponds to injecting polaritons with a
well defined in-plane momentum mainly on one side of the trap. Such a technique
can be used to select which one of the +m or —m state is injected. The excitation
angle must lie in the momentum space extension of the vortex state, i.e. around 5°
for a 10um trap.

Depending on the side of the trap on which the laser is focused, the charge is going

2.0
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= 053
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Figure 5.2: (a) Interferogram resulting from the interference of the coherent emission of
the (n = 1, m = +1) state of the lower polariton with the reference laser, displaying a clear
fork-like dislocation. (b) Amplitude of the coherent polariton field, extracted from (a),
showing a minimum in the field density at the place of the phase singularity. (d) Phase
of the coherent polariton field, extracted from (a), indicating a 27-phase shift rotation of
the phase around the singularity.
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Figure 5.3: (a) Phase mapping and (b) phase distribution profile along the red circle of the
polariton field, when the polaritons are injected on the right side of the trap using a pump
incidence angle of 4.8°. In this configuration, the vortex is rotating counterclockwise. The
position and in-plane momentum of the exciting spot are experimentally indicated by the
faint phase signal present beside the trap. (d)-(e) Same as (a)-(b), but injection on the
left side of the mesa. In this configuration, the vortex is rotating clockwise. (c) Phase
mapping when the polaritons are injected in front of the trap. In this case, both counter-
propagating vortices are excited, giving rise to a two-lobe wavefunction pattern. Insets:
schematic views of the vortex rotation for the three situations, the pump and its in-plane
direction are represented by the thick arrow.

to be positive or negative, as demonstrated in Fig. [5.3] using a finite excitation angle
of 4.8°. In this figure, the excitation energy and incidence angle are kept constant,
and the position of the excitation spot with respect to the trap is laterally shifted.
The phase distribution (Fig. [5.3} (a),(c) and (d)) and the phase profile along the
red circle (Fig. [5.3, (b) and (e)) are displayed when the trap is positioned on the
left side (Fig. (a)-(b)) or right side (Fig. (d)-(e)) of the excitation spot.
When the trap is positioned in front of the excitation spot (Fig. |5.3] (c)), exciting
|my) and |m_), a two-lobe pattern is observed, as a result of the superposition of
the two states. The lateral movement of the excitation spot position with respect
to the trap thus corresponds to a trajectory along a meridian of the Poincaré sphere
of Fig. [5.1

Note- We would like here to point out a very peculiar detail, that we noticed only
very recently, when preparing the figures of this thesis. The rotation of the vortex,
as observed in Fig. |5.3|(a) and (d), is going in a counter-intuitive way. The intuition
would say that, analogously to water injected into a circular swimming pool, the
vortex should rotate in the same way than the external in-plane momentum applied
on the trap edge. It is the opposite that is observed here. We do not know at this
stage why the observed result does not follow this simple intuitive explanation. What
we are sure of (because we tried a large number of positions of the trap with respect
to the excitation spot), is that the vortices are systematically rotating in the same
direction when positioned on one side of the excitation spot, and systematically in
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the other direction when positioned on the other side. The main point of the chapter,
which is the selectivity of the vortex charge, is therefore still valid. However, the
selection mechanism has to be clarified, in order to understand why the simple (and
maybe naive?) picture of the injection of a fluid on the trap edge is not valid. New
experiments as well as numerical simulations are going to be undertaken in this
perspective.

5.4 Higher angular orbital momentum states

It is also possible to excite states of angular orbital momentum, by tuning the
excitation energy to be resonant with a state carrying another quantum number m.
For larger m, however, the shape of the even and odd eigenstates are qualitatively
modified by the ellipticity of the trap. This has for result that the superposition of
the even and odd eigenstates does not yield to a multiply charged vortex. Figure[5.4]
shows the superposition of (n = 1,m = 2,e) and (n = 1,m = 2,0). The expected
double topological charge is split into two single vortices, due to the ellipticity of
the trap. The positions of the two cores are given by the intersections of the nodal
lines of the (n = 1,m = 2,¢) and (n = 1, m = 2, 0) state patterns (shown in Figure

5.9).

While most of the traps feature a similar shape and ellipticity, some of them
are different due to local inhomogeneities in the photolithography mask deposition
and /or structural defects in the sample. We were able to find a trap with an effective
nearly cylindrical symmetry, providing a doubly charged vortex for the (n = 1,m =
2) state. This state is presented in Fig. |5.5 where a trident-like dislocation is visible
in the interferogram, resulting in 47-phase shift when circumventing a single density
minimum.

Figure 5.4: (a) Interferogram resulting from the interference of the coherent superposition
of (n = 1,m = 2,e) and (n = 1,m = 2,0) states with the reference laser. (b) and
(¢) Corresponding amplitude and phase structures, respectively. The double topological
charge is split into two due to the ellipticity of the trap. The two phase singularities of this
“eight” shape are located at the intersections of the nodal lines of the (n = 1,m = 2,¢)
and (n = 1,m = 2,0) states (shown in (d), not to scale). Interferogram and amplitude
pattern are in a linear gray scale from minimal (black) to maximal (white) intensity. Phase
pattern is in a linear gray scale from 0 (black) to 27 (white).
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Figure 5.5: (a) Interferogram resulting from the interference of the coherent emission of
the lower polariton second excited state (n = 1,m = +2) in a nearly cylindrical trap with
the reference laser, displaying a trident-like dislocation. (b) and (c) Amplitude and phase
mapping extracted from (a), displaying a doubly charged vortex structure. Interferogram
and amplitude pattern are in a linear gray scale from minimal (black) to maximal (white)
intensity. Phase pattern is in a linear gray scale from 0 (black) to 27 (white).

5.5 Vortex non-linearities

All the measurements presented until now in this chapter were performed in the low
excitation density regime. Increasing the pump power by three orders of magnitude
(up to 32uW/um?) allowed us to observe the effect of polariton-polariton interac-
tions in the form of a blue-shift of the vortex state of the order of 120ueV (Fig.
(a)). In this measurement, the laser energy was tuned in order to follow the
blue-shift of the vortex state.

Another effect of polariton-polariton interactions on vortices should be a depen-
dency of the vortex core size with interaction energy[94]. Indeed, the vortex core size
should be of the order of the polariton gas healing length &, which depends on the
interaction energy E;,; as £ = \/#m, where m is the polariton effective mass (see
Section for the derivation of this formula). However, the size of our vortices is
in our case limited, even in the linear regime, by the confinement potential geometry
(a core diameter of ~ 3um is measured in the 10um mean diameter traps). On the
range of excitation power used in our experiment, we never observed any change
in the vortex core size in 10um traps. Fig. [5.6| (b) and (c) shows that there is no
difference in the vortex core diameter between the linear regime and the highest
excitation power available. This result is consistent with a recent publication by
Krizhanovskii et al. [94], where the effect of interactions on a polariton vortex im-
printed using an optical parametric oscillator (OPO) process was investigated. In
this paper, a reduction of the vortex core diameter down to 6um when increasing the
excitation density up to 40uW/um? was reported. A quantitative estimation of the
healing length for our experimental conditions can also be performed by assuming
that the interaction energy is given by the blue-shift of the polariton line. Using our
maximal blue-shift of 120ueV; we find a healing length of £ = 1.6um, which is of
the order of the measured ~ 3um diameter vortex cores. As we could not use higher
excitation power, we tried to exploit the different trap sizes available on our sample.
Indeed, vortices can be created in the small traps (3um mean diameter) and large
traps (20um mean diameter traps) as well. A vortex in a large trap is shown in Fig.
5.7, for a low excitation density, featuring a core diameter of ~ 4.2um. In these
large traps, we did observe some reduction of the vortex core size while increasing
the pump power, but these results were not fully reproducible. The main reason
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Figure 5.6: (a) Blue-shift of the polariton vortex state in a 10um diameter trap, with
respect to excitation density. The laser energy is tuned to follow the vortex state blue-
shift. Error bars are given by the spectral resolution limit of 25ueV. (b)-(c) Amplitude
patterns, in a linear gray scale from minimal (black) to maximal (white) intensity, for
the lower excitation density (blue square) to the larger excitation density (red square).
(c) Line profiles along the blue (red) lines in (b)-(c) are plotted for the lowest (highest)
excitation density. No change in the vortex core diameter can be observed.

Figure 5.7: (a) Interferogram, (b) Amplitude pattern and (c) phase pattern of a vortex in
a 20um mean diameter trap, for a low excitation density. Interferogram and amplitude
pattern are in a linear gray scale from minimal (black) to maximal (white) intensity. The
phase pattern is in a linear gray scale from 0 (black) to 27 (white).

is the experimental difficulty of tuning the excitation laser energy for exciting the
vortex state, while this latter is blue-shifting and is very close energetically to other
confined states.

5.6 Conclusion

In conclusion, we have demonstrated the selective excitation of trapped polariton
states in a patterned semiconductor microcavity. Thanks to the homodyne detection
setup, the phase and the amplitude of the coherent light-matter gas were directly
visualized, and trapped polariton vortices were identified as a superposition of eigen-
states of the quasi-circular traps. We have experimentally shown the selection of the
vortex charge by tuning the excitation conditions. A splitting of the double vortex
charge into two vortices for the quantum number m = 2 has been observed as a
consequence of trap ellipticity. This work shows the essential role of engineered lat-
eral confinement for the topological tailoring of the coherent emission pattern of an
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exciton-polariton gas resonantly excited using a Gaussian laser field. This work may
possibly provide new exploitation schemes for polariton lasers made of cylindrical

micropillars [22].



Chapter 6

Oscillations between vortex and
anti-vortex states

6.1 Motivations

In the following chapter we are considering the case where the confined polariton
states are not continuously driven by the laser frequency (like a forced oscillator),
but are excited with a laser pulse and let free to evolve. In this situation, when a
single confined state is excited (in the linear regime), it will simply decay with a
characteristic decay time given by the polariton lifetime. On the other hand, when
a superposition of states is excited, their phase oscillations at different frequencies
will give rise to a time evolution of their interference pattern. In the following, we
are focusing on the excitation of the nearly degenerate (n = 1,m = 1) state in
a 10um mean diameter trap. Adding a time resolution to the homodyne imaging
setup, we are showing that the time evolution of the coherent superposition of the
even and odd eigenstates (n = 1,m = 1,e) and (n = 1,m = 1,0) yields to an
oscillation between vortex and anti-vortex states. This phenomenon is remarkably
well described within the Poincaré sphere representation of the (n = 1, m = 1) state.

6.2 Time resolved homodyne imaging setup

In order to observe the time evolution of the wavefunction pattern, we need to
develop a time-resolved setup. A solution already used in different groups is to
image the polariton emission on the slit of a streak camera, which provides the
time evolution of one axis of the image plane with a resolution of ~ 4ps. Shifting
the position of the image plane across the streak camera slit allows to recover the
dynamics of the system in two dimensions [106], [107]. In this case, if one wants to
retrieve the phase information, a stabilized interferogram must be imaged on the
slit of the streak camera, as in Refs. [96], 108 [109].

In our case we use a different setup, based on the Mach-Zehnder interferome-
ter presented in chapter . We have added a delay line on the excitation arm (see
Fig. (a)), and use from now on a mode-locked Ti:Sapph laser, which provides
12nm-broad, 80 fs-long pulses at a repetition rate of 80M Hz. Creating a polariton
population with the excitation pulse, we can probe the polariton dynamics by vary-
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Figure 6.1: (a) Time and phase resolved imaging setup, based on a Mach-Zehnder inter-
ferometer, similarly to the phase resolved setup shown in Fig. In order to obtain the
time resolution, a mode-locked Ti:Sapph laser is used, and a delay line allows to scan the
delay between excitation and reference pulses. A pulse shaper is added for the spectral
tailoring of the laser pulse. It is preceded by a \/2 waveplate, that allows for the rota-
tion of the laser linear polarization, in order to maximize the output power of the the
polarization sensitive pulse shaper’s grating. (b) Detail of the pulse shaper, containing a
1200 lines/mm blazed grating, a 50cm focal length lens, a 75um wide slit and a mirror.
(¢) Spectrum of the laser pulse at the pulse shaper output, showing a nearly Gaussian
140peV-broad pulse.

ing the delay 7 between the excitation and reference pulses. Indeed, the reference
pulse will interfere on the CCD only with the coherent emission emitted at 7. By
this way we obtain a time-resolved imaging setup, with an intrinsic phase resolu-
tion, without using a streak camera. The time resolution of the setup is given by
the temporal length of the reference pulse.
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Pulse shaping In order to selectively excite the trapped polariton states, we need
to spectrally tailor the excitation pulse. We built a pulse shaper (see Fig. (b))
consisting in a 1200 lines/mm blazed grating, a 50cm focal length lens, a 75um
wide slit and a mirror. The laser pulse is dispersed by the grating, and spectrally
filtered by the slit. It is then sent back through the same optical elements, in order
to compensate for the pulse dispersion. We use a spherical lens, so as the outcoming
beam is vertically shifted from the the incoming and can be conveniently separated
and injected into the Mach-Zehnder interferometer. As the grating is polarization
sensitive, a A/2 waveplate is placed before the pulse shaper, and allows to rotate the
laser polarization for optimizing the output power. A spectrum of the outcoming
pulse is shown in Fig. (c). The pulse FWHM is measured to be 140ueV, and has
a nearly Gaussian shape. This allows us to estimateE] the pulse length to be 13ps,
which will be the time resolution of the interferometric measurements.

6.3 Oscillations between vortex and anti-vortex
states

We use the 140pueV broad pulse obtained from the pulse shaper to excite a superpo-
sition of the even and odd eigenstates resulting from the slight ellipticity of a 10um
mean diameter trap (the eigenstates linewidths are ~ 80ueV and the splitting be-
tween the even and odd states has been measured to be AE = 50 & 25ueV’). Very
generally, instead of imposing the oscillation frequency, as it was the case with a cw
laser in chapters |5 and |4} we create a coherent superposition which is then free to
evolve.

It is very convenient to represent again the superposition in a Poincaré sphere
(Fig. (a)). We place the eigenstates (n = 1,m = 1,e) and (n = 1,m = 1,0)
on the vertical axis, and their possible superpositions on the equator of the sphere.
As the two eigenstates oscillate with different frequencies, their relative phase will
constantly change with time, leading to an evolution of the wavefunction pattern.
This evolution can be very easily pictured in the Poincaré sphere representation as
a rotation of the state vector of the system (in purple on Fig. (a)) around the
eigenaxis at a frequency w = %. This periodical oscillation is analogous to the
Rabi oscillations observed when a superposition of upper and lower polaritons is
created, or to the spatial oscillations observed between two coupled wells when a
superposition of the symmetric and antisymmetric eigenstates is created.

Once a polariton population is injected by the excitation pulse, the time evolution
of the coherent emission can be probed by scanning the delay 7 between excitation
and reference pulses. From the recorded interferograms, digital off-axis filtering (see
section for details) allows to extract the amplitude and phase of the coherent
polariton field ¥(z, y, 7) emitted at the delay 7. We show on Fig. (b) the spatially
integrated amplitude |¥| of the coherent emission with respect to the interferometer
delay. It can be seen that after the injection by the ~ 13ps long pulse, the polariton
population \\If|2 decays with a characteristic decay time of 7 = 15.7 £ 0.3ps. Images

IFor a chirpless, Gaussian pulse, the time-bandwidth product is ~ 0.44. See e.g. Encyclopedia
of Laser Physics and Technology, http://www.rp-photonics.com/gaussian__pulses.html
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of the coherent emission, at the delays indicated by vertical black lines and letters
(i)-(v) in Fig. (b), are shown in Fig. (¢), (d) and (e). The fringes of the
interferogram (in a saturated color scale) are displayed in (c), the emission field
amplitude in (d) and the emission field phase in (e).

In the first column (i) the polariton injection is shown. It displays a diagonal
state |d), indicating that a well balanced (i.e. with similar weights) superposition
of (n =1,m = 1,e) and (n = 1,m = 1,0) is created. Columns (ii) to (v) show
the free evolution of the polariton field emission pattern, with an interval between
each picture of ~ 25ps. A decrease of the signal intensity is observed with time,
due to the finite polariton lifetime measured in (b). The polariton emission patterns
passes from a vortex state (rotating counterclockwise, with a fork-like dislocation
oriented downwards) in (ii), a |d’) state (orthogonally aligned with respect to the
|d) state of (i)) in (iii), an anti-vortex state (rotating clockwise, with a fork-like
dislocation oriented upwards) in (iv), and a diagonal state |d) again in (v). The
system state vector has therefore made a full rotation along the Poincaré sphere
equator. The rotation period is T' ~ 4 x 25ps = 100ps (with a ~ 13ps resolution),
corresponding to an oscillation frequency of ~ 10GHz. It allows to estimate for
this trap the energy splitting between (n = 1,m = 1,e) and (n = 1,m = 1,0):
AFE = hw = h% = 41 £ 5peV, in agreement with the 50 £ 25ueV generally
measured with spatially resolved spectroscopy.

6.4 Conclusion

In conclusion, we have presented in this chapter a time and phase resolved imaging
setup, based on Mach-Zehnder interferometry, that allows to probe the dynamics
of coherent superpositions of confined polariton states. In particular, a periodical
oscillation between vortex and anti-vortex states has been evidenced in elliptic po-
lariton traps. The observed phenomenon is remarkably well described by a rotation
of the system state vector around the eigenaxis in the Poincaré sphere representa-
tion of the (n = 1, m = 1) state. The measured oscillation frequency of ~ 10GH z
corresponds to the energy splitting between the eigenstates of the elliptical trap.
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Figure 6.2: (a) Poincaré sphere representation of the nearly degenerate (n = 1,m = 1)
state in a quasi-circular trap. The eigenstates resulting from the trap ellipticity corre-
spond to the poles of the sphere, and their equally weighted superpositions are located
on the equator. The type of superposition depends of the phase difference between the
eigenstates. The most typical superpositions, which are the vortex, anti-vortex and di-
agonal states are shown on the picture. The time evolution of a superpositions can be
pictured as a rotation of the state vector (in purple) around the eigenaxis, at a frequency
w = %, where AF is the energy splitting between the eigenstates. (b) Amplitude |¥| of
the polariton coherent field, spatially integrated over the whole polariton emission, versus
time. The time zero is given by the estimated zero delay between excitation and refer-
ence pulses. In blue: a mono-exponential fit allows to extract the decay time 27 of the
polariton field amplitude |¥|. Tt gives a decay time 7 for the polariton population |¥|* of
7 = 15.7£0.3ps. The fringes of the interferogram (in a saturated color scale) are displayed
in (c), the emission field amplitude in (d) and the emission field phase in (e). The different
columns show snapshots of the time evolution of the emission pattern, at times indicated
with vertical black lines and a corresponding letter (i)-(v) in (b). This evolution is very
well explained by a rotation of the system state vector along the equator of the Poincaré
sphere shown in (a).
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Chapter 7

Quantum Turbulence in a
polariton fluid

7.1 Motivations

In this chapter we are exploiting our time-resolved homodyne imaging setup to
address polariton fluid dynamics. Indeed, our measurement technique is very ad-
vantageous to study two-dimensional polaritons, as it allows not only to probe the
propagation of a polariton wavepacket in the microcavity plane, but also to extract
the fluid velocity from the phase gradient. Even more interestingly, the phase reso-
lution allows to unambiguously detect vortices in the polariton flow, and therefore
to address the physics of quantum turbulence in the polariton fluid. The theoretical
study of turbulence in quantum gases has triggered a lot of interest in the physics
community [IT0] [TTT), 112) 113] 114, 115, 116], but only few experiments were able
to directly address the role played by vortices in the phenomenon [117, [118| [119].
The observation of turbulence in a microcavity is therefore a major experimental
step following the demonstration of polariton superfluidity [16]. In the following sec-
tions we experimentally study a polariton fluid flowing past an obstacle, and report
on the nucleation of quantized vortex pairs in the wake of the obstacle. Images of
the nucleation mechanism and of vortex migration along the flow will be presented,
demonstrating the potential of semiconductor microcavities for the study of turbu-
lence in quantum fluids. Combining measurements of the dynamics in the real space
and the momentum space allows to associate the nucleation mechanism with a slow
down of the polariton fluid, as a result of the interaction of the excitation spectrum
with the obstacle. The nucleation conditions in terms of local fluid density and ve-
locity on the obstacle perimeter will be discussed. Eventually, it will be shown that
the experimental results can be reproduced by the numerical resolution of the gener-
alized Gross-Pitaevskii equation (GPE) which include the non-equilibrium character
of the polariton fluid. The experiments of this chapter are realized on the same sam-
ple than the one of the preceding chapters, but in the planar region surrounding the
traps. The position on the sample is chosen such as the exciton-photon detuning is
close to zero for the extended two-dimensional polaritons.

71



72 CHAPTER 7. QUANTUM TURBULENCE IN A POLARITON FLUID

7.2 Framework

7.2.1 Turbulence in classical fluids

Hydrodynamic instabilities in classical fluids have been studied in the pioneering
experiments of Bénard in the 1910". Convective Bénard-Rayleigh flows and Bénard-
Von Karman streets are now well known examples in non-linear and chaos sciences
[120], and are of crucial practical importance as well in fields ranging from meteo-
rology to hydroelectric machinery [I12I]. In conventional fluids, the flow around an
obstacle is characterized by the dimensionless Reynolds number R, = %, with v
and v the fluid velocity and dynamical viscosity, respectively, and R the diameter
of the obstacle. When increasing the Reynolds number, laminar flow, stationary
vortices, Bénard-Von Kéarman streets of moving vortices and fully turbulent regimes

are successively observed in the wake of the obstacle [120].

7.2.2 Superfluidity and turbulence in quantum gases

In quantum gases, such as liquid helium or Bose-Einstein condensates, the situa-
tion is different from the classical case in many points of view. First, due to the
quantization of circulation, vortices in a coherent gas ought to be quantized [122].
Second, in superfluid systems, the Reynolds number cannot be defined due to the
absence of viscosity. It is however only true when the Landau criterion is fulfilled, i.e
when the fluid velocity v is smaller than the speed of sound in the system ¢y [123].
In superfluid Helium, evidences have been given for the appearance of dissipation
above a critical velocity, but only indirect measurements have addressed the role
played by vortices in the friction mechanism [I13].

Experiments in ultra-cold atomic gases also allowed to observe a critical velocity,
when moving an obstacle through the condensate, under which a frictionless flow
was observed [124, 125]. For condensates moving at a velocity greater than the speed
of sound (v > ¢,) and hitting an obstacle, the appearance of Cerenkov radiations,
analogous the the sound shock wave emitted by supersonic airplanes, is observed.
This radiation is well reproduced by the numerical resolution of GPE [126]. The
relationship between critical velocity and turbulence in quantum gases has been
first theoretically addressed using GPE in the work by Frisch et al. [110], where
the nucleation of quantized vortices in the wake of a cylindrical obstacle has been
observed for fluid velocities below the Landau criterion, as a friction mechanism. In
this pioneering work, where a steady homogeneous flow is assumed, the appearance
of drag on the obstacle is accompanied by the emission of vortices, down to a critical
fluid velocity of ~ 0.4c,. Frisch et al. link this critical value to a local increase
of the fluid velocity in the vicinity of the impenetrable obstacle: the vortices are
emitted when the fluid velocity on the obstacle perimeter is larger than the speed
of sound. Considering a local velocity on the obstacle perimeter v two times larger
than the fluid velocity far from the obstacle v, the critical velocity is found to be
v = /2~ 0.43.

On the experimental side the most promising observations of the role played by
vortex nucleation in the friction process have also been realized in atomic condensates[127,
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Figure 7.1: Bogoliubov excitation spectra (a) Plots of the excitation spectra, according
to eq. for m = 0.7mev-ps?- um=2 and gn = 0 (black curve), gn = 0.5meV (red curve)
and gn = ImeV (blue curve). Ej is the polariton energy at k,, = 0 in the non-interacting
limit (gn = 0). (b) Same as in (a), but with an applied Galilean boost, as defined in
eq. with k:;/ = —1.2um~'. The intersections of the dotted lines with the dispersion
indicate the possibilities of Rayleigh scattering. The blue curve depicts a superfluid regime
and features a Mach number smaller than one (é < 1). The red curve depicts a Cerenkov
regime, for which the Mach number is greater than one (= > 1).

117, 118, [119]. However, no experiment has allowed to image the nucleation mech-
anism with a phase resolution so far.

7.2.3 Superfluidity and turbulence in microcavities

The recent demonstration of superfluidity of an exciton polariton gas [16] offers
a very advantageous tool to explore quantum turbulence. Predicted by Ciuti &
Carusotto [14) [15], polariton superfluidity can be probed by resonantly injecting a
coherent polariton population with a cw laser and monitoring the resonant Rayleigh
scattering (RRS). Due to polariton-polariton interactions, pumping resonantly the
polariton branch strongly modifies the excitation spectrum.

Bogoliubov excitation spectrum The following theory allows to describe super-
fluidity as defined by the Landau criterion (originally established for liquid Helium
[128]) for a gas of weakly interacting bosons [123]. Let us consider the generalized
Gross-Pitaevskii equation, restricted to the lower polariton branchﬂ as given in sec-

2
tion by eq. [1.17 A parabolic dispersion €(k,/) = h;g is assumed, with a lower
polariton effective mass m defined by eq. [I.11} The blue-shift AFE of the polariton
mode is given by the interaction energy AE = gn, with g the polariton-polariton
interaction constant and n = ]w\z the polariton density. Considering an homoge-
neous driving laser field and translational invariance (Vo = Vx = 0), eq. can
be linearized around its steady state solution. The resulting Bogoliubov excitation

spectrum for a polariton branch resonantly driven at k,, = 0 is then given by [14] [15]

IThis assumption is valid only if the upper polariton branch is not excited. It will be shown
further how we experimentally take care of this point.
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Eky)) = Bo + \/(e(k//) +2gn) e(ky)) + gn. (7.1)

where FEj is the polariton energy at k,, = 0 in the non-interacting limit. The
linewidths have been neglected here for the sake of simplicity. The + corresponds to
the so-called normal (+) and ghost (—) branches, which are symmetric with respect
to each other. The normal and ghost branches can be seen as the ensemble of signal
and idler states resulting of the polariton-polariton scattering at the pump angle.
The normal branch is plotted in Fig. (a) for gn = 0, gn = 0.5meV and gn =
ImeV. While for the low density (or non-interacting) limit the dispersion remains
parabolic, the effects of polariton-polariton interactions are visible for gn = 0.5meV
and gn = 1meV, in the form of a blue shift gn of the dispersion curve (interaction

energy) and a linearization of the dispersion in the vicinity of kpumn, = 0. The
asymptotic behavior of the excitation spectrum is
2Rk, 4+ n or k;;—0
E(ky)) — Bo={ Vm™// 7" for ki . (7.2)
e(k;/)+2ng for k; — o0

We can see that in the large in-plane wavevector limit one recovers a parabolic
(free particle) dispersion. In the low in-plane wavevector limit, though, a linear,
sound-like dispersion takes place, allowing to define a speed of sound in the system:

hk?
cs = /™. Comparing the kinetic energy e(k;)) = % with the interaction energy
ng allows to evaluate the in-plane wavevector for which the crossover between the
free particle-like behavior and the sound-like behavior takes place: k ~ 7v2;”’m. The
corresponding distance is called the healing length: & ~ \/%W'
Galilean boost In order to study the behavior of a propagating polariton gas,
injected with a finite in-plane momentum £, (linked to the excitation laser incidence

angle 6 by k; ;= i—’;sin @), one needs to apply a Galilean boost to the excitation
spectrum:

E(ky) — BE(ky)+—+

k’// — /{Z//-i-k/
{ // kK, WK (7.3)
m 2m
The resulting dispersions are plotted in Fig. (b), for a pump in-plane wave-
vector of k’// = —1.2um™!, and for the same three values of gn than in Fig.
ow

(a). These dispersions allow to describe the flow of a polariton gas, with a fi

!

speed v given by v = % While the parabola of the low density limit case remains
unchanged (black curve), the excitation spectra (red and blue curves) are tilted by
the Galilean boost. The red and blue curves present then different situations: for the
red curve, the fluid velocity is supersonic (v > ¢;), while for the blue curve, which
corresponds to a larger the speed of sound, the fluid velocity is subsonic (v < ¢;).

Resonant Rayleigh scattering When a propagating polariton population is in-
jected, elastic scattering on the disorder landscape (or resonant Rayleigh scattering
- RRS) occurs, with conservation of energy. Therefore, a modification of the exci-
tation spectrum also modifies the RRS. In the low density limit, energy conserving
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Figure 7.2: Figure part reproduced from Ref. [I5]. Left column: Bogoliubov excitation
spectra (plain line: normal branch, dashed line: ghost branch) for the three mentioned
regimes: low density (or linear) regime (a), Cerenkov regime (c), and superfluid (e). Right
column: corresponding RRS patterns. In the low density regime, interaction of the po-
lariton gas with disorder leads to the building of the so-called Rayleigh ring (b). In the
superfluid regime, the Rayleigh ring has collapsed (f).

RRS gives rise to a ring in the momentum space, the so-called Rayleigh ring, cen-
tered on k,, = 0, with a radius given by kjump. Under high excitation density, when
the fluid velocity is subsonic (blue dispersion curve), the dispersion does not offer
any more the possibility of Rayleigh scattering. This collapse of the Rayleigh ring
prevents any interaction of disorder with the polariton fluid, which can flow without
friction. In this case, the Landau criterion is fulfilled, as the fluid velocity is lower
than the sound velocity. It corresponds to a Mach number (defined as the ratio of

v

the fluid velocity v over the sound speed c¢,) smaller than one (> < 1). The red

dispersion curve depicts the so-called Cerenkov regime, where the fluid velocity is
greater than the sound speed (- > 1). The different RRS patterns (and thus the
transition to superfluidity) can be easily observed by collecting the photons leaking
out of the cavity and imaging them in the Fourier plane. Moreover, the fluid ve-
locity (linked to the excitation angle) and the sound speed (linked to the excitation
density) are both tunable parameters. Images of the RRS in the three mentioned
regimes (low density, Cerenkov and superfluid) are shown in Fig. (taken from
Ref. [15]).

On the experimental side, frictionless flow of a polariton wavepacket has been
reported in a triggered OPO scheme [129]. The collapse of the Rayleigh ring and
transition to superfluidity has been demonstrated in a resonantly injected polariton
fluid [T6]. In this last paper, depending on the fluid velocity, superfluid or Cerenkov
regimes were observed.

Similarly to conventional superfluids, quantum turbulence is expected to appear
in microcavities as a friction mechanism, at the breakdown of superfluidity [130),
131]. While decreasing the sound speed in the system, hydrodynamic nucleation of
quantized vortex pairs occurs when the local velocity in the vicinity of the obstacle
gets larger than the sound velocity. Soliton lines, and eventually a Cerenkov regime,
follow when the velocity of the fluid far from the obstacle becomes greater than the
speed of sound [I31]. The major difficulty, pointed out in Refs [130, 131], is that the
excitation laser imposes its phase on the polariton fluid, preventing the formation
of non-trivial phase structures such as vortices. To overcome this issue, an abrupt
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switch off of the excitation laser [I30] or a non uniform spatial pump profile [I31] are
proposed. In our case, we are going to use a pulsed excitation, in order to create a
polariton wavepacket which will be free to propagate in the microcavity plane once
the excitation pulse is gone.

7.3 Setup and experimental conditions
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Figure 7.3: Experimental setup (a) The experimental setup is very similar to the one
presented in the previous chapter [] except that the pulse is spectrally filtered by an
interference filter. An optical isolator, composed of a polarizer and a A/4 waveplate is
added at the laser output, in order to avoid back reflections into the mode-locked laser
cavity. The resulting laser light is circularly polarized. On the imaging side, the L; lens
has a focal length of f; = 40cm, for real space (or near field) imaging. A lens Lo, of focal
length fo = 20cm is added for the imaging of the Fourier space (or far field). (b) Spectrum
of the laser pulse at the output of the interference filter. It is ~ 1meV broad. Its very
irregular shape is most probably due to a polarization sensitivity of the interference filter.
(c) Detail of the imaging configuration. The optical rays are traced for the imaging of the
Fourier space, when Lo is added on the optical path. This setup provides a magnification
of M = 110x, and magnifies the Fourier space twice as much as the 2f — 2 f configuration
presented in Fig.

The setup used (Fig. is quite similar to the one used for the observation of
oscillations between vortex and anti-vortex states (chapter @ The major change
is the use of an interference filter instead of the pulse shaper. Indeed, the power
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losses in the pulse shaper (mainly due to the ~ 60% maximum efficiency of the ruled
grating, on which the pulse was passing two times) prevented us to get densities large
enough to significantly enter into the polaritonic non-linear regime. Spectral filtering
is necessary, though, in order to avoid exciting the upper polariton branch (and avoid
coherent effects such as Rabi oscillations to take place). Using the interference filter
allows us to reach excitation powers up to 3mW and to address non-linear effects.
The filter is preceeded by an optical isolator, made of a polarizer aligned on the laser
polarization, and a A/4 waveplate whose optical axis is aligned at 45° of the laser
polarization, providing thus a circularly polarized light. These two elements serve
as an optical isolator, as any reflection of the laser on subsequent optics will get
m-shifted and thus come back with an opposite circular polarization, and eventually
cross-polarized with respect to the polarizer axis. This system is used to avoid
problematic back reflections of the laser light into the mode-locked laser cavity. The
circularly polarized laser pulse passes then through the interference filter, which
provides a ~ 1meV-broad pulse, whose spectrum is shown in Fig. 7.3 (b)E| This
pulse is then separated into an excitation pulse ans a reference pulse, in a Mach-
Zehnder configuration, similarly to what we described in the previous chapters.
Removing the sample and scanning the delay between the excitation and reference
arms allows to perform an autocorrelation measurement of the laser pulse (black
curve in Fig. [7.6|(a)), indicating a ~ 3ps-long pulse. This will therefore set the time
resolution of our setup. Another modification of the setup, compared to chapter [6]
is the position and focal lengths of the imaging lenses. For real space imaging we
use a 40cm focal length lens, providing us a magnification of M = 110x. For the
Fourier space imaging, we add a 20cm focal length lens (see Fig. [7.3| (c)), allowing
to magnify the Fourier space two times more than with the 25c¢m focal length lens
in the 2f — 2f configuration used in chapters [3 and [4

Using our ~ 3ps-long excitation pulse, we inject a polariton wavepacket with an
oblique excitation angle. The wavepacket can then evolve freely in the microcavity
plane during the polariton lifetime (measured characteristic decay time: 7 ~ 15ps),
providing a sufficiently long time window during which quantum turbulence can
form. We resonantly inject polaritons in the lower polariton branch with an initial
in-plane momentum imposed by the pump of k;, = 1.2um™!, corresponding to a
fluid velocity of v = 1.13um/ps. In Fig. [7.4] (b) the yellow circle indicates the pump
extension in energy and momentum. Our theoretical approach of considering the
Gross-Pitaevskii equation for the lower polariton branch only is therefore justified,
because the upper branch is not excited here. The exciton-photon detuning 4 is also
taken to be much smaller than the Rabi splitting. We let the wavepacket scatter on
a structural defect of ~ 5um transverse size (Fig. 1a). Our time and phase-resolved
imaging setup allows us to observe the dynamics of the scattering on a picosecond

2The origin of the very irregular shape of this spectrum has been identified only recently, after
having performed all the experiments presented in this chapter. The shape of the spectrum is
dependant of the laser polarization and incidence angle on the filter. The interference filter being
a Fabry-Pérot resonator, it is quite natural to expect a TE-TM splitting for an oblique incidence
angle. Recently, we have therefore placed the interference filter before the opical isolator, in order
to get a linearly polarized incident laser, and used a A/2 waveplate to rotate the laser polarisation
and eliminate the TE-TM splitting. By this way we could therefore obtain a “clean” Lorentzian
spectrum, as was expected from this filter.



78 CHAPTER 7. QUANTUM TURBULENCE IN A POLARITON FLUID

-2

K,/ (um-1)

Figure 7.4: (a) Scheme of the experiment: A polariton wavepacket is resonantly injected
with an in-plane wavevector k,, in front of a structural defect on which it scatters. (b)
Experimental polaritonic dispersion curve, under non-resonant pumping. The plain line
indicates the theoretical lower polariton (LP) dispersion, and the dashed line the standard
small momentum parabolic approximation of the LP branch. During the experiment,
polaritons are resonantly injected in the lower polariton branch: the yellow circle indicates
the energy and momentum extension of the pulsed pump. (c¢) Theoretical dispersion
curves. Under low excitation density, the system is in the linear regime, and the dispersion
is parabolic in the small momentum approximation (black curve). Polariton population is
given by the black dot, and the intersection of the dashed line with the dispersion gives
the possibility of scattering events which conserve energy. When increasing the pump
power, the excitation spectrum is modified, going from a Cerenkov regime (red curve) to
a superfluid regime (blue curve). The black arrow schematically shows the time evolution
of the dispersion curve during the decay of the polariton population.

time scale, and to track the formation and migration of vortices in the turbulent
flow.

An extremely important consequence of the pulsed excitation is that we are
not creating a steady flow. The time dependence of the polariton population will
lead to a dynamical excitation spectrum, and a speed of sound changing with time.
Using a high density pulsed excitation, we expect therefore to pass through all the
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different regimes after the polariton injection (as schematically indicated by the
black time arrow in Fig. [7.4]), from subsonic to the low density limit, leading to an
extremely rich dynamics. In particular, the system will be bound to pass through
the intermediate regime depicted by the green dispersion curve in Fig. (c),
corresponding to a Mach number of > = 1. In such a case, the dispersion curve
is flat on a finite distribution of wavevectors, offering a continuous reciprocal space
region in which Rayleigh scattering can occur. This feature appears crucial to us for
the vortex nucleation mechanism to occur, as we will discuss later on. Eventually,
because of the spatial inhomogeneity of the polariton wavepacket, we will also have
to consider local flow velocities and local sound speeds.

7.4 Preliminary data: Time-integrated measure-
ments

In order to have an overview on the different flow regimes that can be observed, we
start by presenting time-integrated spatial patterns of the scattering process, as well
as momentum space resolved spectra (using the technique presented in section ,
taken along the k, axis. By “time-integrated” we simply mean the pattern recorded
on our CCD, without using the reference pulse. In Fig. (a)-(e) are presented
the spatial patterns, and in Fig. (f)-(j) the corresponding spectra, for different
experimental conditions (excitation in-plane momentum ky,, and power P,,.). On
the spatial images, the polariton flow is going in the —z direction (leftward). In the
momentum space resolved spectra, the white dashed line shows the lower polariton
dispersion (in the non-interacting limit), fitted from the non-resonant spectrum of
Fig. (b). The momentum and energy extension of the pump is indicated in
yellow. As these measurements are time-integrated, they should be considered with
great care, as they are an average over the whole population dynamics. Moreover it
is probable that the momentum space resolved spectra, which are a cut along the k,
axis in the two-dimensional momentum space distribution, were not taken exactly
at b, = 0.

Nevertheless, this set of time integrated bring us interesting informations. For
low excitation powers (Fig. [7.5(a)-(b)), parabolic wavefronts can be observed on
the spatial profiles, as a result of the elastic scattering on a structural defect. There
is virtually no fluid density behind the obstacle. On the corresponding momentum-
resolved spectra (Fig. [7.5(f)-(g)), the major contributions come from the pump
in-plane momentum and its opposite (the so-called back-scattering direction, as it is
expected from a cut along the k, direction in the Rayleigh ring.

When increasing the excitation power (and thus increasing the average speed
of sound), there is a critical excitation power (P/resh = 2041, above which the
momentum-resolved spectrum are drastically different. It can be seen in Fig. [7.5(h)
that the contribution from the back-scattering direction has vanished. Instead of
this, there seems to be a relaxation down to the bottom of the polariton branch.
At even higher excitation power (2.1mW - Fig. [7.5(1i)), the spectrum is even more
peculiar. It is however very difficult to interpret this time-integrated spectrum, as
the dynamics is not revealed here. The reason for which no emission can be observed
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Figure 7.5: Overview of the different flow regimes: time-integrated data (a)-(e)
Spatial images of the scattering process, for various pump power and in-plane momenta.
The flow is going leftwards. In (a), the parabolic wavefronts are the signature of the elastic
scattering on a non-perturbative defect. (f)-(j) Corresponding momentum space resolved
spectra, taken in the same experimental conditions than (a)-(e). The spectra are resolved
along k,, and may not have been taken exactly at k, = 0. The observed regimes go,
from left to right on the figure, from a standard elastic scattering process to a seemingly
superfluid regime. All images and spectra are plotted in a normalized color scale.

from the pump angle is probably that the spectrum, resolved along the k, direction
only, was not taken exactly at k, = 0. From the spatial images (Fig. [7.5(c)-(d)),
an interesting feature is the appearance of polariton density behind the obstacle.
However, two oblique low-density lines are preserved. From these time-integrated
measurements it is not possible to tell if these lines are soliton lines, as predicted by
Pigeon et al. [131], or if they are the time-averaged paths of moving vortices.

This last excitation power being the highest experimentally available, it was
not possible to observe additional phenomenologies by increasing more the average
speed of sound in the system. However, we could use the other tunable parameter,
which is the polariton flow speed. Reducing the excitation incidence angle allows
to reduce the polariton wavepacket initial in-plane momentum. Below a critical in-
plane wavevector of 0.6um !, we do not observe any more oblique low density lines
in the spatial image (Fig. (e)), neither any sign of parabolic wavefront. The
polariton fluid seems to flow homogeneously without being affected by the presence
of the defect (except for its localized footprint). The corresponding momentum-
resolved spectra (Fig. (d)) is very peculiar, as it features two populations at
different energies. It might be caused by the multi-peaked excitation spectrum. For
future experiments, performing a tomography in the two-dimensional momentum
space for the different excitation powers would provide much more information than
these one-dimensional spectra.

After this overview of the different regimes that can be observed with time-
integrated measurement, we are now going to show the time-resolved measurements,
which will bring us much more detailed information about the dynamics of the
polariton flow. We will show the three characteristic regimes observed, i.e (1) the



7.5. POPULATION DYNAMICS 81

a —— Polariton density
—— Laser autocorrelation 1

Intensity

Time (ps)

Ky(um™)

Figure 7.6: Population dynamics (a) Red curve: Measured polariton density |\Il|2, inte-
grated in a small region in the vicinity of the obstacle, with respect to the interferometer
delay. Black curve: autocorrelation of the pulsed excitation. Comparison of red and black
curves shows the time window on which non-trivial phase patterns such as vortices can
develop in the injected polariton wavepacket. (b) Momentum space image of the emission,
under low excitation power (15uW). In this low excitation density regime, a Rayleigh ring
is visible, as a result of the scattering of the polariton wavepacket on the defect. The in-
tensity of the Rayleigh ring is maximal 5.7ps after the excitation pulse. The dashed circle
indicates the expected position of the Rayleigh ring in the low density regime. (¢) Mo-
mentum space dynamics of the emission, under high excitation power (2.1mW). The time
dependent modification of the excitation spectrum leads to a spreading of the polariton
population inside the Rayleigh ring, and a general slow down of the polariton propagation.

low density regime (corresponding to Fig. [7.5(b) and (g)), in which “standard”
elastic scattering occurs, (2) the high density regime (corresponding to Fig. [7.5(d)
and (i)), for which we will demonstrate the hydrodynamic nucleation of vortices in
the wake of the obstacle, and (3) the seemingly superfluid, low momentum regime
(corresponding to Fig. [7.5(e) and (j)).

7.5 Population dynamics

Interferometric measurements taken for different delays between the excitation and
reference pulse allow us to retrieve the dynamics of the polariton fluid. In Fig. [7.6|(a)
we display the normalized polariton density integrated in the vicinity of the defect
(red curve), and compare it to the normalized autocorrelation measurement of the
laser (black curve). It shows that a significant fraction of the polariton population
is still moving in the vicinity of the obstacle even when the excitation pulse is gone.

We first discuss the dynamics in the momentum space. At low excitation pump
power (15uW), the system is in the linear regime. In this case, a Rayleigh ring
(Fig. (b)) appears due to elastic scattering of polaritons on the obstacle and
surrounding disorder, and disappears with the polariton decay time. At high pump
power (2.1mW), the time-dependent polariton density makes the dispersion curve
vary with time, and pass through the different cases depicted in Fig ([7.4] (c). The
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four panels of Fig. (c) show different snapshots of this evolution.

First the excitation laser creates a wavepacket with an in-plane momentum of
k;) = 12um™* (Fig. (c)I). Then, as the polariton density decays, we observe
the filling of the interior of the Rayleigh ring (Fig. (c) TI-IV), resulting in an
average slow down of the wavepacket velocity. This behaviour can be qualitatively
reproduced using the generalized Gross-Pitaevskii model (see Fig. I1I), and
understood as follow: the decay of the polariton density is accompanied by a de-
crease of the sound velocity. When v ~ ¢, (green dispersion curve in Fig. (c)),
elastic scattering of the polariton wavepacket on the environment fills a contiguous
region inside the Rayleigh ring, relaxing the wavevector conservation rule. This is
of crucial importance for the vortex nucleation mechanism, as vortices can appear
only when a significant quantity of fluid has been slowed down behind the obstacle,
and that a contiguous and sufficiently broad region of the reciprocal space provides
the necessary wavevectors to form the rotating flow around the phase singularity.

Bringing together this observed slow down with the time-integrated momentum
space resolved spectra of Fig. (h) and (i) allows to give the following picture for
the high density population dynamics: there is a relaxation towards the bottom of
the polariton dispersion curve (the interaction of the excitation spectrum with the
obstacle and disorder causing the loss of momentum, and the decay of the population
causing the loss of interaction energy).

7.6 Spatial dynamics

7.6.1 Low density regime (elastic scattering - supersonic)

Figure shows the scattering of the low density wavepacket on the obstacle, for
an excitation power of 154l and an excitation angle of 9.3° (corresponding to a
pump in-plane momentum of 1.2um™'). The very low density yields to a very low
speed of sound in the system (¢, = \/%) This regime can thus be seen as strongly
supersonic. In this regime, the polariton gas normally interact with disorder, and
scatters elastically on the obstacle. In the momentum space, a Rayleigh ring is
visible, as shown in Fig. (b). In the real space, a parabolic wavefront is created
as an interference between the propagating polaritons and the scattered one. The
three rows of Fig. display experimental images of (I) the normalized polariton
density, (IT) the fringes of the interferogram (in a saturated color scale, in order to
track the fork-like dislocations, if any), and (III) the phase of the polariton gas, for
different times after the excitation pulse. The homodyne setup allows not only to
access the dynamics of the polariton fluid density, but also its phase, whose gradient
provides the local in-plane momentum of the fluid (linked to the local fluid velocity
by v = %) The estimated obstacle position is indicated with a green circle,
and the polariton flow goes leftward. Using acquisition times of 0.2 seconds, each
measurement is an integration over 1.6 x 107 experimental realizations.

In the first column (—0.7ps), the phase structure is imposed by the excitation
laser. The fluid density already shows the precursors of the parabolic wavefronts,
though. These wavefronts are much more defined in the second column, where a non-
trivial phase structure has developed: finite phase jumps can be seen between the
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Figure 7.7: Experiment: low density regime Experimental images of the scattering
of the polariton wavepacket on the structural defect (indicated by a green circle), for the
low density regime (P = 15uW). The pump in-plane momentum is 1.2um~!. The
three rows show the polariton density (I), the fringes of the measured interferogram, in a
saturated color scale (II), and the polariton phase (III). With this low excitation density,
the polariton wavepacket undergoes elastic scattering on the obstacle, leading to parabolic
interference fringes between the propagating polariton and the backscattered ones. The
phase resolution allows to evidence a finite phase jump between the different parabolic
precursors. Density values are multiplied by a factor three in the last density plot, for the
sake of visibility.

successive wavefronts. In the third and fourth columns, the decay of the polariton
population can be observed.

Extracting the fluid velocity from the phase gradient As mentioned ear-
lier, the phase structure allows to determine the velocity field of the polariton fluid.
A crucial point is therefore to determine the phase gradient induced by the setup
alignment, or in other words, the incidence angle of the reference pulse on the CCD.
In order to do this, it is possible to measure the interference pattern resulting from
the coherent emission of a polariton trap ground state, as explained in chapter [
In experiments of polariton fluid dynamics, it is also possible to use a low density
measurement, where a Rayleigh ring is expected in the Fourier plane. If the Fourier
plane can be accessed optically, as in Fig. [7.6 (b) and (c), it can also be obtained
numerically, from the FFT of the interferogram. The dynamics in the momentum
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Figure 7.8: FFT of the interferogram corresponding to the second column of Fig.
Only the half part of the Fourier plane is shown, as it is symmetric with respect of the
origin. The cw term is visible at the origin of the Fourier plane, and will be filtered out.
The interference term forms the Rayleigh ring, whose center can be estimated in order to
determine the value of the reference in-CCD-plane wavevector k,. This value is used to
remove the phase gradient induced by the setup alignment.

space can therefore be obtained numerically, using the sole interferometric mea-
surement in the real space (however, optical measurement of the dynamics in the
Fourier space where also performed, in order to achieve a better image resolution).
Determining the phase gradient induced by the reference arm incidence angle cor-
responds to pointing out the value of the reference in-CCD-plane momentum. A
typical real space interferogram FF'T, corresponding to the second column of Fig.
, is presented in Fig. [7.8] The Rayleigh ring and its center can be identified (in
violet). The center of the Rayleigh ring being expected to be the center of the mo-
mentum space, it allows to point out the value of the in-CCD-plane momentum (in
blue) and thus of the phase gradient induced by the reference arm alignment. This
reference can be used for all other measurements, as it depends only on the setup
alignment. It is of crucial importance, as it allows to determine the absolute value
of the fluid velocity. We have checked that by using this reference, the measured
in-plane momentum on the first column of Fig. [7.7] corresponds indeed to the pump
in-plane momentum of 1.2um™" (a 27 phase shift should be obtained on a distance
Ax such as Az = 125;_1 = 5.2um). A systematic error, corresponding to an error
of one pixel on the determination of the reference in-CCD-plane wavevector, will be
considered. Local fluid velocities are then obtained by fitting the slope of the phase
profile in the region of interest. The total error on this value takes into account the
standard deviation of the linear fit, as well as the systematic error coming from the
determination of the phase gradient induced by the setup alignment.
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Figure 7.9: Experiment: vortex nucleation regime Experimental images for the high
excitation density (Peye = 2.1mW) and high fluid velocity. The wavepacket propagates
towards the left, with an initial momentum of 1.2um~!. The three rows show (I) the
polariton density, (II) the fringes of the measured interferogram, in a saturated color
scale, in order to facilitate the observation of the vortices, (III) the polariton phase. In
the first column (-0.7ps), the phase structure is fully imposed by the excitation pulse,
preventing the formation of vortices. Second column (1.3ps): the polariton wavepacket
starts to feel the effect of the obstacle, resulting in a zone of minimal polariton density
in the wake of the obstacle, and a bending of the polariton wavefront. Third column
(3.7ps): nucleation of vortices in the wake of the obstacle. Vortices are indicated with
white markers (x for vortex, + for anti-vortex) on the density plot, and are circled in red
on the fringes and phase plots. Dotted circles indicate short-lived vortices. Fourth, fifth
and sixth columns (from 4.7 to 13.3 ps): motion of the long-lived vortex pair. Previous
vortex positions are indicated with white dots on the density plots, allowing to follow the
vortex motion. Dashed circles in the fifth column (9.3ps) indicate the position of a new
vortex pair which moves on a few microns before disappearing due to the decay of the
polariton population. For the sake of visibility, density values are multiplied by a factor
three in the last density plot.

7.6.2 Vortex nucleation regime

We discuss now the dynamics of the high density regime (corresponding to the time-
integrated image of Fig. (d)). Figure|7.9|displays experimental images of (I) the
normalized polariton density, (II) the fringes of the interferogram (in a saturated
color scale, in order to track the fork-like dislocations), and (III) the phase of the
polariton gas, for different times after the excitation pulse. The initial wavepacket
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momentum is still 1.2um ™!, and the average excitation power is 2.1mW. In the

first column (—0.7ps), the phase structure is imposed by the excitation laser (this
feature is referred as a “phase-pinned superfluid” by Bolda et al. [130]). The phase
gradient allows to extract the flow velocity, which is measured to be 1.1+0.2um/ps,
in agreement with the injected velocity of 1.13um/ps. In the second column (1.3ps),
a low density region appears in the wake of the defect, along with a curvature of
the wavefront. Thanks to the phase resolution, a slow down of the polariton flow
in the wake of the obstacle can be observed. The value of the flow velocity behind
the obstacle (in the region delimited by the dashed white square in Fig. I) is
shown in Fig. (a). In the third column of Fig. (3.7ps), it is measured to be
0.940.2pum/ps, and goes down to 0.3+0.2um/ps in the fifth column (9.3ps). There
is therefore a phase accumulation between the almost stationary wave behind the
obstacle and the main flow. As expected in a quantum fluid, where the circulation
is quantized, the phase accumulation is accompanied by the nucleation of quantized
vortices [I11]. The nucleation of vortices can be observed in the third column (3.7ps)
of Fig.3, where a tearing of the phase front is visible. Vortices are unambiguously
identified by a minimum of density and a fork-like dislocation in the interferogram
accompanied with a phase singularity in the phase structure. They are indicated
by white markers (x for vortex and + for anti-vortex) on the density map, and red
circles on the interferogram and phase maps. At the onset of the vortex nucleation,
four of them are nucleated in the wake of the defect, but two of them (circled with
dotted lines) merge together within less than 2 picoseconds. It indicates most likely
that the size of the obstacle is large enough for nucleating a vortex pair, whose core
diameters are measured to be 2um to 3.3um (depending on the vortex under scrutiny
and the line profile axis)E], but too small to allow the nucleation of four vortices.
The creation and merging of this additional vortex pair may also be due to the local
disorder landscape (numerical simulations - see Section [7.8|- also show that disorder
can lead to the creation of short-lived vortex pairs in low fluid density areas). The
remaining vortex pair flows downstream, and we track its motion (white dots on the
density map) on a dozen of microns and picoseconds, until the decay of the polariton
population. While in atomic condensates the vortex trajectories are closed loops due
to the trapping potential [I19], the polariton vortices are free to propagate in the
microcavity plane. The snaky nature of their tracks is due to the local disorder
landscape, and the slight right turn is attributed to the microcavity wedge that
provides a global potential gradient towards this direction. It is also interesting to
note the additional vortex pair created at a delay of 9 picoseconds (visible in the fifth
column, dashed circles). This pair propagates on a few microns and then disappears
in the noise due to signal decay. It does not allow to define a shedding frequency,
as this latter is expected to depend on the fluid density [110, 111}, which is varying
with time in our experiment.

3Using estimations of the local polariton density (see Section for details), we find a healing
length of £ ~ 1pm, which is of the order of the measured vortex core size.
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7.6.3 Low velocity regime

The last regime to be detailed is the one corresponding to the time-integrated image
of Fig. [7.5] (e), using a high excitation power (2.1mW) but a lower excitation angle
(kpump = 0.6um™1). The dynamics is displayed in Fig. While the fluid density
passes apparently unaffected over the defect, the phase structure allows to evidence
a progressive bending of the phase front, corresponding to a a slow down of the
flow behind the obstacle. This yields to the nucleation of a unique vortex pair at
long time, when only a fraction of the polariton population is remaining. At the
nucleation time, the fluid velocity is very low in the vicinity of the obstacle. As a
consequence the vortex pair cannot be dragged away from the obstacle before the
complete decay of the polariton population. Additionally, this low velocity regime
probably provides the most accurate estimation of the obstacle effective size, given
by the dark region in the third column of Fig. I. According to this the defect
would have a transverse size of ~ bum and a size in the direction of the flow of

~2um.
18ps
x i
4
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Figure 7.10: Experiment: low velocity regime Same as in Fig. m (average excitation
density of P.;. = 2.1mW), but for an initial momentum of the polariton wavepacket of
0.6um~1. The three rows show the polariton density (I), the fringes of the measured
interferogram, in a saturated color scale (II), and the polariton phase (III). With such
a low momentum, the wavepacket passes the obstacle without creating any turbulence
in the wake of the obstacle. When the polariton population has significantly decayed
(two last columns), a vortex pair is created at the boundary of the obstacle. The pair
remains stitched to the defect for several picoseconds, and disappears in the noise when
the polariton population has decayed. Density values are multiplied by a factor three in

the three last density plots, for the sake of visibility.
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Figure 7.11: (a) Histogram displaying the number of pixels that registered a given number
of counts, for the density map at t = 1.7ps (shown in inset). (b) Same histogram, but the
number of pixels is multiplied by the number of counts. This distribution is expected to
mimic the emission spectrum that should be observed at this time.

7.7 Determining experimental conditions for vor-
tex nucleation

In theoretical predictions [110] 112} [131] different flow regimes are observed depend-
ing on the Mach number. Turbulence is expected in the wake of the obstacle when
the local velocity on the perimeter of the impenetrable obstacle becomes supersonic.
The original work of Frisch et al. [I10] also predicts that this critical velocity is at-
tained on the obstacle perimeter when - ~ (.4 far from the defect, in a homogeneous
and steady flow. In our case, it is not p0851ble to use such a criterion, as we have a
finite size, time dependent population. The only way to determine the experimental
conditions for vortex nucleation is therefore to look at the local fluid velocity and
sound velocity on the obstacle perimeter. While the fluid velocity vector field can be
directly extracted from the polariton field phase gradient, the local speed of sound
can be estimated from the density map, as shown in the next paragraph.

Estimation of the local speed of sound The value of the local sound velocity
is determined from the density map, originally in arbitrary units, which needs to be
scaled to the blue-shift ng. We do no have access to the time-dependent blue shift.
However, provided the slow-down of the polariton population observed in the mo-
mentum space dynamics (Fig. (c)), we can assume that the major contribution
to the blue-shift of the polariton branch at k,, = Ky, comes from the beginning of
the dynamics. This blue-shift can be estimated from Fig. (i) to be of the order of
0.8meV (with an estimated uncertainty of 0.2meV’). Provided the maximum polari-
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Figure 7.12: Quantitative measurements (a) Flow velocity measured behind the defect
(in the region delimited by the dashed white square in Fig. I), for the vortex nucleation
regime. An almost constant slow down can be observed. The small jump observed at
around 6ps is due to a phase singularity passing in the vicinity of the region of interest.
(b) Flow velocity and sound velocity measured on the obstacle perimeter (in the region
delimited by the plain white square in Fig. I), for the vortex nucleation regime. The
error bars on the velocity take into account the standard deviation of the linear fit of the
phase gradient, as well as a systematic error coming from the determination of the phase
gradient induced by the setup alignment. The error bars on the sound velocity take into
account the standard deviation on the averaging in the region of interest, as well as the
systematic relative error on the scaling method. (c) Red curve: Mach number = on the
obstacle perimeter, for the vortex nucleation regime. Blue curve: Mach number é on the
obstacle perimeter, for the low velocity regime. The green line on é = 1 indicates the
limit between subsonic flow (below the line) and supersonic flow (above the line).

ton emission intensity (integrated over the whole emission) occurs at a delay of 1.7ps
(inset in Fig. [7.11)), we plot an histogram of the number of counts detected at that
delay (Fig. [7.11](a)). Each bar in this histogram indicates the number of pixels that
detected a given amount of counts. In Fig. |7.11| (b), we have multiplied the number
of pixels by the number of counts itself. The obtained distribution is expected to
mimic the emission spectrum, and shows a global maximum around 50 x 10° counts.
With this we can estimate the local blue-shift by scaling the number of counts on
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the density maps by a factor %. This allows to extract a rough estimation

for the local speed of sound along the dynamics (it more likely gives a lower bound
to its value, as the averaging of the blue-shift probably yields to an underestimation
of its value).

Figure (b) shows the values of the fluid velocity and speed of sound measured
on the obstacle perimeter (averaged in a region delimited by the plain white square
in Fig. I) along the dynamics. While the fluid velocity is staying above a value
of 0.95 4+ 0.35um/ps, the sound velocity rises above the value of the fluid velocity.
The corresponding values of the Mach number % are displayed in Fig. (c) (red
curve), showing that a value of - ~ 1 is obtained on the obstacle perimeter at the
onset of the vortex nucleation. For comparison, the values of the Mach number on
the obstacle perimeter for the low velocity regime are plotted in blue in Fig.
(¢). They show that the flow remains mostly subsonic (or superfluid, in the sense
of the Landau criterion) during the major part of its dynamics. The damping of
polariton-polariton interactions finally allows to enter the vortex nucleation regime.

7.8 Numerical simulations based on the Gross-
Pitaevskii equations

7.8.1 Numerical resolution of GPE

We solve iteratively the generalized Gross-Pitaevskii equation for the lower-polariton
mode 1, described in Section [L.5]

GO t) = (id 4 3 Rl )] + gl ) (e,
+Vi(r,t) + F,(r,t). (7.4)

The potential V' is made of a 3um large and 1meV high obstacle. Our model
accounts for the dissipation of polaritons at rate 7, and a 1ps-long initial excitation
of the system F,(r,t). The polariton-polariton interaction is assumed to depend

linearly on the polariton density |¢(r,t)|*> with a coefficient g, and 3=, hwy|k) (k| is

h2k‘2
the kinetic Hamiltonian, diagonal in the plane wave basis |k), with eigenvalues —£~.
For the resolution in the real space, k; is transformed into —ia%. The parameters
used in the simulations are: y = 15%, g = 0.0lmeV - um?, m = 0.7meV - ps? -
um~2. The excitation intensity for the high power experiment corresponds to a
maximal polariton density of 120pm =2 on a 20um large spot, and for the low power

experiment to a maximal polariton density of 1.2pm 2.

7.8.2 Agreement with experiments

The three flow regimes observed experimentally are extremely well reproduced by the
numerical simulations. For comparison, simulations are shown in Fig. (standard
Rayleigh scattering in the low density flow), Fig. (vortex pair nucleation for
a 1.2pum ™1 momentum wavepacket), and Fig. (almost unperturbed flow in the
0.6pum ™ momentum wavepacket).
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Figure 7.13: Simulations: low density regime Simulation of the low density, supersonic
regime, reproducing the experimental features of the experimentally observed low density
regime of Fig. (I) and (II) density and phase profiles of the polariton fluid, displaying
parabolic scattering wavefronts. (IIT) Momentum space dynamics, showing the appearance
of a Rayleigh scattering ring. The white dashed circle indicates the expected position of the
Rayleigh ring. Position and size of the defect are indicated by the green circle. Parameters:
kpump = 1.2um™~!, excitation power 1.2um ™2 on a 20um large spot.

In particular the vortex nucleation regime (Fig. [7.14]) appears within a range of
parameters close to our experimental findings. The low velocity regime (Fig. is
simulated by decreasing by a factor of 2 the initial polariton wavevector. An almost
frictionless flow dominates the spatial dynamics at short times. On the other hand,
when the initial polariton density is decreased below a maximum polariton density
of 90um ™2 around the obstacle, the flow changes from a quantum fluid regime to
the classical scattering behavior of a diluted polariton gas (Fig. [7.13)).

Regarding the momentum space dynamics, the simulations reproduce the rise
and decay of the Rayleigh ring for the low density regime (Fig. III). For the
high density regime, a qualitatively different behaviour is observed (Fig. I11):
no Rayleigh ring is visible, and a spreading of the population in the momentum
space is observed instead. There is however an important qualitative discrepancy
(the only one so far) with the experimentally observed feature: in the experiment
(see Fig. (c)), the entire population undergoes a slow down, whereas in the
simulation the major part of the population remains centered around k. This
might come from the fraction of the polariton population which interacts with the
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Figure 7.14: Simulations: vortex nucleation regime Simulation of the vortex nucle-
ation regime, reproducing the features of the experimentally observed vortex nucleation
regime of Figs. (c) and . ) and (II) density and phase profiles of the polariton
fluid, displaying the hydrodynamlc nucleatlon of two vortex pairs. (III) Momentum space
dynamics, showing a spreading into the interior of the Rayleigh ring. The white dashed
circle indicates the position that would be expected for a Rayleigh ring. Position and size
of the defect are indicated by the green circle. Parameters: kpymp = 1.2um™1, excitation

power 120pm =2 on a 20um large spot.
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obstacle or the surrounding disorder landscape: a more disordered landscape in the
simulation leads to a larger fraction of the population slowing down. However, in the
simulation, we were not able to produce a disorder landscape such that the entire
population would slow down, as is experimentally observed.

7.8.3 Insights from simulations

The numerical simulations allow of course to measure the local fluid velocity and
density. A snapshot of the computed phase profile is displayed in Fig. [7.16| (a), for
the vortex nucleation regime, at the onset of the first vortex pair nucleation. Local
values of the Mach number are represented by color lines, with a green thick line for
~ = 1. In order to compare the experimental findings of F1g - , we plot in
Flg Fig. |7.16| (b) the time evolution of the Mach number on a small region close
to the equator of the obstacle (small black and white circle in Fig. [7.16| (a)), using
simulation parameters corresponding to the three flow regimes described previously
(vortex nucleation regime, low velocity regime and low density regime). While the
low density experiment always lies in the supersonic region (black curve), the high
density experiments (blue and red curves) remain subsonic for a significant part of
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Figure 7.15: Simulations: low velocity regime Simulation of the low velocity regime,
reproducing the features of the experimentally observed low velocity regime of Fig. [7.10]
(I) and (II) density and phase profiles of the polariton fluid. A vortex pair is nucleated at
long time, and stay on the defect for several picoseconds. Simulation show that the vortex
pair is eventually dragged away form the defect at long time, when the fluid density is
very low. This effect is not observed in experiment, as the low fluid density at long times
hinder the measurement of the phase. Density values are multiplied by a factor three in
the last density plot, for the sake of visibility. (III) Momentum space dynamics. The white
dashed circle indicates the position that would be expected for a Rayleigh ring. Position
and size of the defect are indicated by the green circle. Parameters: kpump = 0.6pum ™1,
excitation power 120um =2 on a 20um large spot.

their dynamics. Similarly to the experimental findings, the low velocity regime (blue
curve) remains subsonic for a longer time than the vortex nucleation regime (red
curve). Moreover, consistently with the argument originally developed by Frisch et
al [I10] for the transition to turbulence in a superfluid, we find in the simulation
that the phase accumulation resulting in vortex nucleation starts at the precise time
when the fluid velocity gets equal to the sound speed (when cﬁ = 1) on the obstacle
equator. The nucleation of the vortex pair is just following this event; the higher
the initial velocity, the closer the vortex nucleation to the initial phase accumulation
(this effect is analogous to the lowering of the vortex shedding frequency predicted
for homogeneous equilibrium BEC when the fluid velocity gets close to the critical
velocity [110, 111]). The vortices are dragged away from the obstacle at later times,
in a time range corresponding to the experimental findings.

The numerical simulations also allow to evidence the role of the polaritonic non-
linearities in the nucleation process. Indeed, there are no vortices nucleating in
the wake of the obstacle if the interaction constant is set to 0. The hydrodynamic
nucleation process can therefore be differentiated from linear optical processes, like
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Figure 7.16: Nucleation criterion: numerical evidence (a) Numerical simulation
of the phase profile, with simulation parameters corresponding to the vortex nucleation
regime, at the onset of vortex nucleation. The obstacle is indicated with a black circle,
and the flow is directed leftward. The thick red circles show the vortex positions. Color
lines indicate lines of equal Mach number. The green thick line indicates a local Mach
number of 1, blue lines indicate a local subsonic flow (% < 1), yellow to red lines indicate
a local supersonic flow (= > 1). (b) Evolution of the Mach number at the equator of the
obstacle (small black and white circle in (a)), using simulation parameters corresponding
to the vortex nucleation regime (red curve), to the low velocity - mainly subsonic- regime
(blue curve) and to the low density -linear- regime (black curve). The phase accumulation
starts when the fluid velocity crosses the sound velocity (i = 1) on the obstacle equator
(dashed lines) systematically resulting in the nucleation of vortices.

the generation of vortex lattices whenever three or more plane waves interfere.
Eventually, if randomly distributed disorder, scaled to match the experimental
Rayleigh ring raising time (0.7meV for 5.7ps rise time), is added to the potential
landscape the vortex pair dynamics tends to get more complicated. Disorder can
hinder vortex pair recombination, or may even lead to the appearance of additional
phase singularities in areas where the polariton density is very low. Indeed, creation
of a vortex in a low density area costs very few energy and can be triggered by any
perturbation like disorder. They are however not considered as “hydrodynamically
nucleated vortices”, as they do not consist in a minimum of density in a dense fluid
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Figure 7.17: Preliminary measurement: Interferogram of a turbulent flow, for an initial in-
plane momentum of 1.2um™!. This snapshot is taken a few picoseconds after the injection
of the fluid. The obstacle is a 3um diameter trap (mesa), providing a nearly circular
attractive potential of ~ 7meV depth. A large number of vortices are visible, aligned
along two streets. They are indicated by fork-like dislocations and circled in red. Inset:
phase diagram reproducted from Sasaki et al. [I15], showing different possible quantum
turbulence regimes in an homogeneous atomic BEC, with respect to the fluid velocity and
the obstacle size.

area and do not necessarily appear in the wake of the obstacle.

7.9 Towards Bénard-von Karman streets and full
turbulence: preliminary results

An very direct and interesting follow-up of this work is to take advantage of the
polariton traps described in the preceding chapters. Indeed, these latter constitute
nearly circular obstacles of different sizes. This should allow to address additional
flow regimes, such as the quantum counterpart of Bénard-Von Karmén streets, or
fully turbulent regimes (i.e. with a chaotic proliferation of vortices). A recent
theoretical work based on the numerical resolution of the Gross-Pitaevskii for an
homogeneous equilibrium BEC [IT5] has calculated a phase diagram for the different
possible flow regimes. This phase diagram is reproduced in the inset of Fig. [7.17],
and is established with respect to the fluid velocity (normalized to the speed of
sound) and the obstacle size (normalized to the healing length). If our experimental
conditions does not allow to inject polariton with much higher velocities than the
one used in this chapter, we can use traps of much larger size, using the 10um and
20pum diameter traps. Of course the time-dependent fluid density will have to be
taken into account as well, as it will make both the sound velocity and the healing
length vary with time. Some very promising preliminary measurements have already



96 CHAPTER 7. QUANTUM TURBULENCE IN A POLARITON FLUID

been taken. The fact that the obstacle is a deep attractive potential seems to play a
determining role in the nucleation and trajectory of vortices, and lead to the creation
of Bénard-Von Kéarmaéan-like streets, even with the small 3um diameter mesas (see

Fig. .

7.10 Conclusion

We have reported in this chapter the observation of quantum turbulence in a po-
lariton fluid. Using time-resolved interferometry, we have evidenced the nucleation
of vortex pairs in the wake of an obstacle. Our experiment allows to observe the
nucleation mechanism with a phase resolution, and to follow the motion of the vor-
tices, whose paths are influenced by local disorder and microcavity sample wedge.
We have also shown how a general slow down of the polariton wavepacket necessar-
ily accompanies the vortex nucleation, as a consequence of the peculiar polariton
dispersion shape when the fluid velocity crosses the sound velocity. The nucleation
conditions have been established in terms of local fluid velocity and sound veloc-
ity on the obstacle perimeter. Our results are successfully reproduced within the
framework of Gross-Pitaevskii equations. Our experiment demonstrates the huge
potential of semiconductor microcavities for the study of turbulence in quantum
gases. Key advantages are the direct optical access of the polariton field (in real and
momentum spaces), the absence of trapping potential, and the operation at cryo-
genic temperature (and possibly at room temperature in state-of-the-art Nitride-
based microcavities [27]). The ability to control polariton properties opens the way
to subsequent breakthrough experiments such as the scattering of a wavepacket on
engineered obstacles of different sizes and shapes, which will provide the possibility
to address the quantum counterpart of Bénard-Von Karman vortex streets and fully
turbulent regimes [115].
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Chapter 8

Experiment Proposals

In this chapter we list some experiments that could be performed as a follow-up of
the work presented in this thesis. Some of these proposals can be realized on the
present microcavity sample, and some other will require the growth of a new pat-
terned microcavity sample (the details concerning the fabrication of a new sample
are gathered in the next chapter). Let us mention that a new mask for the pho-
tolithography, with numerous new confining potential shapes and sizes is ready to be
imprinted on a new sample. This mask (referred in the following as the new mask),
was designed by Ounsi El Daif, and offers a lot of new experimental possibilities.
Photographs of the result of photolithography using the new mask on photosensitive
resin deposited on a test wafer are shown in Fig. [8.1]

This chapter is not intended to be deeply detailed, but is merely there to have
a written trace of possible subsequent experiments, and a brief record of the corre-
sponding literature.

8.1 Spatially resolved spectroscopy

The usefulness of the imaging spectroscopy tool presented in chapter |3| for charac-
terizing specific confinement potentials has already been mentioned. It could also
be used on a larger scale in order to characterize the disorder landscape of the mi-
crocavity. A large scale disorder map of the sample would be very useful to identify
defect-free areas to study polariton propagation, or natural defect shapes that could
serve as obstacles for fluid dynamics experiments. Beside this, a PL map (emission
energy and linewidth) would be interesting in itself: the geometry of the disorder
landscape (for example, if it is aligned along crystallographic axes) may give inter-
esting informations about the sample structure or the effect of aging (the sample is
now 6 years old). Moreover, using a polarization sensitive detection may allow to
detect and map polarization splitting effects, and correlate them with the disorder
landscape or the excitonic and photonic contents of the polaritons.
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Figure 8.1: Microscope images of photosensitive resin deposited on a test wafer. The
photolithography has been performed using the new mask. (a) Dark field photograph of
a trap array. (b)-(c) Bright field photographs of coupled traps. (d) Dark field photograph
coupled 1-dimensional traps. (e) Dark field photograph of Y-shaped 1-dimensional traps
that can serve as couplers or splitters.

8.2 Quantum fluidics...

8.2.1 ...using the present microcavity sample

The experimental results shown in chapter [7] demonstrate the potential of semicon-
ductor microcavities for the study of quantum fluids and turbulence. As already
mentioned, the next logical step is to use the polariton traps existing on the sam-
ple to address the quantum counterpart of Bénard-Von Karmén streets and fully
turbulent regimes [I15]. The preliminary measurements indicate that the attrac-
tive nature of the confinement potential plays a significant role in the nucleation
and trajectories of vortices and soliton lines. A possible outlook could be to tune
the effective confinement potential by injecting a polariton population in the trap,
using an independent cw laser. It would be a way of optically engineer the polari-
ton landscape, and an alternative to the creation of optical defects by means of a
blue-detuned laser, as recently demonstrated in Ref. [132].

An other interesting experiment would be to quantify the role of the sample
wedge on the wavepacket propagation. This effect has already been qualitatively
observed in the experiments presented in chapter [/} The acceleration of polariton
by the potential gradient induced by the wedge shape has already been reported
[133]. The nucleation mechanism might be favored or hindered, depending if the
potential gradient is in the direction of the flow or not.
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8.2.2 ...using new potential geometries

Of course, the patterning of repulsive obstacles of different sizes on a new sample
would provide a fantastic laboratory for studying the textbook hydrodynamic nu-
cleation of vortices in the wake of circular impenetrable obstacles. The new mask
contains inverted circular and square mesas of various sizes between 0.5um and 5um
that were designed for this purpose. It also contains arrays of traps (with various
trap sizes and inter-trap spacings), that could be used as a diffraction grating (Fig.
(a)).

It could be also very interesting to design new obstacles to be patterned on a
future sample. For examples barriers with small openings of various sizes, in order
to study the superfluid propagation through the opening. Thanks to the versatility
of the etching method, even more exotic obstacles could be designed, such as the
profile of a wing.

8.2.3 Time-resolved blue-shift

Eventually, let us mention that a very useful supplementary experimental asset
would be to record the blue-shift of the polariton emission with a time resolution (for
example by installing a streak camera at the output of the spectrometer). This would
help to much more precisely scale the polariton density and blue-shift. We saw hat
this scaling is of crucial importance for determining the sound velocity or the healing
length in the polariton gas. Moreover, combining time-resolved measurements of
the blue-shift and of the momentum space dynamics would allow to understand
better the rich population dynamics resulting from the dynamical evolution of the
excitation spectrum. If we add to this the momentum space tomography, we would
be able to make a full map of the population dynamics, and to understand better
the underlying physics.

In particular, measurement of the dynamical blue-shift correlated with time-
resolved measurement of the polariton density may help to test the limits of the
Gross-Pitaevskii model, which assumes that the blue-shift is proportional to the
polariton density. A recent experiment [24] has shown that the contribution of a
dark reservoir should be accounted for, even in the case of resonant excitation.

8.3 Quantum optics

Squeezing The generation of squeezed light states (already demonstrated in pla-
nar semiconductor microcavities [134]) is expected to be more efficient in the absence
of a continuum of states. A recent theoretical work [I35] has analysed the effect of
the confinement by disorder on the squeezing of the polariton states. The polariton
traps of the present sample constitute a controlled disorder, with three confinement
sizes (plus the non-confined polaritons), and thus various energetic separations be-
tween the confined states. Measuring the squeezing of the emitted light would allow
to probe the transition from fully confined - and well separated - states to a contin-
uum, and test the predictions of Ref. [135]. This would open the way to the use of
laterally confined polaritons for squeezing and quantum noise reduction in quantum
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optics.

Quantum blockade The new mask contains circular confinement geometries of
very small size, down to 0.5um diameter, in which the highly non-linear polariton-
polariton interaction is expected to give rise to quantum blockade and single photon
emission under resonant excitation [17, [60].

Coupled structures Coupled circular and square polariton traps are also present
on the new mask, with various trap sizes and distances between the coupled struc-
tures (Fig. (b)-(c)). These structures can be used to explore a variety of
Josephson-like oscillations under resonant excitation [55], and have also been re-
cently proposed for the emission of single photons [18].

Trap arrays A theoretical paper predicts the fermionization of photons in a peri-
odical array of coupled cavities, as a result of the combination of the non-equilibrium
nature of the polariton system with the strong polariton-polariton interactions [56].
It would be worth designing such structures on a future mask. Let us mention
that the new mask already contains linear arrays of small traps (Fig. (a)), which
could be used to study quantum phase transitions in strongly interacting many-body
systems [136].

Trap lattices In a longer term perspective, the realization of coupled trap lattices
may allow the realization of a quantum simulator, analogously to optical lattices
for neutral atoms. Controlling the spacing between the traps and the polariton
density, it would be possible to probe the superfluid-Mott insulator transition [137].
Numerous other experiments, inspired from the community of optical lattices [138],
could be realized. Let us note that, following the demonstration of polariton diodes
[32, 34], the quantum simulator might be electrically pumped.

8.4 Miscellaneous

Polariton neurons The recent demonstration of spin multistability on our sample
[24] opens the way to the experimental realization of the proposal for polaritonic
circuits [19]. The new mask contains 1-dimensional traps that can be exploited for
this purpose (Fig. (d)), as well as Y-shaped splitters or couplers that can be
used to experimentally demonstrate the polarization sensitive logic gate proposed

in Ref [19] (Fig. (e)).

Confined polariton states: study of polarization A follow-up of the the
work concerning the selective excitation of confined states presented in chapters
and 5| would be to exploit the polarization (or spin) degree of freedom. All the
experiments in these chapters were performed using a linearly polarized pump and
a linearly polarized detection. However, due to the polarization degree of freedom,
the polariton field can be projected on the ™ and o~ basis (or spin up and spin
down). Recent experiments have demonstrated that the two species can be excited
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independently [I39], and exhibit independent bistability thresholds, leading to state-
of-the-art multivalued spin switching [24]. The work of Taofiq Paraiso and co-
authors [24] was performed on the ground state of a 3um trap. It would be extremely
interesting to observe the effects of different polarized excitation (and to use as well a
polarization sensitive detection) on the excited states, such as the (n = 1,m = 1,¢),
(n=1,m = 1,0), for which a polarization splitting should accompany the lifting of
the cylindrical symmetry.
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Chapter 9

New sample design and fabrication

All the experiments that have been presented in this thesis were performed on the
same sample, which is the only one patterned microcavity sample so far. A signif-
icant part of my PhD (mainly the first two years) was devoted to the fabrication
of a new sample, using the new mask briefly introduced in the last chapter. It is a
major stake, considering the large number of new experimental opportunities that
new confinement geometries can offer. However, the MBE that allowed to grow the
first sample was out of order, and it was decided to use a second-hand MBE for the
growth of the new sample.

Despite all the efforts of our grower, this MBE kept having technical problems.
A consequent time has been devoted to the characterization of epitaxial layers (QW
layers, DBRs and cavities), but no usable sample came out of it, and the machine
was abandoned. Now, a brand new MBE machine is getting installed, and will be
ready soon to grow new structures. This chapter is here to have a record of the
main issues encountered during the fabrication, and of novel sample designs that we
imagined in order to solve these issues. I hope it will be useful for the people who
are going to undertake the fabrication of the future sample.

9.1 General design: comment on the number of
quantum wells

The existing patterned microcavity sample is containing a single embedded InGaAs
QW, and thus could not reach the threshold for stimulated relaxation in the confined
states because of the saturation of the strong coupling (see section . As the
polariton traps were primarily fabricated to demonstrate polariton lasing, it was
thus decided that the new sample would contain more QWs, in order to increase the
exciton saturation density. Other groups working with different confinement schemes
have subsequently reported polariton lasing in microcavities containing 12 to 21
GaAs QWs in a Gag g5 Al.osAs [22, [54], and featuring Rabi splittings of ~ 15meV..
Later on, polariton condensation has even been reported in a planar ultra-high
finesse cavity (26 and 30 DBR pairs for a quality factor of ) = 12000) containing
21 GaAs QWs [140]. We have therefore focused our efforts on fabricating a cavity
with at least 12 QWs, grouped in three stacks positioned at the anti-nodes of the
electromagnetic field in a 3\ /2 cavity. Although we were able to produce high finesse
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Figure 9.1: Optical characterization: example. Top panel: structure of a 3\/2 cavity
with 8(10) pairs Al/GaAs for the top (bottom) DBR, used for determining the growth
rates of the MBE. Bottom panel: Comparison between the white light reflectivity spec-
trum (normalized to the white light spectrum), and the transfer matrix simulation, which
includes the effect of band gap absorption (below 870nm). A wavelength dependent re-
fractive index is used, fitted from the data of Zollner et al. [I41] and www.luxpop.com for
room temperature.

cavities and QWs of reasonably high quality (7% ~ 1meV') we were never able to
produce a microcavity in the strong coupling regime with the second-hand MBE.
We have not been able to find whether it was due to unexpected irregular growth
rates or to some other reason. We must mention that stacks of IngosGaggsAs QWs
in GaAs are not usual at all, as these latter are not as deep as the GaAs QWs
in GagosAlgg5As used in the other groups, and may therefore suffer from inter-
QW coupling. The effect of coupling between the InGaAs QWs of a stack should
therefore be carefully studied.

I would here like to raise a point which seems very important to me. In my
opinion, it is not necessary at all to achieve the bosonic stimulation in our future
sample. Indeed, polariton BEC and lasing have been already demonstrated in GaAs
based microcavities by several other groups by now, in various configurations [22]
53, b4l 66, 140]. It is therefore not a breakthrough experiment anymore. I hope
that the material presented in this thesidl| convinced the reader that an extremely
rich phenomenology can be observed in resonantly injected polariton gases. These
latter share the coherence, macroscopic occupancy and non-equilibrium nature of

L And the work of my colleagues: Taofiq Paraiso, Roland Cerna and Verena Kohnle [24} 73] 86,
107, [142].
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the polariton BEC.

The fact that the coherence is not spontaneous, but inherited from the driv-
ing field is not really a drawback. The possibility to control the polariton energy,
momentum and density with the laser field are indeed huge advantages of the res-
onantly injected polariton gas over the polariton BEC. Moreover, the reader may
have noticed that virtually all the experiment proposals mentioned in the previous
chapter [8] work for resonant excitation. For these reason, I strongly suggest in the
future not to focus on the growth of a microcavity with 12 or more embedded QWs,
because 1 or 3 InGaAs QWs would be enough for fully exploiting the possibilities
offered by new confinement geometries.

9.2 Fabrication of the sample

9.2.1 Characterization methods

The characterization methods are quite standard, and already described in Ounsi
El Dait’s thesis [67].

The growth rates of the MBE machine are determined by growing test optical
structures which are characterized using white light reflectivity. The comparison
of the reflectivity spectrum with transfer matrix simulations (based on a core code
initially written by C. Ciuti) allows to extract the growth rates of the MBE machine
for the GaAs alloy and the AlAs alloy. The ideal characterization structure is an
empty cavity (see Fig. for an example), as it allows to differentiate the effect of
GaAs and AlAs (it would not be the case with a single DBR). This method also
allows to determine the wedge shape of the sample [67]. An alternative solution to
characterize the growth rates of the MBE machine would be to use X-ray diffraction.

The optical properties of the QWs and bulk materials are determined by pho-
toluminescence measurements at liquid helium temperature, using a HeNe laser for
optical pumping.

9.2.2 Clean room processing

The different steps for the patterning of the microcavity spacer are described in
Ounsi El Daif’s thesis [67]. I have ensured that I was able to reproduce the process
in the clean room, and that the parameters used for the photolithography of the
epoxy resin given in Ounsi’s thesis were compatible with the smallest structures of
the new mask. Images of the resin after the photolithography are shown in Fig.
9.2l The smallest structure size (0.5um) and the smallest separations (0.4um) are
resolved. Exotic structures are also shown. This demonstrates the high fidelity and
the versatility of the imprinting of the mask.

The cavity spacer is then patterned using selective wet etching of the GaAs.
The depth of the etching is controlled by the insertion of thin AlAs etch stops.
The depth of the etching can be checked using white light reflectivity, because the
thickness of the “cavity” formed by the bottom DBR and air is different for the
etched and non-etched parts (Fig. (9.3). For a A cavity, the shift of the optical mode
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Figure 9.2: Microscope images of the photosensitive epoxy resin S1805 deposited on a test
wafer. The photolithography has been performed using the new mask. Small structures
and exotic strictures are shown. (a) 0.5um diameter trap (smallest trap size of the mask).
(b) Two square traps separated by a 0.4um barrier (smallest barrier size of the mask).
(c)-(d) Exotic structures.

gives directly the depth of the etching. In my opinion, this intermediate check can
be skipped, as the use of etch stops has proven to be very reliable so far.

Then the sample is cleaned and brought back to the MBE, where an in-situ
hydrogen plasma cleaning is performed before regrowing the top DBR.

9.2.3 Alternative to the regrowth: wafer bonding

Eventually, we would like to mention an issue that was raised when using the second
hand MBE machine. This latter did not have the possibility of performing in-situ
plasma cleaning. This would have most probably been detrimental to the regrowth
of the top DBR. We therefore studied an alternative technique known as wafer
bonding. Please note that this was a prospective work, which was abandoned before
obtaining very significant results. I am mentioning it here only to keep a trace of
what has been done.

Wafer bonding (or wafer fusion) is a process already successfully used for the
fabrication of VCSELSs [143] or solar cells [144]. Hydrophobic wafer bonding between
two cleaned and activated GaAs surfaces (with aligned crystallographic axes) allows
ideally to bind the two surfaces with atomic forces, and recover monolithic GaAs. A
tried and tested technique of surface cleaning and activation is the use of a plasma of
hydrogen radicals [145]. However, discussing with Prof. Anna Fontcuberta i Morral
from the Laboratory of Semiconductor Materials, it appeared that the fusion could
be realized without plasma cleaning if the two sample surface are brought together
after cleaning with acetone and isopropanol. The last step is the application of



9.2. FABRICATION OF THE SAMPLE 109
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Figure 9.3: Room temperature white light reflectivity spectra (normalized to the white
light spectrum) of a half cavity, i.e. the bottom DBR and cavity spacer. The patterning
of the cavity spacer can be detected in the form of a shift of the “cavity” mode. It is a
very broad resonance, as the “cavity” is here formed between the bottom DBR and air.

Figure 9.4: Microscope image of a patterned sample fused with the bonding machine of
the Laboratory of the Physics of Nanostructures. This image, taken close to the edge of
the wafer, is taken on the sample surface after removal of the top DBR substrate. The
height of the patterning was of 8nm. The visible structures on the sample surface are a
strong indication that the top DBR takes on the shape of the patterning.

pressure and heat in order to annihilate the residual interface.

We supervised a master student who was able to realize successful bondings,
using a homemade clip for the application of homogeneous pressure, and heating in
a oven at 300° [146]. The bonding showed a qualitatively good resistance to shear
stress and to temperature shocks (from 300° into liquid nitrogen). The bonding
of two DBRs, with 24 Ga/AlAs pairs each, was realized, and a quality factor of
@ = 2300 was measured on the resulting microcavity. This result is quite promising
for a first test.

In parallel to these tests on flat sample surfaces, we tried to anticipate a major
issue: what would be the effect of the cavity spacer patterning on the bonding.
Would the bonding take place only on the non-etched parts? In this case the contact
surface would be less than 5%, and would be detrimental to the solidity of the
bonding. Would the top DBR take on the shape of the patterning? If yes, how
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would this impact the quality of the optical cavity?

In order to answer these questions, we had the opportunity to make a wafer
bonding test in collaboration with the Laboratory of the Physics of Nanostructures
(LPN) of Prof. Kapon. They provided us with two MOCVD grown DBRs, and
we patterned 8nm height structures on one of them using the new mask. The two
DBRs were then fused together in the bonding machine of the LPN (usually used for
bonding VCSEL structures), forming thus a A cavity. A remarkable result is that
after removal of the substrate of the top DBR, microscope images (Fig. revealed
the patterning on the surface of the sample. This is a strong indication that the top
DBR takes on the shape of the patterning. This effect was however not observed on
the central part of the sample, but only from half of its radius to the edge. This may
be due to the thickness wedge of the sample (10% from the center to the edge), or
to a non-homogeneous pressure applied during the bonding. Beside this, the optical
properties were not very encouraging, as we measured a cavity mode linewidth of
more than 2meV| and were not able to detect any resonance shift resulting from the
patterning [I47]. This might be due to the negative impact of the bonding interface
(situated in this configuration at the antinode of the cavity field) on the quality of
the optical cavity. [}

Due to the recurrent technical problems of the second-hand MBE, we did not
have the occasion to make further tests. However, we imagined a different sample
design that would allow to get round the issue of the low percentage of contact
surface. This design has never been practically implemented (and may not work).
Nevertheless, I will briefly describe it in the last paragraph, as it may serve one day.

New sample design for wafer bonding It is based on the following idea: in-
stead of confining the cavity modes in a local extention of the cavity spacer, let us
confine them in a locally deeply etched region, so deep that the local cavity mode
(nA)etenea would catch up the (n+1/2)A mode of the surrounding non-etched region.
A slightly smaller etching depth provides a lower resonance energy for the etched
region than for the surrounding region, providing an effective confinement poten-
tial. The main advantage of this design is that, since the confining structure is the
etched region, the contact surface would reach more than 95% (we would need to
use a reversible epoxy resin - such as AZ5214 - in order to “revert” the mask). The
scheme of the design and bonding process is shown in Fig. for a 5\ /2 confined
mode.

Figure|9.6|shows transfer matrix simulations of this configuration (without QWs)
for a resonance at A\ = 835nm, where we have assumed that the etched region would
be filled with air (or a refractive index equal to 1). In the bottom panel, the red
curve is for the 3\ mode without etching, the blue curve for an etching depth of
175nm (bringing the 5A/2 mode of the etched region in resonance with the sur-
rounding 3\ mode), and the cyan curve for a etching depth of 168nm (red-shifting
the A/2 mode of the etched region with respect to the surrounding 3\ mode, pro-
viding an effective confinement potential). Other etching depths would allow to

2In fact, looking at these spectra now, I have the impression that I was measuring a DBR mode
instead of the cavity mode. It should be charged to the lack of experience during my first year of
PhD... It would thus be worth examinating this sample one more time.
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Figure 9.5: New design for wafer bonding. Left: Scheme of the bonding of the etched
half cavity on the bottom DBR. Right: Sketch of the cavity modes in the etched and non-
etched regions. Tuning the depth of the etching allows to tune the resonance of the etched
region. The major advantage of this design is the large percentage of contact surface.

tune the depth of the confining potential (which could be chosen to be attractive or
repulsive). In first approximation, for a 5\/2 resonance, a difference of 1nm in the
etching depth would shift the resonance of %(nga As — Nair) = 1nm. This precision
in the etching is within the reach thanks to the use of etch stops. The simulation
also shows that the bonding interface is located in a node of the cavity field, where
this latter is the less sensitive to imperfections, advantageously. Eventually, let us
mention that, in case of strong coupling, provided that the effective cavity length
would be lower for the etched region, we would have to consider a renormalization
of the Rabi splitting, according to eq. [[.14 The Rabi splitting would get larger for
the modes in the etched region than for the surrounding continuum. Beside this,
the practical realization of this design also contains unknowns. Would the 175nm
deep etched region really be filled by air, or would the top DBR take on the shape
of the patterning? In the second case, the depth of the etching would need to be
~ 120nm. We do not know either how regular would be the selective wet etching
on such a deep etch.

We did not carry on investigating this wafer bonding technique, as the new MBE
that is getting installed now has the possibility of in-situ plasma cleaning, lowering
the interest into the alternative. Nevertheless, it can have an interest for the future,
as it allows the half cavity and the top DBR (which can be small pieces of sample,
not only wafers) to be characterized separately before being bonded together.
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Figure 9.6: New design for wafer bonding: transfer matrix simulations The effect
of the etching is simulated for a 5\/2 resonance at A = 835nm. Upper panel: The thick
red line is the non-etched structure. The thin red line shows the electromagnetic field
intensity of the 3\ resonance. The dotted thick blue line shows the depth of the etched
part, assumed to be filled with air (refractive index = 1). The thin blue line shows the
calculated field intensity in the presence of the etching. This field corresponds to the
5A/2 resonance. For positions from 0 to 2400nm, red and blue curves are superimposed.
Lower panel: The red curve is for the 3A mode without etching. The blue curve is for a
etching depth of 175nm (bringing the 5A/2 mode of the etched region in resonance with
the surrounding 3\ mode), and the cyan curve for an etching depth of 168nm (red-shifting
the A\/2 mode of the etched region with respect to the surrounding 3\ mode). Inset: zoom
on the cavity modes.



Conclusion

We have presented in this thesis several original experimental results on the spec-
troscopy, imaging and manipulation of light-matter quasi-particles called exciton
polaritons. These composite bosons can be manipulated and detected by optical
means, and exhibit at the same time a dramatic non-linear response. They are
therefore of great interest for the richness of their physics, as well as for future
applications in the field of all-optical information processing. The sample under
scrutiny was a GaAs-based patterned microcavity containing high quality polariton
traps of various sizes.

e Chapter [3| was mainly dedicated to the spatially resolved spectroscopy of con-
fined polariton states. We demonstrated a method allowing to retrieve the
probability densities of the confined states at all energies. This tomographic
method can be used to characterize any confinement geometry.

e In chapter [} we probed the eigenstates of nearly circular polariton traps, by
tuning the driving laser field to the eigenstate energy. We imaged the eigen-
states with phase resolution and evidenced the effects of the trap ellipticity on
the wavefunction geometry. These results constitute the first phase-resolved
imaging of the eigenmodes of an elliptical resonator.

e In chapter 5 we showed how the excitation conditions can be tuned to control
the emission pattern of confined polariton. In particular, we were also able
to generate polariton states carrying an integer orbital angular momentum
(or polariton vortices). These states, which are normally the eigenstates of
cylindrically symmetric resonators, were obtained by exciting superpositions
of eigenstates of the elliptical traps. We demonstrated that the topological
charge of polariton vortices can be controlled by tuning the excitation spot
position and incidence angle.

e In chapter[6] we carried on studying superpositions of confined polariton states,
with a picosecond pulsed excitation. Adding a time resolution to our phase-
resolved imaging setup, we were able to image the free evolution of a coherent
superposition. Rabi oscillations between vortex and anti-vortex states were
observed. This phenomenon was identified to the rotation of the state vector
in the Poincaré sphere representation of orbital angular momentum states.

e The physics of quantum fluids was addressed in chapter []] We studied the
scattering of a polariton wavepacket on a structural defect, and reported on
the nucleation of polariton vortices in the wake of the defect. We were able to

113
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follow the motion of vortices in the microcavity plane. Phase-resolved images
of the nucleation mechanism allowed to analyze the nucleation conditions in
terms of local fluid velocity and density. These results, successfully reproduced
by numerical simulations based on the resolution of the Gross-Pitaevskii equa-
tion, demonstrate the potential of semiconductor microcavities for the study
of quantum turbulence.

e Eventually, in chapters [§ and [9] we have outlined possible follow-ups to this
work, and mentioned some technical issues concerning the fabrication of a new
patterned microcavity sample.

I hope that the reader has been convinced of the richness of exciton polariton
physics. Since the demonstration of polariton BEC in 2006 [9], the number of
publications in the field has literally exploded. Different complementary research
axes are now explored by several groups in the field, both on the theoretical and the
experimental side.

1. Following the work of Kasprzak et al. [9], several groups are investigating
the mechanism of the condensation, in order to understand how spontaneous
coherence and long range order can be established within the polariton gas
[511, 108, 109, 148, 149, 150].

2. Triggered by the recent demonstration of polariton superfluidity [16, [129], the
use of polaritons for addressing the physics of quantum fluids is just at its
start. I am strongly convinced that the interest in this research field will
keep growing. The ongoing works in this new field (including the one pre-
sented in the chapter [7] of this thesis) contributes to establish semiconductor
microcavities as a incredibly accessible laboratory for studying the dynamics
of non-equilibrium quantum fluids [96], (131, 132], complementary to ultra-cold
atomic gases.

3. Eventually, device oriented research is also emerging in the polariton com-
munity, triggered by very interesting proposals for polaritonic logical devices
[19, 20, 151] or single photon emission [I7, I8]. The exploitation of polari-
tonic non-linearities along with their polarization degree of freedom offers in-
deed very promising perspectives, which are coming closer to reality with the
demonstration of spin switching [139] and spin multistability [24]. This latter
is a required building block for the realization of polariton-based all-optical
memories (currently under investigation in our laboratory), and for the opti-
cal circuits and logic gates proposed by Liew et al [19]. We actually possess
all the tools to implement the “polariton neurons” proposed in this paper, or
the single photon emitter proposed by Verger et al [17], the only missing step
being the fabrication of a new patterned microcavity.

The work presented in this thesis is a contribution mainly to the two last research
axes (quantum fluid dynamics and polaritonic devices). We brought new elements
to the understanding of the physics of polaritonic confinement in patterned mi-
crocavities, whose potential for subsequent breakthrough discoveries is enormous.
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The tomographic technique and phase-resolve imaging are versatile tools that will
certainly prove to be useful for the characterization of future polaritonic devices.
Eventually, the phase resolved imaging of polariton dynamics allowed to bring new
insights in the physics of quantum turbulence, and may also be used to demonstrate
the working principle of future polaritonic circuits. As for more perspectives, I will
simply refer to the chapter |8 of this thesis, where numerous experiments have been
proposed, all of them within the reach for the coming years.

To conclude, I have to say that it was a great pleasure to work within this
very enthusiastic research group led by Prof. Benoit Deveaud-Plédran. The very
positive team-spirit existing in this lab is definitely for something in the impressive
scientific output of these last years. Considering the new sample source that is
getting installed, and the very talented young people that are taking over, I have
very good reasons to bet on the future of polariton physics at EPFL, and more
generally, on the emerging field of “polaritronics” [152].
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