Contextual Spaces with Functional Skins as OpenSocial Extension

Evgeny Bogdanov, Christophe Salzmann, Denis Gillet
Computer, Communication and Information Sciences
Ecole Polytechnique Fédérale de Lausanne
Lausanne, Switzerland
{evgeny.bogdanov, christophe.salzmann, denis.gillet} @epfl.ch

Abstract—Portability, flexibility and extensibility are es-
sential features of social media platforms. When such Web
platforms are able to take user’s context into account, they
provide better user experience and enhance the effectiveness
of users’ actions. In this paper, we discuss an extension to
OpenSocial standard, namely contextual space, that shapes
the framework, in which people carry out online activities.
The proposed contextual space extension defines how a set
of OpenSocial widgets are aggregated as a Web environment
for a given purpose and with a given functional skin as a
user interface. Additionally it allows to create contextualized
widgets. In this paper we discuss the proposed extension in
details and provide the examples of its use based on real life
scenarios. Finally, we detail an implementation scheme.

Keywords-context, contextualized widget, contextual space,
functional skins, portability, OpenSocial, social media platform,
Web application, Web environment.

I. INTRODUCTION

The number of social media platforms is rapidly increas-
ing. After the advent of popular platforms such as Friendster,
Facebook and MySpace, which are oriented mainly on
management of users’ list of friends, a great number of new
social media platforms appeared and continues to appear.
These new platforms are often of a narrow orientation:
Twitter focuses on micro-blogging, Youtube specializes on
online video streaming, Last.fm is a network for people
that like music. Despite their different goals, all of these
platforms integrate a notion of friendship and/or connections
between people.

Some of these social media platforms started to provide
APIs to allow external developers to create widgets (small
applications that can be embed into a Web page). Such
widgets represent usually a combination of HTML and
Javascript code and can easily be added by users into
their pages. They can as well take into account information
about a user from its hosting platform. Widgets added into
users’ pages extend the default functionalities of a hosting
platform and bring greater personalization experience to
users. Thanks to these widgets, social media platforms can
attract external developers to augment their functionalities.

OpenSocial Foundation provides a standard API [5] to
retrieve information about a user from a social media plat-
form. A special widget standard (OpenSocial gadget) was
first proposed and implemented by Google and later spread

in other platforms. These widgets can be found everywhere
ranging from simple blog sites such as Blogger to social
media platforms (Myspace, Orkut, Friendster, etc.) and
business-oriented networking solutions (LinkedIn, Oracle,
XING, etc.). A social media platform that implements sup-
port for OpenSocial can ensure that any widget implemented
according to the standard will run properly when plugged
into this application. In other words, the widget becomes
portable and can be run in different social media platforms.
With the advent of a reference open source implementation
for OpenSocial API (Apache Shindig), any social media
platform can quickly start hosting OpenSocial widgets.

Despite the fact that OpenSocial solves the problem of
social media platform’s extensibility and widgets portability,
it has two major limitations. First, it is user-centric but does
not take the user’s context into account. In many social me-
dia platforms context is a crucial component and if widgets
were able to retrieve the user’s context (from the hosting
platform), it would greatly improve user’s experiences [9],
[15].

To understand the second limitation, one should distin-
guish between two types of Web applications, namely, Web
widgets and Web environments. While Web widgets are
usually considered to be small Web applications (weather
forecast widget, translator, calendar), a Web environment
is a relatively complex Web application such as a forum,
a text editor or a personal learning environment. These
Web environments can be seen as meta-components since
they might have the capability of managing other Web
applications. OpenSocial standard provides good support for
Web widgets, but lacks support for Web environments.

In this paper, we introduce a notion of a contextual space
as an extension to OpenSocial. This extension enables the
definition of portable Web environments combining widgets
that can be presented to users with different functional skins
to take context and preferences into account. In addition,
being the representation of a user’s context, space permits
the development of contextualized widgets. In this paper,
we present the extension details and show the scenarios, in
which such extension could be beneficial. Furthermore, we
describe an implementation that uses the concept of spaces
and we demonstrate portable Web environments as proof-
of-concept.

There exist different standards for widgets: W3C standard
[4], OpenSocial gadget specification and some other propri-
etary standards. In this paper, we will be using indifferently
“widget” to refer to all standards. Similarly, we will refer to
OpenSocial widgets for OpenSocial gadgets.

The paper is organized as follows. Section II discusses the
OpenSocial specification. In Section III, we discuss the de-
tails of th proposed extension. In Sections IV,V,VI, contex-
tualized widgets, portable Web environments and functional
skins are defined respectively. Finally, the implementation of
the proposed extension is discussed in Section VII. Section
VIII concludes the paper.

II. OPENSOCIAL SPECIFICATION

OpenSocial specification [5] provides a set of common
APIs for social media platforms. This API standardizes the
way information about people, their friends, application data
and people’s activities are retrieved. This standard solves two
problems at the same time. First, a social media platform
developer does not have to create a new naming scheme for
his/her API and, secondly, widgets developed according to
the OpenSocial specification become portable and can run
on any Web platform that implements OpenSocial.

The only requirement for a social media platform is
that it has to support OpenSocial specification. Thanks to
Apache Shindig [1] (open source reference implementation
of OpenSocial specification) any social media platform can
quickly add support for OpenSocial and be able to instantiate
OpenSocial widgets. By implementing this specification, a
social media platform automatically gets the opportunity
to extend its own functionality by plugging in OpenSocial
widgets.

III. CONTEXTUAL SPACE AND OPENSOCIAL

OpenSocial specification focuses mainly on users. It pro-
vides APIs to retrieve list of friends for a given user, list
of user’s activities, albums, list of user’s widgets, etc. It is
known, however, that depending on user’s context, a list of
context-specific tools is needed. A list of people can change
from one context to another. The same person might have a
completely different role in different contexts. Such context
could be a workspace, a forum’s topic, a friends discussion
or a trip planning. Social media platforms often support the
context concept in one form or another. As an example,
there might be different discussions and sub-discussions in
the same forum, each one with its own topic, own list of
participants and own list of resources. Groups or events
of Facebook is another example of a context. In case of
Learning Management System, every user can have several
contexts - one for every course the user takes part in. It is
important that Web applications get access to user’s context
and are able to take it into account.

One of the main limitations of OpenSocial is that it does
not support user’s context. Such concept simply does not ex-

ist in OpenSocial. Currently with OpenSocial it is impossible
to model, for example, a university course with participants
and resources. Contextual spaces as OpenSocial extension
are intended to provide support for context to OpenSocial
specification and make OpenSocial widgets more useful for
people.

Later in the paper, we will narrow down the definition
of the context to a contextual space. We define a contextual
space as an aggregation unit that includes list of applications
that are to be used in the context, a list of people with
different access rights sharing the context, resources that can
be used inside such context, and possibly some other sub-
spaces that belong to this context. As the 3A-model [11] sug-
gests, such mapping can be done for any social application
[8]. Any social media platform’s structure can be mapped
into three different entities: Actors, Activities and Assets,
where Actors represent people, agents, applications; Assets
represent resources, documents, etc.; Activities represent
an aggregation unit that combines different Actors, Assets
and another Activities together into a context. Activity is a
contextual space in our definition and represents the user’s
context. A contextual space can be further enriched with
additional fields to better represent the user’s context.

It should be noted that support for people, resources
and tools already exists in OpenSocial. However, all these
entities are centered around the user and not around the
user’s context. To avoid confusion, we should note that
“Activity” exists in OpenSocial specification but this concept
is completely different from 3A-model concept. While in
3A-model word “Activity” means an aggregation unit or a
contextual space, in OpenSocial it means an action done by
people (user sent a message, user became friends with some-
body, etc.), which are two completely different concepts.

Table I presents the proposed OpenSocial extension with
contextual spaces. In OpenSocial the “People” service is
responsible for retrieving a list of people connected to a user.
With the contextual space extension, there is additionally a
list of people for every space (for example, list of group
members). In order to handle both scenarios we suggest
to add a field “type” to the API. By doing this, a pair
(gid,type) defines either a space or a person, for which a
list of connected people has to be retrieved.

“AppData” service of OpenSocial can be extended in
a similar way. By default, this request returns application
data for a widget that belongs to a user. With the new
extension, a widget can belong to either a person or to a
space. Thus application data can be retrieved for widgets
belonging to either people or spaces. “Type” parameter in the
request allows to specify for which item (space or person)
application data should be retrieved.

In addition to above extensions of existing OpenSocial
services, we suggest to introduce two new services, namely,
“Spaces” and “Applications”. Requests for “Spaces” are
similar to those of “People” service. The first request in

OpenSocial: /people/{guid}/@all

- Collection of all people connected to user {guid}
People Extension: /people/{gid}/@all/{type}

- Collection of all people connected to item with id

{gid} and with {type} in (“space”,“person”)

OpenSocial: /appdata/{guid }/@self/{appid }
- All app data for user {guid}, app {appid}
AppData Extension: /appdata/{gid}/@self/{appid }/{type}
- All app data for item with id {gid} and with {type}
in (“space”,“person™), app {appid}

Extension: /spaces/{spaceid }/@self
- Profile record for space {spaceid}
Spaces Extension: /spaces/{gid}/@all/{type}

- Collection of all spaces for item with id {gid} and
with {type} in (“space”,“person”)

Extension: /applications/{appid}/@self
- Profile record for application {appid}
Applications Extension: /applications/{gid}/@all/{type}

- Collection of all applications for item with id {gid}

and with {type} in (“space”,“person”)

Table I. OpenSocial extension with contextual spaces

the third row allows to retrieve detailed information about
a space. The second request allows to retrieve list of spaces
or list of people connected to a space. The last request is
similar to the extension of “People” request, but instead
of returning list of people, it returns list of spaces. With
these two requests one can get lists of all people and spaces
connected to a specific person, as well as lists of all sub-
spaces of a space and lists of people for a space (or space
members).

The service “Applications” retrieves detailed information
about a given application with specific identifier (id). The
“Applications” request with “type” parameter in the fourth
row allows to get list of applications for a person or a list of
applications that belong to a space. This request is similar
to previously described requests for “People” and “Spaces”
services.

Interested readers can refer to Apache Shindig wiki [2]
and [12], where implementation details are presented.

IV. CONTEXTUALIZED WIDGETS

Assuming that the proposed contextual space concept
is supported by the OpenSocial specification, widgets can
retrieve user’s context information (such as people, appli-
cations and resources in this context) from hosting social
media platform. This would provide greater widgets person-
alization.

By taking context into account, one can create contex-
tualized widgets, widgets that adapt their behavior to user’s

context. Such widgets can better extend the functionality of a
hosting platform. Their visual interface, displayed data and
functionality can be changed according to the context, in
which user currently is interacting. The same widget might
display different people and different resources depending
on the user’s context.

Let us look at a simple example coming from a learning
scenario: a person is in the process of learning German
and French languages. This person utilizes a widget that
lists language documents from a space and another widget
that lists space members. With the proposed OpenSocial
extension it is enough for a user to create two spaces
“Learn German” and “Learn French” in his/her social media
platform. Then s/he can put German documents and friends
learning German into “Learn German” space and French
documents and friends learning French into “Learn French”
space. When user enters “Learn German” space in the
hosting platform, widgets display German documents and
his/her friends from German space, and when user enters
“Learn French” space, the corresponding French items are
displayed in the same widgets. Thus these widgets become
contextualized widgets.

V. PORTABLE WEB ENVIRONMENT

The notion of a space and its support in OpenSocial bring
us new scenarios, that were impossible to realize before,
namely portable Web environments. Such Web environment
can be moved between two different social media platforms
[13]. With contextual spaces it is possible to model such
concepts as group of people, event, discussion, course,
conference, etc. All these concepts have the following char-
acteristics in common: they all serve as an aggregation unit
to join together people, resources, applications.

A contextual space defines a Web environment and once
OpenSocial specification is extended with contextual spaces,
a Web environment can be technically implemented as an
OpenSocial widget (such Web environment can be seen as
a meta-widget [6], that is a widget that can integrate several
widgets). People are used to consider a widget as a small
application running in their desktop or their browser page.
However, as Wikipedia states, “in computing a Web widget
is a portable chunk of code that can be installed and executed
within any separate HTML-based web page by an end user
without requiring additional compilation. They are derived
from the idea of code reuse.” Thus, even though a Web
widget and a Web environment represent different concepts,
they both can be implemented according to OpenSocial wid-
get standard (as “portable chunk of code”), which ensures
portability for Web environments.

Let us consider a real life example where such approach
can be used. Imagine a Web environment Appl (that is a
groups management application) implemented as follows:
the server side code is implemented according to OpenSo-
cial specification extended with spaces. The client has a

widget container able to render OpenSocial widgets. Figure
1 depicts the Web environment Appl. Learning groups are
represented as horizontal tabs. When a tab with a group
is active, the list of people for this group is shown in the
right area and widgets for this group are displayed inside the
left area side-by-side. This Web environment is technically
implemented as a big OpenSocial widget that receives via
OpenSocial list of groups (as spaces) for a logged in user, a
list of people and widgets for every group. Since this Web
environment is implemented as a widget, its functionality is
portable and can be reused in another Web platform. If the
owner of Appl believes such widget (Web environment) to
be useful for other people, s/he can add it into one of the
available widget repositories (iGoogle, for example).

_lEng[ish group\lGermnn group\IMufh group\

Participants
— Grammar help y 1 Vecabulary help |
Alice
. le Bob
Ilive]y] i England mpﬂ Carol

lived the round fruit of a tree
of the rose family, which
typically has thin red or
green skin and crisp flesh.

Figure 1. Web environment Appl

Other people can reuse this Web environment according to
the following scenario. A user plans to develop a new Web
environment App?2 that will be showing news to people. The
user would like to organize the news site in the following
manner: s/he wants to have tabs that correspond to the
different news topics (music, economics, sport). For every
topic the user wants to add some RSS widgets that show
news for the topic and a list of people subscribed to this
topic. S/he would like to know if similar functionality is
already implemented by someone else, so that she does
not have to start from a scratch. S/he goes to a widget
repository and finds a URI for the OpenSocial application.
This application suits perfectly to his/her requirements. The
structure and functionality is exactly as expected, however
the data are different.

Assuming s/he already has the extended Apache Shindig
installed on his/her server, s/he first creates topics (as spaces)
and adds widgets and people to every topic. Then, s/he adds
the retrieved widget and his/her site starts to function as
planned (Figure 2).

This scenario shows that the Web environment func-
tionality becomes portable and reusable. Even though the
difference is transparent for an end-user, for Web developers

_l Music newNEconomic\I Sport news\

Participants
— [Tunes RSS 1~ Music.com RSS
Chuck
[> Yesterday [> 1. Du hast Dave
[> Hotel california [> 2. Alejandro Eve
Fran

Figure 2. Web environment App2

this is a step forward in simplifying the development process.
It is true that even without spaces Web widgets are reusable
and portable, however without spaces it is difficult to create
portable Web environments where the user’s context is
important (as in the described scenario).

The space extension and portable Web environments can
have a great influence on end-user experience too. In the
previous scenario we showed how different data can be
represented in a similar way through the portable OpenSocial
widgets with spaces. The next section presents functional
skins, where the interaction with the same data structure can
be offered to users differently through OpenSocial widgets
extended with spaces.

VI. FUNCTIONAL SKINS

OpenSocial specification extended with spaces and Web
environment (or meta-widget concept) allow people to easily
change the way interaction with the information is offered.
We define such different interaction schemes as functional
skins, where data and data structure do not change, while
visual representations and actions that user is allowed to
perform with data (functionality) might differ from one
functional skin to another.

The main idea behind functional skins is the same as for
portable Web environments: Web application implemented
as an Opensocial meta-widget that supports spaces and can
integrate other widgets.

As an example, we consider the scenario where a knowl-
edgable person in Computer Science decides to create a
space to support learners in mastering Computer Science.
For this goal, the mentor creates a space “Learn Computer
Science”. Then learners (Alice, Bob, Chuck) and some
subspaces (Introduction, Basic Algorithms, Complex Algo-
rithms) are added to the space. Then the mentor structures
information and populates every subspace with widgets and
resources helpful to master the Computer Science. The
resulting view for a space “Basic Algorithms” is depicted
in Figure 3.

G AL, vt

Mentor » Learn Computer Science » Basic algorithms

Basic algorithms

People Resources
Problems [> Mentor [> C/C++ docs
> Alice [> Algorithms book
1. Implement quicksort algerithm [Bob D anstc
2. Develop List structure [> chuck [> Programming in ¢

3. Implement Tree

Figure 3. Default functional skin for Basic Algorithms space

During the studying process some of the visual parts
are not needed for learners as they might be distracted
from a learning process. Thus the mentor wants to provide
a special view for learners that provides only the needed
functionalities: two widgets displayed side-by-side and a list
of resources as a column on the right (Figure 4).

Basic algorithms Resources
— Code window - Problems C/C++ docs
#include «<stdio.h> 1. Implement Algorithms book
g ANSI C
int malnfveid) quicksort nlgorifhm Programming in C
(2. Develop List
structure

printf("hello, world\n");
return 0;

1

3. Implement Tree

Figure 4. Learning-focused functional skin proposed by mentor

Mentors are provided with a way to change the visual
representation of data structure through widgets. The mentor
can go to a publicly available widget repository and find
a widget that provides a functionality similar to Figure 4
(such widget could be developed either by mentors itself or
by some other developers). URI for this widget is retrieved
and added into the list of URIs for “view as ..” button
in “Basic algorithms” space. Since this widget implements
the extended OpenSocial specification, it correctly processes
information about space, widgets and resources inside and
it displays information as illustrated in Figure 4.

The mentor is only required to know the URI for this
widget and no additional implementation is required on the
user’s side to add this widget as a functional skin for his/her
space. Thus, the mentor can easily share this functional
skin with other people. In the case of a different Web
platform (iGoogle for example) that implements OpenSocial
specification, this functional skin can be used also. Another

interesting point is that with such technique, the mentor can
greatly extend the default functionality by using third-party
Web applications.

Moreover, learners can add and change functional skins
themselves. If, for example, a learner would like to have an
additional area showing a list of people in the bottom-right
area under Resources (see Figure 4), s/he can either look for
another functional skin in widget repositories or develop one
him/herself. Afterwards, a new widget’s URI can be added
to the list for “view as ...” button, and learner can simply
switch between different functional skins.

These new widgets are indeed skins, since, for example, a
space can have several different functional skins that would
display the learning space and enable interaction in different
ways. However, we add the word “functional” because it
does not only change visual appearance as skins normally
do but functionality might also change from one skin to
another.

This technique allows users to have “functional skins” for
their Web environments. It provides both a way to change
visual representation of data and actions to be performed
with this data. One of this approach’s main benefits is that
user can easily change the provided default functionalities to
work with data. This allows easier code reuse since the same
functional skin can be used by different people for their own
Web environments. People themselves can find and add new
functional skins to work with data. Functional skins can be
used in different Web platforms, by providing users with the
flexibility in choosing a Web platform, in which they prefer
to work.

VII. IMPLEMENTATION

Graaasp is a social Web platform with support for widgets
and the proposed space concepts (Figure 5). Every user has
a list of connected people (friends), list of widgets and list
of spaces s/he is a member of. Every space has a list of
members, a list of sub-spaces and a list of widgets connected
to this space.

Apache Shindig is used to provide spaces extension for
OpenSocial. However space extensions are not implemented
exactly as described in Table I to preserve compatibility with
current OpenSocial specifications. Instead of using “type”
parameter, we added a prefix “s_” for spaces and “p_” for
people into the “guid” parameter. Then on the server side
we take prefix into account and return either a list of items
for a space or a list of items for a person.

Graaasp’s OpenSocial API extended with spaces is used
in another Web platform, namely, Rolespace [3]. Rolespace
implements a visual interface that is completely different
from Graaasp user interface, however it uses the same
data structure, since it takes spaces, people, widgets from
Graaasp via OpenSocial API. The Rolespace can be seen
as a functional skin for Graaasp’s data structure.

~ Favorites ~ Clipboard

Mentor
R

Search (Al %)
BN
- [*
Logout. More Mentor Learn Computer S 44 |44 | DD
v Learn Computer Science - 3?3\?3?3\?/(
~ People ~ Spaces ~ Tools
Mentor Computer
Learn Computer Science =i
Program Alice Basic Alg
. %]
|. Computer architecture
2. Basic Algorithms Bob Complex
3. Complex Algorithms 7]

4. References

Comments: new

By Bob 16:05,06 Oct 10
| can't solve this problem! e
Could you please help?

Figure 5. Graaasp Web platform

In addition, we developed for Graaasp a proof-of-concept
implementation for meta-widget that integrates several small
widgets. This meta-widget can run on different Web plat-
forms that support OpenSocial widgets.

VIII. CONCLUSION

This paper presented contextual space as an extension
to the OpenSocial specification. It summarizes the limi-
tations of current version of the OpenSocial specification
and highlights its user-centric focus without the ability to
describe user’s context. OpenSocial specification extended
with spaces tackles these limitations and provides greater
flexibility to users.

These OpenSocial extensions are described in details and
three scenarios are presented. As a result, widgets can be
contextualized, meaning that they have access to users’
context and might adapt themselves to it.

The meta-widget concept combined with the space exten-
sion makes it possible to take advantage of functional skins
(different representations and modes of interaction with the
same data) and ensures portability for Web environments
(same representation and mode of interaction with different
data).

We conclude the paper with the details of our proof-of-
concept implementation for the space extension and meta-
widget. Further work is under way to provide a complete
implementation for the proposed space extension that will
lead to contextualized widgets, functional skins and portable
Web environments.

ACKNOWLEDGMENT

The research work described in this paper is partially
funded through the ROLE Integrated Project; part of the Sev-
enth Framework Program for Research and Technological
Development (FP7) of the European Union in Information
and Communication Technologies.

(1]

(2]

(3]
(4]

[5]

[6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Apache shindig.
13.12.2010.

http://shindig.apache.org/index.html

Apache shindig wiki. https://cwiki.apache.org/confluence/
display/SHINDIG/Index 13.12.2010.

Rolespace. http://graaasp.epfl.ch/role_project 13.12.2010.

W3C set of standards for widgets. http://www.w3.0rg/2008/
webapps/wiki/WidgetSpecs 13.12.2010.

Opensocial specification v0.9. apr. 2009. http://www.
opensocial.org/Technical-Resources/opensocial-spec-v09/
OpenSocial-Specification.html 13.12.2010.

M. Blattner, E. Glinert, J. Jorge, and G. Ormsby. Metawid-
gets: towards a theory of multimodal interface design. Com-
puter Software and Applications Conference, 1992. COMP-
SAC ’92. Proceedings., Sixteenth Annual International, pages
115 -120, sep. 1992.

E. Bogdanov, S. El Helou, D. Gillet, C. Salzmann, and
S. Sire. Graaasp: a web 2.0 research platform for contextual
recommendation with aggregated data. CHI, pages 3523—
3528, 2010.

E. Bogdanov, C. Salzmann, S. El Helou, and D. Gillet. Social
Software Modeling and Mashup based on Actors, Activities
and Assets. ECTEL - MUPPLE Workshop, 2008.

A. K. Dey, G. D. Abowd, and D. Salber. A conceptual
framework and a toolkit for supporting the rapid prototyp-

ing of context-aware applications. Hum.-Comput. Interact.,
16(2):97-166, 2001.

K. Fruhmann, A. Nussbaumer, and D. Albert. A psycho-
pedagogical framework for self-regulated learning in a re-
sponsive open learning environment. [nternational Confer-
ence eLearning Baltics Science (eLBa Science 2010).

S. E. Helou, N. Li, and D. Gillet. The 3a interaction model:
Towards bridging the gap between formal and informal learn-
ing. ACHI, pages 179-184, 2010.

R. Lopes, H. Akkan, W. Claycomb, and D. Shin. An
opensocial extension for enabling user-controlled persona
in online social networks. 4th International Workshop on
Trusted Collaboration (TrustCol 09 - in conjunction with
CollaborateCom 09), pages 1-5, nov. 2009.

M. Palmér, S. Sire, E. Bogdanov, F. Wild, and D. Gillet.
Introducing qualitative dimensions to analyse the usefulness
of Web 2.0 platforms as PLEs. IJTEL, 2010.

S. Sire, E. Bogdanov, M. Palmér, and D. Gillet. Towards
Collaborative Portable Web Spaces. ECTEL - MUPPLE
Workshop, 2009.

M. Wolpers, J. Najjar, K. Verbert, and E. Duval. Tracking
actual usage: the attention metadata approach. International
Journal Educational Technology and Society 11 (2007) In,
pages 1176-3647, 2007.

