IMAGE RECONSTRUCTION FROM COMPRESSED LINEAR MEASUREMENTSWITH
SIDE INFORMATION

\ijayaraghavan Thirumalai and Pascal Frossard

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Signal Processing Laboratory - LTS4, Lausanne, 1015 - $vand.
{vijayaraghavan.thirumalai, pascal.frossag@pfl.ch

ABSTRACT

This paper proposes a joint reconstruction algorithm fonpessed o g °
correlated images that are given under the form of linearsorea ~ (9SM) are proposed for joint signal reconstruction algons. These

ments. We consider the particular problem where one image-is SimPle JSM's are however not ideal for multi-view images ioleo
lected as the reference image and it is used as a side informat S€duences as the correlation model in such scenarios igugivan

for decoding the compressed correlated images. These essgat 1N the form of disparity or motion vectors. Later distribdtalgo-
dithms have been developed for multi-view images [4] ancevid

The concept of random projections in distributed scenarios
has been previously studied in [3] where three joint spamaitdels

images are given under the form of random measurementsriat

further quantized and entropy coded. The joint decodemaséis
the correlation model based on the geometric transformatidea-
tures captured by a structured dictionary. We observe teahigh
frequency components are not efficiently captured in thimesed
image when the correlation information is used alone forgenare-
diction. Hence, we propose a reconstruction strategy thes the
information in the measurements to recover the missingVistor-

mation in the predicted image. The reconstruction is basethmp-
timization algorithm that enforces the reconstructed ieadge con-
sistent with the quantized measurements. We further aditicuil

constraints to ensure that the reconstructed image is tddbe im-
age predicted from the correlation estimation. The noediities
introduced due to quantization are considered on both letive

and reconstruction algorithms in order to improve the gentmce.
Experimental results demonstrate the benefit of the reaariiin

algorithm as it brings improved coding performance esplgcat

high rate and outperforms independent coding solutionsdas
JPEG 2000.

1. INTRODUCTION

Distributed source coding (DSC) usually refers to the iraelent
encoding and joint decoding of correlated sources. It psrtoide-
sign low complexity acquisition systems and to shift the pata-
tional burden to the decoder. DSC typically finds appligaion

vision sensor networks where low-power cameras perfornaicsp

temporal sampling of the visual information and send theltieg)

images to a central decoder. While most common encoders @ DS

systems acquires the entire image before compressionothglex-

ity of the encoders can be further reduced if the sensorgttjire
acquires the compressed image in the form of random projeti

[1, 2]. Such a solution computes only few linear projectiahshe
encoder and thereby significantly reduces the computatiosaand
the power requirements at the encoder. A joint decoder aaént
reconstructs the visual information from the compresseatjgs by
exploiting the correlation between the samples, which ftsrio
achieve a good rate-distortion (RD) tradeoff in the repnestéon of
video or multi-view information.

This work has been partly supported by the Swiss Nationagrgel
Foundation, under grant 200021-118230.

sequences [5, 6] based on linear measurements. These schiestne
build the correlation model that is eventually used to camstthe
side information for joint signal recovery. The joint restmiction
stage then assumes that the prediction error between tiearand
side information is sparse in an orthonormal basis [6] or &-thee
wavelet basis [4], and recovers the missing values in the isitr-
mation by solving an optimization problem. In an other ajpgio
the authors in [7] derived the significant position of thersewsing
the side information and use this as a priori knowledge famtjo
signal recovery. However, these distributed schemes basédear
measurements usually fail to consider the effect of quatitim and
hence cannot be applied directly in practical coding apgbns.

In this paper we build on our previous work [8] and propose a
joint reconstruction algorithm from quantized linear mgasnents.
We first compute the most prominent visual features in theregice
image and approximate them with geometric functions draamfa
parametric dictionary. Then the correlation model is carcded by
solving a regularized optimization problem that computes ¢or-
responding features in the compressed image along withellae r
tive geometric transformation. When the correlation masleised
for estimating the compressed image we lose the visual irder
tion mostly along the edges and high frequency components. W
therefore propose a reconstruction algorithm to captugentssing
details and texture information in the predicted image fitbmmin-
formation provided by the quantized measurements. We denie
predicted image as a side information and formulate a coopéix
mization problem to reconstruct an image that is as closessilge
to the side information. At the same time we use additional co
straints to enforce that the reconstructed image is camtigtith the
guantized measurements, where the consistency is meassirep
thel, norm in order to take into account the effect of quantization
nonlinearities [9]. Experimental results confirm that thegmsed re-
construction scheme improves the quality of the prediateatie and
thereby improves the RD performance of the proposed DSGrsehe

2. PROPOSED SCHEME

We consider a framework (see Fig. 1) where a pair of imagand
1> represent a scene at different time instants or from diffieview-
points; these images are correlated through the motionsofaViob-
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Fig. 1. Schematic representation of the proposed scheme. The#fiagnd I, are correlated through displacement of scene objects,adue t

view point change or motion of scene objects.

jects. These images are represented by linear measurethants smoothness and consistency terms. The data costigrpicks the

corresponds to the projection of the image pixel values amdam
set of coding vectors. They are then transmitted to a joinbder
that estimates the relative motion or disparity betweerrdiceived
signals and jointly reconstructs the images.

set of atoms that agrees best with the quantized measuregent
To provide robustness to quantization errors we have atditicon-
straints that consider all the measurement values in thatiqed
interval while picking the atoms. The smoothness dosenforces

We focus on the particular problem where the first image servethe estimated dense disparity or motion field to be coher&he

as a reference for the correlation estimation and the réwani®n of
the second image. While this image could be encoded with agy ¢
ing algorithm (e.g., JPEG 2000) we choose in this work toesgnt
the reference imagé by random linear measurements = ¢ I

consistency ternk; is used to enforce consistency of the estimated
imagel, with the quantized measuremergts where the imagé-
is estimated through image warping. We propose an iterafie
mization algorithm to solve Eqg. 1 that picks a solution in arsk

with a projection matrixy. The measurements are used by the de-space formed by perturbing th¥ atom parameters by one incre-

coder to reconstruct an approximatidnusing a convex optimiza-
tion algorithm under the assumption thht is sparse in particu-
lar basis (e.g., a Wavelet basis). Next the second indage also

ment at a time in the parameter space. In every iteration @lsea
space is constructed based on the solution of the previeteiiin
and a (minima) solution is estimated. The estimated salutaised

projected on the random matrix to generate the measurements for constructing the search space in the next iteration haditgo-

y2 = 1 I>. The generated measuremeptsare quantized using
an uniform quantizer and are further entropy coded (e.dthiuetic
encoder). The decoder performs the reverse operationaddtza-
tion and entropy decoding) to form the measurement vegtgsee
Fig. 1). This measurement vector is finally used by the joatadler
to estimate the relative transformation between the imégasd -
and eventually predicts the second imdgebased on image warp-

rithm is iterated till convergence is reached. Finally tmagels is
reconstructed by warping the reference imagasing the estimated
correlation model. We observed experimentally that thdityuaf

I, saturates at high rate as the high frequency componentsoare n
captured efficiently using the warping operator. In the rs@dtion

we describe a new reconstruction algorithm based on an matim
tion framework that captures the high frequency componetits

ing. However, the imagé; thus estimated based on warping fails to the help of measurement information to improve the quality»o

capture the details or texture information as the motionigpatity
compensation predicts only the low frequency componendsnanh
the high frequency. Hence in this work we propose a recoctsbiu
algorithm that approximates the second imagé&om I, by enforc-
ing consistency with the quantized measuremégntsee Fig. 1).

3. CORRELATION ESTIMATION FROM QUANTIZED
MEASUREMENTS

In this section we briefly review our correlation estimatssheme
based on quantized measurements and for more details wetrefe
reader to [8]. We propose to model the correlation betweerinth
ages by relative transformations between prominent vifaalres
in both images. In particular, the joint decoder first coneguthe
sparse approximation of the imade using vectors in a paramet-
ric dictionary of geometric functions. Such an approximatcap-
tures the most prominent geometrical features in the inlag&iven
these features we estimate the corresponding featuree settond

4. CONSISTENT RECONSTRUCTION

The key idea in the proposed reconstruction algorithm iotsicler
the warped imagé- as a side information and combine it with the
information from the measurements for the reconstructfahesec-
ond imagel.. We propose to reconstruct an imagethat is not only
consistent with the measuremenptsbut also close to the image.
By merging these two constraints the proposed convex ogitioin
problem is given as,

min H 12 ”TV s.t. || Y2 — 1/)[2 ||2: 07 H 12 — j2 ||2§ €2. (2)
In the above optimization we use the prior based on totahtian
(TV) norm [2] that works well for natural images. Neverttedeone
could also use a sparsity prior, i.e., the image is sparspantecular
basis. When the measurements are quantized it is well knbatn t

image I that is given in terms of quantized linear measurementdN® OPtimization problem given in Eq. (2) fails to meet thewi-

y2. We propose to select this set of atoms in a regularized gner

minimization framework with energy modél expressed as,

E(A) = Ea(A) + a1 Eo(A) + a2 Ei(A) @)

gza’[ion consistency, i.e., the reconstructed imagis not consistent

with the quantized measurements. Jacogiesd. [9] showed that
guantization consistency is enforced withnorm withp > 2 and
not usingl. norm in the first constraint. Inspired by Jacqetsl.
[9], when the measuremenjs are quantized the above optimization

whereE,, Es and E; represent the data term, smoothness term angbroblem can be modified as,

consistency term respectively andepresents the set &f atom pa-
rameters. The regularization constantsand s balance the data,

min || I |rv s.t. || g2 — YL [,< e1, || 2 — Iz |2< €2

@)
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Fig. 2. Performance comparison of the proposed scheme at vanimuiization bitrates for (a) Plastic and (b) Foreman désa3éne PSNR
is computed betweef, andI; in the joint reconstruction and betweénand I, in the correlation estimation.

where the measurement consistency is measured usirlg tioem
with p > 2 instead of using = 2.

In our work, we use the parallel proximal algorithm (PPXA)pr
posed by Combettest al. [10] to solve Eq. (4) as the algorithm can

Now we describe an optimization methodology to solve thebe easily implementable on multicore architectures dubdqgtral-

problem given in Eqg. (3). The optimization problem can beials
ized as the special case of general convex problem given as,

mingen f1(z) + f2(z) + f3(z) 4)

where?#{ = R" is the Hilbert space and the functiorfis, f> and

lel structure. PPXA algorithm starts with an initial sotutiz®) and
computes theroxy, (z), prozy, (x) andprozs,(z) in each itera-
tion and the result is used to update the current soluti8h The
iterative procedure of computing tipeox and updating the solution
is repeated until convergence is reached. The authors Iavens
that the sequende:");>, generated by PPXA algorithm is guaran-

fs € To(RN) [9, 10]. To(RY) is the class of lower semicontin- teed to converge to the solution of the problem given in Ej. (4

uous convex functions fronR™Y to ] — co 4 oo] such that the
convex functionf is not infinity everywhere, i.e.dom f # 0.
For the optimization problem given in Eq. (3) the functioms &)
A@) = |z |lrv (i) f2(2) = iz (@) = 0if & € T?(er)
andoo otherwise, i.e., the indicator function of the closed conset
T(er) = {z € RY || 2 — vz [p< &1}, (i) f3(2) = ic(ey) =0

5. EXPERIMENTAL RESULTS

The performance of the joint reconstruction has been diudie
three natural datasets namely the stereo images SawtabBiastic,

if z € C(e2) andoo otherwise, where' is the closed convex set and Foreman video sequence (frames 2 and 3). In our expgsmen

given asC(ex) = {x € RY || & — I> [|2< e2}.

we set the quality of the reference imafeto 33 dB for Sawtooth

The solution to the problem in Eq. (4) can be found by generatf’md Plastic datasets and to 45 dB for Foreman dataset. Thmineea

ing the recursive sequenaé™? = proxzs (™), 8 > 0, where
the functionf is given asf = f1 + f2 + fs. The proximity oper-
ator is defined as theroz () = mineen f(y) + 5 | 2 =y |-

The main difficulty with these iterations are the computagiof the

ments are generated using a block scrambled Hadamarddmansf
with block size 8 [12]. For a given measurement rate we first es
mate the correlation model and then the imagés predicted based

on disparity or motion compensation respectively. We trezon-

prozss(x) operator as there is no closed form expression to comStruct the second image from the compressed measuremedis

pute theprozs(x), especially when the functiorf is the cumu-
lative sum of three functions. In such cases, instead of tme-c
puting theprox ¢(x) directly for the combined functiorf one can
perform a sequence of calculations involving separatedyiriivid-
ual operatorgrozy, (x), prozys,(x) andprozs,(x). This class of
algorithm is popularly known asplitting methods as these meth-
ods proceed by splitting the combingdinto f1, f. and fs, and
hence allow for an easily implementable algorithm [10]. Euoz
function fi(z) =|| z= ||rv the operatomproxy, (x) can be com-
puted iteratively using Chambolle’s algorithm [11]. Theox ¢, (x)
for function f2(z) = irn(c,)(z) With T%(e1) = {z € RV :

|| 92 — ¥z ||p< e1} can be computed fop > 2 using Newton’s
iterations [9]. The proximity operatgrroz ¢, (x) for function f3 =
iC(ey) With Ce2) = {z € RY || & — I2 ||2< €2} can be found out
using radial projection.

and the predicted imagg by solving Eq. (3).

Fig. 2 shows the benefit of using the additional reconstucti
stage when the measurements are not quantized for Plagdtioae-
man datasets. It should be noted that when the measurenemista
guantized we solve the optimization problem in Eq. (3) with 2.
The parametet; is set tole — 4, and parametet, is selected based
on trial and error experiments such that the quality of retmicted
imagel- is maximized. The PSNR value corresponding to the pre-
dicted imagel, and the reconstructed imadeis marked in red and
blue respectively. Itis clear from the plots that the qyaditthe pre-
dicted imagel> saturates around a measurement rate 0.2. Then by
activating the reconstruction stage the quality of the metraicted
image I, improves as the measurement rate increases; this proves
that the reconstruction stage captures the details andxthe¢ com-
ponents. Similar experimental finding is observed on thetSativ
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Fig. 3. Performance of the proposed scheme at 2 and 4 quantizatiateb and comparison with JPEG 2000. (a) Sawtooth andlgs}ie
datasets. The PSNR is computed betwgeand I in the joint reconstruction and betweé&nand I in the correlation estimation.

dataset. Now we analyze the behavior of the proposed jotatnre  performance is improved especially at high rate by actigatie re-
struction scheme when the measurements are quantized. IVée soconstruction algorithm. Finally we show that the perforcerf
the optimization problem withh = 8 (selected based on trial and our scheme is far superior to independent coding solutiased on
error experiments), and the parametgiis calculated based on the JPEG 2000. This illustrates the potential of our schemesmitiuted
guantization bitrate and the valueof9]. Fig. 2 compares the recon- multi-view or video coding applications.

struction quality ofl, when the measurements are quantized using
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