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ABSTRACT

This paper proposes a joint reconstruction algorithm for compressed
correlated images that are given under the form of linear measure-
ments. We consider the particular problem where one image isse-
lected as the reference image and it is used as a side information
for decoding the compressed correlated images. These compressed
images are given under the form of random measurements that are
further quantized and entropy coded. The joint decoder estimates
the correlation model based on the geometric transformation of fea-
tures captured by a structured dictionary. We observe that the high
frequency components are not efficiently captured in the estimated
image when the correlation information is used alone for image pre-
diction. Hence, we propose a reconstruction strategy that uses the
information in the measurements to recover the missing visual infor-
mation in the predicted image. The reconstruction is based on an op-
timization algorithm that enforces the reconstructed image to be con-
sistent with the quantized measurements. We further add additional
constraints to ensure that the reconstructed image is closeto the im-
age predicted from the correlation estimation. The non-linearities
introduced due to quantization are considered on both correlation
and reconstruction algorithms in order to improve the performance.
Experimental results demonstrate the benefit of the reconstruction
algorithm as it brings improved coding performance especially at
high rate and outperforms independent coding solutions based on
JPEG 2000.

1. INTRODUCTION

Distributed source coding (DSC) usually refers to the independent
encoding and joint decoding of correlated sources. It permits to de-
sign low complexity acquisition systems and to shift the computa-
tional burden to the decoder. DSC typically finds applications in
vision sensor networks where low-power cameras perform a spatio-
temporal sampling of the visual information and send the resulting
images to a central decoder. While most common encoders in DSC
systems acquires the entire image before compression, the complex-
ity of the encoders can be further reduced if the sensors directly
acquires the compressed image in the form of random projections
[1, 2]. Such a solution computes only few linear projectionsat the
encoder and thereby significantly reduces the computational cost and
the power requirements at the encoder. A joint decoder eventually
reconstructs the visual information from the compressed images by
exploiting the correlation between the samples, which permits to
achieve a good rate-distortion (RD) tradeoff in the representation of
video or multi-view information.
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The concept of random projections in distributed scenarios
has been previously studied in [3] where three joint sparsity models
(JSM) are proposed for joint signal reconstruction algorithms. These
simple JSM’s are however not ideal for multi-view images or video
sequences as the correlation model in such scenarios is usually given
in the form of disparity or motion vectors. Later distributed algo-
rithms have been developed for multi-view images [4] and video
sequences [5, 6] based on linear measurements. These schemes first
build the correlation model that is eventually used to construct the
side information for joint signal recovery. The joint reconstruction
stage then assumes that the prediction error between the original and
side information is sparse in an orthonormal basis [6] or a dual-tree
wavelet basis [4], and recovers the missing values in the side infor-
mation by solving an optimization problem. In an other approach,
the authors in [7] derived the significant position of the source using
the side information and use this as a priori knowledge for joint
signal recovery. However, these distributed schemes basedon linear
measurements usually fail to consider the effect of quantization and
hence cannot be applied directly in practical coding applications.

In this paper we build on our previous work [8] and propose a
joint reconstruction algorithm from quantized linear measurements.
We first compute the most prominent visual features in the reference
image and approximate them with geometric functions drawn from a
parametric dictionary. Then the correlation model is constructed by
solving a regularized optimization problem that computes the cor-
responding features in the compressed image along with the rela-
tive geometric transformation. When the correlation modelis used
for estimating the compressed image we lose the visual informa-
tion mostly along the edges and high frequency components. We
therefore propose a reconstruction algorithm to capture the missing
details and texture information in the predicted image fromthe in-
formation provided by the quantized measurements. We consider the
predicted image as a side information and formulate a convexopti-
mization problem to reconstruct an image that is as close as possible
to the side information. At the same time we use additional con-
straints to enforce that the reconstructed image is consistent with the
quantized measurements, where the consistency is measuredusing
the lp norm in order to take into account the effect of quantization
nonlinearities [9]. Experimental results confirm that the proposed re-
construction scheme improves the quality of the predicted image and
thereby improves the RD performance of the proposed DSC scheme.

2. PROPOSED SCHEME

We consider a framework (see Fig. 1) where a pair of imageI1 and
I2 represent a scene at different time instants or from different view-
points; these images are correlated through the motion of visual ob-
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Fig. 1. Schematic representation of the proposed scheme. The imagesI1 andI2 are correlated through displacement of scene objects, due to
view point change or motion of scene objects.

jects. These images are represented by linear measurementsthat
corresponds to the projection of the image pixel values on a random
set of coding vectors. They are then transmitted to a joint decoder
that estimates the relative motion or disparity between thereceived
signals and jointly reconstructs the images.

We focus on the particular problem where the first image serves
as a reference for the correlation estimation and the reconstruction of
the second image. While this image could be encoded with any cod-
ing algorithm (e.g., JPEG 2000) we choose in this work to represent
the reference imageI1 by random linear measurementsy1 = ψ I1
with a projection matrixψ. The measurements are used by the de-
coder to reconstruct an approximationÎ1 using a convex optimiza-
tion algorithm under the assumption thatI1 is sparse in particu-
lar basis (e.g., a Wavelet basis). Next the second imageI2 is also
projected on the random matrixψ to generate the measurements
y2 = ψ I2. The generated measurementsy2 are quantized using
an uniform quantizer and are further entropy coded (e.g., Arithmetic
encoder). The decoder performs the reverse operations (dequantiza-
tion and entropy decoding) to form the measurement vectorŷ2 (see
Fig. 1). This measurement vector is finally used by the joint decoder
to estimate the relative transformation between the imagesI1 andI2
and eventually predicts the second imageÎ2 based on image warp-
ing. However, the imagêI2 thus estimated based on warping fails to
capture the details or texture information as the motion or disparity
compensation predicts only the low frequency components and not
the high frequency. Hence in this work we propose a reconstruction
algorithm that approximates the second imageĨ2 from Î2 by enforc-
ing consistency with the quantized measurementsŷ2 (see Fig. 1).

3. CORRELATION ESTIMATION FROM QUANTIZED
MEASUREMENTS

In this section we briefly review our correlation estimationscheme
based on quantized measurements and for more details we refer the
reader to [8]. We propose to model the correlation between the im-
ages by relative transformations between prominent visualfeatures
in both images. In particular, the joint decoder first computes the
sparse approximation of the imagêI1 using vectors in a paramet-
ric dictionary of geometric functions. Such an approximation cap-
tures the most prominent geometrical features in the imageÎ1. Given
these features we estimate the corresponding features in the second
imageI2 that is given in terms of quantized linear measurements
ŷ2. We propose to select this set of atoms in a regularized energy
minimization framework with energy modelE expressed as,

E(Λ) = Ed(Λ) + α1Es(Λ) + α2Et(Λ) (1)

whereEd, Es andEt represent the data term, smoothness term and
consistency term respectively andΛ represents the set ofN atom pa-
rameters. The regularization constantsα1 andα2 balance the data,

smoothness and consistency terms. The data cost termEd picks the
set of atoms that agrees best with the quantized measurements ŷ2.
To provide robustness to quantization errors we have additional con-
straints that consider all the measurement values in the quantized
interval while picking the atoms. The smoothness costEs enforces
the estimated dense disparity or motion field to be coherent.The
consistency termEt is used to enforce consistency of the estimated
imageÎ2 with the quantized measurementsŷ2, where the imagêI2
is estimated through image warping. We propose an iterativeopti-
mization algorithm to solve Eq. 1 that picks a solution in a search
space formed by perturbing theN atom parameters by one incre-
ment at a time in the parameter space. In every iteration a search
space is constructed based on the solution of the previous iteration
and a (minima) solution is estimated. The estimated solution is used
for constructing the search space in the next iteration and the algo-
rithm is iterated till convergence is reached. Finally the imageÎ2 is
reconstructed by warping the reference imageÎ1 using the estimated
correlation model. We observed experimentally that the quality of
Î2 saturates at high rate as the high frequency components are not
captured efficiently using the warping operator. In the nextsection
we describe a new reconstruction algorithm based on an optimiza-
tion framework that captures the high frequency componentswith
the help of measurement information to improve the quality of Î2.

4. CONSISTENT RECONSTRUCTION

The key idea in the proposed reconstruction algorithm is to consider
the warped imagêI2 as a side information and combine it with the
information from the measurements for the reconstruction of the sec-
ond imagẽI2. We propose to reconstruct an imageĨ2 that is not only
consistent with the measurementsy2 but also close to the imagêI2.
By merging these two constraints the proposed convex optimization
problem is given as,

min ‖ I2 ‖TV s.t. ‖ y2 − ψI2 ‖2= 0, ‖ I2 − Î2 ‖2≤ ǫ2. (2)

In the above optimization we use the prior based on total variation
(TV) norm [2] that works well for natural images. Nevertheless one
could also use a sparsity prior, i.e., the image is sparse in aparticular
basis. When the measurements are quantized it is well known that
the optimization problem given in Eq. (2) fails to meet the quanti-
zation consistency, i.e., the reconstructed imageĨ2 is not consistent
with the quantized measurements. Jacqueset al. [9] showed that
quantization consistency is enforced withlp norm withp > 2 and
not usingl2 norm in the first constraint. Inspired by Jacqueset al.
[9], when the measurementsy2 are quantized the above optimization
problem can be modified as,

min ‖ I2 ‖TV s.t. ‖ ŷ2 − ψI2 ‖p≤ ǫ1, ‖ I2 − Î2 ‖2≤ ǫ2 (3)
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Fig. 2. Performance comparison of the proposed scheme at various quantization bitrates for (a) Plastic and (b) Foreman datasets. The PSNR
is computed betweenI2 andĨ2 in the joint reconstruction and betweenI2 andÎ2 in the correlation estimation.

where the measurement consistency is measured using thelp norm
with p > 2 instead of usingp = 2.

Now we describe an optimization methodology to solve the
problem given in Eq. (3). The optimization problem can be visual-
ized as the special case of general convex problem given as,

minx∈H f1(x) + f2(x) + f3(x) (4)

whereH = R
N is the Hilbert space and the functionsf1, f2 and

f3 ∈ Γ0(R
N ) [9, 10]. Γ0(R

N) is the class of lower semicontin-
uous convex functions fromRN to ] − ∞ + ∞] such that the
convex functionf is not infinity everywhere, i.e.,dom f 6= ∅.
For the optimization problem given in Eq. (3) the functions are (i)
f1(x) = ‖ x ‖TV (ii) f2(x) = iTp(ǫ1)(x) = 0 if x ∈ T p(ǫ1)
and∞ otherwise, i.e., the indicator function of the closed convex set
T p(ǫ1) = {x ∈ R

N :‖ ŷ2 −ψx ‖p≤ ǫ1}, (iii) f3(x) = iC(ǫ2) = 0
if x ∈ C(ǫ2) and∞ otherwise, whereC is the closed convex set
given asC(ǫ2) = {x ∈ R

N :‖ x− Î2 ‖2≤ ǫ2}.
The solution to the problem in Eq. (4) can be found by generat-

ing the recursive sequencex(t+1) = proxβf(x
(t)), β > 0, where

the functionf is given asf = f1 + f2 + f3. The proximity oper-
ator is defined as theproxf (x) = minx∈H f(y) + 1

2
‖ x − y ‖2.

The main difficulty with these iterations are the computations of the
proxβf(x) operator as there is no closed form expression to com-
pute theproxf (x), especially when the functionf is the cumu-
lative sum of three functions. In such cases, instead of the com-
puting theproxf (x) directly for the combined functionf one can
perform a sequence of calculations involving separately the individ-
ual operatorsproxf1(x), proxf2(x) andproxf3(x). This class of
algorithm is popularly known assplitting methods as these meth-
ods proceed by splitting the combinedf into f1, f2 and f3, and
hence allow for an easily implementable algorithm [10]. Forthe
function f1(x) =‖ x ‖TV the operatorproxf1(x) can be com-
puted iteratively using Chambolle’s algorithm [11]. Theproxf2(x)
for function f2(x) = iTp(ǫ1)(x) with T p(ǫ1) = {x ∈ R

N :
‖ ŷ2 − ψx ‖p≤ ǫ1} can be computed forp ≥ 2 using Newton’s
iterations [9]. The proximity operatorproxf3(x) for functionf3 =

iC(ǫ2) with C(ǫ2) = {x ∈ R
N :‖ x− Î2 ‖2≤ ǫ2} can be found out

using radial projection.

In our work, we use the parallel proximal algorithm (PPXA) pro-
posed by Combetteset al. [10] to solve Eq. (4) as the algorithm can
be easily implementable on multicore architectures due to the paral-
lel structure. PPXA algorithm starts with an initial solutionx(0) and
computes theproxf1(x), proxf2(x) andproxf3(x) in each itera-
tion and the result is used to update the current solutionx(0). The
iterative procedure of computing theprox and updating the solution
is repeated until convergence is reached. The authors have shown
that the sequence(x(l))l≥1 generated by PPXA algorithm is guaran-
teed to converge to the solution of the problem given in Eq. (4).

5. EXPERIMENTAL RESULTS

The performance of the joint reconstruction has been studied on
three natural datasets namely the stereo images Sawtooth and Plastic,
and Foreman video sequence (frames 2 and 3). In our experiments
we set the quality of the reference imageÎ1 to 33 dB for Sawtooth
and Plastic datasets and to 45 dB for Foreman dataset. The measure-
ments are generated using a block scrambled Hadamard transform
with block size 8 [12]. For a given measurement rate we first esti-
mate the correlation model and then the imageÎ2 is predicted based
on disparity or motion compensation respectively. We then recon-
struct the second imagẽI2 from the compressed measurementsŷ2

and the predicted imagêI2 by solving Eq. (3).
Fig. 2 shows the benefit of using the additional reconstruction

stage when the measurements are not quantized for Plastic and Fore-
man datasets. It should be noted that when the measurements are not
quantized we solve the optimization problem in Eq. (3) withp = 2.
The parameterǫ1 is set to1e− 4, and parameterǫ2 is selected based
on trial and error experiments such that the quality of reconstructed
imageĨ2 is maximized. The PSNR value corresponding to the pre-
dicted imagêI2 and the reconstructed imagẽI2 is marked in red and
blue respectively. It is clear from the plots that the quality of the pre-
dicted imageÎ2 saturates around a measurement rate 0.2. Then by
activating the reconstruction stage the quality of the reconstructed
image Ĩ2 improves as the measurement rate increases; this proves
that the reconstruction stage captures the details and the texture com-
ponents. Similar experimental finding is observed on the Sawtooth
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Fig. 3. Performance of the proposed scheme at 2 and 4 quantization bitrates and comparison with JPEG 2000. (a) Sawtooth and (b) Plastic
datasets. The PSNR is computed betweenI2 andĨ2 in the joint reconstruction and betweenI2 andÎ2 in the correlation estimation.

dataset. Now we analyze the behavior of the proposed joint recon-
struction scheme when the measurements are quantized. We solve
the optimization problem withp = 8 (selected based on trial and
error experiments), and the parameterǫ1 is calculated based on the
quantization bitrate and the value ofp [9]. Fig. 2 compares the recon-
struction quality ofĨ2 when the measurements are quantized using
2, 4 and 6 bits. As expected for a given measurement rate the qual-
ity of the reconstructed imagẽI2 degrades as the quantization bitrate
decreases. We further notice that the quality of the imageĨ2 satu-
rates above rates> 0.2 when the measurements are quantized using
a 2-bit quantizer.

We finally analyze the coding performance of the proposed
scheme where the bitrate is computed by entropy coding the quan-
tized measurements. Fig. 3 shows the coding performance of the
proposed scheme when the measurements are quantized using 2and
4 bits. It is clear from the plot that the proposed reconstruction
scheme improves the quality of the predicted imageÎ2. Also, as
expected the quality of the reconstructed imageĨ2 increases with
the bitrate and thus corrects the saturation behavior of thepredicted
image Î2 especially at high rate. In addition, our solution shows
significant improvement over independent coding solutionsbased
on JPEG 2000 between low to medium rate. Finally the choice of
usingp > 2 is proven effective in Fig. 3, when measurements are
quantized using a 2-bit quantizer. It is clear that the coding perfor-
mance is better whenp = 8 (rather thanp = 2) as it better handles
the quantization error while reconstructing the imageĨ2.

6. CONCLUSIONS

In this paper we present a framework for the distributed representa-
tion and joint reconstruction of an image pair with quantized linear
measurements. Building on our correlation estimation and image
prediction algorithm [8], we propose a reconstruction algorithm that
captures the texture and details in the predicted image. We consider
the predicted image as a side information and we formulate a convex
optimization algorithm that ensures that the reconstructed image is
consistent with the measurements. Also the reconstructionalgorithm
efficiently handles the quantized measurements in order to provide
robustness to quantization noise. We show by experiments that the

performance is improved especially at high rate by activating the re-
construction algorithm. Finally we show that the performance of
our scheme is far superior to independent coding solutions based on
JPEG 2000. This illustrates the potential of our scheme in distributed
multi-view or video coding applications.
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