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ABSTRACT

Web 2.0 portals have made content generation easier than
ever with millions of users contributing news stories in form
of posts in weblogs or short textual snippets as in Twit-
ter. Efficient and effective filtering solutions are key to allow
users stay tuned to this ever-growing ocean of information,
releasing only relevant trickles of personal interest. In clas-
sical information filtering systems, user interests are formu-
lated using standard IR techniques and data from all avail-
able information sources is filtered based on a predefined
absolute quality-based threshold. In contrast to this restric-
tive approach which may still overwhelm the user with the
returned stream of data, we envision a system which con-
tinuously keeps the user updated with only the top-k rele-
vant new information. Freshness of data is guaranteed by
considering it valid for a particular time interval, controlled
by a sliding window. Considering relevance as relative to
the existing pool of new information creates a highly dy-
namic setting. We present POL-filter which together with
our maintenance module constitute an efficient solution to
this kind of problem. We show by comprehensive perfor-
mance evaluations using real world data, obtained from a
weblog crawl, that our approach brings performance gains
compared to state-of-the-art.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing—
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laneous
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1. INTRODUCTION

The world has turned into one large-scale interconnected
information system with millions of users. With the advent
of Web 2.0, yesterday’s end users are now content generators
themselves and actively contribute to the Web. Each user
action, for example uploading a picture, tagging a video,
or commenting on a blog, can be interpreted as an event
in a corresponding stream. Given the immense volume of
this data and its vast diversity, there is a vital need for
effective filtering methods which allow users to efficiently
follow personally interesting information and stay tuned.

Currently popular methods place the filter on the data
sources: mechanisms such as RSS and atom are used to
notify users of newly published data on their favored we-
blogs or news portals. However, with the currently avail-
able functionalities, users can only decide to be notified of
new posts on certain blogs or follow certain other users as
in Twitter. This limits the number of subscriptions users
make, as otherwise the amount of received information will
be overwhelming for human processing. On the other hand,
traditional information filtering systems [5, 27|, aggregate
all available information sources and allow users to specify
their interests as profiles. Given a similarity measure be-
tween the data and the profiles, only data which passes a
certain quality-based threshold is returned to the user. Al-
though this diversifies the returned results as opposed to the
previous method, it can easily result in flooding the user with
returning too many data. Choosing a suitable threshold to
avoid overwhelming the user or returning very few results
is very hard due to the ever changing nature of incoming
data. This calls for a system which deems relevance as rel-
ative to the existing pool of information [21], as opposed to
absolute relevance. Furthermore, to account for the desire
of consuming new information and to prohibit repeatedly
returning highly relevant, but old information, data is con-
sidered valid for only a certain time interval, controlled by
a sliding window. Note that in the context of Web 2.0, all
information come with explicit temporal annotations e.g.,
written at, uploaded at, which makes them natural items of
a temporal stream; therefore the definition of a sliding win-
dow is meaningful. The dynamism introduced as a result of
considering relevance relative in a frequently changing infor-
mation pool, as well as the scale of our envisioned system



in handling huge number of users, poses fundamental new
challenges which were nonexisting previously.

As an illustration, emphasizing the importance of the ad-
dressed problem, consider a small scale case where 100,000
profiles are maintained at a single server. The naive ap-
proach consists of evaluating every profile against the in-
coming documents and re-evaluating the profiles upon re-
sult expiration from scratch. According to our experiments,
these operations, disregarding the cost for indexing the doc-
uments, i.e., removing stopwords, calculating TF/IDF val-
ues take on average, orders of tens of milliseconds per docu-
ment on a quad-core Intel Xeon CPU E5530 @2.4GHz ma-
chine. This means that the maximum supported rate of in-
coming documents would be in order of hundred documents
per second which is relatively small, given that today only
in Twitter, around 600 messages are produced per second *.

1.1 Problem Statement

We consider a stream S of documents where each doc-
ument is uniquely identified and consists of a weight vec-
tor, as in classical Vector Space Model, as well as its arrival
time: d = (id, time,d). Assuming m distinct terms avail-
able for content identification, d is an m-dimensional vector
d = (wi,...,wm), where w; is the weight assigned to the
i-th term. Terms which do not appear in the document
have a zero weight. Any of the usual scoring schemes such
as the TF/IDF methodology can be used for assigning the
weights. We further assume in-order streams; items arrive in
the same order that they are generated. In most streaming
scenarios, as well as ours, recent items are of more inter-
est than old ones. This is captured by the sliding window
model. A sliding window (W) is assumed over the stream
and items are considered valid while they belong to this win-
dow. Sliding windows can be either count or time based, i.e.,
bounding the number of items either by count or focusing
only on those that occurred in a particular time interval.
Our solution can be applied to both types.

Similar to web search, we assume user interests, called
profiles, are expressed as sets of terms with corresponding
weights: We denote a profile by p = (u1, ..., um), where
u; specifies the importance of the i-th term to the user.
The relevance of a document to a profile is determined by
a scoring function: sim(d,p) = g(fw; (U1), - fwm, (Um)). We
make the following assumptions regarding g and f:

e Monotonicity: We assume g and f;’s are monotone.
g(x1, ..., Tm) is monotone if g(z1, ..., Tm) < g(xl, ..., Thy)
whenever z; < 2} for all i and similarly for f;s.

e Homogeneity: We assume g and f;’s are homoge-
neous, i.e., they preserve the scalar multiplication op-
eration: g(azi,...,aTm) a"g(z1,...,xm). For sim-
plicity we assume that the homogeneity degree is 1:
r = 1. However, our solution can be applied for higher
degrees of homogeneity as well.

Note that taking the f functions as multiplication and g
as summation, we arrive at the widely used cosine measure
as the scoring function for normalized vectors.

We consider a main memory model and treat each pro-
file as a top-k query. All queries should be continuously
monitored to keep the users up-to-date while the valid pool
of information changes due to arrival of new documents or
expiration of old ones. This goal involves two main tasks:
first is efficient and scalable profile filtering in order to avoid

"http://blog.twitter.com/2010/02/measuring-tweets.html
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comparing an incoming document against the large set of all
existing profiles. Second is maintaining the top-k results of
each profile as the window slides and some documents be-
come invalid. In both tasks we focus on efficiency which is
a necessary step towards ensuring scalability.

1.2 Contribution and Outline
In this paper we make the following contributions.

1. We design an efficient profile filtering algorithm, PO L—
filter, which refrains from processing all profiles. We
show that our method is exact and all profiles which
a new incoming document has a chance of being their
top-k result are identified.

2. We use a skyline based method for result maintenance,
but in order to avoid inserting all incoming documents
to the result set, which is the case for in-order streams,
we restrict the insertion criteria such that the size of
the maintained result set remains small. We derive the
necessary conditions to insure exact results.

This paper is organized as follows: Section 2 presents the
related work. Section 3 briefly describes the general struc-
ture that we consider in this paper together with a baseline
algorithm. Section 4 describes an efficient algorithm for pro-
file filtering. Section 5 discusses the skyline-based algorithm
for result maintenance which aims at avoiding re-evaluations
to high extent. Section 6 presents the experimental evalua-
tion and Section 7 concludes the paper.

2. RELATED WORK

Our envisioned problem is the conjunction of two funda-
mental areas of research: Stream Processing and Informa-
tion Filtering. Information filtering or selective dissemina-
tion of information is considered dual to classical informa-
tion retrieval. In information retrieval, similar to our sce-
nario, users subscribe to a system with their favorite profiles
and receive notification whenever a relevant item arrives at
the system. Traditionally relevance is defined by a fixed
threshold or a boolean model is used. Setting this threshold
to a suitable value is a very difficult task: a low value causes
the user to be overwhelmed with the amount of results re-
turned, while a too high value results in too few or no results
at all. Instead we aim at returning the top-k results with
regard to a constantly changing pool of data. Information
filtering has been considered in vector space [5, 27], boolean
[28] and more recently AWP [25] models. As mentioned in
Section 1.1, we also consider the vector space model due to
its popularity in use and simplicity. In [27], a profile filter-
ing scheme is proposed which is based on distinguishing the
significant and insignificant terms of a profile based on the
given threshold. Only the significant terms of a profile are
indexed and they are selected in a way that completeness
of results, with regard to the given threshold, is guaranteed.
Note that this method is not applicable in our setting as we
do not consider a fixed threshold for returning the results. In
[5] the previous method, which reduces the cost of disk I/O
at the expense of larger indices, is combined with a docu-
ment batching process which takes advantage of the sparsity
of the profile and document matrices and writes the partial
similarity matrix to disk, improving the efficiency. Callan
describes a document filtering system [8] based on the in-
ference network model of information retrieval. Information
filtering is essentially similar to bichromatic reverse nearest



neighbor search (RNN). Given a database of points P, a
set of query points ), and a similarity measure between the
members of P and @, in bichromatic RNN search, with a
query q € @ the goal is to find p € P which is closer to ¢ than
any other point of ). Most proposed methods for this prob-
lem consider two dimensions. In [16] two separate R-trees
are used as the index structure for RNN search. [24] consid-
ers the monochromatic version of RNN in two dimensions
and is based on the geometric observation that the maxi-
mum number of RNN’s in two dimensions for a query point
is 6. Singh et al. in [23] propose an approximate method
for RNN search in high dimensional data which first finds
the NN’s of a query point with the hope that its RNN is
actually among them. In our setting we focus on exact re-
sults, as each query represents a user who wishes to receive
complete answers.

Stream processing has been a hot topic in the past few
years due to its suitability in modeling large number of
today’s applications which are not captured well with the
models offered by traditional database systems (for compre-
hensible surveys see [4, 22]). A related problem in stream
processing is top-k query answering over sliding windows.
Mouratidis et al. [20] maintain a skyline [7] which repre-
sents the possible top-k candidates. Their solution is op-
timized for fized queries and they focus on changes intro-
duced by items timing out or new items arriving in. We
also use the concept of skylines to maintain our result sets
and prove the completeness of results returned given the fact
that we do not maintain the complete skyline. Furthermore,
their grid-based indexing structure is not usable in our set-
ting, as we are considering high dimensional textual data
which will cause an explosion in the index size in a parti-
tioning structure. In a more general setting, [9] proposes
indexing methods for answering adhoc top-k queries based
on arrangements. Again, the dimensionality of the data in
their setting is low, so their solution is not applicable to our
problem. Jin et al. [14] consider top-k queries on uncertain
streams where the data items are associated with existential
probabilities. The authors in [11] focus on top-k monitor-
ing over multiple non-synchronized streams, where complete
score calculations are not possible.

The closest work in the literature to ours is the recent
work by Mouratidis et al. [21] which considers processing
continuous text search queries. They maintain the valid
documents in inverted lists and execute a threshold algo-
rithm. While this is similar to our setup, the key idea in
their approach is to keep the state of the TA algorithm, for
each query (i.e., profile), in a per-term index organized as
a tree. Upon arrival of new documents, the tree is scanned
for all potentially affected profiles and in case of a change
in the score of the document at rank k, the thresholds are
updated upwards. In the case of the removal of old docu-
ments the index lists’ scan lines will be adapted downwards.
The rationale behind this continuous adaptation of the scan
lines is that tight bounds cause fewer documents having to
be evaluated against the registered queries. However, these
scan lines are too often not a good (tight) description of
the actually more interesting score at rank k, leading to the
problem that many profiles have to be checked for modifica-
tion with almost every incoming document. An additional
effect of the the scan line based indexing is the large num-
ber of potential candidates held in the resultset. We address
both problems (profile indexing and result maintenance) in
this work and have implemented the approach by Mouratidis
et al. [21] and include it in our experimental evaluation.

Continuous k nearest neighbors (kNN) queries on data
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streams is also a related topic which has been considered in
[17, 6]. Koudas et al. present Disc [17] for indexing high
dimensional points using space filling curves to give approx-
imate answers to KNN queries. On the contrary we aim at
providing exact results. Bohm et al. in [6] consider a fixed
number of queries and index queries instead of incoming tu-
ples in a structure similar to VA files [26] to continuously
provide exact answers in a sliding window model. They also
maintain a skyline to decide which tuples should be kept,
therefore minimizing the needed storage. Essentially all the
above are similar to our problem, if we consider each pro-
file as a continuous query. However none of the indexing
methods which provide exact results are applicable to our
setting due to the high dimensionality of textual data we are
considering.

Mainly motivated by the wealth of news feeds and other
online information streams, another problem is Topic Detec-
tion and Tracking (TDT) which has been extensively stud-
ied in the past few years [3, 2, 12]. The goal is to detect
new events appearing in the data stream and tracking those
events to later identify data which further discuss the same
event. Mining common topics in multiple asynchronous text
streams is considered in [1]. In another line of research re-
lated to Web 2.0 applications with temporal considerations,
Hotho et al. [13] consider discovering topic-specific trends
in folksonomies which are collections of resources tagged by
users (such as Flickr or del.icio.us ? ). Their analysis is per-
formed offline assuming the whole corpus of data is available
and is based on the PageRank algorithm. Weblog evolution
is considered in [18], where time graphs are introduced and
used for community tracking again in an offline mode. In
[19], the goal is to identify weblogs defined as starters and
followers specified by certain linking relations in an efficient
way. For a survey of temporal data analysis methods see
[15] and the references within.

3. SYSTEM MODEL AND STRUCTURE

In this section we briefly describe the general structure
that we consider. As mentioned in Section 1.1 we consider
one data stream as the input to our system. We aim at
providing real-time continuous exact results to the users,
therefore results returned as the top-k most relevant doc-
uments for each profile should consist of the top-k results
over all valid documents in the system at each instance of
time. With small number of queries (profiles) or infrequent
updates in the result set of each profile, all queries could be
re-evaluated at certain times to this end. However, given
large number of profiles, this solution does not scale to pro-
vide real-time monitoring of all profiles’ results. Instead, we
index the profiles and assess the suitability of a new docu-
ment for each profile as the document arrives in the system.
We avoid evaluating all profiles against a new incoming doc-
uments, by a profile filtering component. The profile filtering
component receives a newly arrived document as input and
returns a set of profiles which should be updated with regard
to this document. As the baseline, we maintain an inverted
list structure in the profile filtering: For each term t we
keep a list of profiles which contain this term, i.e., weight
of t is larger than zero for those profiles. We also main-
tain a hashtable of profiles, where profiles with a pointer
to their current result set are stored. When a new docu-
ment d arrives, we evaluate all entries of all inverted lists
corresponding to a non-zero weighted term in d. Evaluating
an entry corresponding to a profile p consists of calculating

Zhttp://flickr.com and http://del.icio.us
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Figure 1: The Overall Structure

sim(d, p) and comparing this with the current rank k result
of p which can be known by accessing the profile hashtable.
If the new document has a better similarity score, p’s result
set is updated with it.

As the window slides, some documents expire and the set
of valid documents changes. Some profiles may need to be
re-evaluated as the expired documents were part of their
result set. The result maintenance component is concerned
with efficiently performing this task. We keep a simple time-
sorted list for tracking valid documents: newly arrived doc-
uments are inserted at the head and those which expire drop
out from the tail. For each document we maintain the set of
profiles to which this document is a top-k result. Therefore,
when a document expires, the set of profiles which should
be re-evaluated is known. The actual method for performing
the re-evaluation is not a main concern of this paper. How-
ever, we assume sorted inverted lists are maintained such
that the usual threshold algorithm (TA) [10] is employed for
query evaluation. Figure 1 presents the general components
and structures we consider.

4. EFFICIENT PROFILE FILTERING

Similar to the baseline described in Section 3, we use an
inverted index of profiles to avoid examining all the existing
profiles against the newly arriving documents. In contrast
to the former approach, we utilize sorted versions of these
lists. As we will describe in this Section, processing these
sorted lists will enable early stopping to further reduce the
number of examined profiles. Our method is similar to the
well-known TA (threshold algorithm) [10] which is widely
used in information retrieval.

As previously mentioned, we consider each profile as a con-
tinuous top-k query over the stream of incoming documents.
Let p.s denote the similarity score of the ranked k& document
with regard to profile p. Let T' = {¢1, t2, ..., tm } be the set of
distinct terms considered for content identification of both
profiles and documents. p.u; represents the corresponding
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weight assigned to term ¢; in p. For each term ¢;, we build a
list I; containing (p.id, p.v;) pairs where p.v; = p.u;/p.s and
the list is sorted in decreasing order based on v; values. p.id
denotes the unique identifier of profile p. A profile with [
terms will only appear in [ of such posting lists.

Assume a document d with the feature vector d
(w1, ...wm) arrives in the system. We do sorted accesses
in a round robin fashion to all posting lists I; where w; > 0.
When a profile p is seen under one of these lists, we access
the profile hash table for its complete weight vector and
consequently calculate the similarity score between d and p.
The result set of profile p is updated if

sim(d,p) > p.s

where as mentioned before sim(d, p) satisfies the two condi-
tions described in Section 1.1.

While accessing the sorted lists in a round robin fashion,
we also check the following stopping condition. For a list [;
let v; be the last observed value under sorted access. We
stop the above procedure when g(fuw, (v1), ... fuw,, (vm)) < 1.

We call the above procedure COL-filter (Completely Or-
dered Lists) and show that it is complete: all profiles for
which a new incoming document serves as a top-k result are
identified before the stopping condition.

THEOREM 1. COL-filter identifies all profiles for which a
new incoming document d is a top-k result.

As g is monotone and the lists are sorted, reaching the stop-
ping condition means that for any non processed profile p,
sim(p,d) < p.s. For a detailed proof please see the ap-
pendix.

Since the number of lists which are processed could be
much larger than the number of terms a profile has, we
take into account the maximum number of terms a profile
can have in calculating the stopping condition. Assume the
maximum number of terms per profile is m’. The stopping
condition could be checked per list, i.e., the procedure can
stop processing one list while the other lists should still un-
dergo the procedure. Let I be a subset of size m’ of the lists
under process. We define the following:

£, ) ={ (22

Also, let I; be the set of all subsets I, where I includes [;.
The algorithm stops processing [; if

ifl; eI
otherwise

mazre, (o, (V1) - fu, (vm)) < 1

If g is symmetric, i.e., its value at any m-tuple of arguments
is the same as its value at any permutation of that m-tuple,
it is enough to do the test for one set I,,q, which contains
the (m’ — 1) lists with the largest fu, (v:) values along with
l;. The general steps are shown in Algorithm 1.

While COL-filter enables early stopping and avoids ac-
cessing and assessing all profiles which appear in an inverted
list of a term in an incoming document, it incurs high costs
for maintaining the inverted lists. Contrary to standard in-
formation retrieval inverted lists, where the lists are static
and change rarely, the sorted lists in COL-filter change fre-
quently. This is because the values we use for sorting depend
on the similarity scores of profiles which change with time,
as new documents arrive or old ones expire and are removed
from the system. Note that each time a profile p is updated,
i.e., a new incoming document qualifies as its top-k result,



Algorithm 1: The COL filtering algorithm

ProfileFilter Input: d = (ws, ..., wWm)
toProcess = {);
toUpdate = ();
if w; > 0 then
| toProcess.add(l;);
while toProcess # () do
foreach list l; € toProcess do
p = l;.getNext().getProfile();
Vi = P.V4;
p.s = p.getScore(k);
if sim(p,d) > p.s then
| toUpdate.add(p);

foreach list l; € toProcess do

if maxleﬂjg(fil(ﬂ),...fim (vm)) < 1 then
| toProcess.remove(l;);

if !l;.hasNezt() then

| toProcess.remove(l;);

return toUpdate;

p.s changes. As a result p.v; = p.u;/p.s changes, there-
fore p’s corresponding tuples in all lists which p appeared
in should be updated. As a consequence of the high dy-
namism inherent in the system, which is due to the high rate
of incoming documents and their expiration, the number of
necessary updates can be very high. The cost of maintain-
ing the lists sorted can therefore overshadow the benefits
of early stops. In the following, we propose a relaxation
to completely sorting the lists, which requires significantly
fewer number of updates and is cheaper to maintain.

4.1 Partially Ordered Lists

We aim at decreasing the cost of maintaining the sorted
lists by grouping entries and ordering the entries only based
on a fixed number of predefined boundaries instead of main-
taining full order. These boundaries are then used to test
the stopping condition. Our Partially Ordered List method,
POL-filter, is described below.

Similar to COL-filter, we maintain inverted lists for each
term t;, denoted by [; with entries (p.id,p.v;) as defined
above. For each list I; we consider r groups which we iden-
tify by their boundaries: b;1 > ... > b;. The entries in [; are
grouped based on these boundaries. An entry (p.id, p.v;) be-
longs to the group b;; if p.v; > b;; and p.v; < bi(j,m, where
the second condition is assessed only for j > 1. The entries
inside one group are not kept sorted. To process an incoming
document d = (w1, ...wm ), we start with the first group b;o
in all lists /; where w; > 0 and calculate the similarity scores
of profiles in these groups with regard to d. The complete
weight vector of a profile can be known, when necessary, by
accessing the profile hash table in constant time. A profile’s
result set is updated with d when sim(d,p) > p.s. We con-
tinue to assess the profiles in the next group in each list only
if the following stopping condition is not satisfied:

G(fuw1 (610); -+ from (brmo)) < 1

In the following rounds, the algorithm reads all profiles which
appear in group b;;4+1) where j identifies the list with the
largest w;b;;) value and ¢ is the last group assessed in list
J. The stopping condition, replacing b;) with b;1) in the
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above equation, is assessed each time a new group b;(;41) is
processed. It is easy to see, similar to the proof of Theo-
rem 1, that this procedure is complete. Note that similar to
COL-filter we can use the fact that the number of terms per
profile is much smaller than the number of lists which are
under process and improve the stopping condition.

The update cost in POL-filter is limited to maintaining
the groups in each list. Since the entries in a group are not
sorted, a hash table which provides constant insert and re-
moval costs could be used to add or remove entries to groups.
We move a profile p from a group when p.s changes and the
group membership does not hold anymore for the current
group. In this case, the algorithm identifies the newly qual-
ified group and the two affected groups are updated. Note
that p.s can change due to arrival of a new document which
qualifies as p’s top-k result or expiration of a previously top-
k document.

4.2 Boundary Selection

While POL-filter decreases the maintenance cost, its ef-
fectiveness on early stopping depends on the selected group
boundaries. If the b; values are chosen to be too big, the
stopping condition is not satisfied and the algorithm pro-
cesses all the profiles in a list. On the other hand if they are
chosen to be too small, the algorithm may process too many
unnecessary profiles before it stops. Fixing the number of
groups to 7, we measure the extra cost POL-filter incurs by
processing unnecessary profiles and aim at minimizing it. To
calculate this extra cost, we assume that the lists are sorted
also inside the groups, and calculate the number of extra
profiles processed in a group. For simplicity let us assume
we have a single term ¢ and its corresponding list I. We
later show how our discussion is extended to multiple lists.
We denote the weight of ¢ in an incoming document with
w and the entries in | by p.v. We consider r groups with
boundaries by > ... > b,. In case of a single list, if group
b;’s profiles have been assessed, the POL-filter’s stopping
condition is g(fw(bi)) < 1. Let W and V denote the ran-
dom variables corresponding to w, weight of ¢, and v values.
Assume fw (x) and fv(x) respectively show the probability
distribution functions of W and V. Also assume the size of
list I is ¢ and the number of documents with term ¢ is n.
The following is the cost which POL-filter incurs:

T bi_1 1
Zn/ fv(av)/ fw(z/x)qPr(b; <V < x)dzdx
i=1 Jbi 0

where by is the largest value V' can have and b, the smallest
value. Since we have assumed the profiles are sorted also in
the groups, nfbii_l Jv(z) folo fw(z/x)dz counts the number
of times the stopping condition is satisfied for a profile in
group b;—1 and gPr(b; < V < x) counts the number of extra
profiles POL-filter reads in this case. Since POL-filter checks
the stopping condition each time a new group is assessed, it
reads at most “size of a group” extra profiles compared to
COL-filter. The above simplifies to:

by
/b ngz fv(x)Pr(W < 1/z)Pr(z)dx

i—1

zfv(x)Pr(W < 1/z)dz

- 2 Pr(by) /bb

bo and b, are fixed values (maximum and minimum values



of V). So to minimize the cost, the negative part should
be maximized. While this is easy for some distributions
like the uniform distribution, it is not straight forward for
others. In our experiments we estimate the distributions
of interest by histograms and solve the above optimization
problem numerically.

In deriving the previous optimization equations, we as-
sumed that only one list is under process. However, in
a real scenario often several lists are being processed and
the stopping condition depends on all of them. Therefore
9(fuw; (bji)) < 1is not a good estimate of the stopping condi-
tion. We treat the lists independently and use the maximum
number of terms a profile can have (m') to estimate the stop-
ping condition by g(fuw;(bj:)) < 1/m’ instead. To account
for this change in the above equations, Pr(W < 1/z) should
be replaced with Pr(W < 1/xzm/’).

S. RESULT MAINTENANCE

So far we have considered the problem of efficient pro-
file filtering when a new document arrives. Another impor-
tant aspect of our streaming scenario is the sliding window
which specifies the valid documents. In this section we first
describe the challenges caused by this temporal factor and
then describe our solution.

When a document which is part of the top-k results of a
profile expires as the window slides, another document from
the existing valid documents should replace it. The process
of re-evaluating a top-k query usually incurs high cost on
the system. Given the fact that we aim at supporting a
large number of profiles, this cost can slow down the sys-
tem and prevent it from timely and correct responses to the
users. This problem is closely related to view maintenance
discussed in the database community [29].

In the following, we consider a given profile p and when
we mention the score of a document or the top-k results, it is
with regard to this specific profile. Let us assume a set p. R of
documents is maintained for p. To avoid ever re-evaluating
p over the set of all valid documents, p.R should contain all
documents which have a chance of becoming a top-k result
in their life time. This set consists of the top-k current
results as well as documents which have a smaller score or
shorter life time compared to at most k—1 other documents.
This concept has been previously exploited in the context of
continuous top-k processing in [20] and in kNN queries in
[6]. For a given profile p, we consider the documents in the
time/score space where score corresponds to the similarity
degree of a document and p, and time presents its arrival
time. A document di dominates do if di.time > da.time
and di.score > da.score. The k-skyband [20] of a set of
points is a subset of these points where each is dominated
by at most £ — 1 other points. Clearly if a document is not
in the k-skyband it can never be a top-k result of p, as at
least k documents with higher similarity grades and longer
life times exist.

While many new documents do not qualify as relevant re-
sults to a profile due to their low similarity degrees, they are
part of the k-skyband as a result of their ¢¢éme dimension:
since we are considering in order streams, all incoming doc-
uments are part of the k-skyband of all profiles at the time
they arrive. Such documents remain in a profile’s k-skyband
only for a short amount of time until they are dominated by
fresher, more relevant documents. Inserting each incoming
document to all profiles’ k-skybands, incurs a large space
overhead as well as unnecessary CPU cost to actually main-
tain the k-skyband.
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Algorithm 2: The overall Algorithm for removing ex-
pired documents and inserting new documents

Input: newdocs,expireddocs
foreach document d € expireddocs do
D.remove(d);
foreach profile p € d.profiles do
p.R.remove(d);
if |p.R| < k then
re-evaluate(p);
p.updateTopK (p. R.topK);

~

obeUpdated = (;
foreach document d € newdocs do
D.insert(d);
tobeUpdated = ProfileFilter(d);
foreach profile p € tobeUpdated do
p.R.insert(d);
p.R.updateDominance();
if p.R.topK has changed then
| p.updateTopK(p.R.topK);

To circumvent these costs, we restrict the documents which
are inserted to p.R to those which have scores larger than
a threshold 7 and maintain the k-skyband over them. We
call this part of the k-skyband the horizon. With suitable
values of 7, the horizon is expected to be more stable, i.e. its
members do not disqualify frequently, and more promising,
i.e. its members are more likely to actually become a top-k
result. In the following we first describe our horizon result
maintenance method and then discuss suitable values of 7.

Consider a profile p and its corresponding set of docu-
ments p.R. A re-evaluation over the set of all valid docu-
ments is invoked when [p.R| < k and in this case p.R is set
equal to the obtained top-k results. A newly arrived doc-
ument d is inserted to p.R if sim(d,p) > 7. When a new
document is inserted in p.R the dominance values (i.e., a
counter) of existing documents are updated accordingly and
those documents whose dominance value hits k£ are elimi-
nated from p.R. Note that removing a document from p.R,
either due to expiration or as a result of dominance by k
other documents, does not affect the dominance values of
other existing documents: all documents dominated by this
document should have been removed before.

Fixing 7 to a predefined static value is not suitable for our
dynamic setting as an appropriate value currently may be
too small or big in future with regard to the corresponding
window of valid documents. A too small value would result
in all documents qualifying for insertion to p.R and ulti-
mately maintaining the complete k-skyband. On the other
hand, a too large value causes p.R to frequently contain less
than k documents and firing numerous re-evaluations. A dy-
namic value for 7 which adapts to the relevance of current
documents is the remedy.

Let p.R.score denote the score of the ranked last docu-
ment in p.R. We show that for any value of 7 smaller than
or equal to p.R.score, p.R contains the correct top-k re-
sults: the top-k results in p.R are the same as the result
of evaluating p over all valid documents. We also show, by
a contradicting example that this is the largest value which



still guarantees the correctness of the horizon. Note that the
correctness concern raises due to dynamically changing 7.

THEOREM 2. Let p.R.score denote the similarity score of
the ranked last document in p.R. If T is changing dynami-
cally, the necessary and sufficient condition for p.R to con-
tain the correct top-k results is that T < p.R.score.

For the proof please see the appendix.
5.1 Integration with Profile Filtering

To integrate the above described horizon maintenance
scheme with the proposed profile filtering algorithm, the p.s
values used in calculating p.v in Section 4 should be replaced
with 7. This will ensure that the profile filtering algorithm
will not miss any profiles p where a new document should be
inserted to p.R, although the document may not qualify as
a top-k result of p currently. The overall steps for inserting
documents and updating profiles are shown in Algorithm 2.
D denotes the set of valid documents. First, expired docu-
ments are removed from D. d.profiles denotes the affected
profiles by d: all profiles p where d € p.R. An affected pro-
file p of an expired document is re-evaluated if |p.R| < k.
Then, for each of the incoming new documents the profile
filter returns the profiles which should be updated with this
document. Note that if document d is inserted in p.R it
is not necessarily a top-k result of p, but it is part of p’s
horizon.

6. EXPERIMENTS

We have implemented a simulation of the envisioned sys-
tem in Java 1.6. The dataset is stored in an Oracle 11g
database and replayed according to the timestamps attached
to the entries.

Dataset and Profiles

We have obtained the ICWSM 2009 Spinn3r Blog Dataset>.
It consists of 44 million blog posts between the time pe-
riod of August 1st and October 1st, 2008. Each blog entry
(post) consists of plain text, a timestamp, a set of tags, and
other meta information such as the blog’s homepage URL.
The data is formatted in XML and is further arranged into
tiers approximating to some degree search engine ranking.
We have parsed the blog posts for the highest tier levels
resulting in 2,444,780 distinct posts. After stemming and
stopword removal, we have inserted the content of each blog
as (term, score) pairs in the database where the TF/IDF
methodology is used for assigning weights.

Profiles are generated by looking at frequently used topic
descriptions of the blog entries, such as “US election”. Each
profile has between 3 and 5 out of 657 distinct terms and
their corresponding weights are chosen uniformly at random.
We did not use one of the standard search engine query
logs as subscription queries are of a more general nature.
We use the well-accepted cosine measure to calculate the
similarity degree between a document and profile. Note that
as mentioned in Section 1.1 the cosine measure has the two
necessary properties of monotonicity and homogeneity. We
assume that the document and profile vectors are normalized
by their lengths: |p| = |d| =1, so sim(d,p) = >, wiu;.

Algorithms and Measures of Interest

We consider the following three algorithms for profile filter-
ing.

Shttp://www.icwsm.org/2009/data/
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Parameter Default Range
number of profiles 50K 30,40,50,60,70,80
result cardinality (k) 10 5,10,15,20
window size 4500(s) | 2700,3600,4500,5400,6300
number of groups 10 2,4,6,8,10,12,14

Table 1: Variations of the parameters as used in the
experiments.

[ Algorithms [ total [ profile il. | update [ re-eval | insert |
naive-k 23.12 7.45 0.00 14.73 0.67
col-k 23.87 2.36 3.12 17.39 0.74
pol-k 21.14 3.48 0.52 16.17 0.71

naive-horizon 11.01 7.18 0.00 1.71 1.80
col-horizon 9.64 3.47 1.30 2.71 1.83
pol-horizon 8.84 4.60 0.28 1.78 1.85
incr.-thresh 13.86 - - - -

Table 2: Average time measurements (ms).

e naive: As a baseline we have implemented a profile
filtering algorithm that keeps non-sorted inverted lists
of profiles and reads, for an incoming document, all
entries from all inverted lists that correspond to a term
in the document.

e col: This is our algorithm as described in Section
4 which keeps all profiles in term-based index lists,
sorted by score. The exact ordering is kept at all times,
which has benefits for the profile filtering process but
comes with the cost of placing or re-placing entries to
the exact position w.r.t. their scores.

e pol: This algorithm as described in Section 4.1 divides
the inverted lists to groups, maintaining the group
membership criteria for the entries but not the order
among entries of a particular group. We expect a larger
percentage of profiles read during the profile filtering
but a significantly lower maintenance cost.

For all the above we have two alternatives for result main-
tenance: (i) using a simple top-k list and re-evaluating when-
ever one of the top-k results expires or (ii) maintaining each
profile’s horizon, as explained in Section 5.

We have also implemented the approach by Mouratidis
et al. in [21], described shortly in Section 2, which we will
refer to it as incr.-thresh.

We report on CPU time as our main measure of perfor-
mance. Note that we do not report on accuracy measures
as all algorithms report the exact top-k results. To better
understand the effects of our proposed algorithms we have
measured CPU time for different parts of the algorithms, in
addition to the overall time. Also for the result maintenance
algorithm we are interested in the space overhead imposed
by retaining more than k documents per profile.

Depending on the sliding window size, the number of doc-
uments inserted in the system, ordered on their timestamps,
is such that at least 5 non-overlapping sliding windows have
completed. All measurements are averaged over all pro-
cessed documents after a warm-up phase of 500 documents.
The parameters, their default values and range of variations
are shown in Table 1. All algorithms are run on a quad-core
Intel Xeon CPU E5530 @2.4 GHz, 48 GB main memory, 4
TB of hard drive and Microsoft Windows Server 2008 R2
x64 as operating system.
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Results

Table 2 shows the time measurements for the default sys-
tem parameters for naive, col, pol and, incr.-thresh. Total
time includes the time spent for removing old documents,
updating the affected profiles by re-evaluating them, profile
filtering for a new incoming algorithm and inserting it to the
result sets of selected profiles. To have a better understand-
ing of the effect of different approaches, Table 2 shows the
time spent for each of these parts separately. Note that we
do not show the time which is the same for all algorithms,
like the time to insert a document in the term-document
inverted list, but this is included in the total time. Further-
more, for incr.-thresh we only show the total time, as this
algorithm does not have same separated modules for the
above mentioned tasks. The first observation is that a sig-
nificant portion of time (31%) is spent in the profile filtering
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component in the naive-k algorithm. The col-k algorithm
decreases this time by almost 68% at the expense of large
update time for keeping its necessary structures up-to-date.
Our proposed pol-k algorithm is successful in decreasing the
time spent for profile filtering as well as limiting the update
cost. Note that col-k has a bigger re-evaluation time, as re-
evaluating a profile causes its p.s value to change, causing
updates in the inverted lists which should be kept sorted for
col-k. While col-k incurs a larger total time due to its huge
update cost, pol-k achieves in total 8% improvement com-
pared to naive-k. The next three rows of this table show the
measurements for the horizon variation of the algorithms.
The re-evaluation cost decreases for all algorithms by almost
84% at the expense of a relatively small increase in the result
insertion time. In the horizon variations, result insertion is
more costly as it involves updating the dominance counters
and k-skyband maintenance. Since with the horizon method
more profiles get qualified to have a document in their result
set, we observe an increase in the profile filtering time for
col-horizon and pol-horizon compared to their top-k coun-
terparts. However, since the ranked last document in the
result set, which defines the values of interest for keeping
the lists ordered, changes less frequently than in the top-k
method, the update cost for these algorithm decreases sig-
nificantly. In total, we observe 60% decrease in the total
time, from naive-k to pol-horizon which achieves the small-
est total time among all algorithms. incr.-thresh inserts all
documents that are in any index list above the scan line of
that profile which causes the result set to grow very large.
This has the benefit of eliminating the re-evaluations, but
on the downside large space is consumed and a large result
set should be kept sorted which incurs extra cost. Over-
all, pol-horizon has a decrease in total time of 36% together
with significant decrease in the resultset size it maintains
compared to incr.-thresh.

As seen previously, the pol algorithm is successful in main-
taining the decrease in profile filtering time as well as lim-
iting the time spent for updating the required structures.
The calculations necessary for choosing the boundary val-
ues mentioned in Section 4.2 are performed only once after
the warm-up phase. Figure 2 presents the effect of number
of groups. Figure 2 (a) shows the total time for pol and col
with the top-k and horizon variations. We observe that with
as small as 10 groups, pol achieves very good decrease in the
total time. In Figures 2 (b) and (c) we observer the profile
filtering and update times for different number of groups.
pol-k incurs almost 6 times less update cost compared to
col-k, at the expense of small increase in its profile filtering
time. As mentioned in the previous paragraph, the hori-



k #reeval top-k | size top-k | #reevals horizon | size horizon
5 73.18 4.99 11.49 7.93
10 141.03 9.99 6.56 17.84
15 209.00 14.97 3.55 28.75
20 278.51 19.94 2.62 40.11

Table 3: Number of re-evaluations and result set
sizes when changing k. w=4500(ms) and #profiles
= 20000.

zon variations have smaller update cost and slightly larger
profile filtering time.

The effect of number of profiles on total time is shown in
Figure 3. The total time for all algorithms increases with
increasing the number of profiles, as the profile filtering and
re-evaluation parts become more costly. However, the effect
of our profile filtering algorithms are more visible for larger
number of profiles. Also note that pol does not show any
significant drop in decreasing the total time compared to
col, although the number of groups are fixed for all profile
cardinalities to 10. This is because by using the horizon
maintenance module, the update cost in col decreases sig-
nificantly, as shown in Figure 2(c). incr.-thresh has much
larger total time, since similar to col-k it spends a lot of
time updating the index lists’ scan lines. The pol-horizon
algorithm achieves the minimum total time, decreasing it by
up to 40% from incr.-thresh

We report on the effect of sliding window size on average
total time in Figure 4. The average total time decreases
with increasing size of the sliding window for all algorithms.
This is mainly due to the decrease in number of necessary
re-evaluations on average. With a bigger window size, high
quality documents live longer and a larger time span allows
for high quality documents to arrive before others expire and
fire a re-evaluation. As seen in the Figure, with large enough
window sizes pol-horizon and col-horizon have similar total
time which is the result of fewer updates.

Table 3 reports on the average number of re-evaluations
and result set size for the top-k and horizon variations. Note
that the profile filtering algorithm does not have an effect
on these values so we have not repeated the results by sep-
arately reporting on them. First, note that the necessary
number of re-evaluations drops from 7 to almost 100 times
less for the horizon method compared to top-k based main-
tenance. The very interesting observation is that with in-
creasing the k value, the number of re-evaluations has an
increasing trend for the top-k method but a decreasing one
for the horizon algorithm. This is because for larger values
of k the horizon grows much larger than k, significantly de-
creasing the chance of the result set containing less than &
results to fire a re-evaluation. However, the horizon method
comes with the extra cost of maintaining the horizon.

In summary we observe that the pol-horizon combina-
tion offers significant performance gains compared to the
rest of algorithms. The horizon result maintenance algo-
rithm causes small decrease in the improvement pol can of-
fer in decreasing the profile filtering time. However, it dras-
tically decreases the necessary update cost and number of
re-evaluations while incurring only a small space over head
over the system. A decrease of between 25% to 30% in over-
all processing time, allows our envisioned system to scale
better to larger number of profiles and higher data rates.

7. CONCLUSION

Motivated by the tremendous popularity of blogs, micro-
blogging services like Twitter, and online newspapers, we
address the problem of continuously processing large number
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of user defined subscription queries (profiles) over a stream
of documents. The challenge in processing these queries
in real-time lies not only in the fact that there are many
queries, but also, and foremost, in the observation that data
streams in at high rates. Both properties combined call for
a careful profile filtering process, that omits evaluating too
many profiles. Our approach significantly reduces the num-
ber of necessary profiles evaluations, by organizing the user
profiles in a so called inverted index. The key idea is to
sort profiles not only on their weight w.r.t. a term but also
according to the quality of the currently alive documents
which are ranked high for a particular profile. This sorting
criteria allows for an effective stopping condition for the pro-
file filtering algorithm. Furthermore, we observe that keep-
ing the entire lists completely sorted is infeasible as profiles
frequently move up and down in the lists. We solve this
by using group sorted lists, i.e., lists consisting of different
groups which are sorted relative to one another, but without
order inside groups. As the definition of the group bound-
aries is crucial for the overall performance gain, we present a
method to select these bounds by leveraging score distribu-
tion information derived from histograms. We combine our
proposed filtering algorithm with an effective skyline based
result maintenance algorithm which cuts drastically on the
number of necessary re-evaluations caused by expiring doc-
uments. We evaluate our approach using a real world blog
dataset demonstrating the performance gains compared to
the state-of-the-art.
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APPENDIX

Proor 1. We show that for any profile which has not
been updated before the stopping condition is reached, d
does not serve as a top-k result. In other words we show
that for such profiles, sim(d,p) < p.s. If p has been seen
in one of the sorted lists before the stopping condition, ac-
cording to the algorithm its similarity score with d has been
evaluated by looking up p in the profile hash table. There-
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fore if p has not been updated, clearly sim(d,p) < p.s. Now
assume p has not been observed in any of the sorted lists
before the stopping condition. For a list I; let v; be the
last observed value under sorted access. Since the lists are
sorted in descending values, p.v; < v;. As a result of this
and due to f and g’s monotonicity, g(fuw, (v1), - fuw,, (Vm)) <
9(fwr (V1), - fo, (Wm)) < 1 where the last equality is the
stopping criteria. Since p.v; = p.u;/p.s and due to f and g’s
homogeneity, we have

9(fur (V1) o fro (Vm)) = g(fuor (W1) /DS, - froyn (Um) /D-5)

= g(fuwr (u1), .o fro,, (um))/p.s < 1
O

ProOF 2. We first show that if 7 < p.R.score, p.R con-
tains the true top-k. Let d be the valid document with the
largest score which is not in p.R at current time tcurrent
and p.R.scorei be the score of the ranked k& document in
p.R also at tcurrent . We show that sim(d,p) < R.scorey.
We should consider two cases: first d was inserted to p.R
but then removed, or d was never inserted to p.R. Since d
is valid, it was removed from p.R as a result of being domi-
nated by k documents which means k£ documents with longer
life times exist which have a higher score than d. These
are indeed in p.R, as we have assumed d has the largest
score among all valid documents not in p.R. So for the
first case sim(d,p) < p.R.scorexe. In the second case, d
was never inserted to p.R. Let t; denote the time when the
most recent re-evaluation was performed. If t1 > d.time,
the most recent re-evaluation was performed after d’s ar-
rival. Since d was not inserted in p.R, at least k docu-
ments with higher scores than d existed at time ¢;. Since
|[p.R| = k after each re-evaluation, 7 at after ¢; and be-
fore a new re-evaluation is equal to or larger than the score
of the ranked k& document at time ¢;. Since we have as-
sumed the most recent re-evaluation happened in ¢, either
those top-k documents have not expired until tcyrrent, Or
documents with score larger than 7¢, have arrived, other-
wise the size of p. R would be less than k at some point after
t1 which is in contradiction with our assumption that the
most recent re-evaluation was invoked at ¢1. In both cases
R.scorer < 1¢; > sim(d,p). Now assume t; < d.time: the
most recent re-evaluation happened before d’s arrival. In
this case, sim(d,p) < Td.time, otherwise d was inserted in
p.R. If no re-evaluations happens, 7 can only increase, as
only higher scored documents can be inserted to p.R. Sim-
ilar to the previous case, either documents in p.R at time
d.time have not expired yet or higher scored documents have
arrived, otherwise a re-evaluation would have been fired. In
both cases, R.scorer > Tq.time > sim(d, p) which completes
the proof for correctness of results when 7 < R.score.

To show that this is also a necessary condition, we give
an example of when p.R doesn’t contain top-k results if
7 < R.score. For simplicity let k& = 2, examples for other
k can be constructed similarly. Let 7 = R.score 4+ ¢ and
€ > 0. Assume R is empty and consider the following
stream of documents (first attribute shows time and the
second is score with regard to the specific profile we con-
sider): di(1,s1), d2(2, s2), d3(3,s3), da(4, s4), where s1 > s2
, S1 > 83, S3 > s2. Then when d4 arrives, 7 = s2 + €, be-
cause dz is dominated only by ds so it isn’t removed. Now
if s4 = s2 + €/2, ds is not inserted to R. Assume no new
document arrives. When d; expires, d2 and ds are reported
as the top-k results although ds4 has higher score than ds.
O

which is equivalent to sim(d,p) < p.s.



