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ABSTRACT

This paper proposes a method recovering audio-visual syn-

chronization of multimedia content. It exploits the correlation

between the acoustic and the visual signals in order to esti-

mate the audio-visual drift existing in the content. By shifting

the audio signal relative to the visual signal, the estimation

of the drift is obtained by searching for the shift producing

the maximal audio-visual correlation. We consider two cor-

relation measures, namely, mutual information and canonical

correlation, and compare their performance. Experimental re-

sults demonstrate that the method using the canonical corre-

lation is effective in recovering the audio-visual synchroniza-

tion for both speech and non-speech sequences.

Index Terms— Audio-visual synchronization, mutual in-

formation, canonical correlation, multimedia

1. INTRODUCTION

The synchronization of the acoustic and the visual signals is

one of the most important factors affecting the quality of ex-

perience of multimedia content. It has been shown that poor

audio-visual synchronization causes significant degradation

in perceived quality by human observers and even deterio-

rates intelligibility of the content.

However, errors in audio-visual synchronization some-

times occur and corrupt the content in multimedia applica-

tions. It may be caused during acquisition, editing, processing

or network transfer of the content. For example, when a mi-

crophone is placed far from the sound source during record-

ing, the difference of the speeds of the sound and the light

may cause audio-visual desynchronization in the recorded

data. Different processing time and different network transfer

delay of the two signals may also cause desynchronization

between them. Such audio-visual drifts may be even accu-

mulated during various stages to produce the final content

from the recorded material. Therefore, in order to enhance
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the quality of experience of the multimedia content, it is de-

sirable to detect the temporal misalignment between the two

signals and recover correct synchronization between them.

While there are efforts to avoid such temporal misalign-

ments by specifications that preserve synchronization during

multimedia processing, e.g. the presentation time stamp in

MPEG-2, recovering synchronization of the desynchronized

content has been rarely attempted.

Recently, a method has been proposed to estimate the

audio-visual drift in a semi-automatic way [1]. This approach

has been shown to perform successfully for some selected

drift conditions. However, it has a limitation that it works

only for video clips containing talking heads and the mouth

region needs to be located prior to the drift estimation.

This paper proposes a novel method for recovering the

audio-visual synchronization of a given desynchronized mul-

timedia content. The method analyzes the correlation be-

tween the visual motion information in the scene and the dy-

namics of the audio signal that is temporally shifted. Two

measures of the correlation are considered, namely, mutual

information and canonical correlation, which are compared

experimentally. It is shown that the method using the canon-

ical correlation produces successful drift estimation results

without necessity of adjustment of any content-dependent al-

gorithm parameter. The proposed method does not have any

assumption on the sound-emitting object and thus, is applica-

ble to both speech and non-speech contents.

2. PROPOSED METHOD

Given an audio-visual sequence having an unknown drift, the

proposed method begins with extracting features from the

acoustic and the visual signals. The two features must have

the same frame rate for further analysis described below.

Typically, the audio features are extracted at the rate of the

visual frame rate. Then, the correlation analysis is performed

for the audio feature stream shifted by t frames and the vi-

sual feature stream. The correlation measures between them

are calculated by varying the value of t within a pre-defined

search range [−T, T ], among which the maximum is selected.
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For a fixed t, the whole sequence is divided into NB (pos-

sibly overlapping) temporal blocks. It is assumed that the spa-

tial location of the sound source is stationary within a block.

In order to be robust to the motion of the sound source, the

length of the blocks needs to be kept reasonably short. On the

other hand, every block should contain a sufficient number of

samples in order to properly perform correlation analysis of

the samples. For each block, the correlation analysis is per-

formed as follows. First, each image frame is divided into

NT small tiles in order to reduce the computational complex-

ity of the algorithm. Then, we measure the correlation be-

tween the mean-normalized acoustic feature sequence for the

current temporal block (x) and the mean-normalized visual

feature sequence for each tile (y), where the mean normal-

ization is performed in order to make the mean of each fea-

ture over time zero. It is expected to observe the maximum

correlation when the two signals are time-synchronous. Two

different measures are suggested to obtain the correlation, de-

noted by C(t, i, j) for the i-th block and the j-th tile: mutual

information (MI) and canonical correlation (CC).

The MI of two random variables is a quantity measuring

the mutual dependence between them. In particular, we em-

ploy the quadratic mutual information (QMI) measure based

on the Renyi’s quadratic entropy combined with the Parzen’s

nonparametric probability distribution function (pdf) estima-

tion, which allows us to easily examine the dependence of the

two information sources directly from the given samples. The

QMI measure of x and y is given by [2]

CMI(t, i, j) =

log

∫ ∫
fXY (x,y)

2dxdy
∫ ∫

fX(x)2fY (y)
2dxdy

(
∫ ∫

fXY (x,y)fX(x)fY (y)dxdy)2
,

(1)

where fX(x) and fY (y) are the marginal pdfs of x and y,

respectively, and fXY (x,y) is their joint pdf. CMI(t, i, j) is

nonnegative and becomes zero when x and y are independent.

Here, the Parzen’s pdf estimator with the spherical Gaussian

kernel is used. Then, the pdfs in (1) are obtained by

fX(x) =
1

M

M∑
m=1

G(x;xm, σ2
x), (2)

fY (y) =
1

M

M∑
m=1

G(y;ym, σ2
y), (3)

fXY (x,y) =
1

M

M∑
m=1

G(x;xm, σ2
x)G(y;ym, σ2

y), (4)

where M is the number of samples and G(·; z, σ2) the Gaus-

sian kernel having mean z and variance σ2.

The canonical correlation analysis aims at finding the pro-

jection vectors by which the correlation of the projected data

becomes maximal. Thus, the CC between x and y is obtained

by

CCC(t, i, j) = max
wx,wy

E{(wT
x x)(w

T
y y)}√

E{wT
x x}2E{wT

y y}2
, (5)

where wx and wy are the projection vectors. This maximiza-

tion problem can be resolved by solving an eigenvalue prob-

lem [3]. It is necessary to keep the length of the feature se-

quences (i.e., the length of the temporal block) larger than any

of the two feature dimensions so that the problem does not be-

come an underdetermined equation but has a unique solution.

After obtaining the correlation measures for all tiles, the

maximum value is stored, which is repeated for all temporal

blocks. The collection of the maximum correlation values are

averaged to obtain the final correlation measure for the current

temporal shift being examined:

D(t) =
1

NB

NB∑
i=1

max
1≤j≤NT

C(t, i, j). (6)

If the two signals become synchronized by a shift, the tile

showing the maximum correlation is expected to be located at

the sound-emitting region and the corresponding correlation

value to be the largest among all t’s. Therefore, the estimated

audio-visual drift is obtained by

t∗ = arg max
−T≤t≤T

D(t). (7)

Note that the above equation gives the drift estimation at the

resolution of the visual frame rate. In order to refine the esti-

mation at a finer level, the quadratic interpolation is used:

t∗f = t∗ +
D(t∗ − 1)−D(t∗ + 1)

2{D(t∗ − 1)− 2D(t∗) +D(t∗ + 1)} , (8)

which is finally converted to the dimension of time:

τ∗f = t∗f/Fy, (9)

where Fy is the visual frame rate. Therefore, in order to re-

cover audio-visual synchronization of the given sequence, the

audio signal is temporally shifted by −τ∗f .

It is worth mentioning that the proposed method using

QMI can be considered as an extension of the method pre-

sented in [1]. While both methods use QMI for measuring

audio-visual correlation, the proposed method can be used

for both speech and non-speech data with reduced complex-

ity, whereas the previous method is applicable only to speech

data. In addition, the previous method requires the user’s

intervention of indicating the time interval to be examined,

while the proposed method is fully automatic.
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(a) Data #1 (b) Data #2 (c) Data #3

Fig. 1. Example frames of the test data.

3. EXPERIMENTS

3.1. Setup

In order to evaluate the proposed algorithm, we used three 10

second long audio-visual sequences shown in Fig. 1. Data

#1 and Data #2 are from the CUAVE database [4]. In Data

#1, a person speaks English digits singly. Data #2 contains

a person pronouncing digits next to a silent person. The two

data were recorded at the visual frame rate of 29.97 Hz with

a resolution of 720×480 pixels and the acoustic frequency of

44.1 kHz. Data #2 is more challenging than Data #1 because

in Data #2, while a person is speaking, the silent person also

makes motions with his head, lips and blinking eyes; the cor-

responding regions in the image frames will produce nonzero

correlation values that will compete with those from the re-

gion containing the speaker’s mouth. Finally, we recorded

Data #3 where a hand holding a pen beats a desk continually

to make bumping sound. The visual component of the data

has a resolution of 720×408 pixels and the frame rate of 25

Hz. The audio signal was captured at the rate of 48 kHz. This

sequence was chosen to examine effectiveness of our method

for non-speech data and test its general applicability. For

each content, we generated asynchronous audio-visual test se-

quences with drift values of 0 ms, ±200 ms, ±400 ms, ±600

ms, ±800 ms and ±1000 ms.

For the visual features, the difference of the luminance

component of two consecutive image frames was used. The

acoustic features were obtained by calculating the temporal

derivative of the log-normalized energy for the samples within

a moving window (i.e. x is one-dimensional). In our case,

they were extracted at the rate of 100 Hz by using a 25 ms-

long window as in many applications of acoustic signal analy-

sis [5], and then downsampled to match the visual frame rate.

Each set of features was normalized so that the feature values

range from 0 to 1.

In order to reduce the computational complexity, each im-

age frame was resized to 1/16 of its original resolution. The

image frames were divided into 4×4 tiles for analysis (i.e. the

dimension of y is 16). We used temporal blocks containing 50

visual frames (i.e. M = 50) and the overlaps of 50% with the

precedent and the subsequent ones. T was set to 1100 ms. To

compute QMI, we chose σx=0.2 and σy=0.5 experimentally.

(a) Data #1

(b) Data #2

(c) Data #3

Fig. 2. Errors in drift estimation by the proposed method

when MI or CC is used.

3.2. Results

Fig. 2 shows the drift estimation error for the three datasets.

For Data #1 and Data #3, the two correlation measures per-

form well similarly. However, MI shows two cases with large

errors in Data #2, whereas CC still produces good results.

This is mainly due to difficulty in selecting the values of σx

and σy . We observed that the performance varies with their

values. Especially, Data #2, which is the most difficult for

drift estimation due to the distracting motion by the silent per-

son, was the most sensitive to their values among the three

datasets. On the other hand, there is no such parameter to be

carefully tuned in the proposed method using CC.

One can observe that the estimation errors when CC is

used are less than 100 ms in Fig. 2, which we consider as
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Image frame Correlation Correlation

for t=0 for t=31
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Fig. 3. Comparison of the results with correct and incorrect

hypotheses (t=0 and t=31, respectively) for the perfectly syn-

chronized version of Data #2. A bright pixel indicates a high

correlation value for the corresponding location. The tiles that

are not considered for correlation calculation due to little mo-

tion are marked with black color. The calculated CC values

for the blocks, maxj C(t, i, j), are also shown.

successful drift estimation. It has been shown that there exists

an “intersensory synchrony window” during which the perfor-

mance of the human perception is not affected for desynchro-

nized audio-visual events [6]. This window of asynchrony

tolerance typically ranges up to 200 ms [7]. Based on such

observations, the standard [8] concluded that the acceptabil-

ity thresholds of audio-visual synchronization errors are +90

ms and -125 ms. Therefore, we conclude that the estimation

errors obtained by our method are acceptable.

Fig. 3 compares the results of the correctly hypothesized

drift and an incorrectly hypothesized one for Data #2 when

CC is used. It is observed that the correlation values for the

speaking person’s mouth region are larger for the correct hy-

pothesis than for the incorrect one consistently over differ-

ent temporal blocks. In addition, the difference between the

correlations of the mouth region of the speaker and the eye

region of the silent person is small when the hypothesis is

wrong, whereas the difference is notably large for the correct

hypothesis.

4. CONCLUSION

We have proposed an automatic audio-visual drift estimation

method that is applicable to both speech and non-speech se-

quences. We have designed the method to find the optimal

shift of the audio signal that maximizes the audio-visual cor-

relation in terms of MI or CC. The experimental results show

that the method using CC can successfully recover the audio-

visual synchronization within an acceptable error bound with-

out need of adjusting algorithm parameters nor manual inter-

action.

In our future work, we will test the proposed method for

sequences containing global motion and more complex lo-

cal audio-visual activities, where a global motion compensa-

tion technique and more elaborate acoustic and visual features

may be required, respectively.
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