

Numerical modelling of electromagnetic turbulent transport of energetic ions in burning plasmas

M.Albergante

J. P. Graves, A. Fasoli, M. Jucker, X. Lapillonne and W. A. Cooper

Ecole Polytechnique Fédérale de Lausanne (EPFL) Centre de Recherches en Physique des Plasmas (CRPP) Association Euratom-Confédération Suisse CH-1015 Lausanne, Switzerland

Motivation

CRPP

4

Motivation

CRPF

• Plasma temperatures larger in present day experiments

Motivation

TFTR	ASDEX Upgrade/DIII-D	ITER	
Early Experiments	Present day experiments	Future Experiments	
$E_{\alpha}/T_{e} = 1000$ $E_{nbi}/T_{e} > 30$	$E_{lpha}/T_{ m e}$ > 300 $E_{ m nbi}/T_{ m e}$ \leq 20	$\begin{array}{l} E_{\alpha}/T_{e} > 100^{*} \\ E_{nbi}/T_{e} \cong 30 \end{array}$	
Neoclassical behaviour	Presence of anomalies	What effect on the NBI?	
*C.Angioni, Nuclear Fusion (2009)			

Outline Microturbulence

GENE code ITER steady state

Energetic ion diffusivity

Neutral Beam Modelling

Collisional slowing down

Anomalous transport

Gyrokinetic simulations of turbulent transport

8

The numerical platform

• GENE^I code

CRPF

• Linear and nonlinear flux tube simulations

9

- Electromagnetic perturbations
- Multi-species
- Interface with MHD equilibrium code CHEASE²

¹F. Jenko, Physics of Plasmas (2000) ²H. Lütjens, CPC (1996)

Linear analysis

CRPP

- ITER steady state
 scenario (D + e⁻)
- <u>Simulations near marginal</u> <u>stability (at mid-radius)</u>
- Temperature gradient $\Omega_T = -(R_0/a) d \ln T/d \rho_t$

10

• Beta effects $\beta_e = n_e T_e / (B_0^2 / 2\mu_0)$

• ITG dominant instability

- Beta effects not exciting kinetic ballooning modes
- Subdominant modes <u>are present</u>
- Investigation for nonlinear simulation

• ITG dominant instability

- Beta effects not exciting kinetic ballooning modes
- Subdominant modes <u>are present</u>
- Investigation for nonlinear simulation (×

Linear Analysis

• Turbulence

- Dominant ITGs
- Subdominant TEMs
- Observation of ETGs
 - Negligible effect
- Nonlinear simulations can be performed

Nonlinear Analysis

CRPF

- Mixture of ITG and TEM
- Magnetic perturbations
- Passive deuterium
 - Maxwellian distribution
 - Beam ions non-thermal
- What variables can describe the particle diffusivity?

13

The variables studied

CRPF

- Energetic particle transport is a diffusive process^{*}
- It <u>must be</u> consistent with Fick's law

$$D(\mathbf{x}) = -\frac{\Gamma(\mathbf{x})}{\nabla n(\mathbf{x})} = -\frac{1}{\nabla n(\mathbf{x})} \int \delta f(\mathbf{x}, \mathbf{v}) \delta u(\mathbf{x}, \mathbf{v}) d\mathbf{v}$$

Allows for 'electrostatic' and 'magnetic' transport separation

$$\delta \mathbf{u}^{es} = -\frac{\nabla \delta \bar{\Phi} \times \mathbf{B}}{B^2}$$

*W. Zhang, Physical Review Letters (2008)

 $\delta \mathbf{u}^{em} = v_{\parallel} \frac{\nabla \delta \bar{A}_{\parallel} \times \mathbf{B}}{\frac{\mathbf{P}^2}{\mathbf{P}^2}}$

The variables studied

CRPP

• Velocity space resolved diffusivity (gyroaveraged)

$$D_{v}(\mathbf{x}, \mathbf{v}) = -\frac{1}{\nabla \ln n(\mathbf{x})} \frac{\delta f(\mathbf{x}, \mathbf{v})}{f_{0}(\mathbf{x}, \mathbf{v})} \delta \mathbf{u}(\mathbf{x}, \mathbf{v}) \cdot \mathbf{\hat{e}}_{r}$$

Consistent with Fick's law

$$\langle D_v \rangle_{f_0} = \frac{\int d\mathbf{v} D_v(\mathbf{x}, \mathbf{v}) f_0}{\int d\mathbf{v} f_0} = -\frac{\Gamma(\mathbf{x})}{\nabla n(\mathbf{x})} = D^{\text{eff}}(\mathbf{x})$$

M.Albergante, Physics of Plasmas (2009)

- Trapped ions: orbit- and gyro-averaging
- Passing ions: no gyro-averaging, orbit-averaging?
- Above collisional estimates (—)

Transport Summary

- Potentially large electrostatic transport for beam ions
- Magnetic transport negligible
- What impact on the beam driven current?
- Can poloidal effects/collisions play a role?

Simulation of the neutral beam injection and slowing down

NBI Modelling

(I) 4 Injectors

- (2) Tangential
- (3) Uniform number of particles
- (4) Beam collimation reproduced
- (5) Parallel velocity from CHEASE
- (6) What weight?

21

beam path [m]

 ρ_t

22

 ρ_t

beam path [m]

- Broad deposition, peaked profile
- Edge deposition: need for high energy NBI
- What time evolution?

The VENUS Code*

- Drift-kinetic particle pushing code
- Velocity space kicks for Coulomb collisions

NBI summary

- Neutral beam model ready
- Collisional slowing down of NBI particles
- Anomalous transport must be implemented

Anomalous diffusivity module

- Monte-Carlo diffusion
- Effective gyroaveraged diffusivity from GENE simulations

Poloidal angle

26

 v_{\parallel}/v

Energy

- Interpolate at particle position
- Radial envelope

*W. Zhang, Physical Review Letters (2008)

- NBCD profile redistributed
- Small changes in the safety factor
- Moderate shear reversal
- 'Averaged' model is a good approximation

CRPP

- Main disadvantage
 - Local approximation
- Solutions
 - Global version of GENE*
 - Multiple flux tube simulations⁺
- Low microturbulent impact. Why?

28

*T. Görler, tomorrow *M. Barnes, Thursday

ÉCOLE POL

FÉDÉRALE DE LAU

Lower energy NBI

- E_{nbi} = 300 keV at mid-radius
- $E_{nbi}/T_e = 20$ (similar to ASDEX)
- Previous scenario $E_{nbi}/T_e > 50$ at mid-radius

Conclusions Microturbulence

<u>GENE</u> code

Energetic ion diffusivity Velocity space analysis

Neutral Beam Modelling

31

Conclusions

- Modelling of the ITER steady state scenario
- Consequences for I MeV NBI
 - Small but potentially important NBCD redistribution
 - Transport and stability would change
- Consequences for low energy NBI
 - Larger transport, more redistribution
- Our model underestimate?
 - NBI model improvements (E_{nbi}/2 and E_{nbi}/3 fractions)
 - Background turbulence potentially stronger

Outlook

- DEMO reference scenarios more affected
 - Large beam current (I MeV)
 - Plasma temperature two times ITER's goal
- More detailed and self consistent turbulence
 - very challenging
- Comparison with experimental data
 - even more challenging

Linear Analysis

Nonlinear analysis

Parameters

CRPP

[nx nky nz]	[192 32 48]
[nvpar nmu]	[64 32]
k _{y-min} *rho _s	0.08
$\Omega_T = -\left(R_0/a\right) \mathrm{d} \ln T/\mathrm{d}\rho_t$	3.5
Electron beta	1.5%
q_{flux surface}	1.8
species	deuterium + e ⁻
$\hat{s} = \frac{\rho_t}{q} \frac{\mathrm{d}q}{\mathrm{d}\rho_t}$	1.0

37

NBI Geometry

• 4 Injectors

- Tangential geometry
- 5 coordinates
- Real space
- Velocity space
 (v_{||}, E)
- Weight = beam ionization