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Abstract	

Road traffic crashes are becoming increasing concerns in many countries. In Europe, many efforts have 
been devoted to improve road traffic safety yet the important target of halving the number of yearly road 
deaths in 2010 could not be achieved in many European countries. Among different road types, 
motorways are safe by design yet crashes if occur would be severe due to high speed practiced. If 
motorway traffic crash risk could be identified, lives could be saved and severity could be reduced. 

For this objective, the current thesis aims to establish a methodology for developing models capable of 
identifying real-time traffic crash risk on motorways. A real-time MotorwaY Traffic Risk Identification 
Model (MyTRIM) is developed for a study site on motorway A1 in Switzerland. MyTRIM is tested, 
validated with real data. 

Three types of historical data altogether available at the study site are used for developing MyTRIM. The 
data include individual vehicle traffic data collected from double loop traffic detectors, meteorological 
data from meteorological station located near the study site, and a crash database containing crashes 
recorded by the police. Based on crash time, pre-crash data representing traffic and meteorological 
conditions leading to crashes are extracted. Similarly, non-crash data representing traffic and 
meteorological conditions that are unrelated with crashes are also extracted. As crashes are rare events, a 
methodology for sampling non-crash data comparable with pre-crash data is developed using clustering – 
classification basis: non-crash data are clustered into groups; pre-crash data are classified into obtained 
groups; pre-crash and non-crash data within one group are similar and therefore, comparable. Each group 
is called a traffic regime. 

Under each traffic regime, a regime-based Risk Identification Model (RIM) is developed to differentiate 
pre-crash and non-crash data. Given a new datum, regime-based RIM must be able to classify the datum 
into pre-crash or non-crash. As a result of the model development, variables which are important for the 
differentiation are also identified. These important variables can be potential for implementing 
countermeasures to prevent the risk from ending up with a crash. MyTRIM is developed based on the 
outputs from regime-based RIM. MyTRIM memorizes the latest risk evolution to predict whether there is 
crash risk in the coming time interval. Regime-based RIM and MyTRIM are tested and validated using 
real data. Results show that regime-based RIM and MyTRIM perform with high accuracy.  

The output of MyTRIM can be useful for traffic operators as an input for actively managing the traffic. 
The developed methodology can be applied for any motorway traffic sections where similar data are 
available. 

Keywords: motorway traffic safety, accident prevention, real-time risk identification, individual vehicle 
data, meteorological data, imbalanced data sets, rare events, MyTRIM. 
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Résumé	

Les accidents de la circulation sont une préoccupation de plus en plus croissante dans de nombreux pays. 
En Europe, malgré que de nombreux efforts aient été consacrés à améliorer la sécurité routière, l’objectif 
de réduire de moitié le nombre de morts annuel sur les routes en 2010 ne pourrait être atteint dans 
plusieurs pays. Parmi les différents types de routes, les autoroutes sont les plus sures grâce à leur 
conception. Cependant, les accidents qui s’y produisent sont sévères due à la grande vitesse pratiquée. Si 
le risque d'accident du trafic autoroutier pouvait être identifié, des vies pourraient être sauvées et la 
gravité de ces accidents pourrait être réduite. 

Dans cette perspective, cette thèse vise à établir une méthodologie pour développer des modèles capables 
d'identifier en temps réel le risque d'accident de la circulation sur les autoroutes. Un modèle 
d’identification des risques de circulation en temps réel sur les autoroutes (MyTRIM) est développé pour 
un site d'étude sur l'autoroute A1 en Suisse. MyTRIM est testé et validé avec des données réelles. 

Trois types de données historiques disponibles sur le site d'étude sont utilisés pour développer MyTRIM. 
Il s’agit des données de trafic des véhicules individuels recueillies par des capteurs de trafic à double 
boucle, des données météorologiques de la station météorologique située à proximité du site d'étude, et 
d’une base de données d’accidents contenant les accidents enregistrés par la police. Basées sur le temps 
d’apparition des accidents, les données pré-accidentelles représentant les conditions de circulation et 
météorologiques conduisant à des accidents sont extraites. De même, les données représentant un trafic et 
des conditions météorologiques sans rapport avec l’apparition d’un accident sont extraites. Comme les 
accidents sont des événements rares, une méthodologie pour échantillonner les données non-accidentelles 
par rapport à des données pré-accidentelles est développée, basée sur un processus regroupement - 
classification: les données non-accidentelles sont regroupées; les données pré-accidentelles sont ensuite 
classées dans ces groupes définis; les données pré-accidentelles et les données non-accidentelles au sein 
d'un groupe sont similaires et, par conséquent, comparables. Chaque groupe est appelé régime de 
circulation. 

Dans chaque régime de circulation, un modèle d'identification des risques (RIM) est développé pour 
différencier les données pré-accidentelles et non-accidentelles. Pour chaque nouvelle donnée, le RIM doit 
être capable de classer celle-ci en donnée pré-accidentelle ou non-accidentelle. Grâce à l’élaboration du 
modèle, les variables importantes pour la différenciation peuvent également être identifiées. Ces variables 
présentent un potentiel pour la mise en œuvre de contre-mesures afin de prévenir qu’un risque se 
transforme en accident. MyTRIM est développé sur la base des données d’output des RIM. MyTRIM 
mémorise l'évolution du risque pour prédire si un risque d'accident dans un intervalle de temps futur 
existe. Les RIM basés sur les régimes de circulation et le MyTRIM sont testés et validés à l'aide de 
données réelles. Les résultats montrent que les RIM et le MyTRIM fonctionnent avec une grande 
précision. 

Les résultats de MyTRIM peuvent être utilisés par les gestionnaires de la circulation comme une donnée 
d’entrée pour la gestion active du trafic. La méthodologie développée peut être appliquée pour toutes les 
sections d’autoroutes présentant des données similaires. 

Mots-clés: sécurité du trafic autoroutier, prévention des accidents, identification des risques en temps 
réel, prédiction du risque d'accident, données de véhicule individuel, données météorologiques, 
déséquilibre des classes, événements rares, MyTRIM. 
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Chapter	1	Introduction	

This chapter presents the motivation, problem statement research objectives, research questions, research 
scope of the current research. Thereafter, the approach to fulfill the research objectives is presented. 
Expected contributions, both theoretical and practical, are discussed. 

1.1. Research	Motivation	

In recent years much attention has been devoted to road traffic safety in most countries. According to the 
World Health Organization - WHO (2004), road traffic crashes kill 1.2 million people every year,  an 
average of 3’200  per day. Road traffic crashes also injure between 20 and 50 million people a year and 
have been ranked the 11th major cause of death, accounting for 2.1% of all deaths globally.  

The European Transport Safety Council - ETSC (2006) estimates that more than 41’000 people die every 
year from road crashes in the European Union (EU). In 2001, the European Commission fixed the road 
safety target of halving the number of yearly road deaths by 2010. However, most of member countries 
couldn’t achieve this goal. 

Unlike other road types, motorways are the safest roads by design. Yet in 2006 at least 3’270 people were 
killed on the motorway network in the EU, representing about 8% of the total number of road deaths 
(ETSC, 2008). As motorway crashes can be rather severe, improving motorway safety would not only 
reduce the number of deaths but would also moderate crash severity.  

Unlike other road types, motorways are the safest roads by design. Yet in 2006 at least 3’270 people were 
killed on the motorway network in the EU, representing about 8% of the total number of road deaths 
(ETSC, 2008). As motorway crashes once occur will be severe, improving motorway safety would not 
only reduce the number of deaths but also moderate crash severity.  

To that extent, the research reported in this thesis aims at devising a methodology for the development of 
real-time motorway traffic risk identification models. If risky traffic situations could be recognized, 
preventive measures could probably be taken to clear or reduce the risk before   crashes occur. 

1.2. Problem	Statement		

Crash evolution can be divided into three phases: before, during and after the crash. Once a crash occurs, 
it is necessary to provide urgent health care services to the injured parties, to prevent secondary collisions, 
as well as to guarantee traffic fluidity as much as possible. During crash occurrence, the involved 
individuals, especially the drivers, need to react accordingly to the situation to reduce its severity. In this 
phrase, passive equipment can help to improve the security of the involve individuals. Incident detection 
is useful when the crash has already occurred so that urgent services and manual traffic control can be 
brought to the site. However, all the actions undertaken during or after the crash are reactive, aiming to 
reduce the crash severity with its consequences. In order to prevent collisions, traffic evolution before the 
crash should be evaluated and identified.  
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1.4. Research	Questions	

Traffic crashes are rare events on motorways. Usually, there is an evident causality in the dynamic of 
accidents. The effect of the causality is the crash itself whereas the cause is usually unknown. As the 
cause always occurs prior to the effect, to prevent the effect, it is necessary to identify the cause. 
Therefore, the cause must be found in the traffic evolution prior to the collision. One approach is to 
differentiate between a series of traffic situations before the collisions with series of traffic situations 
occurring under similar conditions that do not end up with a crash. 

Therefore, the current thesis attempts to find answers to following questions: 

1) What is the information required for representing traffic situations? 
2) As crashes are rare events, which traffic situations that do not end up with collisions are 

comparable to the ones ending up in a crash? 
3) Which method can be chosen to develop models for differentiating traffic situations that do not 

end up with collisions from the ones that do result in collisions? 
4) Having identified crash risk evolution, how to develop a tool that can predict traffic crash risk 

with high accuracy? 

1.5. Research	Scope	

To address the questions presented above and based on the available conditions in Switzerland, the 
following areas have to be investigated. 

1.5.1. Types	of	Crashes	

The types of crashes mentioned in the current research encompass events in which there is a collision 
between two or more vehicles or between one vehicle and stationary objects. 

Motorways are by default designed to prevent certain types of collisions. For example, head-on crashes 
can never occur on motorways as there is a separator between the two traffic directions. Besides, there is a 
low occurrence probability for crashes that are usually observed at intersections of normal roads such as 
T-style ones (head of a vehicle with side of another vehicle) as there are no crossing at level with any 
other road.  

There are collisions that can indeed occur on motorways yet it is almost impossible to automatically 
prevent for they are caused by reckless driving under the influence of alcohol and drugs or by technical 
problems. We will not consider these crashes in this current research.  

Thereby, the category of collisions of interest in the current research, are the ones related to the traffic 
itself, termed traffic-induced crashes. The drivers who are involved in these particular collisions are 
therefore normal people under normal behavior at the moment of the crashes. It is important to note that a 
healthy driver under normal conditions should not be influenced neither by alcohol and drugs, nor by 
fatigue or mental/physical illness. 
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1.5.2. Study	site	

Once the methodology for identifying traffic crash risk is established, study sites are necessary for testing 
the methodology. Ultimately, study sites should be on motorways. According to the Organization for 
European Economic Cooperation (OECD, 2004), a motorway is defined as a road specially designed and 
built for motor traffic, which does not serve properties bordering on it, and which: 

a) is provided, except at special points or temporarily, with separate carriageways for the two directions 
of traffic, separated from each other, either by a dividing strip not intended for traffic, or 
exceptionally by other means; 

b) does not cross at level with any road, railway or tramway track, or footpath; 
c) is specially sign-posted as a motorway and is reserved for specific categories of road motor vehicles. 

Entry and exit lanes of motorways are included irrespectively of the location of the sign-posts. Urban 
motorways are also included. 

Road sections to be selected should be “2x2” motorway road sections (i.e. two lanes per direction). This 
selection is based on the fact that “2x2” motorway road sections contribute up to 73.68% of the length of 
the Swiss motorway network (see (FEDRO, 2009)). The study site of the current research is presented in 
details in section 4.4.  

1.5.3. Applicability	of	Results	

One target of the current research is to provide traffic operators with a tool to monitor traffic in real-time. 
Any methodology or model to be developed must be applicable with real-time data. 

1.6. Approach		

The approach of the current research is presented and summarized in Figure 1-2.  

With the motivations explained in section 1.1, and the problem statement and objectives presented in 
sections 1.2 and 1.3, respectively, the next step would be to focus on the state of the art by reviewing 
similar studies in the literature with criticism, which would provide an overview on how to move on from 
here: what should be accomplished and what should not be accomplished in the current analysis. Based 
on the critical review, the methodology for identification of real-time traffic crash risks is devised to fill in 
certain gaps in the state of the art. Once the methodology is established, it is applied in a real-life case 
study under Swiss conditions. Data and study sites are introduced before a model capable of identifying 
real-time traffic crash risks is developed, evaluated and validated with comparison to models developed 
with existing methodologies in the literature. The outcome of the model development process should 
include not only the model itself but also the causes of crashes. From these causes, appropriate preventive 
measures can be proposed to reduce collision risks.  
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Figure 1‐2: Research Workflow	

1.7. Contributions	

The planned contributions of the current research are both theoretical and practical. 

1.7.1. Theoretical	Relevance	

1) A methodology for sampling traffic situations that do not result in collisions and that are comparable 
with the ones resulting in collisions. 

2) A methodology for identifying real-time traffic crash risk on motorways. 

1.7.2. Practical	Relevance	

1) A framework for predicting near future traffic crash risk in real-time. 
2) A model developed using the methodology for study sites in Switzerland. 

1.8. Organization	of	the	Dissertation		

The summary of the different chapters is presented in Table 1-1. Chapter 1 introduces the motivation, the 
problems, the objectives, the scope, the approach as well as the potential contribution of the current 
research. Chapter 2 focuses on reviewing relevant existing studies. Chapter 3 begins with the presentation 
of the methodology development, as well as with the theoretical fundamental of the methodology. With 
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the developed methodology, chapter 4 presents data and study sites used for a case study in the current 
research. Chapter 5 presents the concepts of traffic situations and their definition with respect to the 
selected study site. Chapter 6 focuses on data sampling issue and provides analyses on traffic regimes 
obtained. Chapter 7 discusses the application of the developed model in a real-time framework with 
results and analyses. Ultimately, the conclusions as well as potential application and future extensions are 
discussed in chapter 8. 

Table 1‐1: Organization of the current dissertation 

Chapters Content  
Chapter 1 Introduction to the research problems and objectives. 
Chapter 2 Literature review of relevant studies. 
Chapter 3 Methodology of the current research. 
Chapter 4 Introduction to data and study site as well as data related issues. 
Chapter 5 Definition of Traffic Situations 
Chapter 6 Data Sampling and Traffic Regimes 
Chapter 7 Risk Identification 
Chapter 8 Conclusions 
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Chapter	2	State	of	the	Art	

This chapter summarizes the studies previously undertaken that are relevant to the problems addressed in 
the current research. Here, we will concentrate on road traffic safety studies in general, with a particular 
attention on motorway traffic safety studies that utilize traffic flow data. Critical reviews to such studies 
are also discussed, in order to identify the gaps in the state of the art, which provide a starting point for 
the definition of the development of the methodology of the current research. 

2.1. Overview	

Road traffic safety is a branch of traffic engineering aiming to reduce the number of deaths and injuries as 
well as property damages that are the consequence of collisions of vehicles traveling on public roads. The 
main road traffic danger is represented collisions between a vehicle with other vehicles, pedestrians, and 
moving obstacles, such as animals or stationary obstructions (e.g. trees or utility poles). Therefore, the 
main objective of road traffic safety is to reduce the number and the severity of such crashes. 

In term of terminology, it is worth noting that there are organizations such as the NHTSA (1997), 
RoadPeace  (2011), “a CRASH is NO accident” (2011),  cautioning not to use the term accident and using 
other names, such as crash or collision instead. The idea behind this renaming is to draw the attention to 
the fact that crashes are not acts of fate but are predictable and preventable (NHTSA, 1997), whereas 
accidents are events which are out of human control . Thereby, the term accident is not used in the current 
research specifically because we aim to reduce the number and the severity of road traffic collisions. 

Different efforts were dedicated to uncover the factors that cause crashes. Rumar (1985) using British and 
American crash reports, found that 57% of car crashes were due solely to driver factors, 3% solely to 
roadway factors, 2% solely to vehicle factors, 27% to combined roadway and driver factors, 6% to 
combined vehicle and driver factors, 1% to combined roadway and vehicle factors, and 3% to combined 
roadway, driver, and vehicle factors. These data suggests that, except collisions due solely to vehicle 
factors, roadway factors or to both, driver factors are wholly or partly involved in 94% out of the total 
crashes analyzed.  

Crash risk interventions can be categorized in many forms, depending on the driver, the vehicle, and 
roadway factors. For example, drivers can be divided into different groups depending on age, type of 
vehicles, etc. such that the specific or typical problems of each group can be better addressed. In 
Switzerland for instance, young drivers from 18 to 24 years of age are recognized by the BPU (2011) as 
the group of drivers highly influenced by alcohol and having the highest rate of fatalities and severe 
injuries (10.5 every 100’000 inhabitants during weekdays and 17.9 every 100’000 inhabitants during 
weekends). Therefore, legal measures adopted against young drivers are usually strict. One of such 
measures is related to application of the “trial driving license” for a period of three years after the success 
of driving examination, called probationary period. The permanent driving license can only be obtained 
after three years if no traffic code violation by the driver is observed (SAN, 2011).  

The interventions related to roadway or vehicle factors mainly aims to improve the design and 
maintenance. In Europe, there has been a Campaign for Safe Road Design since 2009, calling to make 
safe road design a Europe transport priority (EuroRAP, 2009). This European campaign is an expansion 
of the UK Campaign for Safe Road Design and targets to cut Europe’s toll of road deaths and serious 
injuries by a third by improving road design (EuroRAP, 2009). For better addressing roadway factors, 
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roads are classified into three main categories: built-up areas, non-built-up areas, and motorways. In many 
countries, such as in the UK (DfT, 2009) or in Switzerland (BPU, 2011), the highest number of casualties 
is observed in built-up areas, which is much more than on motorways. Therefore, a higher number of 
preventive measures are applied in built-up areas, especially on shared space locations, where vulnerable 
road users, such as pedestrians and bicyclists, can be found. Vehicle safety is also an effective approach to 
improve traffic safety by reducing the chances of driver’s errors (called active safety) or by improving 
safety equipment and vehicle design in order  to reduce crash severity once crash occurs (called passive 
safety). Examples of active safety are the intelligent systems added in vehicles to assist drivers such as: 
automatic breaking systems, adaptive cruise control, pre-crash system, etc. Examples of passive safety 
equipment are: seat belts and air bags.  

In this chapter, driver factors will be more summarized in section 2.2. The particularity of motorway 
traffic safety is discussed in section 2.3. Studies close to the current research are presented in section 2.4. 
Ultimately, section 2.5 summarizes the literature and the gaps to be filled in of the state of the art. 

2.2. Driver	Factors	

Although various efforts undertaken prove that traffic safety is improved, the concept of problem solving 
does not exist yet. Even when safe roads and safe vehicles are designed and implemented, the number of 
crashes can only be reduced, but does not disappear. The reason being is that driver factors are vital, and 
it is exactly the driver who decides and performs all driving tasks. As early as in 1939, Farmer and 
Chambers introduced the term accident proneness to indicate a personal idiosyncrasy predisposing the 
individual who possesses it in a marked degree to a relatively high accident rate. This means that a 
number of drivers have to be responsible for causing accidents because they have certain harmful 
personal characteristics. Later on, Rumar (1985) found that drivers are responsible for 94% of crashes. 
Yet even considering such a result, it is always possible to claim that drivers could have better reacted or 
could have been more prepared to avoid collisions due to road or vehicle problems. In order to improve 
safety, driver factor approaches emphasize safety education and motivation of persons aiming to modify 
unsafe driving behaviors. 

However, driver blaming is not supported by many research groups. People following systems theory 
consider that collisions arise from interaction among humans, machines, and environment. Collisions are 
seen as a failure of the whole traffic system rather than a failure of the driver. Under normal conditions, it 
is assumed that there is the harmony between humans and environment, such that the chance of collision 
is naturally low. For this reason, drivers are victims of crashes, since the traffic system is too complex for 
the driver’s capacity to process information. 

According to Parker et al. (1995), there is a three-fold typology of aberrant driving behaviors. The three 
types are: lapses, errors, and violations. Lapses are behaviors related to driving skills when the driver is 
absent-minded, with consequences mainly for the perpetrator, posing no threat to other road users. Lapses 
are related to technical mastering, such as mistaking the breaking with the gas pedal, turning on the wrong 
turning signal between left and right turns, etc. Errors are more dangerous than lapses, as errors are the 
failing result of planned actions aimed at reaching a goal. Examples of errors include: changing lanes for 
passing without seeing the coming vehicle on the opposite one, failing to recognize stop signs at 
intersection, etc. It is believed that lapses and errors are influenced by cognitive factors such as attention 
and habits. Both lapses and errors depend on driving skills and are observed more frequently in older 
drivers, or in young drivers who just obtained their license. The third type of driving behavior, which is 
the most dangerous one, is related to violations. Violating actions are committed intentionally, in the 
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knowledge that one is engaging in a potentially dangerous and often illegal behavior. Examples of 
violations include: speeding, close following, overtaking on the inside, texting while driving, etc. 

To participate in road traffic, drivers are required to have sufficient driving skills including both physical 
and mental capabilities. Therefore, lapses and errors are influenced by perceptual, intentional, or 
judgmental processes. To avoid lapses and errors, the drivers can improve their limitations in observation 
as well as technical mastery. Vehicles and roads can also be improved to facilitate driver’s behaviors. On 
the contrary, violations are believed to be based on motivational and/or social factors. General solutions 
to diminish violations deal with changing people’s beliefs and/or motives for avoiding violations such as 
attitude campaigns, police surveillance, speed cameras, or influencing the driver subconsciously through 
smart-design of the road environment. 

2.3. Motorway	Traffic	Safety	

2.3.1. Introduction	

Researches in motorway traffic safety can be broadly divided into groups of studies based on the objects 
of the improvement, such as infrastructure, vehicles, drivers, etc. Improving traffic safety by improving 
traffic flow is also part of these studies, and aims at predicting the future trend of traffic risks by 
analyzing past crashes and suggesting countermeasures when risks are identified, in order to prevent 
potential future ones. As the traffic flow is the main object of our study, we classify our study into the 
group of motorway traffic safety studies using traffic flow data. 

According to Golob et al., (2004), consecutively  by Pande, (2005), studies on motorway traffic safety 
using traffic flow data can be divided into two groups, depending on the units of analyses undertaken: 
aggregate studies and disaggregate studies. Aggregation studies consider counts of crashes or crash rates 
for specific time periods (typically months or years), as well as for specific spaces (specific roads or 
networks), as units of analysis and use statistical distribution parameters of traffic flow for that specific 
time and space. For disaggregate studies, the units of analysis are the crashes themselves and traffic flow 
is represented by parameters of at the time and place of each crash. As our study examines each crash to 
verify the difference between traffic conditions leading to the crash in crash case and non-crash traffic 
conditions, it can be classified into the group of disaggregate studies. This classification is illustrated in 
Figure 2-1, where traffic safety studies using traffic flow data (Traffic Flow related studies) are 
partitioned into the two smaller groups: aggregation studies and disaggregation studies. 

Infrastructure related studies focus on improving traffic safety by improving the infrastructure. Stine et al. 
(2010), for example, investigated the safety of highway medians through iterative simulations of off-road 
median encroachments. Another example is given by the study of Donnell and Mason (2006), who 
investigate median design policies for high-speed divided highways to assess existing median barrier 
warrant criteria. 

Vehicle and driver related studies investigate traffic safety issues that are applicable both for motorways 
and non-motorways. For vehicle related studies, Blum and Eskandarian (2006), reviewed the research that 
has been conducted on intelligent speed adaptation, and presented possible strategies to maximize both 
effectiveness and acceptability to mitigate deleterious effects on roadway safety. Umedu et al. (2010) 
focused on the inter-vehicular communication, namely on the distributed detection of dangerous vehicles 
on roads and highways, and proposed a dangerous-vehicle-detection protocol to detect drivers who violate 
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speed limits. Klingender et al. (2009) concentrated on the different effects of adapting the maximum 
weight and dimensions of heavy commercial vehicles allowed by the European Commission by providing 
an overview of the in-depth safety analysis of heavy commercial vehicles on European roads. Regarding 
driver related studies, a large effort has been devoted to  discover the influence of driver state on driving  
(Arnedt et al., 2001; Rzepecki-Smith et al., 2010); (Mulder et al., 2008).  

 

Figure 2‐1: Research area of the current study 

It is worth noting that the classification presented in Figure 2-1 is rather relative, as traffic is a complex 
system. To improve its safety the interaction between different groups is necessary and unavoidable. 

2.3.1. Aggregate	Studies		

During the past decades a large effort has been devoted to aggregate studies on motorways traffic safety. 
To date, aggregate studies are still widely used to find and to analyze the relationship between crash 
rate/frequency and other factors such as the congestions, infrastructure, weather effect, etc. 

Wang et al. (2009) investigated the relationship between traffic congestion and road accidents to clarify 
the speculation that there may be an inverse relationship between the latter and road accidents. The study 
aimed to explore the impact of traffic congestion on the frequency of road accidents using a spatial 
analysis approach, while controlling for other relevant factors that may affect road accidents. The results 
suggest that traffic congestion has little or no impact on their frequency on the M25 motorway in the UK.  

Aguero-Valverde and Jovanis (2006; 2008) focused on spatial analyses to produce spatial models. The 
authors tried to explore the effect of spatial correlation in models of road crash frequency at the segment 
level. Different segment neighboring structures were tested to establish the most appropriate one in the 
context of modeling crash frequency in road networks. A full Bayesian hierarchical approach was used 
with conditional autoregressive effects for the spatial correlation terms. Analyses of crash, traffic, and 
roadway inventory data from a rural county in Pennsylvania indicate the importance of including spatial 
correlation in road crash models. The models with spatial correlation show a significantly better fit than 
the Poisson lognormal model with heterogeneity only. Parameters significantly different from zero 
included annual average daily traffic (AADT) and shoulder widths of less than 4 ft, and between 6 and 10. 
One important result relates to the potential of spatial correlation to reduce the bias associated with model 
misspecifications. 
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Recently, Lord and Mannering (2010) provided a detailed review of the key issues associated with crash-
frequency data, as well as reporting the strengths and weaknesses of the various methodological 
approaches that researchers have used to address these problems. The authors concluded that while the 
steady march of methodological innovation (including recent applications of random parameter and finite 
mixture models) has substantially improved our understanding of the factors that affect crash-frequencies, 
it is the prospect of combining evolving methodologies with far more detailed vehicle crash data that 
holds the greatest promise for the future. 

In general, aggregate studies, although they bring more insights of crash frequency, do not propose any 
real-time models for identifying instant traffic crash risks.  

2.3.2. Disaggregate	Studies	

Disaggregate studies are relatively new, and are made possible by the availability of data being collected 
in support of intelligent transportation systems developments. Motorway traffic management centers 
routinely archive traffic flow data from sensor devices such as inductive loop detectors. Different 
disaggregate data types can be obtained from such sensor devices depending on the types of sensors and 
on the aggregation level of collected traffic data.  For example, single inductive loop detectors collect 
traffic data for intervals of several seconds, and provide the vehicle count and the occupancy during the 
intervals. Double inductive loop detectors can provide more detailed data than vehicle counts and 
occupancies. The average speed during the time interval is the extra information. Moreover, double loop 
detectors can also provide individual vehicle data including: speed, headway, and time gap, length of each 
vehicle. It is worth noting that there is no time interval in collecting individual vehicle data (i.e. data are 
extracted whenever there is a vehicle passing by the detectors) 

There are six research groups, that we are aware of, who have undertaken disaggregate studies and have 
reported positive results in the literature. Most of the studies aim to develop real-time models for 
identifying traffic risk using disaggregate traffic flow data. The original idea of these studies is to 
compare non-crash traffic conditions (i.e. traffic conditions when no crash is recorded) and traffic 
conditions where traffic crash risk is high. In reality, it is difficult to determine which traffic conditions 
are highly risky. Therefore, crash databases are used to extract traffic conditions leading to crashes (pre-
crash traffic conditions). Pre-crash traffic conditions are highly risky because they end up in crashes. By 
developing models capable of differentiating pre-crash and non-crash conditions, it is expected that a new 
real-time traffic condition can be collected and classified into non-crash or pre-crash conditions. 
Therefore, preventive actions can be implemented, if the traffic condition is in its “pre-crash” state, to 
avoid potential crashes.  

In this section, we summarize the work of each research group and highlight their contribution. 

2.3.2.1. Studies	by	Oh	et	al.	

2.3.2.1.1. Objectives	

Study reported by Oh et al (2001) is regarded as one of the first disaggregate studies. The authors aim to 
quantify the measure of accident likelihood using real-time traffic data from inductive loop detectors 
based on the concept that disruptive traffic conditions contribute to traffic accidents, and can be 
represented by temporal and spatial variations in traffic parameters. The study demonstrates the potential 
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for a traffic condition (with its corresponding indicator) to become either normal (with the probability of 
0.0) or disruptive (probability of 1.0).  A probability threshold was necessary for classifying the latter. 

2.3.2.1.4. Comments	

The authors were successful in demonstrating the potential of the developed model to be applied in real-
time with the definition of a probability threshold that classifies real-time traffic conditions into normal or 
disruptive. The authors also suggest that reducing accident likelihood is equivalent to reducing the speed 
variation of vehicles which can be undertaken through an information system, in order to suggest drivers 
to either slow down or speed up as part of the road infrastructure or via an in-vehicle system. 

However, the following potential improvements can be undertaken: 

More variables can be used (instead of only the standard deviation of speed). Traffic crash occurrences 
are the result of complex traffic evolution and depend on many factors.  
The five-minute interval 30 minutes before crash might not be representative of normal traffic conditions. 
Only the aspect of risk identification was scrutinized in the study. In term of crash prevention, identifying 
crash risks right before they occur doesn’t really help to prevent them. 

2.3.2.2. Studies	by	Lee	et	al.	

2.3.2.2.1. Objectives	

The first study of this group in this domain is presented in their 2002 article (Lee et al., 2002). Changes 
occurred in the later development of the study and the updates are presented in (Lee et al., 2003). In these 
studies, the authors define the concept of crash precursors to refer to various traffic flow characteristics 
which lead to crash occurrence. The objectives of these studies include a suggestion of the rational 
methods by which crash precursors included in the model can be determined on the basis of experimental 
results and on the performance test of the crash prediction model.  

2.3.2.2.2. Data	Used	and	Study	Site	

The data used to calibrate the model include incident logs and traffic flow data extracted from loop 
detectors along a 10 km stretch of the Gardiner Expressway in Toronto, Canada, with a total of 38 loop 
detector stations. The data were collected for weekdays over a 13 month period, from January 1998 to 
January 1999, and matched with a total of 234 crashes on this section of the roadway during the study 
period.  

2.3.2.2.3. Methodology	

In one of their articles (Lee, Saccomanno and Hellinga, 2002) the authors found three crash precursors 
representing the traffic flow conditions prior to the crash occurrence. These precursors are represented by 
the average variation of speed on each lane (CVS1), by the average variation of speed difference across 
adjacent lanes (CVS2), and by traffic density (D). However, later study (Lee, Hellinga and Saccomanno, 
2003) found that CVS2 did not have a direct impact on crash potential and hence was eliminated from 
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their consideration. In addition, the authors introduced in their latter study the parameter Q, which is the 
difference of speeds in the upstream and in the downstream ends of road sections.  

For developing models, precursor data prior to 234 crashes were used as crash cases. The same number of 
non-crash cases contains the data collected at the same road sections for the same time periods under the 
same weather condition but in different days, when crashes did not occur. In this way, other traffic 
environmental factors such as road geometry, weather and typical traffic pattern are assumed to be 
controlled. 

For each crash, the authors estimated the actual crash time from the analysis of changes in detector speed 
profiles using loop detectors upstream and downstream the crash site. The authors also undertook various 
analyses to choose the optimal observation time slice durations by comparing the difference between 
crash and non-crash cases. The optimal durations should maximize the differences in crash precursor 
values between the two. The authors found that 8, 3, and 2 minutes were the optimal values for the three 
precursors CVS1, D and Q, respectively. 

In order to discriminate the crash and non-crash cases, the authors categorized precursor values by 
defining the several levels of precursors based on the distribution of normal traffic flow conditions in 
daily traffic with the number of categories and  boundary values determined by calibrating different log-
linear models, in order to choose the one that shows the best model performance. 

2.3.2.2.4. Comments	

In comparison with the study presented in section 2.3.2.1 by Ol et al., the authors used more variables 
(three precursors, namely, CVS1, D, and Q) in differentiating crash and non-crash cases. Here, the use of 
precursor Q provides an additional view of crash occurrences. Although using the same ratio of non-
crash/crash cases (1:1), the authors selected randomly controlled non-crash cases which allow a higher 
chance of obtaining non-crash cases compared to crash cases. The authors also proposed to check the 
actual crash time using traffic data and test them to choose the optimal observation time slice durations. 

However, there is still place for improvement as many decisions in the study were arbitrarily taken, 
especially for categorizing crash precursors. For the time being, the distributions of precursors were 
undertaken based on the dates arbitrarily selected. The hard boundaries based on unexhausted 
consideration of normal traffic flow conditions (on many different days) for each precursor might not be 
realistic enough, as traffic is a complex phenomenon and there are normally no boundaries in real life. 

2.3.2.3. Studies	by	Golob	et	al.		

2.3.2.3.1. Objectives	

In one of their articles (Golob and Recker, 2004; Golob, Recker and Alvarez, 2004), the authors tried to 
relate crash characteristics with traffic flow conditions at the time of their occurrence. The ultimate goal 
of the study was to devise a safety performance measurement tool that can be used to measure the effects 
of changes in traffic flow patterns on traffic safety that could be used to predict future conditions, or to 
evaluate the effectiveness of advanced transportation management projects. 
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In a later work (Golob et al., 2008) the objective was to capture the relationships between traffic flow(as 
measured by an extensive set of statistical parameters) and the type of accidents occurring under different 
types of traffic flow conditions. The work builds upon some of their previous studies (Golob and Recker, 
2004; Golob, Recker and Alvarez, 2004) 

2.3.2.3.2. Data	Used	and	Study	Site	

The authors use the database of crashes that occurred on mainline sections of the six major freeways in 
Orange County, California, during 1998. 1’192 out of the 9’341 crashes were selected as the 
corresponding valid loop detector data to perform the analysis (data for a full 30 min preceding the 
accident for three designated lanes at the nearest detector station was available). Crash characteristics 
include: the type of collision, the collision factor, the number of vehicles and other parties involved, the 
movement of each vehicle prior to collision, the location of the collision, the object struck by each 
vehicle, the number of injuries, and environmental conditions. The time of each crash is not known with 
precision. 

Traffic flow information is represented by 30 seconds single loop detector data drawn from the Vehicle 
Detection System in approximately 8’000 locations on California freeways typically spaced one-third to 
one-half mile apart, providing volume (flow) and occupancy (the time percentage a vehicle is within the 
detection field of a loop) for each freeway lane at 30s intervals. 

2.3.2.3.3. Methodology	

In another study (Golob and Recker, 2004; Golob, Recker and Alvarez, 2004), the authors identify four 
blocks of three variables (one measure for each of the three lane type designations, left, interior, and right) 
as being potentially related to taxonomy of crash. The blocks indicate the prevailing traffic speed 
represented by the median flow/occupancy, the temporal variation of the prevailing speed represented by 
the difference between 90th and 50th percentiles of flow/occupancy, the mean traffic flow, and the 
temporal variation in the traffic flow. As the variables are highly correlated, Principle Component 
Analysis (PCA) is performed to extract a sufficient number of factors to identify independent traffic flow 
variables while simultaneously discarding as little information as possible in the original variables. The 
first six principle components were selected. For each principle component, the variable contributing the 
most to the component is selected to represent the component. Thereafter, the clustering method - K-
means - is used to find homogenous groups of traffic flow conditions, which are called traffic flow 
regimes. 

In the work of Golob and co-workers (Golob, Recker and Pavlis, 2008), traffic flow data is used as a 
predictor to calibrate and verify probabilistic models for freeway safety performance. Traffic data at the 
site of the crash 20 minutes prior to the crash was used to calculate four types of parameters: coefficients 
of variation,  correlations of traffic conditions across lanes, autocorrelation (compared to previous 30 
seconds intervals), and means and standard deviations of volume and speed , producing 36 parameters. A 
PCA process was undertaken to reduce the number of dimension from 36 parameters to 8 factors. Based 
on the loadings of each parameter, the most important ones for each factor were recognized. Each factor 
with its important parameters is interpreted to have a concrete meaning. Subsequently, the 8 factors were 
used in logistic regression models to capture the relationship between such factors, their second-degree 
interactions, and the probabilities of occurrence of an event. Four accident variables were analyzed: 
accident severity, collision type, collision location, and number of involved vehicles. 
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2.3.2.3.4. Comments	

A tool requiring only a stream of 30 seconds (or similar interval) observations from ubiquitous single 
inductive loop detectors was developed. This stream is processed to provide a continual assessment of 
safety, updated every interval, and based on central tendencies of flow and speed, as well as variations in 
flow and speed for different lanes of the freeway. The authors also provide the insights gained in relating 
accident and traffic flow typologies. 

However, as the authors did not consider non-crash traffic conditions, how to detect pre-crash traffic 
conditions remains unknown. Moreover, the authors used and suggested to use 30 seconds observations 
as inputs for the developed model, which appears to be rather risky as 30 seconds data can have a high 
noise level. 

2.3.2.4. Studies	by	Abdel‐Aty	et	al.	

2.3.2.4.1. Objectives	

The main objective of the studies undertaken by Abdel-Aty et al. was to identify patterns in the freeway 
loop detector data that potentially precede traffic crashes. Studies of this research group were undertaken 
to establish the relationship between historical crashes of specific types and corresponding loop detector 
data for rear-end crashes (Pande and Abdel-Aty, 2005; Pande and Abdel-Aty, 2006), for sideswipe 
crashes (Pande and Abdel-Aty, 2006), and for both rear-end and sideswipe crashes (Abdel-Aty et al., 
2004; Abdel-Aty and Pande, 2005). Moreover, the authors tested the transferability of their methodology 
with data collected from Dutch freeways (Abdel-Aty et al., 2008). 

2.3.2.4.2. Data	Used	and	Study	Site	

Most of the studies undertaken by Abdel-Aty et al. are based on a 36.25-mile road section on the 
Interstate-4 corridor in Orlando, Florida, United States. The section is equipped with 69 dual loop detector 
stations in each direction located approximately every ½ mile. These stations report speed, volume, and 
occupancy data every 30 seconds from the three through lanes of the corridor. Crash data for a period of 
five years ranging from 1999 through 2003 with the occurrences of 4189 crashes was used. 

2.3.2.4.3. Methodology	

The studies undertaken by the research group follow three steps: 

Data preparation: defining crash and non-crash cases 
Feature Selection: selecting the most important variables 
Model development 

Data for crashes are collected and defined according to Figure 2-3. For each crash, there is a detector 
station assigned to the crash and called crash station, and there are several detector stations at the 
upstream and downstream of the crash station.  According to different studies, the number of detector 
stations employed varies. For example, Figure 2-3 presents the crash case definition used in (Abdel-Aty 
and Pande, 2005) with station F as a crash station and with  five upstream stations (namely from A to E) 
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and one downstream station (station G). Five minute intervals were used to produce data slices. The pre-
crash time interval varies from 20 to 30 minutes. For a time slice at one station, there are several data 
fields containing variables for three lanes. For example, in the study of (Abdel-Aty and Pande, 2005) the 
authors make us of the average and standard deviation of speed for each lane which produces totally 252 
data fields for each crash case (7 stations x 6 slices x 3 lanes x 2 variables). The study presented in 
(Pande, 2005) related to rear-end crashes (chapter 5) uses 120 data fields, each field being processed 
differently: 5 stations (2 upstream and 2 downstream) x 4 slices (totally 20 minutes before crashes) x 3 
variables x 2 ways of data aggregation over the lanes (the average and standard deviation). 

Non-crash cases are generated in the same manner that crash cases are generated. Non-crash cases, in 
order  to be used for model development, are randomly selected among non-crash cases in either the 
whole non-crash case population (such as in (Pande, 2005)) or in a smaller set of non-crash cases obtained 
by using matched-case control (such as in (Abdel-Aty, Uddin, Pande, Abdalla and Hsia, 2004; Abdel-Aty 
and Pande, 2005)). Finally, for each crash case, several non-crash cases were randomly selected for 
developing the model. 

 

Figure 2‐3: The definition of crash cases. Source: (Abdel‐Aty and Pande, 2005) 

With crash and non-crash cases extracted, the authors selected among a large number of variables the 
ones contributing the most to the differentiation between crash and non-crash cases. Depending on the 
studies, different techniques were used. For example, matched case-control logistic regression was used 
in (Abdel-Aty and Pande, 2005) to select three among 252 variables, whereas in (Pande and Abdel-Aty, 
2006) classification and regression trees were used to estimate variable importance. 

Finally, data including crash and non-crash cases was used as input for developing models. Different 
machine learning techniques were applied: Probabilistic Neural Networks (Abdel-Aty and Pande, 2005), 
Multi-Layer Perceptron (MPL) Network (Pande and Abdel-Aty, 2005; Pande and Abdel-Aty, 2006), or 
radial basis function (Pande and Abdel-Aty, 2005). 
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2.3.2.4.4. Comments	

The authors have successfully applied a series of data mining techniques to select important variables and 
to develop models that differentiate crash from non-crash cases for different crash types. Crash and non-
crash cases were characterized by many variables covering temporal and spatial dimensions of the pre-
crash traffic evolution. Furthermore, using multiple detector stations for a crash case, the authors also 
developed a shockwave method for recognizing crash time more precisely. 

However, the studies of this group are somehow confusing. The authors follow two different strategies in 
selecting non-crash cases (using matched case-control or not) and in combining detector stations (the 
number of detector stations used upstream) with the same study site. However, the authors did not 
provide a guideline about the best strategy to use. In addition, the authors re-aggregated data multiple 
times, which reduces the information and makes the frontier between crash and non-crash cases blurry. 

2.3.2.5. Studies	by	Hourdakis	et	al.	

2.3.2.5.1. Objectives	

The authors  (Hourdakis et al., 2006) aim at determining whether crash prone conditions can be identified 
and detected prior to occurrence. 

2.3.2.5.2. Data	Used	and	Study	Site	

The area with the highest number of crashes, a mile long section of the I-94 westbound south of 
downtown Minneapolis, is used as study site. Three detection and surveillance systems were deployed for 
capturing live crashes on video while simultaneously extracting individual vehicle speeds, headways, and 
classifications. 11 cameras captured and saved 12 hours of traffic every day, whereas individual vehicle 
measurements are collected 24/7 at 6 stations on the roadway, on a per lane basis; this represents a total of 
20 detection locations. In this work, the risk identification model was developed with traffic data 
collected from August 2003 to January 2004. The video captures for a longer period was collected and 
analyzed. 

2.3.2.5.3. Methodology	

Thanks to the availability of the traffic surveillance video data, the authors could justify the time of 
crashes reported by the police. Moreover, the authors could also identify near-miss cases which represent 
events where no collision occurred, yet there were single vehicle crashes caused by drivers’ maneuvers 
aiming at avoiding collisions between two or more vehicles. In total, there were 30 crashes and 122 near 
misses detected.  

For developing the model, a number of non-crash prone conditions were identified and defined as any 
period of time where neither a crash nor a near miss was observed. A large number of 20-30 minute 
periods were randomly extracted from video surveillance data and from traffic measurements. Several 
factors relating to the crashes were also extracted from video surveillance data, such as the visibility 
conditions in terms of rain and snow, pavement condition, and sun position. 
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Having obtained traffic as well as video data, the authors choose three traffic flow metrics: temporal, 
spatial, and heuristic metrics. Temporal metrics quantifies changes in traffic characteristics over a time 
interval and is directly defined and derived from point measurements. The temporal metrics includes the 
average speed, the coefficient of variation of speed (the ratio between the standard deviation of speed and 
its mean over a time period), the traffic pressure (the product of density and speed variance), kinetic 
energy (the product of density (mass), and the square of the stream (average) speed), and the coefficient 
of variation of time headway. The calculation of temporal metrics is based on a moving filter over the 
individual vehicle speed time series. The size of the moving window is defined by the number of vehicles 
and varies from 15 to 120. Spatial metrics refer to metrics derived from the trajectory information of a 
single vehicle over a specified section of roadway and include the acceleration noise (the standard 
deviation of accelerations (decelerations) a vehicle performs in the space of a mile), the mean velocity 
gradient (a measure of the mean change in velocity per unit distance of the trip), and the quality of flow 
index (calculated from a vehicles average speed, absolute sum of changes in speed, and number of speed 
changes in a mile). As it is difficult to obtain the spatial metrics, strict assumptions were made on the 
speeds and headways of vehicles which are not considered to change on the one mile study site. Heuristic 
metrics are given by the engineering judgment and include Max-Min-Diff (the percentage difference in 
speed between the fastest and slowest vehicle in a group of n vehicles passing over a single detector), and 
UpdownDiff (the percentage difference in speed between the fastest vehicle at the downstream detector 
and slowest vehicles in the upstream one, a conservative setting). The heuristic metrics are calculated 
based on different sizes of vehicle groups. In addition to traffic flow metrics, three environmental factors 
that were also studies are: pavement condition, visibility conditions, and sun position. Globally, 1’137 
parameters resulted good candidates for developing the model. By applying Backward Elimination, the 
authors could reduce the number of parameters to 18 most important factors. 

The authors developed the model using logistic regression techniques with Maximum Likelihood 
Estimation, employed to determine model’s coefficients. With the final model based on 18 most 
important factors, the authors conclude that speed variations and environment factors are two main causes 
of the crashes or near-miss events. The authors also tested their model in real time, for a defined number 
of days (not previously considered), in order to assess its true performance. From a total of 60 crashes and 
near-misses, the model could identify 58.33%, while from a total of 176’380 non-crash cases, the model 
misidentified 12’016 cases, bringing the false decision rate to 6.81%. 

2.3.2.5.4. Comments	

The authors possessed a large amount of data including individual traffic data, crash data, and video data. 
Using video data, the authors proposed the idea of justifying the exact crash time and extracting 
additional environmental information from video data. The idea of extracting near-miss cases was also 
proposed for the first time. They proposed the new idea of using a moving window of vehicles instead of 
moving windows of time, as commonly used in the field. 

However, as the performance of the developed model is not particularly high, a lot of improvements that 
can be implemented. Firstly, from individual vehicle data, many more traffic related variables can be 
extracted, such as the percentage of heavy vehicles, the speed difference between lanes, etc. Similarly, 
with low spacing between detector stations, many traffic related spatial variables can be obtained instead 
of subjectively selected heuristic ones. Secondly, near-miss cases might have enriched the crash data set 
but driver’s status was not justified to assure that the situations were caused by the traffic itself and not by 
drivers showing a strange behavior. Moreover, the model developed using logistic regression is more 
likely to be an exploratory study than a model applicable in real-time, specifically because of its poor 
performance. The authors presented a probability threshold which was subjectively determined. 
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Furthermore, one of inputs for the model relates to the visibility extracted from video data. The author did 
not explain how to capture this information in a real-time framework. 

2.3.2.6. Studies	by	Hossain	et	al.	

2.3.2.6.1. Objectives	

The objectives of the work presented in (Hossain and Muromachi, 2010) include: 

Developing models for predicting crashes in real-time.  
Finding out where and how to layout the detectors to develop real-time risk identification models. 
Suggest solutions when a detector is out-of-order. 

2.3.2.6.2. Data	Used	and	Study	Site	

Data was collected from the Shinjuku 4 Tokyo Metropolitan Expressway, in Japan. The length of the road 
section is of approximately 14 kilometers (for the direction bounding the downtown of Tokyo) and there 
are 50 detectors, 6 entries and 3 exit points. The time period for data collection was: December 2006 - 
November 2008.  

The crash data contained 1318 cases, including information on date, time (in minutes), location, crash 
lane, type of crashes and vehicle involvement. Traffic data are the 5-minute station-level aggregated 
values of average speed and cumulative flow, for each of the 50 detectors. The traffic conditions leading 
to crashes were contained in 5-minute interval data, at least 9 minutes before the crash.  

2.3.2.6.3. Methodology	

Crash time is justified using pre-installed surveillance cameras in most parts of the expressway or using 
the round the clock petrol by safety vehicles.  

Normal traffic conditions comparable with conditions leading to crashes were extracted at the same time 
of the day, and day of the week for the whole study period. Crashes occurring on weekends or during 
night time were simply excluded. The study taking benefit of low spacing between detector stations 
considers 6 combinations of traffic detectors at the upstream and at the downstream of crashes. 
Depending on the combination of detectors, the number of crashes considered varied from 167 to 281. 
Data corresponding to 30 crashes were used for the model evaluation purpose and the rest of the data was 
used for model building. 

The authors tested the models with different combinations of one detector station upstream and one 
downstream of the crash location. Thereafter, for each combination of detector stations, the authors tested 
different combination of variables (that were derived from speed and flow at each station in order to 
select variables that significantly influence the differentiation between non-crash and crash cases). 
Variable selection was undertaken using logistic regression. Finally the differences in speed and flow 
were used as input variables for developing models. 
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Bayesian Network models were developed for each detector station combination to provide probabilities 
for a traffic case to become a crash case. To make a classification, a probability threshold needs to be 
determined. 

2.3.2.6.4. Comments	

The authors proposed different combinations of detector stations upstream and downstream of crash 
location. Whereas Abdel-Aty et al. used certain combinations of detector stations and did not compare 
such combinations; Hossain et al. made this comparison and recommended the best combination. The 
authors also suggested using the second best combination as an alternative, particularly when there is 
failure within the best combination (such as a detector failure).  

However, there are also limitations that restrict the author’s findings. First the raw datasets used are 
already highly aggregated in 5-minute intervals. Secondly, the number of potential variables used is 
limited (speed, flow, and derived values of speed and flow). 

2.3.2.7. Other	Disaggregate	Studies	

Recently, a novel trend of studies in traffic safety emerged, which utilizes disaggregate traffic flow data in 
which indicators of traffic risks or traffic safety are developed based on individual vehicle data, named 
risk or safety indicators, respectively. Below, all risk or safety indicators will be called risk indicators. 

Time-To-Collision (TTC -(Hayward, 1971)) is one of the first indicators of this type. TTC is used to 
indicate the time that remains until a collision between two vehicles if the collision course and speed 
difference are untouched. TTC has been widely used in theoretical safety studies, and one successful 
application of TTC is in the context of Traffic Conflict Technique (TCT - (Archer, 2001)), which is 
perhaps the most developed indirect measure of traffic safety. 

Derived from TTC, a series of risk indicators were invented, such as Time Exposed Time-to-collision 
(TET) or Time Integrated Time-to-collision (TIT)  (Minderhoud and Bovy, 2001), Post-Encroachment 
Time (PET)  (Allen et al., 1978), etc. However, most of the indicators invented were only tested in 
simulation models. 

Several recent studies that can be listed here include the work presented in (Oh et al., 2006; Mouzon et 
al., 2008; Haj-Salem and Lebacque, 2009). The general objective of these studies was to create risk 
indicators and validate them using individual vehicle data for crash and non-crash cases. The validation 
results were positive as the risk indicators had different distributions in crash and non-crash cases. 
However, the indicators were only tested with a limited number of crashes, and more importantly, crash 
risks in pre-crash traffic conditions were only identified at the last minutes, which might make it 
impossible to prevent the crash even when the crash risk is identified. 

From the traffic management point of view, there have been no models developed that were based on risk 
indicators such those applicable in a real-time framework. However, as the units of analyses are the 
individual vehicles, this direction of disaggregate studies is still promising when the vehicle-to-vehicle or 
vehicle-to-infrastructure communication becomes a widely spread reality. 
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2.4. Critical	review	

2.4.1. Overview	

The work reviewed so far has certainly brought a significant contribution to research on traffic safety 
using traffic flow data. However, there several common points that can still be improved. 

2.4.2. Type	of	Data	

In disaggregate studies, datasets are a prerequisite. Different types of data are used in the previous studies. 
Based on the availability of such data, the objectives and methodology of studies can vary. Table 2-1 
summarizes the data used in previous studies with emphasis on traffic data. There are two conditions 
regarding traffic data influencing the objectives and methodology of previous studies: the details of raw 
traffic data and the spacing between traffic detector stations. 

If traffic data is collected from single loop detectors, the number of variables is limited to vehicle count 
and occupancy (as in (Golob and Recker, 2004; Golob, Recker and Alvarez, 2004; Golob, Recker and 
Pavlis, 2008) presented in section 2.3.2.3). Double loop detectors can provide more information 
depending on the storage configuration. Furthermore raw traffic data can be aggregate or individual 
vehicle data. If the raw data are aggregate, the variables are: average speed, vehicle count, and occupancy 
(for example, as in the studies introduced in sections 2.3.2.1, 2.3.2.2, 2.3.2.4, and 2.3.2.5). If the raw data 
comes from individual vehicle data, many variables such as headway, time gap, vehicle count, average 
speed, variations of speed, headway, and time gap, can be obtained by aggregating the data. 

The spacing between traffic detector stations determines whether space-related variables can be used in 
developing models. In case of low spacing between detector stations, several studies make use of stations 
upstream and downstream of crash locations to characterize the spatial traffic evolution (as in studies 
reviewed in sections 2.3.2.2, 2.3.2.4, and 2.3.2.5). 

As listed in Table 2-1, two research groups (Hourdakis et al. and Hossain et al.) make use of video data. 
The usefulness of video capturing is that crash time can be justified and environmental information such 
as visibility or lighting condition can be extracted. Only one group (Abdel-Aty et al.) used meteorological 
data. 

Traffic related variables used in previous studies might be insufficiently detailed and were obtained by 
aggregating raw datasets at several levels (lane level or section level). Such multiple aggregation levels 
would reduce the frontier between crash and non-crash cases, which leads to the resulting low 
performance of the developed models. 
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Table 2‐1: Types of Data used 

Studies 
Duration of data 

availability 
Types of data 

used 
Types of Raw 
Traffic Data 

Use of multiple 
detector stations 

Oh et al. Feb 16 - Mar 19, 1993, 
5A.M.-10A.M. & 2P.M. -
7P.M. 

-Traffic 
-Crash 

Aggregate from 
double loop 

No 

Golob et 
al. 

Mar-Aug, 2001 (six full 
months) 

-Traffic 
-Crash 

Aggregate from 
single loop 

No 

Lee et al. 13 months from Jan, 1998 
to Jan, 1999 

-Traffic 
-Crash 

Aggregate from 
double loop 

Yes 

Abdel-Aty 
et al. 

1999 - 2003 (5 years) -Traffic 
-Crash 
-Meteorological 

Aggregate from 
double loop 

yes 

Hourdakis 
et al. 

From Aug, 2003 to Jan, 
2004  

-Traffic 
-Crash 
-Video 

Aggregate from 
double loop and 
Individual  

No 

Hossain et 
al. 

Dec, 2006 to Nov, 2008 -Traffic 
-Crash 
-Video 

Aggregate from 
double loop 

Yes 

2.4.3. Traffic‐Related	Variables	

Depending on the raw data and on the availability of multiple detector stations, the variables used and the 
number of variables vary in previous studies. Some studies additionally used non-traffic variables, such as 
time of day, visibility, etc. However, only traffic-related variables are discussed in this section. 

There are two views from which traffic characteristics are observed, the temporal and the spatial view. 
From the temporal view, traffic characteristics are quantified in variables such as average of speeds, 
variation of headways, etc., within a certain time interval (which is mostly a 5-minute interval in previous 
studies). These are the variables measuring the evolution of traffic over the time interval. 

There are also variables measuring traffic evolution over space, which can be related to laterally crossing 
the lanes of a section or to a certain road distance. Normally, raw traffic datasets are stored based on 
lanes. The data can be aggregated from individual lanes to create more aggregate variables representing 
traffic characteristics of the whole section. In this case, traffic data from only one detector station is used 
and the newly-created variables are called station-based. If more than one station is used, corresponding 
variables characterize the traffic evolution along the road section where detector stations are used. It is 
worth noting that the temporal aggregation is inclusive in spatial aggregation. 

The availability of variables and the raw data aggregation interval are important factors influencing the 
set of potential variables in previous studies. For example, Hossain et al. had limited choices in creating 
new variables because the aggregation interval in raw data was already on a 5-minute basis and the 
variables were station-based. On the contrary, Abdel-Aty et al. had more choices as their raw data was 
aggregated in 30 seconds from which 5-minute variables were created by re-aggregating 30-second data. 
Hourdakis et al. have more potential to create variables as they possessed individual data. Table 2-2 
summarizes the variables and the raw data used in previous studies. 
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Table 2‐2: Variables and aggregation intervals in raw data 

Studies Variables 
Aggregation 

Interval 

Oh et al. Lane-based volume, occupancy, and average speed 10 seconds 

Golob et al. Lane-based volume and occupancy 30 seconds 

Lee et al. Lane-based volume, occupancy, and average speed 20 seconds 

Abdel-Aty et al. Lane-based volume, occupancy, and average speed 30 seconds 

Hourdakis et al. Individual vehicle data - 

Hossain et al. Station-based volume and average speed 5 minutes 

From the raw data characterized by the variables listed in Table 2-2, new ones were created and called 
potential variables. We define the following groups of potential variables: 

 LB - Lane based. Variables belonging to this group can be obtained using traffic data of one lane 
and do not relate to other lanes at one detector station. 

 AL - Aggregation over lanes. Variables belonging to this group are calculated based on data from 
more than one lane at the same detector station. 

 DS - Differentiation between stations 

The first two groups (LB and AL) are station-based (i.e. variables belonging to these groups are 
calculated based on data from one detector station). Examples of lane-based variables include: average 
speed, standard deviation of speed, average headway, etc. The variables representing the aggregation over 
lanes include the average speed or the volume over two or three lanes. Variables representing 
differentiation between lanes such as speed difference, flow difference, etc. also belong to group AL. 
Variables representing differentiation between stations involve at least two detector stations. For example, 
the differences between the average speeds and volumes of two stations (one upstream and one 
downstream of crash location) are classified in the DS group. 

To obtain the potential variables, original variables in the raw data are re-aggregated (here the term re-
aggregate is used as in most of the previous studies (except the studies by Hourdakis et al.), the raw data 
being already aggregated). Depending on the raw data, three re-aggregation levels can be undertaken to 
obtain potential variables. The first re-aggregation level (designated level 1) relates to the aggregation of 
raw data from the time interval of interest (which is 20 minutes for studies of Golob et al., 2, 5, or 8 
minutes for Lee et al., vary according to Hourdakis et al., and 5 minutes for the others). Variables 
belonging to group LB are obtained from the re-aggregation level 1. The second re-aggregation level 
(level 2) generates variables using the variables obtained from level 1. The second level can be 
undertaken by aggregating data over lanes (for example, the average speed over three lanes) or over 
stations (for example, the speed difference on each lane between two stations). There is also a third re-
aggregation level (level 3), such that variables obtained at this level are generated by aggregating 
variables obtained in level 2. Variables of the third level can be based on one station (such as the 
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coefficient in variation of speed over three lanes) or based on two stations (such as the difference of 
station-based average speeds between two stations). 

The different levels of data re-aggregation used in previous studies are listed in Table 2-3. It is worth 
noting that different re-aggregation levels were undertaken by the authors except for Hossain et al. whose 
raw data was already aggregated on level 2. 

The re-aggregation levels represented in Table 2-3 do not indicate the quality of the aggregating 
operation. Most of the aggregating operations reduce the information while others can bring more 
information. For example, averaging lane-based speeds to obtain the average speed at a station reduces 
speed information. However, subtracting the lane-based average speeds from two stations can bring 
additional information on speed variation between stations on one lane. 

In general, the more the traffic data are re-aggregated, the more the distinction between crash and non-
crash cases becomes blurry. Among previous studies, there are two study groups (Golob et al. and 
Hourdakis et al.) who still keep variables obtained from the first re-aggregation level. Three research 
groups re-aggregated data at the third level. Lee et al. and Hossain et al. created new information which 
includes differences of flows (by Hossain et al. only) or speeds between two stations, whereas Abdel-Aty 
et al. divided station-based standard deviation of speed to station-based average speed to obtain station-
based coefficients in speed variation. 

Table 2‐3: Scope of potential variables and re‐aggregation level in previous studies 

Studies 
Variables Scope Re-aggregation 

Levels LB AL DS 
Oh et al.  Yes  2 
Golob et al. Yes   1, 2 
Lee et al.  Yes Yes 2, 3 
Abdel-Aty et al.  Yes  2, 3 
Hourdakis et al. Yes  Yes 1, 2 
Hossain et al.  Yes Yes 2, 3 

 

We define four types of variables, from VT1 to VT4, presented here in Figure 2-4 based on different 
traffic parameters such as speed, flow, headway, percentage of heavy vehicle, etc. Variables of type VT1 
belong to the LB group, i.e. representing traffic characteristics within lanes. VT2 includes variables 
linking different lanes. Group VT3 includes variables linking consecutive time intervals, and group VT4 
linking traffic characteristics between different stations. In previous studies, there was no variable used 
for characterizing traffic evolution between different time intervals. 
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Figure 2‐4: Types of variables 

2.4.4. Relevancy	of	Selected	Non‐crash	Data		

Most of the models developed are used for assessing the risks of two crash types: rear-end and sideswipe. 
Rear-end and sideswipe crashes usually occur when the traffic flow is high, when the drivers cannot keep 
a sufficiently safe headway from the front vehicles, or when it is difficult to find a gap on the adjacent 
lane for overtaking. This mean that rear-end and sideswipe crashes can only occur under certain 
circumstances and it is less probable for crashes of these types to occur under other traffic conditions. 
Therefore, the non-crash cases used to compare with pre-crash cases should be selectively extracted from 
the set of all non-crash cases. Choosing irrelevant non-crash cases might mislead the development of a 
model and the subsequent interpretation of the results. As a consequence, if non-crash data are not 
properly selected, the applicability of the developed models can be questionable. 

Techniques for selecting non-crash data are presented in Table 2-4. All data that is not related to crashes 
is considered as potential non-crash data. Several studies limit the potential non-crash data to a smaller 
set based on the control of factors such as crash location, time of the day, day of the week, weather 
conditions, etc. (called external factors). This means that a reduced set of all possible non-crash data 
having the same external factors as crash data is generated. Lee et al., Abdel-Aty et al. (in some of their 
studies), and Hossain et al. use this control, whereas there was no control on potential non-crash data in 
studies by Hourdakis et al. and in some of the studies by Abdel-Aty et al. 

Thereafter, non-crash cases are selected from potential non-crash data for the comparison with crash cases 
to develop models. Lee et al., Abdel-Aty et al., and Hourdakis et al. selected non-crash cases at random, 
whereas Hossain et al. used all available non-crash cases. 

Here, it can be seen that the selection of non-crash cases is arbitrary even with the control of external 
factors. For the selection with control of external factors, there is no guarantee that controlled non-crash 
cases are comparable with crash cases. Moreover, there is an uncertain assumption that there was no 
unrecorded incident that changed the traffic during the selected non-crash cases. For the selection without 
control of external factors, the comparison could be worse if non-crash cases were within post-crash 
periods or within periods where the traffic flow was low. 
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Table 2‐4: Selection of non‐crash cases 

Studies Non-crash Selection Controlled? 

Oh et al. Fixed at 30’ before crashes - 

Golob et al. - - 

Lee et al. At random  Yes 

Abdel-Aty et al. At random Yes for some studies, no for some other studies 

Hourdakis et al. At random No 

Hossain et al. Use of all possible non-crash cases Yes 

 

2.4.5. Data	Imbalance	

The imbalance of data sets is currently a well-known issue in data mining (Chawla et al., 2004). Data 
imbalance usually results in the low performance of traditional machine learning techniques (including 
classification and regression techniques). Among two data sets representing two classes, the data set with 
a much higher population is called major class whereas the other data set is called minor class. The minor 
class is the class of interest. In traffic safety studies using disaggregate traffic flow data, the minor class is 
the class of crash cases. The population of crash cases is much lower than the population of non-crash 
cases. In the literature, the ratio between the populations of the major class and the minor class is called 
Imbalance Ratio (IMRO). 

Three potential solutions (two at data level and one at algorithmic level) for developing models capable of 
differentiating non-crash and crash cases are down-sampling, up-sampling, or use a modification of 
learning methods. As the population of the major class is high, the down-sampling techniques try to 
sample a subset of the major class such that the population of the subset is similar to the population of the 
minor class. On the contrary, up-sampling techniques try to clone instants of the minor class so that the 
final population is similar to the population of the major class. Another solution is to modify the learning 
method, as the modification of classification Random Forests presented in (Chen et al., 2004). 

It can be seen that most of the reviewed studies (except the studies by Golob et al.) used down-sampling 
technique to sample non-crash data although the imbalance ratios were different. Table 2-5 presents 
different IMRO values used for developing models in previous studies. It is worth noting that data for 
validation purpose might have different IMRO values, and only IMRO values for training models are 
important for model’s performance. 

In most studies an IMRO value of 1:1 is used (i.e. Oh et al., Lee et al., and Abdel-Aty et al.). In the other 
ones, IMRO values were arbitrarily determined based on the availability of non-crash data. 
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Table 2‐5: Imbalance Ratios in previous studies 

Studies IMRO 

Oh et al. 1:1 

Golob et al. - 

Lee et al. 1:1 

Abdel-Aty et al. n:1 where n varies 

Hourdakis et al. n:1 where n was not stated 

Hossain et al. n:1 where n =95.4; 92.1; 91.3; 92.3; 89.8; and 99.9 

2.4.6. Data	Mining	Techniques	

Various data mining techniques were used in previous studies and can be divided into two groups: 
techniques for feature selection and techniques for model development. 

Feature selection is the process of choosing the most important features to be used in model development. 
Previous studies usually followed three steps in developing models: listing potential variables, selecting 
important variables, and developing models. Based on raw traffic data and based on the space between 
detector stations, the number of potential variables may vary. Several techniques were used to select the 
most important variables, as listed in Table 2-6. 

Table 2‐6: Data mining techniques used in previous studies 

Studies Feature Selection Model Development 

Oh et al. t-statistics  Probabilistic Neural Networks 

Golob et al. Principal Component Analysis - 

Lee et al. Arbitrary Categorization 

Abdel-Aty et al. Logistic regression; classification and 

regression trees; Random Forests 

MPL neural networks, probabilistic 

neural network 

Hourdakis et al. Backward Elimination Logistic regression 

Hossain et al. Logistic regression Bayesian Networks 

Two advanced feature selection methods were used by Abdel-Aty et al.: Classification and Regression 
Trees, and Random Forests. The remaining work, and the techniques used for model development were 
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rather traditional. In this regard, traditional machine learning techniques would support imbalanced data 
sets badly, (such techniques provide low performance for minor classes). As crashes are rare events on 
motorways, compared to non-crash events, the aforementioned techniques would perform poorly if non-
crash data were more properly sampled. Another issue that traditional techniques suffer from is that 
potential variables are highly mutual correlated. The correlativity in data would mislead the listed 
techniques and result in the wrong identification of important factors and would ultimately lead to wrong 
results. 

2.4.7. Performance	of	the	Approaches	

The performance of existing approaches cannot be verified under the conditions of the current research, 
because the data required as input in approaches is not available. Therefore, the performance discussed in 
this section relates to each of the approaches and is summarized in Table 2-7. 

In Table 2-7, the missed alarm rate is the percentage of pre-crash cases that are incorrectly identified as 
non-crash, and the false alarm rate is the percentage of non-crash cases incorrectly identified as pre-crash. 
In general, a regression approach would require three data sets including training, calibration, and 
validation. The training data set is used for establishing the relationship between pre-crash and non-crash 
cases. The calibration data set is used for defining regression thresholds aiming to classify new traffic 
cases into pre-crash or non-crash. The validation data set can be considered as the set of new traffic cases 
which are tested with the developed model together with the defined thresholds. In a classification 
approach, training and validation data sets are required. 

It is important to note that the missed alarm rate and false alarm rate presented in Table 2-7 are only 
applied for the validation data set. As there is only one data set used the first two studies (Oh et al, 2001 
and Lee et al, 2003), missed alarm and false alarm rates are not available. 

Table 2‐7: Performance of existing approaches  

Studies 
Missed

Alarm 

False 

Alarm 
Note 

Oh et al, 2001 - - One data set for Training, calibration, and validation 

Lee et al, 2003 - - One data set for Training, calibration, and validation 

Hourdakis et al, 2006 41.67 6.81 One data set for calibration, and validation 

Abdel-Aty et al, 2005- 26.10 30.00 Two data sets for training and validation 

Pande et al, 2005-2007 26.00 34.00 Two data sets for training and validation 

Hossain et al, 2010 36.67 20.00 One data set for calibration, and validation 
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In the other studies presented in Table 2-7, the best reported performance of the corresponding 
approaches is presented. The main objective of the above-mentioned approaches is to detect risky traffic 
conditions. Therefore, obtaining missed alarm rates as low as possible is better than having low false 
alarm rates.  

The best missed alarm rate in Table 2-7 is 26.00% (Pande et al, 2005-2007), with a maximum of only 
74% of pre-crash cases can be identified. The cost for that low missed alarm rate is 34.00% of the non-
crash incorrectly identified. Hourdakis et al, 2006 offer an approach having a low false alarm rate of 
6.81%, yet on the other side, the missed alarm rate is really high (41.67%). 

2.4.8. Applicability	for	Crash	Prevention	in	Real‐time	

The applicability of the developed models in term of crash prevention is based on the following factors: 

Is the input data easy to get in real-time? 
When the crash risk is identified, is it possible to activate preventive measures to clear or diminish the 
risk? 

Only when inputs for the models are obtainable online and the crash risks are identified a certain time 
before crash occurrence, the models for crash prevention in real-time are applicable. Here, the 
performance of the models is assumed to be high. The model developed by Hourdakis et al. requires input 
from video data that cannot be automatically extracted. Therefore, it is not applicable online. The models 
developed by Oh et al. and Lee et al. are not applicable they identify the crash risk right before the crash 
occurs; therefore the crash is not preventable. The model developed by Golob et al. is not applicable as it 
does not differentiate between crash and non-crash case. 

Table 2‐8: Applicability of develop models in crash prevention 

Studies Inputs Ready to Prevent Applicable 

Oh et al. Yes No No 

Golob et al. Yes No No 

Lee et al. Yes No No 

Abdel-Aty et al. Yes Yes Yes 

Hourdakis et al. No No No 

Hossain et al. Yes Yes Yes 

2.5. Conclusions	from	Literature	Review	

Driving is a complex task. In most of the cases, it is driver’s behaviors that make traffic unsafe. Among 
unsafe driving behaviors, lapses, errors, and violations are potential driving situations that can lead to 
collisions. Lapses and errors are driving misbehaviors that depend on individual drivers and cannot be 
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influenced when the driver is on the road. Violations are intentional actions prone to a certain level of 
collision risk. Fortunately enough, violations are spontaneous and can therefore be influenced by smart-
design of the road environment. 

Motorway traffic safety studies using traffic flow data aim to identify traffic conditions that can lead to 
collisions. The ultimate objective of such studies is to provide a prediction on traffic crash risks such that 
certain smart designs can be activated, helping to clear crash related risks or to diminish collision 
consequences. However, before attaining that objective, it is necessary to differentiate risky traffic 
conditions. In the literature, there are studies that attempt to address this challenge. In spite of the 
significant contributions by existing studies, the following issues can be undertaken to improve the state 
of the art: 

i. Non-crash data should be systematically used in model development where relevant non-crash data is 
selected to be compared with pre-crash data. There is a need for a methodology to sample non-crash 
relevant data with pre-crash data. 

ii. There is a need for a new methodology in order to develop risk identification models with better 
performance. Existing methodologies offers models with high missed alarm and false alarm rates. The 
new methodology should improve the model performance by reducing these two alarm rates.  

iii. Existing approaches neglect the data imbalance problem, which might be a serious shortcoming that 
limits the performance of developed models. The new methodology needs to address this problem. 

iv. Existing approaches are limited to crash risk assessment (i.e. verify whether the last traffic case is 
risky or not) and do not provide any prediction on future crash risks. Thereby, it is unclear how to 
implement countermeasures aiming to reduce the crash risk. Analysis on crash likelihoods would 
increase the confidence of countermeasure activation decision. 

In the next chapters, the above risk related issues will be tackled. 
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Chapter	3	Methodology	

The methodology of the current research is here introduced in order to fill the gaps in the state of the art 
of Chapter 2. The choices of techniques at different methodological phases are discussed in order to 
improve the performance of the models developed using the proposed methodology.  

3.1. Overview	

As a result of the critical review analysis presented in Chapter 2, the methodology to be established needs 
to confront issues that were either not properly addressed or could be improved: 

 Non-crash data sampling: selection of non-crash traffic data that are comparable with and 
relevant to pre-crash traffic data, 

 Performance improvement: imbalance between non-crash and pre-crash traffic data and 
performance  improvement of risk identification models, and 

 Real-time applicability 

Thus, the methodology must include the main steps illustrated in Figure 3-1.  

 

Figure 3‐1: Mains methodological steps 

Once the methodology is applied to the input data, pre-crash and non-crash cases will be defined. 
Thereafter, non-crash cases will be sampled such that only relevant non-crash cases are used and 
compared with pre-crash cases. Finally, risk identification models will be developed based on pre-crash 
cases and relevant non-crash cases. The final result given by applying the methodology is a set of models 
capable of identifying real-time traffic crash risks on motorways. The three main methodological steps are 
respectively discussed in sections 3.2, 3.3, and 3.4. 
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3.2. Traffic	Situations	‐	TS	

3.2.1. Definitions		

A Traffic Situation (TS) is an ensemble of instant information indicating the traffic state and external 
factors that might have influences on the traffic state from the traffic safety point of view.  

As a TS is characterized by instant information, the time duration employed for the characterization is 
called aggregation time interval. The definition of TS is applied for one traffic direction only, because the 
traffic state on each traffic direction may vary. 

3.2.2. Traffic	State	

According to Figure 2-4, there are four types of traffic-related variables that can be used to characterize 
the temporal traffic state: 

 Type 1: traffic state on each lane (i.e. average speed, volume, occupancy during aggregation time 
interval). 

 Type 2: traffic variation over lanes (i.e. over-lane speed difference). 
 Type 3: traffic variation over aggregation time intervals, and 
 Type 4: traffic variation over road sections 

Among these four type variables, the first three ones are measurable using one traffic detector station, 
whereas the last type variable is only measurable when low spacing detector stations are available. 
Moreover, aside from variables of type 1 that characterize the traffic on each lane, all variables of other 
types should bring additional information about temporal and spatial traffic variations.  

3.2.3. External	Factors	

External factors are all of the non-traffic factors influencing the traffic state; here can be many. This 
section inexhaustibly discusses these factors, especially the ones that can influence the traffic safety. 

3.2.3.1. Instantaneity	

According to the statistics in section 4.5.1, the time of the day and the day of the week can be temporal 
factors having influences on traffic occurrences. 

3.2.3.2. Weather	Conditions	

Weather effects on traffic and traffic safety are reported in many studies, such as Satterthwaite (1976), 
Edwards, (1999), and more recently Andrey, (2010). The effects can come from many meteorological 
factors, such as wind, precipitation, or temperature.  
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3.2.3.3. Pavement	Conditions	

The assessment of the effect of pavement conditions on traffic safety is discussed by Mayora et al, (2009). 
Pavement conditions mentioned in this section is mainly related to the contact between pavement surface 
and vehicle tires via skid resistance, and influenced by temporal external conditions such as rain. When 
the pavement becomes wet, snowy, or icy, the skid resistance is reduced, causing longer braking.  
Pavement surface damages are not taken into account in the present study. 

3.2.3.4. Visibility	

There is a wide range of alternatives to characterize the visibility depending on the factors influencing it. 
The lighting conditions related to night, day, facing direction with the sun, etc. can affect the visibility. 
The weather can also influence visibility: heavy rain and fog reduce it dramatically. 

3.2.3.5. Other	External	Factors	

Many other external factors can influence motorway traffic safety, rock avalanches, the occurrence of the 
first accident, and the collapse of tunnels (in case the motorways through tunnels), just to name a few. 
However, these are rare events in motorway traffic crashes and are difficult to quantify. Therefore, such 
external factors are not considered as part of traffic situations. 

3.2.4. Types	of	TS	

Two TS types are distinguishable in this research based on historical crash occurrences: non-crash TS and 
pre-crash TS. The definitions are presented below. 

For each crash, there is a duration called crash period, where the traffic conditions relating to the crash 
before and after occurrence are illustrated in Figure 3-2. The crash period is divided into three parts: the 
traffic conditions after the crash called post-crash period, the traffic conditions right before the crash 
called pre-crash period and the traffic conditions at the start of the crash period called pre-crash buffer 
period. 

The time period outside of all the crash periods is called non-crash period. Here, there might still be 
traffic conditions where traffic risks were high but did not end up in crashes. However, there is no reason 
to justify these traffic conditions and hence, they are neglected.  

 

Figure 3‐2: Separation of non‐crash and crash‐related traffic conditions 
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It is worth noting that for a new TS, which can be a TS in real-time or in validation data set, its status as 
non-crash or pre-crash is unknown and needs to be identified applying the methodology presented in the 
present chapter. 

3.2.4.1. Pre‐crash	TS	(PTS)	

PTS are TS within pre-crash periods. Traffic conditions right before crashes are known to be truly risky as 
they obviously are followed by crashes. PTS are used to characterize such traffic conditions. 

3.2.4.2. Non‐crash	TS	(NTS)	

A non-crash TS (NTS) is a TS appearing in non-crash periods. 

3.2.4.3. Unused	Traffic	Intervals	

Post-crash periods are not used as the traffic conditions are abnormal. Pre-crash buffer periods are also 
unused as they might contain both NTS and PTS. 

3.3. Data	Sampling	

3.3.1. Motivation	

As reported in sections 2.4.4 and 2.4.5, there can be two issues related to the selection of non-crash data 
in the comparison with pre-crash data developing risk identification models. Two issues are: 

1. In some studies, non-crash data are arbitrarily selected. The potential consequence is that the 
developed model might be misled.  

2. In other studies, the imbalance between non-crash and pre-crash data, because crashes are rare 
events that reduce the performance of developed models. 

To prove the data imbalance issue, data collected at study sites presented in section 4.4 (Chapter 4) are 
used to generate PTS and NTS, following the steps presented in section 5.2. The imbalance ratio between 
PTS and NTS is 1:1’612.27 (i.e. in average 5 pre-crash minutes can be observed every 5.6 days). By 
ignoring the data imbalance issue, all NTS and PTS are used to develop a risk identification model using 
Random Forest (Breiman, 2001). The results are summarized in Table 3-1. The developed model 
performs well with training data sets. However, its performance with validation data of PTS is 
unacceptably low. 

Table 3‐1: Low performance foe to data imbalance issue 

Training (%) Validation (%) 

NTS PTS NTS PTS 
100.00 100.00 100.00 12.50 
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Concerning the arbitrary selection of non-crash data (in comparison with pre-crash data), a test is 
implemented with all the non-crash data sampling methodologies applied in the previous studies. Results 
show that existing methodologies do not perform well with validation data sets (for both NTS and PTS). 
The results are summarized in Table 8-2. 

3.3.1.1. Objectives	

Here, data sampling is the process of matching relevant NTS with PTS such that matched NTS are 
comparable with PTS. As most of rear-end and sideswipe crashes occurred during high flow conditions 
(see Figure 4-14), one of the expected results from this process is that NTS occurring during free flow 
conditions are eliminated and unused for comparison with PTS. Moreover, the right NTS are selected for 
comparison with PTS. 

3.3.2. Sampling	Steps		

3.3.2.1. Overview	

The main idea of NTS sampling process is to cluster NTS into a certain number of NTS groups. Each 
group is represented by the group center. Thereafter, PTS are classified into NTS groups. A PTS is 
classified into an NTS group if the PTS is closer to the center of that group than to the center of any other 
group. 

Here, NTS and PTS are characterized by different variables depending on the input data such as traffic 
volume, average speed, occupancy, etc. There can be two issues regarding these variables: 

 Issue 1: The ranges of the variables are different. For instant, the occupancy can range from 0.0 to 
100.0 (in percentage), and the average speed from 0 to 150 (in km/h). In the current research, the 
roles of all variables are equally considered. Therefore, in order to avoid the greater influence of 
variables having greater value ranges, it is essential to normalize the values of the variables.  

 Issue 2: The number of variables can be rather large (depending on input data). As traffic 
situations are represented under the form of vectors, the number of vector dimensions is high 
when more variables are needed. The high number of dimensions together with the high number 
of traffic situations would make up a huge data matrix, which would cause overloaded computer 
memory and would require huge amount of calculation time. Thereby, to facilitate the clustering 
process, the number of vector dimensions is reduced before clustering. 

As illustrated in Figure 3-3, the NTS sampling is undertaken in three steps (represented by solid border 
rectangle boxes):  

i) normalizing and reducing dimensions of NTS,  
ii) clustering NTS input vectors into groups, and  
iii) classifying PTS input vectors into N groups of NTS.  

We name XNTS a matrix whose rows are NTS and whose columns are variables representing NTS. The 
number of XNTS rows is R and the number of columns is D. 
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Figure 3‐3: NTS sampling steps 

Further details on steps i), ii), and iii) are discussed in sections 3.3.2.2, 3.3.2.3, and 3.3.2.4, respectively. 

3.3.2.2. Normalization	and	Dimension	Reduction	

Dimension reduction in statistics can be divided into feature selection and feature extraction. With a given 
input data set, the variables used for characterizing traffic situations are selected. The number of variables 
can be rather high, and therefore feature extraction is applied to map traffic situation data to a lower 
dimensional space such that the variance of the resulted data is maximized. 

Many feature extraction methods, both linear and non-linear, can be good candidates for reducing the 
dimensions of traffic situations in the current research. With a specific traffic data set, the following 
choices can be made: 

i) Choice of normalization mothod 
ii) Choice of feature extraction method 
iii) Choice of D’ - number of dimensions after dimension reduction (D’<D) 

If Norm and FEx are normalization and feature extraction methods, respectively, then: 

 തܺNTS = Norm(XNTS) 
 X’NTS = FEx( തܺNTS). 
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Results of the dimension reduction step include the functions Norm and FEx and a data matrix – X’NTS 
whose number of rows is equal to the number of NTS – R and the number of columns D’ is smaller than 
the number of variables used for characterizing NTS - D. 

3.3.2.3. NTS	Clustering		

X’NTS is used as input of the clustering method. There exist also many clustering methods potentially 
applicable in the current research. When the methodology is applied to a particular set of traffic situations, 
the following choices need to be made regarding to NTS clustering process: 

i) Choice of clustering method 
ii) Choice of N - number of clusters 

Results of NTS clustering process include: 

A set C of N cluster centers: C={C1, C2, …, CN}. Ci with 0< i ≤N being vectors with D’ elements. 
A column vector I having R elements: I=<I1, I2, …, IR> with Ij (0 < j ≤ R) being integers and 0 < Ij ≤ N. 
The value of the j-th element of the vector I represents the index of the cluster from which the j-th NTS is 
clustered into. 

3.3.2.4. PTS	Classification	

XPTS is the matrix of PTS. ܦഥ and തܴ are respectively the number of dimensions and the number of rows of 
XPTS (ܦഥ ൌ  With the function FEx and a fixed C obtained from previous NTS sampling steps, PTS are .(ܦ
classified as below: 

 Calculate തܺPTS = Norm(XPTS) 
 Calculate X’PTS = FEx(XPTS) 
 For a k-th row of X’PTS  (0 < k ≤ തܴ), the k-th PTS is classified into a i-th cluster if the distance 

between the k-th row of X’PTS  and Ci is smaller than the distance between the k-th row of X’PTS  
and Cl with any l≠I and 0 < l ≤ N. 

 Find values of ܫ௞ഥ  (0 < k ≤ തܴ) that are indices of clusters which the k-th PTS are classified into 
  .( ௞ഥ≤ Nܫ>0)

3.3.3. Results	

Finally, at the end of the NTS sampling process, N clusters are obtained. Under each cluster i, there are: 

A set of NTS which are the j-th NTS clustered into the i-th cluster, i.e. all j such that Ij = i. 
A set of PTS which are the k-th PTS classified into the j-th cluster, i.e. all k such that ܫ௞ഥ ൌ ݆. 

As a result of the clustering process, traffic situations, including both NTS and PTS under one cluster, are 
more similar when compared to traffic situations under other clusters. As traffic situations are 
characterized by traffic state and by external factors, clusters are called Traffic Regimes (TR). 
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It is important to note that normalization and dimension reduction are only applied to match NTS with 
PTS. Once Traffic Regimes are determined, NTS and PTS represented by different variables are reused 
for further analyses. 

3.4. Model	Development	

3.4.1. Motivation	

One of the main motivations for developing a new methodology is to improve the performance of risk 
identification models in comparison to the performance of models developed using methodologies in the 
literature. Section 3.3.1 also introduces the fact that data sampling can contribute to improve the 
performance of the developed model by selecting the relevant NTS to be compared with PTS. However, 
data sampling is not sufficient as the model performance also depends on the machine learning method 
used to develop the model. 

The modeling technique used should be able to overcome the following challenges: 

 Certain variables characterizing traffic situations can be categorical. An example of this variable 
type is the time of the day and the day of the week.  

 Although data sampling is applied, there is still an imbalance between NTS and PTS under each 
traffic regime.  

In the next sub-sections, the steps to select the most suitable machine learning technique are discussed. 

3.4.2. Supervised	Learning		

Subsequent to the data sampling process, there are a set of NTS and a set of PTS under each traffic 
regime (TR). A TR-based Risk Identification Model (RIM) is developed in order to differentiate NTS and 
PTS under that TR.  

As TR-based RIM are trained using available NTS and PTS, the learning technique is a supervised one. In 
supervised learning, data used for model development are labeled with predefined classes. For the current 
research, traffic situations (TS) in training data include NTS and PTS classes. Here, there are two options 
of supervised techniques for the TR-based RIM development: 

Classification approach to classify TS population into two classes: NTS and PTS. 
Regression approach to estimate the probability for a TS to be PTS (or NTS).  

The regression approach can also be converted to a classification approach by defining a probability 
threshold to separate probabilities into NTS and PTS zones. 

3.4.3. Data	Imbalance	Issue	

Wang and Wu (2006) identified that one of the challenges of supervised learning approaches to develop 
TR-based RIM is the imbalance between the populations of two classes (i.e. the population of NTS, called 
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major class, is much higher than the population of PTS, called minor class). The Imbalance RatiO - 
IMRO, which relates to the population of the major class divided by the population of the minor class, is 
usually used for indicating the imbalance, as introduced in section 2.4.5. In data mining, learning 
imbalanced data sets is gaining increasing interest (Chawla et al., 2004) as traditional learning techniques 
only perform well with data sets of equal or approximately equal sizes.  

One of the widely recognized effects of the high IMRO value on learning technique performance is that 
models developed with imbalanced data sets seem to classify all data into the major class, whereas it is 
the minor class that is of interest. Even though the overall performance of the developed models is high, 
the percentage of observations of the minor class that are correctly classified is rather low. 

X is a matrix of input data with X1, X2… XM as column variables and rows x1, x2… xP as observations, and 
with Y as a column vector of outputs such that yi is the known output of the observation xi. For the 
classification problem, yi is a class label, whereas for the regression problem, yi is a numerical value. As 
such, the set of training examples is {(x1, y1), (x2, y2)… (xP, yP)}. A supervised learning algorithm is a 
function g which approximates an original function f: X→Y where yi= f (xi) + ɛ with ɛ representing data 
noise in measuring yi and xi. The output of g with xi as an input is an estimated value of y’i=g(xi). Suppose 
that the function d(yi, y’i) measures the discrepancy between the real output yi and the estimated output y’i. 
The best function g should minimize the training error, as presented in Equation 1. 

Equation 1: the training error 

Error୲୰ୟ୧୬୧୬୥ ൌ ෍ d൫y୧, yᇱ୧൯
୧∈୘୰ୟ୧୬୧୬୥ୗୣ୲

 

Where the TrainingSet is the set of indices i used for training. If there is some parameter to be tuned in 
function g, another index set called CalibrationSet is used. If the developed model is used for predicting 
new values in the future, the index set called ValidationSet is used. The CalibrationSet and ValidationSet 
index sets are discussed and used later on. 

When using regression approaches, the sum of squared errors can be used for estimating ErrorTraining as 
presented in Equation 2. 

Equation 2: Training error using sum of squared errors 

Error୲୰ୟ୧୬୧୬୥ ൌ ෍ ൫y୧ െ yᇱ୧൯
ଶ

୧∈୘୰ୟ୧୬୧୬୥ୗୣ୲

 

As the TrainingSet can be divided into the NTS and PTS sets called TrainingSetNTS and 
TrainingSetPTS, respectively, Equation 2 can be rewritten as presented in Equation 3. 

Equation 3: Sum of training errors combined from NTS and PTS classes 

Error୲୰ୟ୧୬୧୬୥ ൌ ෍ ൫y୧ െ yᇱ୧൯
ଶ

୧∈୘୰ୟ୧୬୧୬୥ୗୣ୲୒୘ୗ

൅ ෍ ൫y୧ െ yᇱ୧൯
ଶ

୧∈୘୰ୟ୧୬୧୬୥ୗୣ୲୔୘ୗ
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The proportion of PTS is low compared to that of NTS; the training error due to PTS class is also lower 
than that caused by NTS class. As consequence, the sum of training error of both PTS and NTS mostly 
reflects the training error due to NTS. If least squares method is used to train a regression learner, the 
obtained learner (i.e. the developed model) will neglect the presence of PTS and result in low PTS 
detection rate. 

Therefore, the performance of a model should be estimated based separately on the error due to PTS class 
- ErrorPTS୲୰ୟ୧୬୧୬୥	and the error due to NTS class - ErrorNTS୲୰ୟ୧୬୧୬୥ as presented in Equation 4. 

Equation 4: Separate training errors due to the NTS and PTS classes 

a) ErrorPTS୲୰ୟ୧୬୧୬୥ ൌ ∑ ൫y୧ െ yᇱ୧൯
ଶ

୧∈୘୰ୟ୧୬୧୬୥ୗୣ୲୔୘ୗ  

b) ErrorNTS୲୰ୟ୧୬୧୬୥ ൌ ∑ ൫y୧ െ yᇱ୧൯
ଶ

୧∈୘୰ୟ୧୬୧୬୥ୗୣ୲୒୘ୗ  

3.4.4. Prediction	Power	Issue	

One of the objectives in the current research is to estimate the traffic crash risk in real-time. Therefore, the 
prediction power of supervised learning methods plays a vital role in the methodology. Together with the 
performance for imbalanced data sets, the prediction power is a criterion for choosing a learning method.  

Equation 2 presents the training error with training data. To estimate the prediction error, one should 
perform the expectation of both sides of Equation 2, which gives Equation 5(a). The transformations from 
Equation 5(a) to Equation 5(l) indicate that  

Equation 5: Bias – Variance Decomposition 

(a) EሺError୲୰ୟ୧୬୧୬୥ሻ ൌ E ቄ∑ ൫y୧ െ yᇱ୧൯
ଶ

୧ ቅ 

(b) EሺError୲୰ୟ୧୬୧୬୥ሻ ൌ ቄ∑ E൫y୧ െ yᇱ୧൯
ଶ

୧ ቅ 

(c) EሺError୲୰ୟ୧୬୧୬୥ሻ ൌ ቄ∑ E൫y୧ െ f୧ ൅ f୧ െ yᇱ୧൯
ଶ

୧ ቅ 

(d) E൫y୧ െ yᇱ୧൯
ଶ
ൌ ሺy୧ܧ	 െ f୧ሻଶ ൅ ൫f୧ܧ െ yᇱ୧൯

ଶ
൅ 2Eሺy୧ െ f୧ሻ൫f୧ െ yᇱ୧൯ 

(e) E൫y୧ െ yᇱ୧൯
ଶ
ൌ ሺɛଶሻܧ	 ൅ ൫f୧ܧ െ yᇱ୧൯

ଶ
൅ 2ሺEሼy୧f୧ሽ െ E൛y୧yᇱ୧ൟ െ Eሼf୧f୧ሽ ൅ E൛f୧yᇱ୧ൟ 

(f) E൫y୧ െ yᇱ୧൯
ଶ
ൌ ሺɛଶሻܧ	 ൅ ൫f୧ܧ െ yᇱ୧൯

ଶ
 

(g) E൫y୧ െ yᇱ୧൯
ଶ
ൌ ሺɛଶሻܧ	 ൅ ൫f୧ܧ െ E൛yᇱ୧ൟ ൅ E൛yᇱ୧ൟ െ yᇱ୧൯

ଶ
 

(h) E൫y୧ െ yᇱ୧൯
ଶ
ൌ ሺɛଶሻܧ	 ൅ ܧ ቄ൫f୧ െ E൛yᇱ୧ൟ൯

ଶ
ቅ ൅ ܧ ቄ൫E൛yᇱ୧ൟ െ yᇱ୧൯

ଶ
ቅ ൅ ሼሺf୧ܧ2 െ E൛yᇱ୧ൟሻሺE൛y

ᇱ
୧ൟ െ yᇱ୧ሻሽ 

(i) ܾ݅ܽݏ ൌ ܧ ቄ൫f୧ െ E൛yᇱ୧ൟ൯
ଶ
ቅ 

(j) ݁ܿ݊ܽ݅ݎܽݒ ൌ ܧ ቄ൫E൛yᇱ୧ൟ െ yᇱ୧൯
ଶ
ቅ 

(k) E൫y୧ െ yᇱ୧൯
ଶ
ൌ ሺɛଶሻܧ	 ൅ ݏܾܽ݅ ൅ ݁ܿ݊ܽ݅ݎܽݒ ൅ 2൫E൛f୧Eሺyᇱ୧ሻൟ െ E ቄE൛yᇱ୧

ଶൟቅ െ E൛f୧yᇱ୧ൟ ൅ Eሼyᇱ୧E൛y
ᇱ
୧ൟሽሻ 

(l) E൫y୧ െ yᇱ୧൯
ଶ
ൌ ሺɛଶሻܧ	 ൅ ݏܾܽ݅ ൅  ݁ܿ݊ܽ݅ݎܽݒ

For the transition from Equation 5(e) to Equation 5(f), we have: 
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E{yifi}=fi
2 as fi is deterministic and E{yi}=fi.  

E{fifi}=fi
2 as fi is deterministic 

E{yiy’i}=E{ yi(fi+ɛ)}=E{ yifi }+E{ yiɛ} = E{ yifi } as is ɛ noise. 
Therefore, E{yifi}- E{yiy’i}+ E{fifi}- E{ yifi }=0. 

Similarly, for the transition from Equation 5(k) to Equation 5(l), we have: 

E{fiE{yi}}=fiE{yi}  
E{E{y’i}}2= E{y’i}

2  
E{fiyi}=fiE{yi} 
E{y’iE{y’i}}= E{y’i}

2 
Therefore, E{fiE{yi}} - E{E{y’i}}2 - E{fiyi} + E{y’iE{y’i}}=0 

Equation 5(i) defines as bias the difference between outputs of the original function f and the expected 
outputs of the approximated function g. The expected outputs of g for new inputs should be similar to the 
outputs of g for inputs from the training data set. Therefore, the bias represents the discrepancy between 
the functions f and g and can be estimated using training data. A model that can fit all training data is a 
zero bias model.  

Equation 5(j) defines as variance the difference between the expected outputs E൛yᇱ୧ൟ	of function g and 
real outputs yᇱ୧ of function g for the new inputs. The variance is represented by the difference between the 
performances of the model for training data and for validation data. 

According to Equation 5(j), the prediction error of a model depends on three components: 

 The noise ɛ that can be available in the data 
 The bias of the model 
 The variance of the model 

To reduce the prediction error, it is necessary to reduce the components. However, with a given data set 
and no further specification of function f, the noise cannot be reduced. Therefore, reducing the prediction 
error depends on reducing the bias and the variance. 

However, there is a trade-off between bias and variance (Geurts, 2010) that prevents optimizing both bias 
and variance at the same time. A reduction of the bias leads to an increase in variance, and a reduction of 
variance leads to the increase in bias. An example of obtaining low variance and high bias is to 
approximate a complex original function f by a constant function g. g gives the same constant value 
whether the inputs come from the training data set or from new data. Therefore, the variance is obviously 
zero. However, the constant function g is very far from the complex function f, creating a high bias 
between two functions. An example of low bias and high variance is represented by fitting training data 
generated by a sine function f by a polynomial function g. One can increase the order of g until all 
training data are fitted by g, i.e. there is no bias between the two functions. However, when there are new 
inputs, g’s predictions are rather poor as g is linear while f is non-linear (a sine function). The result is that 
the bias between g and f is low (zero), whereas the variance is high.  

Although there is no approach that can simultaneously reduce both bias and variance to zero, it is possible 
to find approaches providing acceptable bias as well as variance. 
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3.4.5. Summary	

The machine learning approach plays an important role in model development and contributes greatly to 
the developed model. Therefore, appropriate approaches have to be selected when the methodology is 
applied to a particular data set. For an approach to be selected, it should be able to overcome the 
following issues: 

 Certain variables can be categorical. 
 Imbalance ratios can be high. The selected approach needs to resist imbalance. 
 Prediction power should be high, i.e. the performance of developed model is high for both NTS 

and PTS validation data sets. 

3.5. Summary		

This chapter presents the methodology and the choice of techniques used for developing risk 
identification models. The traffic is quantified into Traffic Situations (TS) characterized by variables that 
can be categorical or numerical, and there can be traffic factors or external factors. Thereafter, TS are 
clustered into Traffic Regimes (TR) where TR-based Risk Identification Models are developed. Figure 
3-4 summarizes the methodology consisting of the following three main steps:  

i) Data Preparation: Input data are integrated to define NTS and PTS. 

ii) Data sampling : NTS are sampled in order to group PTS with relevant NTS into clusters 

called traffic regimes 

iii) Risk Identification Models (RIM) development: RIM are developed under each traffic regime 

It is important to note that there are design choices at each step of the methodology. For a concrete study 
site, the design choices need to be made such that the final results are optimized for the available data 
from the study site. Thereby, the proposed methodology can be executed by following one of two ways 
below: 

1) Setup the initial design choices and apply the methodology with available data from study site. 
From the initial results obtained, design choices at each step are optimized aiming to maximize 
the performance of developed risk identification models. 

2) Design choices are made at each step of the methodology.  

In the current research, our approach is to fix the initial design choices to obtain the first results. 
Thereafter, the developed models will be optimized in order to improve the performance of risk 
identification models. This approach is appropriate as the number of design choices is large and one 
cannot test all the choices at every step. 
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Figure 3‐4: Summary of methodology 
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Chapter	4	Data	and	Study	Sites	

The methodology that is developed and presented in Chapter 3 will be applied under Swiss conditions. 
This chapter presents the research conditions in Switzerland. The discussion on data, data format, and 
study sites as well as the issues relating the data. Preliminary crash analyses are also presented. 

4.1. Overview	

4.1.1. Swiss	Motorway	Network		

In Switzerland, motorways are called autobahnen in German, autoroutes in French or autostrade in 
Italian. Two of the most important motorways are the A1, connecting St. Margrethen in eastern canton of 
St. Gallen to Geneva in western part of the country, and the A2, connecting Basel in the northern part to 
Chiasso in canton of Ticino in the south. The general speed limit on Swiss motorways is 120 km/h. 

The Federal Roads Office (FEDRO) is the Swiss authority responsible for the country’s road 
infrastructure and private road transport. As of the January 1st, 2008, its range of duties increased 
significantly. With the entry into effect of the redistribution of financial responsibility and the 
accompanying division of duties between the federal government and the cantons, it assumed the 
functions of developer and operator of the motorway network. It belongs to the Federal Department of the 
Environment, Transport, Energy and Communications (DETEC), and focuses on securing sustainable and 
safe mobility on the country’s roads. 

According to FEDRO, (2009), a total of 1’765.6 kilometers of motorway are currently in operation. The 
network is planned to comprise 1’892.5 kilometers. The remaining 126.9 kilometers are expected to be 
completed within the next 15 years. Until the end of 2008 a total of 1’765.6 kilometers of motorways 
were in operation including: 

 7-lane sections 1.2 km 
 6-lane sections 80.7 km 
 4-lane sections 1’300.8 km 
 3-lane sections 1.9 km 
 2-lane sections 269.5 km 
 Mixed sections 111.5 km 

This corresponds to 93.3 percent of the planned network presented in Figure 4-1. 
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Figure 4‐1: Swiss motorway networks. Source: FEDRO 

4.1.2. Data	Sensors	

Until Jan, 2010, about 300 traffic detector stations are installed on Swiss motorways and provide online 
downloadable data. The map of the stations is presented in Figure 4-2. According to FEDRO, (2009), 
there are criteria to choose the location on the road for installing traffic detectors. The criteria serve for 
two main purposes: traffic statistics and better traffic management. The traffic data collected are used by 
engineering companies or traffic operators. 

Most of traffic detectors on Swiss motorways are double inductive loop detectors. Each loop detector 
records the time of passage and the duration of presence of each vehicle on the detector. Two loop 
detectors installed at a distance of 4 meters make up a double loop detector on one road lane collecting 
individual vehicle information when vehicles pass by the detectors. 
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sections to sections. Therefore, a road section to be selected as a study site needs to satisfy the following 
conditions: 

i. There must be at least one traffic detector station installed in that section. Besides, the data 
collected from the station should be accessible. This condition limits the search space of study 
sites into the list of more than 300 detector stations presented in Figure 4-2.  

ii. From the position of the selected traffic detector stations, there should be as many crashes 
recorded as possible. Together with the first condition, this criterion is decisive for the current 
study. The numerousness of crashes results in the high number of pre-crash cases usable in the 
present study. 

iii. There should be meteorological stations close to the traffic detector station. 

There are also other rules applicable to select a study site. However, the guidelines would limit 
dramatically the search space of potential study sites. 

4.2. Data	Specification	

4.2.1. Introduction	

Three types of data used in the present study include traffic data, meteorological data, and crash data. The 
traffic data is provided by FEDRO. The meteorological data is provided by Swiss Federal Office of 
Meteorology and Climatology (MeteoSwiss). Alternative meteorological data is provided by Boschung – 
a private company who manages road weather stations. Crash data is provided by Swiss Federal Statistics 
Office (FSO). 

4.2.2. Traffic	Data	

Traffic data in Switzerland is collected from double inductive loop traffic detectors installed under the 
road pavement and is stored under individual vehicle format, i.e. the information of individual vehicles is 
recorded when the vehicles pass by the detectors. The traffic data format is presented in Figure 4-3. It is 
worth noting that the headway of a vehicle is the time distance between front bumper of that vehicle to 
the front bumper of the vehicle preceding the current vehicle whereas; the time gap of a vehicle is the 
time distance between front bumper of that vehicle to the rear bumper of the preceding vehicle. Therefore, 
time gap of a vehicle is always smaller than headway. 

In Figure 4-3, the classes of vehicles are extracted according to the instruction presented in (FEDRO, 
2009). The lane of passage is the lane index ranging from 1 to the total number of lanes for both 
directions. Depending on the location, there can be more lanes on one direction than on the other 
direction. For each detector station, FEDRO provides a guideline about the direction for each lane index. 
In most of 4-lane sections, the traffic on lanes with indices of 1 and 2, or 3 and 4 is on the same direction. 
The traffic direction in Figure 4-3 is always 1. 

Motorway traffic detectors are installed aiming to monitor the traffic and to generate statistics. Network 
coverage is analyzed to cover the best these two objectives. The amount of traffic, the number of metering 
station on the section, the risk of congestion are all factors taken into consideration. As such, as illustrated 
in Figure 4-2, traffic detectors are installed with higher density around big cities such as Geneva, 
Lausanne, Bern, Basel, and Zurich. Detectors are also installed near intersection between two motorways. 
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Index Date HHMM Sec ms Reserved Lane Dir Headway Time Gap Speed Length Veh. Class

023198 150303 0001 21 30 000000 1 1 43.6 43.5 120 467 2

023199 150303 0001 38 42 000000 1 1 17.1 16.9 125 989 3

023200 150303 0001 47 12 000000 4 1 46.9 46.8 113 428 2

023201 150303 0001 50 58 000000 4 1 3.4 3.3 119 423 2

 

Figure 4‐3: Traffic data format 

4.2.3. Meteorological	Data	

4.2.3.1. Boschung	Stations	

Depending on locations, Boschung stations provide meteorological data with the following data fields: 

i. Station code 
ii. Station name  

iii. Date time 
iv. Air Temperature  
v. Soil Temperature 

vi. Relative of Humidity 
vii. Dew Point 

viii. Type of precipitation (Three types: rain or snow or no precipitation) 
ix. Quantity of precipitation (Five levels: nothing, weak, normal, strong, very strong) 
x. Number of spraying (this is based on the deicing program with salt solution) 

Each data line represents a query for 5-minute intervals. While data fields iv, v, vi, vii, and x contain 
quantitative values, data fields viii and ix are categorical.  

4.2.3.2. MeteoSwiss	Stations	

MeteoSwiss data from all MeteoSwiss stations are managed and stored on a central server. Data 
extraction is undertaken via a Java-based software Clipmap. The software can provide meteorological 
data at many aggregation levels. The most detailed data represent information for 10-minute intervals. 
Some example meteorological parameters are instant temperature at two meters above ground (tre200s0), 
instant relative humidity at two meter above the ground (ure200s0), the total precipitation (in mm) of the 
last 10 minutes (rre150z0). 
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crashes causing damage estimated at more than 500 Swiss francs (until 1975 the limit was set at 200 
francs) were taken into account. Since 2002, a crash is considered as road traffic crash if it occurs on 
public roads and causes injuries. Anyone who has suffered injuries, regardless of gravity, falls into the 
category of injured. 

According to FSO, (2010), since 1992, the road traffic police collect anonymous individual data on traffic 
crashes, vehicles and people involved with features registered including: 

Circumstances of the crash (date, time, type of crash, type of road, location, conditions, etc.) 
Type of vehicles involved, information on drivers (goal and driving license) and the people involved 
(position in the vehicle security system, consequences of the crash, sex, age) 

The submission of crash data to the FSO needs to be transmitted using informatics or statistical survey 
forms which is listed in (FSO, 2005) or presented in Figure B-1 and Figure B-2. The statistical survey 
forms are considered as the statement of crashes or a guideline for the census of the crashes. The FSO 
also provides the guideline on how to fill the survey form (FSO, 2005). 

The survey form can be used for any road traffic crash type and for any road type. Ten crash categories 
are used to distinguish different crash types as listed in Table 4-1. More details about crash categories are 
illustrated in Figure B-3. 

Motorways are safe by design such that the probability for some accident types such as accidents of 
categories C, G, and H to occur is minimized whereas; some other crash types such as crashes of 
categories B, D, E, and F are more common. Figure 4-5 presents the percentages of four most common 
crash types plus the percentage of all other crashes for six years from 2002 to 2007 with a total of 46’641 
crashes on Swiss motorways. 

Table 4‐1: Ten crash types for all road types 

Category Name 
A Crashes related to pedestrian 
B Skidding or losing control 
C Crossing crashes 
D Crashes while overtaking 
E Rear-end crashes 
F Crashes while changing lanes (for pre-selection) or bypassing 
G Crashes while changing directions 
H Crashes while turning (without changing the direction) 
I Crashes caused by an animal 
K Other crashes 

 

Note that crashes under category B are considered as single vehicle crashes. According to FSO, (2005), a 
crash is classified into category B when the driver tries to avoid a collision or deviates from the 
carriageway by his own fault. There should have been no prior collision with another road user; otherwise 
it is another type of accident. The crash due to evasive action, for example triggered by an overtaking 
maneuver of a vehicle on other direction, is classified into this category. When a driver overtake or being 
overtaken loses control of his vehicle, the correct type is however an accident when overtaking. 
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4.3. Crash	Related	Issues	

4.3.1. Overview	

Among a total of 46’641 crashes on Swiss motorways during six years from 2002 to 2007, there are a 
number of crashes used and matched with traffic data at study site. To obtain better results in later stages 
of the current research, every individual crash recorded at the selected study site should guarantee that: 

The impact of the crashes on traffic such as abnormal changes in speed or flow is observable in traffic 
after crash occurrences. This is essential as crash time and location are not known with precision and will 
be estimated based on traffic data 
The crash is traffic-induced, i.e. not caused by unusual human state or technical error, etc. The 
specification of considered crashes is discussed in detailed in section 4.3.2. 

Following sub-sections discuss about these issues. 

4.3.2. Traffic‐Induced	Crashes		

According to FSO, (2005), faults and influences of crashes should be obtained as much as possible at the 
location of crashes. By observation and notice, the person who establishes the crash report can mention up 
to three possible faults and influences to allow identifying all the factors having played a role in the 
development of the crash. There are four main faults and influences for road traffic crashes:  

Human influence such as the state of drivers, visibility, driving skill, attention, etc. 
Road and environment such as visibility, signalization, meteorological state, animals, etc. 
State of vehicles 
Traffic and the violation of traffic rules. 

In the current research, not all crashes are considered. Each crash is verified whether it will be used. For 
example, crashes caused by bad state of drivers (such as drunk, influenced by drugs, unqualified for 
driving (i.e. no driving license), etc.) are not considered. Crashes with the appearance of animals on the 
road are excluded. Crashes due to technical problems of vehicles are also not included. Almost all crashes 
due to traffic and the violation of traffic rules are included. There are nine sub-categories of causes due to 
traffic and violation of traffic rules. The sub-categories are: 

 About speed such as speed inappropriate for traffic conditions or speed over the speed limit, etc. 
 About left/right movement and pre-selection such as not looking when changing lanes, quitting a 

platoon while travelling closely behind another vehicle, etc. 
 About overtaking situation such as before or on a curve, etc. 
 About overtaking decision during the traffic such as when vehicles are too close, premature return on 

the right lane, overtaking on the right lane, etc. 
 About priority such as entering the motorway. 
 About other movements in traffic such as following front vehicle too closely. 
 About the movement of bicycles and motorcycles (this is not applicable for motorways). 
 About pedestrians (this is not applicable for motorways). 
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In each sub-category, there are still certain traffic violations that are not applicable for motorways such as 
imprudent reverse gear, not stop in front of pedestrian crossing line, etc. Crashes caused by such violation 
are not present in the motorway traffic crash database. There are also crashes caused by drivers when the 
drivers’ states were good such as overtaking on the right lane, exceeding speed limit. It is those drivers 
who are personally responsible for the crashes and those crashes are unconsidered. 

Finally, crashes considered in the present study belong exclusively to categories D, E, and F in Table 4-1, 
i.e. crashes while overtaking; rear-end crashes; and crashes while changing lanes for pre-selection or 
bypassing, respectively. Although crashes while overtaking and crashes while changing lanes for pre-
selection or bypassing are distinguishable by the aim of the movement, the development at the beginning 
of the crashes is more interesting for the current study. Therefore, these two crash types are called 
sideswipe crashes in this dissertation. According to Figure 4-5, the rear-end and sideswipe crashes 
contribute more than 41% out of all crashes on Swiss motorways during six years from 2002 to 2007. 

4.3.3. Crash	Observation	on	Traffic	Data	

Here, one of the main objectives is to link traffic flow conditions to crash occurrences. Therefore, it is 
critical that crash locations should by close to traffic detectors’ location in order that traffic evolution 
preceding crashes can be observed in traffic data via speed or flow changes. For this reason, crashes to be 
considered are limited within a buffer of one kilometer from traffic detectors (for each direction).  

4.3.4. Types	of	Crash	

When a crash occurs, the police come to the site and follow a guideline (FSO, (2005)) to determine the 
type of the crash. The guideline includes a series of questions whose answers are yes or no such that the 
crash type is determined when the answer yes is given. The questions need to be asked according to a 
given order. The two questions in the list are used in the example below: 

Question 1: Does the crash occur between a pedestrian and a vehicle such that the driver of the vehicle 
did not lose control, did not tend to avoid and did not divert his trajectory? 

If the answer is yes, that is a pedestrian related crash. There are several exceptions: 

If there are only pedestrian involved in the crash, the crash is not traffic crash. 
If that is a crash with a vehicle such that the driver lost control or tended to avoid or diverted his 
trajectory, that crash is classified into crash category due to slippery or loss of control. 
If an animal hold by the pedestrian is wounded and the pedestrian is fine, the crash is animal-related. 
 
Question 2: is there a frontal collision between two vehicles traveling in inversed directions? 
 
If the answer is yes, the crash is crossing crash. 

As the road is motorways, popular types of crashes include rear-end, overtaking, lane changing for pre-
selection crashes (see Figure 4-5) which are of interest of the current research and single-vehicle crashes 
which are the most numerous. By asking and answering the series of questions, the type of crashes on 
motorways can be precisely determined. 
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4.3.5. Crash	Time	and	Location	

In Switzerland, when a crash occurs on the motorway, the police of the canton where the crash occurs are 
responsible for the crash report. In the survey form (FSO, 2005), there are fields to precise the crash 
location such as the name of the road, the direction, the kilometrical position, the geographical position, 
etc. However, the crash reports returned to the FSO are not completely filled in. For the study site CH023 
for example, the police from Bern canton did not precise the crash locations in term of lane where the 
crash occurred although the GPS coordinates of the crash are available. The deviation in geographical 
coordinates can be as much as 3 meters and therefore, it is impossible to identify the lane where the crash 
occurred. In many crash cases, the traffic direction where the crashes occurred is not identifiable. It is 
worth noting that the geographical position of crashes is still important and accurate enough for limiting 
crashes in the buffer of one kilometer from traffic detectors. 

As a similar issue, the crash time is not known with precision. According to FSO, (2005), if it is not 
possible to determine the precise time when the crash starts to occur, the person responsible for filling the 
survey form needs to indicate the most plausible time based on his observation.  

4.4. Study	Site	

According to guidelines in section 4.1.3, a study site is selected and used in this dissertation. The 
procedure of study site selection includes the following steps: 

i. From the list of more than 300 traffic detector locations providing traffic data as specified in 
section 4.2.2, count for each detector location the number of crashes satisfying conditions 
discussed in section 4.3.2 within the buffer of 1km from the location, called considered crashes. 
Re-arrange the list in descending order of the number of considered crashes. 

ii. Remove from the ordered list all traffic detector locations that there is no meteorological station 
within a buffer of 15km from the traffic detector locations. The remaining detector locations 
make up the reduced list of locations. 

iii. Select the first location from the reduced list of locations. 

As road crashes are monitored by cantonal police (there are 26 cantons in Switzerland), crash positions 
can be undetailed in the crash records for several cantons such as Vaud or Ticino, etc. Therefore, study 
site cannot be selected in those cantons. 

The selected study site is at 27th position of the considered list. The study site is named according to the 
name of traffic detector stations: CH023. The location of site CH023 is illustrated in Figure 4-6. Site 
CH023 lies on motorway A1 connecting two cities Bern and Zurich. The site CH023 is not the location 
where crash occurrences are the most numerous yet is selected because traffic, meteorological and crash 
data are altogether available, which is crucial in development of risk identification models by applying the 
methodology proposed in Chapter 3. 
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Figure 4‐6: Study site 

As the accessibility of Boschung data is only limited in Vaud canton, MeteoSwiss data are used to 
indicate meteorological state at the study site. There is a MeteoSuisse station locates at about 10km from 
the study site.  

The road section at site CH023 includes two traffic dictions: Bern - Zurich and Zurich – Bern. On each of 
directions, the road pavement is divided into two lanes. The lane on the left is called normal lane 
whereas; the lane on the right is called overtaking lane. Within 1km from the location of traffic detectors, 
road sections are straight and the inclination of the section is almost zero.  

 

4.5. Preliminary	Crash	Analysis	

This section provides different statistics on crashes based solely on crash data. The statistics in this 
section can be referenced in the next chapters. 

4.5.1. Crash	Distribution	by	Time	of	the	Day	and	Day	of	the	Week	

Figure 4-7 presents the crash distribution. Here the crash time in the crash records is used. In Figure 4-7, 
the last row represents the distribution of crashes by time of day averaged by all the days of the week. The 
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last column represents the crash distribution by day averaged by all time of the day. The number of 
crashes is the highest on Friday and then on Saturday. Crashes occur more often in late afternoon on 
Friday (from 16:00 to 19:00) than in any other time. Although the crash frequency is high on Saturday, 
crash occurrences did not concentrate on a particular hour of the day. Crashes occur more often in early 
Sunday mornings than in early morning of any other day of the week. 

 

Figure 4‐7: Crash distribution by day of the week and time of the day 

The statistics in Figure 4-7 indicate that time of the day and day of the week contribute to crash 
occurrences. 

4.5.2. Crash	Distributions	by	Weather	Conditions	and	Pavement	Conditions	

The crash distribution by weather conditions is presented in Figure 4-8. The crash distribution by 
pavement conditions is presented in Figure 4-9. The two distributions show that even when there is no 
precipitation in the air, the pavement can still be non-dry, i.e. there can be other sources for the non-dry 
state of the pavement.  
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Figure 4‐8: Crash distribution by weather conditions 

 

 

Figure 4‐9: Crash distribution by pavement conditions 

4.5.3. Crash	Distributions	by	Crash	Severity	

There are many criteria to evaluate the severity of crashes. Figure 4-10, Figure 4-11, and Figure 4-12 
three different views on the crash severity. 

In Figure 4-10, the number of objects involved in a crash can be as high as 17. As the crashes are on 
motorways, the objects are vehicles. Due to the high speed practiced on the motorways, it is not abnormal 
to observe many vehicles involved in a crash. 
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Figure 4‐10: Crash distribution by the number of objects involved 

In Figure 4-11, the crash severity is viewed according to the number of persons involved in the crash. 
Depending on the capacity of vehicles, there can be more than one person occupying a vehicle. The 
maximum number of persons involved in a crash is 86. 

Figure 4-12 presents the crash distribution by the number of injuries. The number of crashes without any 
injury is high, contributing up to about 75% of all crashes. However, there are also crashes with the 
number of injuries increasing up to 27 or 57, which is high. 

 

Figure 4‐11: Crash distribution by the number of persons involved 
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Figure 4‐12: Crash distribution by the number of injuries 

4.5.4. Crash	Statistics	at	Study	Site	CH023	

The statistics presented in Figure 4-13 and Figure 4-14 are based on all original crash data at study site 
CH023, i.e. the crash time was not corrected and crashes other than traffic-induced crashes are still 
counted. On a road section of 2 km (i.e. one km each direction from the location of traffic detectors) and 
during 7 years (i.e. from 2002 to 2007), there are 85’841’219 vehicles passing by traffic detectors. On the 
same road section and during the same period, 170 crashes are reported by the police. As result, the crash 
rate is for the road section during the period is 99.02 million of vehicle kilometers traveled.   

Figure 4-13 suggests that most of crashes (about 67.6% of all crashes) at study site CH023 are rear-end 
whereas the proportion of single vehicle crashes is about 26.5%. 

 

Figure 4‐13: Crash distribution by crash types (Site CH023) 
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Figure 4-14 suggests that most of the crashes recorded at CH023 (about 51.2% of all crashes) occurred 
from 16:00 to 18:00 (i.e. period of two hours in the late afternoon). Besides, two crash peaks in Figure 
4-14 also correspond to morning and evening peaks when the traffic flow is high. 

 

Figure 4‐14: Crash distribution by crash time (Site CH023) 

Speed/flow relationship of traffic conditions on the right lane before crashes is presented in Figure 4-15. 
Here, most of crashes occurred under high flow conditions. Several crashes occurring under low flow – 
high speed conditions are single-vehicle crashes. Crashes occurring under low flow – high speed 
conditions are rear-end crashes under congestions. 

 

Figure 4‐15: Speed/Flow diagram for traffic conditions preceding crashes on the right lane. Dots 

representing 5‐minutes aggregated speed and flow 
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corrected to guarantee that pre-crash traffic data is collected before crash occurrences. This is important 
as the one of objectives of the current research is to identify the crash risk at some time before the crash 
occurs so that preventive measures are deployed and take effect on traffic. 
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Chapter	5	Traffic	Situations	

From this chapter, the application of the methodology presented in Chapter 3 to data selected from study 
site presented in Chapter 4 is presented according to steps presented in Figure 3-1. The present chapter 
addresses the first step: definition of traffic situations as well as two types of traffic situations that are 
appropriate for the selected study site. 

5.1. Introduction	

The application of proposed methodology to data at selected study site requires making methodological 
choices that agree with the available data. The represent chapter attempts to make the following decision 
regarding to the definition of traffic situations (see section 3.2) and the distinction between two types of 
traffic situations (i.e. NTS and PTS, see section 3.2.4): 

 Choice of variables that are used for characterizing traffic situations (with the guideline presented 
in section 3.2).  

 Determination of crash time for all crashes knowing the issues discussed in section 4.3. 
 Determination of the durations of crash period, pre-crash period, post-crash period, pre-crash 

buffer period based on the available data at study site (see section 3.2.4). 

5.2. TS	Specification	

5.2.1. Traffic	Characteristics	

According to section 2.4.3, there are four types of traffic related variables, namely VT1, VT2, VT3, and 
VT4. Depending to the equipment available at the study site, the number of variables used varies. For the 
study site selected in section 4.4, traffic data from one traffic detector station is used for characterizing 
traffic state. Therefore, traffic-related variables of type 4 – VT4 (see section 2.4.3) that require the 
availability of multiple detector stations are unavailable for consideration in the present research. The 
remaining variable types VT1, VT2, and VT3 include variables representing traffic characteristics within 
lanes, variables relating different lanes and variables linking consecutive time intervals, respectively.  

As traffic data employed in the present research make use of individual traffic data, the number of 
potential variables characterizing the traffic state on each lane during an aggregation interval (i.e. 
variables belonging to VT1) can be high. Popular variables include the average speed, the flow, the 
occupancy, the percentage of heavy vehicles, the average time headway and time gap, the variation of 
speed, headway and time gap, etc. Several risk indicators such as Time-To-Collision – TTC and Mean 
Absolute Relative Speeds - MARS, can also be calculated using individual traffic data. To generate 
variables belonging to VT2, any variable of type 1 for one lane can be combined with that variable of 
other lanes. Similarly, to generate variables belonging to VT3, any variable of type 1 or 2 for one 
aggregation period can be combined with that variable for the previous or the next time aggregation 
intervals. Therefore, the choice of variables belonging to VT1 is decisive. 

In our previous study (Mouzon et al., 2008), sensitivity analysis of risk indicators before crashes and 
during conditions where there is no crash was undertaken. Obtained results indicate that risk indicators 
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To summarize, most of traffic variables used are related to speed or flow – the fundamental traffic 
information. These variables are considered as initial choices and at this stage, there is no guarantee that 
the performance of the final risk identification models will be high. The foreseen benefice of using 
fundamental information related to speed and flow is that it will facilitate the interpretation of obtained 
results. Extended information such as the use of risk indicators can be considered to improve the 
performance of developed models. 

5.2.2. Weather	Information		

As MeteoSuisse station is not next to traffic detectors, the utility of meteorological information is limited. 
Besides, information provided by MeteoSuisse station is local and might not be correlated with 
meteorological information at the location of traffic detectors. Therefore, the only usable meteorological 
data field is the precipitation. However, the intensity of precipitation at the location of MeteoSuisse 
station is different from the intensity at the location of traffic detectors due to the distance of about 10km. 
Therefore, precipitation is discretized into two values: 0 representing precipitation equal to zero and 1 
representing positive precipitation. 

Finally, only one variable representing meteorological information is used and can have one of two values 
0 and 1. 

5.2.3. Other	Information	

The moment of traffic situations can be used as variables. The moment of a vehicle passing by traffic 
detectors is recorded in traffic data (see section 4.2.2) and characterized by positions in two cycles: time 
of the day and day of the week. Time of the day can be any moment during the period of 24 hours and day 
of the week can be any day from Monday to Sunday. Therefore, these two temporal variables are 
categorical. 

As no other data sources are located within study site, no other external variable can be considered in TS 
characteristics. 

5.2.4. Aggregation	Time	Interval	

The duration of 5 minutes is chosen as the duration of aggregation time interval. The motivation for this 
choice includes: 

 Duration of 5-minute is chosen in previous studies. Using this duration makes it easier to compare 
new findings in the present research with previous studies. For instant, comparing methodologies 
for sampling non-crash data in Chapter 6 or comparing the performance of developed models in 
Chapter 8 are based on 5-minute aggregation. 

 5-minute aggregation interval is the initial choice to develop the initial models and can be 
optimized based on the performance of the models once the models are developed. 

5.2.5. Summary	

Three considered non-traffic variables are time of the day, day of the week, and discretized precipitation. 
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The number of traffic related variables depends on road configuration at the study site. As the selected 
study site is two-lanes-per-direction, 19 traffic related variables are used. Totally, 22 variables are used to 
characterize TS and introduced in Table 5-1.  

Among 22 variables, X1 and X2 are categorical and represented as number. For example, X2 values range 
from 1 to 7 representing from Monday to Sunday, respectively. X1 also represents the index of the time 
period in a day. As TS is based on 5-minute aggregation time intervals, there are 288 different X1 values 
ranging from 0 to 287 representing the intervals from 00:00-00:05 to 23:55-24:00, respectively for a day. 
If 1-minute interval is chosen, X1 value range is from 1 to 1’440.  

Variable X22 contains precipitation information. X22 values are either 1 or 0 representing whether there is 
precipitation during the aggregation interval or not. When the precipitation is positive, that amount is 
discretized to 1. 

In case there are more than two lanes per direction at the study site, the following adjustments are 
foreseen in comparison with TS definition illustrated in Table 5-1: 

 Addition of status for extra lanes. There are seven variables specifying the status of one lane.  
 Addition of speed difference between two adjacent lanes. If there are L lanes, (L-1) speed 

differences are used in TS’s definition. 
 Addition of traffic evolution for each additional lane. Two variables (representing average speed 

and flow) are needed for each additional lane. 

Therefore, the number of variables for three lanes is 32, for 4 lanes is 42, etc. 
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Table 5‐1: Variables characterizing TS in case of two lanes 

Variable Alias Meaning Numeric/ 
Categorical

Unit Value range Specification 

X1 TDay Time of the day Categorical - 0 - 277 
Instantaneity 

X2 WDay Day of the week Categorical - 1, 2, 3, 4, 5, 6, and 7 
X3 LFlow Right lane’s flow Numeric Vehicle per hour (vph) 0 - 4000 

Right lane’s status 

X4 LASpd Right lane’s average speed Numeric Kilometers per hour (km/h) 0.0 - 200.0 
X5 LAHw Right lane’s average headway Numeric Second 0.0 - 100.0 
X6 LOcc Right lane’s occupancy Numeric Percentage (%) 0.0 - 100.0 
X7 LVHw  Right lane’s standard deviation of headway Numeric Kilometers per hour (km/h) 0.0 - 100.0 
X8 LVSpd Right lane’s standard deviation of speed Numeric Second 0.0 - 50.0 
X9 L% HV Right lane’s percentage of heavy vehicles Numeric Percentage (%) 0.0 - 100.0 
X10 HFlow Left lane’s flow Numeric Vehicle per hour (vph) 0 - 4000 

Left lane’s status 

X11 HASpd Left lane’s average speed Numeric Kilometers per hour (km/h) 0.0 - 200.0 
X12 HAHw Left lane’s average headway Numeric Second 0.0 - 100.0 
X13 HOcc Left lane’s occupancy Numeric Percentage (%) 0.0 - 100.0 
X14 HVHw Left lane’s standard deviation of headway Numeric Kilometers per hour (km/h) 0.0 - 100.0 
X15 HVSpd Left lane’s standard deviation of speed Numeric Second 0.0 - 50.0 
X16 H%HV Left lane’s percentage of heavy vehicles Numeric Percentage (%) 0.0 - 100.0 

X17 Spd# Speed difference between two lanes Numeric Kilometers per hour (km/h) -200.0 - 200.0 
Discrepancy 
between lanes 

X18 LFCg 
Right lane’s flow difference compared to 
previous TS 

Numeric Vehicle per hour (vph) -4000 - 4000 

Traffic evolution 
X19 LSCg 

Right lane’s speed difference compared to 
previous TS 

Numeric Kilometers per hour (km/h) -200.0 - 200.0 

X20 HFCg 
Left lane’s flow difference compared to 
previous TS 

Numeric Vehicle per hour (vph) -4000 - 4000 

X21 HSCg 
Left lane’s speed difference compared to 
previous TS 

Numeric Kilometers per hour (km/h) -200.0 - 200.0 

X22 Prec Precipitation Numeric - 0 and 1 Weather conditions 
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5.3. Crash	Time	

5.3.1. Overview	

As stated in section 4.3.5, crash time and location are not known with precision. While crash time is 
estimated by the police, crash location is under the form of GPS coordinates without indicating the traffic 
direction. One of the main objectives of the current research is to identify the crash risk before it turns 
into crashes. This objective can be achieved by examining historical crashes. The crash time of historical 
crashes needs to be corrected such that the corrected crash time is earlier than the real crash time.  

Here, crash time and location are used as references to identify the suitable crash time and location using 
traffic flow data. As the traffic direction where the crash occurred is not known, traffic data for both 
directions are used to determine time and location of crashes. The precision about the lane where crashes 
occurred is not required as traffic situations are characterized by variables on both lanes. 

5.3.2. Shockwave	Propagation	

The crash time is determined by shockwave theory. Let C denote the capacity after the incident. An 
incident causes a backward propagating shockwave only if the flow q (uninterrupted) is larger than C. If 
not, the incident is hard to observe from the upstream detector. The speed of the shock w can be 
determined from the fundamental diagram as illustrated in Figure 5-2. We thus get: tp = -d/w, where tp and 
d are the crash time and the distance from crash location to detector, respectively. Density can be 
estimated by: k=q/v where q is flow or capacity and v is the average speed. 

 

Figure 5‐2: Calculation of the shockwave speed in case of incident, for q > C 
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The shockwave speed is substantially different than the speed observed at the detector. In case of a very 
severe incident, for which C would be almost zero, i.e. road section is closed, the speed of the shock 
would be large and the propagation time would be relatively small.   

5.3.3. Crash	Time	Estimation	

The calculation of the crash time is straightforward if q and C are known. However, q and C are unknown 
and need to be searched in the period before and after the recorded crash time. For each crash, traffic data 
on each direction for thirty minutes before and thirty minutes after its occurrence (according to recorded 
crash time) are used to detect crash time. Two flows with the largest absolute flow difference are 
considered as q and C. It is worth noting that rear-end and sideswipe crashes in the current study only 
occur under high flow conditions. Therefore, a crash would always provoke a capacity lower than the 
uninterrupted flow before the crash. 

The following procedure is used to estimate the crash time for each traffic direction: 

1) Order traffic data according to the time of passage of vehicles such that the last vehicle is the most 
recent vehicle.  

2) For i=1 to Tveh - the total number of vehicles, calculate average speed vi, density ki, and flow of the 
direction qi during the last 5 minutes from the time of passage of i-th vehicle (with i-th vehicle 
included). 

3) Max_q_diff=0 
4) Time1=1 
5) Time2=1 
6) For i=1 to Tveh 

 For j=i+1 to Tveh 
  If (crash is downstream of detector) and (qi - qj> Max_q_diff) then 
   Max_q_diff = qi - qj  

Time1=i 
Time2=j 

  End  
 End 
End 

7) Among two directions, choose the direction having greater Max_q_diff value – that is the direction 
where the crash occurred. 

8) Max_q_diff is the flow drop when the crash occurs. q and C are flows at time Time1 and Time2, 
respectively. k1 and k2 are also densities at time Time1 and Time2, respectively. 

Then the crash time is ݐ௣ ൌ െ
ௗ

௪
ൌ െ

ௗሺ௞మି௞భሻ

஼ି௤
 with d calculated using GPS coordinates of the crash and 

traffic detectors. 

5.3.4. Shifted	Crash	Time	

As the duration of traffic situations is 5 minutes, the crash time is shifted 2.5 minutes earlier and then is 
shifted again to the end of the last traffic situation. The shifted crash time is from 2.5 to 7.5 minutes 
earlier than the estimated crash time.  
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Figure 5-3 illustrates how the shifted crash time can be obtained. In the upper case, the shifted time is 
earlier than the estimated time for more than 2.5 minutes but less than 5 minutes. In the lower case, 
shifted time is 7.5 minutes earlier than estimated time. 

 

Figure 5‐3: Illustration of shifting crash time 

It is worth noting that shifting crash time does not violate the objectives of the current research as crash 
risks should be identified earlier before the crash occurrence so that actions can be taken to avoid the risk. 

5.4. NTS	&	PTS	

According to section 3.2.4, once the crash time is estimated, NTS and PTS can be defined.  

Here, the duration of pre-crash period is decided to 30 minutes. A shorter pre-crash period is undesirable 
as crash risk might not be identified sufficiently early so that preventive measures can be activated and 
take effect. As TS are characterized by 5-minute intervals, 6 PTS are needed for each crash.  

Crash risk might also appear at more than 30 minutes before crashes. Then the pre-crash buffer period can 
be a mixture of non-crash and pre-crash conditions. To reduce the ambiguity of this period, pre-crash 
buffer period is taken out of consideration. 

Similarly, post-crash period is not of interest in the current research and is not considered. The duration of 
the post-crash period is achieved based on the impact of crashes on traffic. According to our analysis, the 
longest impact of a crash on traffic can last up to 210 minutes after the crash occurrence. Therefore, 210-
minute interval is set for post-crash zone to assure that there is no part of post-crash zone contained in 
non-crash zone.   
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With almost six years data (from Jan 22, 2002 to Dec 31, 2007), the population of NTS is 1’160’831. The 
PTS population for 120 crashes is 720. It is obvious that the sizes of two data sets (NTS and PTS) are 
imbalanced with the imbalance ratio IMRO=1’612.27.  

5.5. Data	Preparation	

Data preparation includes pre-processing steps to obtain NTS and PTS sets from raw individual vehicle 
data. 

5.5.1.1. Raw	Data	Cleansing	

Raw data are stored in text files and therefore, it’s necessary to control whether data lines (with class of 
vehicles excluded) can be converted into numerical data. Raw data can be corrupted under many forms 
such as: 

 Reset text of detectors. Traffic detectors usually reset counters after midnight when the traffic is 
low. Special text appears in data files indicating the reset. Reset duration usually lasts for about 
15 minutes. 

 Failure of detectors. The frequency of failure is higher in 2002, 2003, and 2004 at study site 
CH023. Special characters appear when the failure happens. 

 Errors within data lines. Data lines should be in the format presented in Figure 4-3. Otherwise, 
the data lines should be removed.  

When all the corrupted text in raw data is removed, raw data are aggregated based on lanes. 

5.5.1.2. Aggregated	Data	Cleansing	

As 5-minute intervals are used in the current study for aggregating data, any data interval containing 
insufficiently raw data for the interval is removed. This usually occurs when there is a detector reset and 
the reset starts within an aggregation interval. The aggregation interval starts at minute 0 or minute 5 (for 
example, at 12:00 or 17:45 or 21:15). If the reset starts at 12:33 and finishes at 12:47, raw data from 12:33 
to 12:47 is not available. Moreover, the intervals from 12:30-12:35 and from 12:45-12:50 are also 
removed as there is not sufficiently raw data for those intervals. The same data cleansing is also applied to 
the intervals when there is failure of detectors. 

In case of errors within data lines, corresponding lines are simply removed.  

5.5.1.3. Missing	Values	

When data for two lanes of the same direction are aggregated, the aggregated data for one lane is matched 
with aggregated data for the other lane to generate traffic situations. There are periods when there is no 
vehicle on one lane whereas there are vehicles on the other lane. In this case, data for the no-vehicle lane 
are generated to match with the lane where there are vehicles. 7 lane-based parameters are generated for 
no-vehicle lane (see Table 5-1): 

 Volume: 0 vehicles.  
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 Occupancy: 0%.  
 Average Speed: 0 km/h.  
 Average headway, standard deviation of headway, standard deviation of speed, percentage of 

heavy vehicle are also set to zero, similarly to average speed. 

The zero value of volume and occupancy reflects the reality as there is no vehicle during the aggregation 
interval. However, the zero value for speed is a dummy value because if there is no vehicle, there is no 
speed. Similarly, dummy zero values are assigned to Average headway, standard deviation of headway, 
standard deviation of speed, percentage of heavy vehicle. These dummy values should not influence the 
final results as the corresponding traffic situations will be clustered into a special group.   

5.6. Summary	

This chapter discusses the application of the first step of the methodology to the data collected form study 
site. 22 variables are used to characterize Traffic situations that are aggregated for 5-minute intervals. 
Before NTS and PTS are specified, crash time correction is discussed with crash time estimation using 
shockwave theory. To agree with aggregation time interval, crash time is shifted earlier to match with the 
end of the last traffic situation. 

Other important design choices are made for pre-crash period such that before shifted crash time, there 
are 6 PTS characterizing the traffic evolution before the crash. There are data unused which are data 
within pre-crash buffer period and post-crash period. The exclusion of these periods should not influence 
the overall performance of developed models. 

Finally, the working data set of the current research with the selected study includes 1’160’831 NTS and 
720 PTS (for 120 crashes). The imbalance ratio of the classes is IMRO=1’612.27. 
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Chapter	6	Data	Sampling	&	Traffic	Regimes	

This chapter presents design choices with regard to data sampling process and provides in depth analysis 
of the traffic conditions obtained from clustering process called traffic regimes. Traffic situations are 
transformed before being sampled. After the data sampling process, traffic situations under original form 
are used in subsequent chapters. 

It is worth noting that the terminology “traffic regime” might be used elsewhere to indicate totally 
different meanings. Traffic Regimes in the current research should not be linked to any other study. 

6.1. Introduction	

According to preliminary crash analyses presented in section 4.5.4, most of the crashes occurring at the 
selected study site are rear-end and sideswipe crashes (120 out of totally 170 crashes). Figure 4-15 in 
particular show that these crashes happen mostly under high flow or congested conditions. This means 
that there must be certain dominating traffic conditions for the considered collisions to appear and there is 
low chance for these types of crashes under other traffic conditions. 

Section 3.3.1 presents an example of model development using all available pre-crash and non-crash data 
without sampling non-crash data with bad results obtained. It means that there is an imbalance between 
pre-crash and non-crash data that lower the performance of machine learning methods. 

Previous studies in the literature also mention partly to the need of sampling non-crash data as 
summarized in section 2.4.4. However, the data sampling approaches are rather arbitrary and there is non-
crash data unused in the sampling process.  

Here, the data sampling methodology proposed in section 3.3 is applied to NTS and PTS data sets 
introduced in Chapter 5. Section 6.2 will discuss about the design choices of non-crash data sampling 
methodology. Section 6.3 will provide analysis on results of data sampling process which are called 
traffic regimes. Section 6.4 discusses the link between NTS and PTS with traffic regimes. 

6.2. Design	Choices	

6.2.1. Overview	

According to section 3.3.2, three main sampling steps are required: 

 Normalization and dimension reduction 
 NTS clustering  
 PTS classification 

The following sub-sections examine these steps with making design choices appropriate to available data 
at the selected study site. 
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6.2.2. Normalization	and	dimension	reduction	

6.2.2.1. Motivation	

The motivation for normalization and dimension is presented in section 3.3.2.1. With the data from 
selected study site, the facts below motivate the reduction of dimensions.  

According to section 5.6, the NTS matrix contains 1’160’831 observation characterized by 22 variables 
making it a large data matrix. Reducing number of dimensions is important as the clustering process can 
be time and computer memory consuming. The expected model should work in real-time and hence, 
decreasing the processing time can make the model more pro-active.  
There exists high correlation between several pairs of variables. Figure 6-1 presents the correlation 
coefficients between couples of 22 variables (the variables are listed in Table 5-1). Here, the high 
coefficients indicate high correlations represented by darker color. The cells in top-left to bottom-right 
diagonal represent the correlation of each variable to itself, which is always 1. There are pairs of highly 
correlated variables such as X10 (HFlow) and X13 (HOcc), X11 (HASpd) and X17(Spd#), and X5(LAHw) 
and X7(LVHw). Two correlated variables represent similar information and therefore bring spare 
information to the clustering process. 

 

Figure 6‐1: Correlation coefficients between pairs of variables 

1 1.00 0.00 0.45 0.06 0.50 0.24 0.54 0.21 0.25 0.27 0.27 0.37 0.23 0.06 0.31 0.07 0.29 0.05 0.02 0.04 0.00 0.00

2 0.00 1.00 0.09 0.14 0.11 0.15 0.09 0.21 0.42 0.04 0.11 0.05 0.05 0.09 0.03 0.07 0.06 0.00 0.00 0.00 0.00 0.01

3 0.45 0.09 1.00 0.36 0.73 0.80 0.78 0.30 0.05 0.85 0.25 0.62 0.77 0.42 0.42 0.06 0.36 0.13 0.01 0.03 0.00 0.04

4 0.06 0.14 0.36 1.00 0.22 0.65 0.24 0.03 0.37 0.49 0.11 0.25 0.64 0.24 0.20 0.08 0.21 0.03 0.24 0.09 0.01 0.08

5 0.50 0.11 0.73 0.22 1.00 0.59 0.89 0.22 0.01 0.53 0.49 0.40 0.47 0.05 0.52 0.02 0.55 0.06 0.00 0.01 0.04 0.03

6 0.24 0.15 0.80 0.65 0.59 1.00 0.62 0.07 0.43 0.80 0.10 0.53 0.86 0.40 0.38 0.02 0.31 0.09 0.09 0.08 0.01 0.03

7 0.54 0.09 0.78 0.24 0.89 0.62 1.00 0.26 0.03 0.58 0.45 0.48 0.51 0.11 0.52 0.03 0.52 0.05 0.01 0.01 0.02 0.03

8 0.21 0.21 0.30 0.03 0.22 0.07 0.26 1.00 0.33 0.22 0.06 0.15 0.22 0.06 0.02 0.06 0.07 0.02 0.01 0.00 0.02 0.04

9 0.25 0.42 0.05 0.37 0.01 0.43 0.03 0.33 1.00 0.23 0.06 0.12 0.23 0.16 0.08 0.15 0.06 0.01 0.16 0.11 0.01 0.02

10 0.27 0.04 0.85 0.49 0.53 0.80 0.58 0.22 0.23 1.00 0.17 0.53 0.92 0.47 0.39 0.03 0.32 0.06 0.04 0.15 0.01 0.03

11 0.27 0.11 0.25 0.11 0.49 0.10 0.45 0.06 0.06 0.17 1.00 0.29 0.08 0.32 0.52 0.05 0.95 0.01 0.02 0.02 0.45 0.04

12 0.37 0.05 0.62 0.25 0.40 0.53 0.48 0.15 0.12 0.53 0.29 1.00 0.48 0.38 0.20 0.10 0.21 0.00 0.01 0.02 0.39 0.02

13 0.23 0.05 0.77 0.64 0.47 0.86 0.51 0.22 0.23 0.92 0.08 0.48 1.00 0.42 0.37 0.01 0.28 0.04 0.09 0.14 0.02 0.02

14 0.06 0.09 0.42 0.24 0.05 0.40 0.11 0.06 0.16 0.47 0.32 0.38 0.42 1.00 0.20 0.06 0.24 0.00 0.01 0.03 0.14 0.02

15 0.31 0.03 0.42 0.20 0.52 0.38 0.52 0.02 0.08 0.39 0.52 0.20 0.37 0.20 1.00 0.08 0.57 0.03 0.06 0.04 0.11 0.02

16 0.07 0.07 0.06 0.08 0.02 0.02 0.03 0.06 0.15 0.03 0.05 0.10 0.01 0.06 0.08 1.00 0.07 0.01 0.03 0.01 0.05 0.01

17 0.29 0.06 0.36 0.21 0.55 0.31 0.52 0.07 0.06 0.32 0.95 0.21 0.28 0.24 0.57 0.07 1.00 0.02 0.06 0.01 0.44 0.02

18 0.05 0.00 0.13 0.03 0.06 0.09 0.05 0.02 0.01 0.06 0.01 0.00 0.04 0.00 0.03 0.01 0.02 1.00 0.05 0.33 0.03 0.00

19 0.02 0.00 0.01 0.24 0.00 0.09 0.01 0.01 0.16 0.04 0.02 0.01 0.09 0.01 0.06 0.03 0.06 0.05 1.00 0.31 0.03 0.00

20 0.04 0.00 0.03 0.09 0.01 0.08 0.01 0.00 0.11 0.15 0.02 0.02 0.14 0.03 0.04 0.01 0.01 0.33 0.31 1.00 0.03 0.00

21 0.00 0.00 0.00 0.01 0.04 0.01 0.02 0.02 0.01 0.01 0.45 0.39 0.02 0.14 0.11 0.05 0.44 0.03 0.03 0.03 1.00 0.01

22 0.00 0.01 0.04 0.08 0.03 0.03 0.03 0.04 0.02 0.03 0.04 0.02 0.02 0.02 0.02 0.01 0.02 0.00 0.00 0.00 0.01 1.00
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6.2.2.2. Normalization	

There are various normalizations in statistics such as standard score, Student's t-statistic, Studentized 
residual, Standardized moment, and Coefficient of variation, etc. Here, standard score method is used 
because all traffic data are used and therefore, the population parameters are known. 

6.2.2.3. Dimension	Reduction	Techniques	

As discussed in section 3.3.2.2, a method for dimension reduction in the current research is a feature 
extraction method. As such, there are many candidates that can be used to reduce the number of 
dimensions of NTS matrix. Several examples of feature extraction techniques include principal 
component analysis, multifactor dimensionality reduction, partial least squares, or self-organizing maps, 
etc. 

The selection of technique for dimension reduction can greatly influence the performance of models 
developed in the next chapters. However, this choice is challenging at the current step as the models have 
not been developed so far. Therefore, a technique is selected for the initial design choices based on the 
characteristics of available data which is NTS matrix in the current research.  

As results, Principal Component Analysis – PCA is chosen as the technique for dimension reduction 
because: 

 PCA is a mathematical procedure transforming linearly a number of possibly correlated variables 
into a smaller number of uncorrelated variables called Principal Components (PC) according to 
Jolliffe, (2002). The order of a PC indicates its importance in representing the variability in the 
data. For example, the first PC is the most important and accounts for as much of the variability 
in the data as possible. The second PC is the second most important and accounts for as much of 
the remaining variability as possible and so on. 

 PCA is used to transform normalized data into new data space. As the number of the most 
important PC is smaller than the number of original variables, data dimension reduction is 
obtainable. In addition to that, the PCs which are less important are eliminated such that only the 
most relevant information is kept for the clustering process. Finally, with only two or three first 
principle components, transformed data can be visualized in a manner that most of the variations 
of the original data are represented. 

It is worth noting that the choice of PCA as dimension reduction does not guarantee the optimal 
performance of the developed models. Therefore, if the final performance is low, the choice of techniques 
for dimension reduction is subject to an optimization process. 

6.2.2.4. NTS	Transformation	

As discussed in section 5.2.3, the first two variables TDay and WDay characterizing traffic situations are 
categorical, which are not applicable for the standard PCA. These variables are excluded from PCA 
transformation process and will be used again in development of risk identification models (presented in 
the next chapters). Thereby, the remaining NTS matrix composes of 20 data fields from X3 to X22. As 
results, 20 eigenpairs are obtained. Figure 6-2 presents the obtained eigenvalues sorted descending (the 
first eigenvalue is the greatest) under the form of pareto chart.  
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According to Figure 6-2, the first eigenvalue represents up to 30% of variances in the original data, the 
second eigenvalue up 15%, i.e. only the first two eigenvalues can represent up to 45% of variances in the 
original data. Variables contributing the most to the first PC include X5, X7, X3, X10, X6, and X13. The 
difference between the sign of X5 and X7 (positive) and the sign of X3, X10, X6, and X13 (negative) for 
the first PC indicates that the first PC is highly influenced by the volume of traffic on the road section. It 
is reasonable that when X3 (right lane’s flow) is high, X10 (left lane’s flow) is also high. As X6 (right 
lane’s occupancy) and X13 (left lane’s occupancy) are highly correlated with X3 and X10, respectively 
(according to Figure 6-1), if X3 (or X10) is high, X6 (or X13) is also high. On the contrary, if X3 is high, 
X5 (right lane’s average headway) and X7 (right lane’s standard deviation of headway) are low as X5 and 
X7 are also highly correlated to X3 but inversely. When the traffic volume becomes low, the average 
headway and the standard deviation of headway will become high. 

 

Figure 6‐2: Principal Components as outputs of PCA transformation 

For the second PC, the contribution of left lane’s variables such as X11 (average speed), X21 (speed 
change), X14 (standard deviation of headway), X12 (occupancy), and X15 (standard deviation of speed) is 
high. X17 highly correlated with X11 is also an important variable contributing to the second PC. 

According to Figure 6-2, the third PC representing 9.2% of the total variance is influenced mostly by 
speed-related variables one the right lane (X4, X8, and X19). Besides, the percentage of heavy vehicles – 
X9 on the right lane is the variable contributing the most to the third PC.  

The forth PC is influenced by the traffic volume evolution represented by X18 and X20 (flow differences 
compared to the previous TS on the right lane and on the fast lane, respectively). The low influence of the 
speed changes on the two lanes indicates that the volume does increase but the section is still not under 
congestion. The fifth PC is more likely to represent the speed variation on the left lane (X8), on the left 
lane (X15), and speed evolution on the left lane (X21). The sixth PC is highly influenced by the 
precipitation information. Each of the fourth, fifth, and sixth PC represents smaller than 7% of the total 
variance. 
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Figure 6‐3: Coefficients of four eigenvectors ranked from the third to the sixth 

Figure 6-4 presents the coefficients for 20 original variables in the space of the first two PC. As the first 
two eigenvalues represent up to 45% of variances in the original data, the data variances are visualized 
under the space of the first two PC better than under the space of any other two PC. Vectors representing 
variables X3 (LFlow), X10 (HFlow), X6 (LOcc), and X13 (HOcc) are the longest vectors in the first two 
PC. Therefore, they have higher influence on the data distribution in the space of the first two PC. In the 
other way, data points in the space of the first two PC are distributed according to high influence of flow 
and occupancy. 

 

Figure 6‐4: Coefficients of the first two eigenvectors 
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 Normalization function Norm: തܺPTS = Norm(XPTS) that is characterized by two parameters: mean 
and standard deviation vectors of NTS matrix. 

 Transformation function FEx: X’PTS = FEx(XPTS) that is characterized by six eigenpairs 
(eigenvalue and eigenvector) corresponding the first six PC. 

Figure 6-6 presents the positions of PTS data points in the space of the first two PC. It can be seen that 
most of the PTS data points focus in the area where there is group iii) of NTS data points presented in 
section 6.2.2.4. It is expected that the clustering process will be able to match PTS with those NTS as they 
(i.e. both PTS and NTS) represent similar traffic conditions that makes them (PTS and NTS) comparable.   
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Figure 6‐6: PTS in space of the first two PC 

6.2.2.6. Choice	of	Dimensions	

As NTS matrix is normalized with zero means before being transformed using PCA, the sum of obtained 
eigenvalues is the number of dimensions, i.e. 20 and the average eigenvalue is 1. 

Many approaches can be applied to determine the value of R representing the number of PC to be retained 
(according to Hayton et al., (2004)). The main idea of the approaches is to retain PC until additional PC 
account for trivial variance according to some PC retention criteria. 

One of the most popular PC retention criteria is to retain all PC having eigenvalues greater than the 
average eigenvalue (which is 1.0 in our case). The rationale behind the criterion is that a factor should 
account for the amount of variation in at least one variable (Kaiser, 1960), i.e. a factor to be retained 
should have the eigenvalue not smaller than the average eigenvalue. 
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Applying this criterion, all the PC having eigenvalue not smaller than 1.0 are retained. As results, the first 
six PC satisfy this criterion. As illustrated in Figure 6-2, the first six PC can preserve up to 72.5% of the 
variance in the original data. The other 27.5% of variance in the original data is excluded from clustering 
process. 

It is important to note that six PC representing 72.5% of variance in the original data are only applied to 
the clustering process. Later on when traffic risk identification models are developed, the excluded 27.5% 
of variance will be re-considered in order to discover the variation between NTS and PTS. 

6.2.3. NTS	clustering		

6.2.3.1. Clustering	Method	

The objective of using a clustering algorithm in the current study is to make the natural classification of 
TS data such that groups of NTS can be obtained before PTS are classified into the groups. Clustering is 
the core part of data sampling process aiming to produce a base for matching NTS with PTS. Many 
clustering techniques can help to achieve this objective such as Self-Organizing Maps, K-means, etc. 

K-mean (Jain, 2010) is selected as clustering technique in the current research. This technique is still 
widely used until today thanks to its simplicity, efficiency, and ease of implementation. The other 
motivation for choosing K-means as clustering algorithm in the present study includes: 

i) Hierarchical clustering techniques are not desirable as there is no underlying structure in NTS 
data set and the objective of clustering NTS is to find the natural classification of NTS. 

ii) K-means method requires less memory than other clustering techniques including hierarchical 
clustering techniques and Self-Organizing Maps. 

iii) The number of clusters is flexible to be chosen and can be any positive integer number. For 
several clustering algorithms such as Self-Organizing Maps (Kohonen, 1982), the number of 
clusters needs to be an integer divisible by an integer greater than 1 to form a rectangular cluster 
map. 

iv) Clustering using K-means can more easily find the global near-optimal solutions if the inputs are 
transformed by PCA. This is because PCA automatically projects to the subspace where the 
global solution of K-means clustering lie (Ding and He, 2004).  

Apart from to the choice of clustering technique, Euclidean metric is the distance metric used in K-means 
calculations. 

6.2.3.2. Number	of	Clusters	

Let C the set of cluster centers: C=[C1, C2, …, CK] where Cj (j=1÷K) is the cluster center of the j-th 
cluster, DNTS is the set of index sets: DNTS=[DNTS1, DNTS2, …, DNTSK] where DNTSj (j=1÷K) is the set of 
indices of all data points xi belonging to of the j-th cluster (xi is NTS data transformed using PCA). The 
algorithm K-means tries to iteratively minimize the clustering error presented in Equation 6. 
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Equation 6: Squared Errors of K‐means algorithm 

ݎݎܧ ൌ ෍ 	 ෍ ሺݔ௜ െ ௝ሻଶܥ

ሺ௜ୀଵൊ௉ሻ&ሺ௜∈஽ೕሻ௝ୀଵൊ௄

 

Err value reflects the homogeneity/variance of data within each cluster. If each data point xi represents a 
cluster, Err will be zero, i.e. there is no variance under each cluster. Err becomes greatest when all data 
points are grouped into one cluster, i.e. the variance is maximum and the homogeneity is minimum. When 
the number of clusters increases, the variance decreases and the homogeneity increases. The objective of 
this sub-section is to determine the number of cluster the most appropriate for the NTS data.  

Figure 6-7 presents four different indicators on clustering errors for different numbers of clusters (from 1 
to 20). The current study limits the number of clusters to be considered to 20 as each cluster represents a 
traffic regime and for operational point of view, more than 20 traffic regimes are not necessary. 

The curve E1 represents the absolute clustering errors (i.e. Err in Equation 6) corresponding to numbers 
of clusters. If the whole data set is considered as a cluster, the clustering error is the highest at around 
14.106.  When there are two clusters, the clustering error reduces dramatically to below 10.106 compared 
the clustering error when one cluster is used. The strong reduction of clustering error slows up until there 
are six clusters. Thereafter, the clustering error keeps reducing at much lower rate. 

The curve E2 provides another view on the reduction of clustering error: E2 value at each number of 
clusters K is the difference between the clustering error when there are K clusters and the clustering error 
when there are (K-1) clusters. As such, there is no clustering error difference for K=1. Therefore, E2 
value for K=1 is zero. In fact if E1(K) and E2(K) are the absolute error and the error difference, 
respectively, when there are K clusters, E2(K) is calculated as: 2ܧሺܭሻ ൌ ܭ1ሺܧ െ 1ሻ െ  ሻܭ1ሺܧ

E2 value is much reduced until K=7. After that with K=8, 9, the reduction of E2 is stable at low speed 
before coming to another drop when K changes from 9 to 10. Therefore, the candidates for K value 
according to E2 values are 7, 8, 9, and 10. 

The curve P1 represents the percentages of error reduction P1K when changing from K-1 clusters to K 
clusters compared to the clustering error with 1 cluster. P1K is calculated according to Equation 7. P1K 
represents the additional error reduction that can be gained when one more cluster is used compared to the 
initial clustering error Err1.  

Equation 7: Percentages of error reduction compared to Err1 

ܲ1௄ ൌ
௄ିଵݎݎܧ െ ௄ݎݎܧ

ଵݎݎܧ
,  ݏݎ݁ݐݏݑ݈ܿ	݈	݄ݐ݅ݓ	ݎ݋ݎݎ݁	݃݊݅ݎ݁ݐݏݑ݈ܿ	ݏ݅	௟ݎݎܧ	݁ݎ݄݁ݓ

The curve P2 includes P2K that is similar to P1K except that the error difference is compared with the 
error for (K-1) clusters. P2K is calculated according to Equation 8. P2K represents the relative error 
reduction when deciding to increase the number of clusters from K-1 to K. 
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Equation 8: Percentages of error reduction compared to the last error 

ܲ2௄ ൌ
௄ିଵݎݎܧ െ ௄ݎݎܧ

௄ିଵݎݎܧ
,  ݏݎ݁ݐݏݑ݈ܿ	݈	݄ݐ݅ݓ	ݎ݋ݎݎ݁	݃݊݅ݎ݁ݐݏݑ݈ܿ	ݏ݅	௟ݎݎܧ	݁ݎ݄݁ݓ

For two curves P1 and P2, K=7, 8, 9 and 10 are also the good candidates. Therefore, other data insights 
need to be undertaken to choose one of the four values. The criteria to one of four numbers K include: 

i) Lower number of clusters is more preferred. This is important from traffic operational point of view. 
ii) As one of the main objectives of this study is to differentiate PTS and the relevant NTS, the additional 

cluster should facilitate the differentiation. 

 

Figure 6‐7: Clustering errors by the number of clusters 

Figure 6-8 illustrates cluster centers in the space of the first two PC corresponding to different numbers of 
clusters K with the symbol CK.l indicating the the l-th cluster center when there are K clusters. Although 
the illustration is in two-dimension spaces, the analysis is undertaken in the space of six PC. As the first 
two PC represent more than 62% out of the total variance represented by the first six PC (i.e. 45% versus 
72.5%), the illustration in Figure 6-8 almost matches with the analysis under the space of six PC. 

The first two cluster centers are almost identical with any K value. According to the criterion i), 7 clusters 
are the most preferred, then 8 clusters, 9 clusters, and finally 10 clusters. When changing from 7 clusters 
to 8 clusters, a new cluster is added: three clusters C7.5, C7.6 and C7.7 are redistributed into four clusters 
C8.5, C8.6, C8.7, and C8.8. It’s clearly illustrated through Figure 6-8 that clusters C8.5, C8.6, C8.7, and 
C8.8 lie in an area where there PTS data points. Therefore, the change from 7 to 8 clusters creates an 
additional cluster that can facilitate differentiating NTS and PTS and K=7 is rejected. 
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Consider the change from 8 to 9 clusters. An additional cluster is generated by dividing cluster C8.3 into 
two clusters C9.3 and C9.4. According to Figure 6-6, there is no PTS data point corresponding to cluster 
C8.3 area. Therefore, the additional cluster does not contribute to NTS and PTS differentiation and the 
number of clusters equal to 9 (K=9) is eliminated. Consequently, K=10 is also rejected. Finally, K=8 is 
selected as the number of clusters in the current study. 

 

Figure 6‐8: Cluster centers in cases of 7, 8, 9, and 10 clusters in the space of the first two PC 

6.2.3.3. PTS	classification	

PTS in matrix XPTS are normalized and transformed to X”PTS. Thereafter, rows of X”PTS are compared with 
cluster centers C1, C2… C8. Similar to new TS, a PTS is classified into a cluster Ck (1≤k≤8) if the distance 
between the PTS data point and the center of cluster Ck is the lowest compared to the distances of the PTS 
data point to the centers of other clusters. 

Let DPTS is the set of index sets: DPTS =[ DPTS1, DPTS2, …, DPTSK] where DPTSj (j=1÷K) is the set of indices 
of all transformed PTS data points belonging to of the j-th cluster. 

6.2.3.4. NTS	&	PTS	Distribution	

We call clusters as Traffic Regimes – TR, and named from A to H corresponding to cluster centers C1, 
C2…C8, respectively. Under j-th TR, there are DPTSj and DNTSj – the sets of indices of PTS and NTS 
belonging to j-th TR. It is possible that the set DPTSj is empty because there is no PTS classified into j-th 
TR. It is worth noting that the terminology “Traffic Regime” might be used elsewhere with different 
meanings and has no link with the Traffic Regimes used in the current research. 
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We define a parameter called Risk Chance representing the ratio between PTS population and NTS 
population under each TR. Risk Chance under a TR represents the priori probability for a new TS to 
become PTS when the TS is classified into that TR. Risk Chance value of a TR is the inverse value of 
Imbalance Ratio under that TR. 

Figure 6-9 presents the distribution of NTS and PTS and the Risk Chance under each TR. There is no 
PTS available under regimes A and F. Therefore, Risk Chance value for these regimes is zero. Under 
regimes D and E, PTS populations are low leading to low Risk Chance. To obtain significantly statistical 
results, PTS population should be greater than 20. Therefore, regimes A, D, E, and F are declared risk-
free, i.e. when a new TS is classified into one of regimes A, D, E, and F, it will be automatically identified 
as NTS. Under regimes B, C, G, and H, TR-based Risk Identification Models (RIM) are developed to 
differentiate NTS and PTS aiming to classify new TS into one of two classes NTS or PTS. 

 

Figure 6‐9: Distribution of NTS and PTS and Risk Chance under each Traffic Regime 

6.3. Traffic	Regime	Analyses	

6.3.1. Preliminary	

According to Figure 4-14, PTS occur during day time, especially during peak hours (6:00-8:00AM and 
4:00-6:00PM, weekday) whereas; there is low number of PTS occurring during the night (from 8:00PM 
to 6:00AM) when the traffic demand is low. This distribution of PTS is reasonable as the traffic must be 
sufficiently dense for traffic – induced crashes (i.e. rear-end and sideswipe crashes in the present study) to 
occur.  

In Figure 6-10, the locations of traffic regimes represented by cluster centers are characterized by several 
variables pointing in the same direction. For example, regime F is characterized by high values of X5, X7, 
X8, and X22 (i.e. lying in the fourth quarter of the first two PC space) and low values of X17 (speed 
difference becomes negative), X11 (left lane’s speed becomes zero), and X15 (speed variation becomes 
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zero). It means that regime F represent traffic conditions where there are vehicles only on one lane due to 
low traffic or due to some other reasons. 

Two regimes A and E lie on the first quarter of the first two PC space and are most underlined by high 
values of X4, X12, and X14 and low values of X3, X10, X6, and X13. It means that regimes A and E 
represent traffic conditions where there are vehicles on both lanes yet the flow is low. More principal 
components are needed to explain the difference between regimes A and E. 

 

Figure 6‐10: Location of cluster centers the first two PC space 

Regime D is the only regime lying in the second quarter of the first two PC space and is strongly 
supported by X15, X17, X11, and X21. Regimes B, C, G, and H lie on the third quarter of the first two PC 
space and are indicated by high X3, X6, X10, and X13. B, C, G, and H are the traffic regimes where the 
population of PTS is high and the Risk Chance is also high. 

Combining Figure 6-5 with Figure 6-10, traffic data under each TR are divisible into three main groups:  

 group of traffic active on one lane: regime F 
 group of low traffic active on two lanes: regimes A and E 
 group of medium or high traffic on two lanes: regimes B, C, D, G, and H 

Figure 6-11 and Figure 6-12 present traffic regimes in the fundamental speed/flow diagram for the right 
and left lanes, respectively. It can be seen that data points from one regime overlap with data points from 
some other regimes. However, the overlapping is apparent as there are other variables used for separating 
different traffic regimes, not only speed and flow on two lanes. 
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Figure 6‐11: Traffic regimes under speed‐flow diagram for the right lane 

It can be easily recognized that the traffic under regime F is only active on one lane, mostly on the right 
lane and some Traffic Situations on the left lane. According to Figure 6-11, traffic flow on the right lane 
can be high up to 1400vph. This means that regime F represent traffic conditions where the left lane is 
closed due to some unknown reason. 

Two regimes A and E also represent low flow conditions. The difference between regimes A and E is that 
the traffic flow is lower under regime A than under regime E, especially on the left lane. 

For other regimes (i.e. regimes B, C, D, G, and H), speed and flow on two lanes cannot fully explain the 
differences. 

To obtain more insights for each regime, more variables need to be used. In the subsequent sections, the 
detailed characterization of each regime will be presented. 
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Figure 6‐12: Traffic regimes under speed‐flow diagram for the left lane    

6.3.2. Traffic	States	on	Each	Lane	

This section makes the differentiation between eight Traffic Regimes based on the traffic characteristics 
on each lane.Figure 6-13 presents statistics on variables indicating traffic states on both of the lanes, i.e. 
variables from X3 to X9 for the right lane and from X10 to X16 for the left lane.  

Comparing variable X3 (HFlow), Traffic Situations can be partitioned into three groups: 

1) The group of low flow (X3<500vph) including regimes A, E, and F  
2) The group of medium traffic (500vph ≤ X3 ≤ 1100vph) including regimes B, C, and D. 
3) The group of high traffic (X3>1100vph) including two regimes G and H. 
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Figure 6‐13: Statistics on variables representing lane states from X3 to X16  
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Comparing variable X10 (HFlow) between two regimes G and H, it can be stated that regime H represents 
high flow and congested conditions. Considering X4 and X11 (the average speeds on the right and left 
lanes), it is shown that the speed is lower under regime H than under any other regime. The high flow 
traffic under regime H is also reflected by the outstanding values of variables X6 and X13 (occupancy on 
the left and right lanes, respectively) compared to other regimes. 

Regime G is the regime where traffic flows on both lanes (i.e. X3 and X10) are the second highest (flows 
under regime H are the highest). According to Figure 6-11 and Figure 6-12, there is no congestion under 
regime G. Therefore, the average speeds under regime G are higher than under regime H. Regime B is 
also very similar to regime G by comparing variables from X3 to X8, and X10 to X15. The clearest 
difference between regimes G and B is the percentage of heavy vehicles on both lanes – X9 and X16. 

Regimes C and D are also similar by comparing most of variables representing lane states. Some 
significant difference between regimes C and D are: 

 The average speeds on both lanes (X4 and X11) are higher under regime D than under regime C. 
 The occupancies on both lanes (X6 and X13) are lower under regime D than under regime C. 
 The percentages of heavy vehicles on both (X9 and X16) are slightly lower under regime D than 

under regime C 

Finally, using variables representing lane states allow differentiating the following traffic regimes or 
groups of traffic regimes: 

 The free flow traffic conditions represented by regimes A, E, and F. 
 The high flow and congested conditions represented by regime H. 
 The high-medium traffic flow conditions represented by regimes B and G 
 The low-medium traffic flow conditions represented by regimes C and D. 

6.3.3. Traffic	Variations	and	Non‐traffic	Characteristics		

This section provides further data insights aiming to discover the characteristics making one regime 
different from the other regimes, especially to distinguish between regime B and regime G or between 
regime C and regime D. Figure 6-14 presents variables from X17 to X21 indicating the variations of 
traffic state across lanes and over two continuous traffic situations. Figure 6-14 also presents non-traffic 
variables X1, X2, and X22.  

By comparing X18 and X20 (the changes of flow on the right and left lanes, respectively) of two regimes 
B and G, X18 and X20 under regime G are mostly negative which means that there are less vehicles for 
Traffic Situations under regime G compared to the traffic situations that precede. This reflects the 
reduction of traffic flow under regime G. That can be the reason explaining the increases of average 
speeds on both lanes (represented by X19 and X21). For regime B, the inversed tendency occurs: the 
traffic flow is increasing and the average speed is reducing. 

However, that tendency does not happen to regimes C and D. There is a slight increase of traffic flow 
under regime D compared to regime C. However, this change is not significant. It means that traffic 
characteristics under regimes C and D are similar.  
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Consider three non-traffic variables X1, X2, and X22, the most significant difference between regimes C 
and D is indicated by variable X22 (the type of precipitation). More than 95% out of NTS belonging to 
regime C are under rainy conditions whereas only less than 1% of NTS under regime D are under rainy 
conditions. As X22 is one of variables involved in clustering process, it contributes actively to the 
separation of traffic into regimes C and D. According to Figure 6-9, Risk Chance under regime C is 
higher than under regime D. According to Figure 6-13, the average speed is lower under regime C than 
under regime D. As most traffic characteristics are similar under regimes C and D, the type of 
precipitation is the reason for the risk chance difference. 

A B C D E F G H
-1.0

-0.5

0.0

0.5

1.0
X18-LFCg (x1000vph)

A B C D E F G H
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
X17-Spd# (x100Km/h)

A B C D E F G H
-5

-4

-3

-2

-1

0

1

2

3

4

5
X19-LSCg(x100km/h)

A B C D E F G H
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
X20-HFCg (x1'000vph)

A B C D E F G H
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
X21-HSCg(x100km/h)

A B C D E F G H
0.0

0.2

0.4

0.6

0.8

1.0
X22-Prec (Proportion of TS with X22=1)

H

G

F

E

D

C

B

A

X1-Time of the day (HH)

 

 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  

0.5

1.0

1.5

2.0

H

G

F

E

D

C

B

A

X2-Day of the Week

 

 

Mon Tue Wed Thu Fri Sat Sun

5 

10

15

20

25

%

%

 

Figure 6‐14: Statistics on variables from X17 to X21 and non‐traffic variables X1, X2, and X22 

Two categorical variables X1 and X2 are not used in data sampling process and therefore do not 
contribute to the formation of Traffic Regimes. However, X1 and X2 also characterizes the difference 
between Traffic Regimes. The following can be observed from Figure 6-14: 

1) Regimes A, E, and F occur mostly during early morning before 6:00AM. Regime E occurs also 
after 9:00PM. Regimes A and F occur more often on weekday whereas; regime F occurs mostly 
during weekend. 
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2) Regime H occurs more often during rush hours. Regime H occurs rarely on Sunday yet very often 
on Friday. 

3) Regime G is more frequent from 8AM to 7:00PM every day except Sunday when regime G is 
less frequent. 

4) Regime B is most frequent from 5:30AM to 6:30AM and from 9:00AM to 4:00PM and from 
Monday to Friday. During weekends, regime B is rare. 

5) Regime D can occur every day yet with high frequency on Sunday. High frequency of regime D’s 
occurrences is also observed from 7:00PM to midnight. 

6) Regime C is very similar to regime D by considering X1 and X2. 

6.3.4. Examples	of	Traffic	Regimes		

To provide a match between daily traffic and the use of traffic regimes, this section presents several 
examples of traffic regime evolution in one day traffic. Three dates are selected: a normal day (working, 
non-rain, and uncongested day), a rainy day, a congested day, and a weekend. In Figure 6-15, Figure 
6-16, and Figure 6-17, variables X3 (flow on the right lane) and X4 (average speed on the right lane) for 
the whole day are presented and referenced on the left vertical axis. Traffic Regimes are referenced on the 
right vertical axis. There is also a period in each figure where there is no data due traffic detector reset. 
During this period, speed and flow are set to zero. 

In general, on weekdays, starting from midnight the traffic volume reduces to its lowest level from 
1:00AM to 4:00AM before increasing to morning peak at about 8:00AM. Thereafter, the traffic reduces 
and stays at high volume level before increasing from 3:00PM to afternoon peak at about 5:30PM. After 
that, traffic volume reduces until midnight.  

Figure 6-15 presents traffic evolution for a normal working day with no precipitation (X2=2 - Tuesday 
and X22=0) and uncongested traffic. As it is non-rainy day the traffic did not come to regime C. 

 

Figure 6‐15: Traffic Regime evolution on Tuesday, April 25, 2006 
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Figure 6-16 presents traffic evolution for a weekend with some rainy period on Saturday, June 17, 2006. 
In early morning (from 1:00AM to 5:00AM), the traffic on Saturday is not as low as on working days. 
However, the traffic increases gradually to high flow at around 10:00AM. In the afternoon and evening, 
there are periods where the precipitation is positive: from 4:00PM to 4:30PM and some periods within 
7:00PM to 8:00PM. During these periods, the traffic comes to regime C. 

 

Figure 6‐16: Traffic Regime evolution on Saturday, June 17, 2006 

Figure 6-17 presents a working day traffic without precipitation and with congestion during morning peak 
(at around 7:00AM to 7:30AM). The congestion is indicated by the speed drop to below 40km/h. 

 

Figure 6‐17: Traffic Regime evolution on Thursday, August 21, 2003 
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6.3.5. Summary		

Three examples presented in Figure 6-15, Figure 6-16, and Figure 6-17 enforce the observations from 1) 
to 6) in section 6.3.3. Therefore, the following predeterminations can be conducted: 

1) Regime B usually occurs when the traffic is increasing (X18 and X22 are usually positive). 
Therefore, it represents increasing traffic and it usually precedes high flow and congested traffic 
regime H. 

2) Regime G usually occurs when the traffic is decreasing (X18 and X22 are usually negative). 
Therefore, it represents decreasing traffic and usually follows regime H. 

3) When the traffic is already at regime B and does not significantly increase, it will come to regime 
G. 

The proofs in the next section would conclude these predeterminations. 

6.4. TS	Transitions	

6.4.1. Introduction		

TS transitions are the movements of the TS from one TR to another TR. The typical transitions of TR for 
one day via three examples presented in Figure 6-15, Figure 6-16, and Figure 6-17 is that the traffic starts 
from midnight in free flow regimes F, A, and E then stays in high density regime B, G, and H during 
daytime before coming back to regimes E, A, and F in the evening. Regimes C and D play intermediate 
role when the traffic changes from free flow to high density regimes. 

This section aims to provide more insight about TS transitions for NTS and eventually for PTS. Because 
six PTS are used for each crash, the pattern of six TR transitions is considered here. 

6.4.2. NTS	Patterns	

6.4.2.1. NTS	Transitions	

An NTS pattern is a TR transition pattern of NTS, i.e. the traffic conditions where there are no crashes 
recorded. Figure 6-18a and Figure 6-18b presents the proportions of NTS transitions among TR. In Figure 
6-18a and Figure 6-18b, Traffic Regimes are grouped in three groups: group of low traffic (regimes A, E, 
and F), group of intermediate traffic (regimes D and C), and group of high traffic (regimes B, G, and H).  

Consider two consecutive traffic situations TSt-1 and TSt whose traffic regimes are α and β, respectively. 
Two regimes α and β can be the same or different and are among eight regimes from A to H. Call trans(α, 
β) the number of transitions from regime α to β in NTS data. Call Pr(α, β) is the proportion of NTS 
transitions from regime α to regime β compared to all NTS transitions from regime α to all regimes. Pr(α, 
β) is calculated as follows: 

௥ܲሺߙ, ሻߚ ൌ
,ߙሺݏ݊ܽݎݐ ሻߚ

∑ ,ߙሺݏ݊ܽݎݐ ሻ∀ఉߚ
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Similarly, Pc(α, β) is the proportion of NTS transitions from regime α to regime β compared to all NTS 
transitions from all regimes to regime β. Pc(α, β) is calculated as follows: 

௖ܲሺߙ, ሻߚ ൌ
,ߙሺݏ݊ܽݎݐ ሻߚ

∑ ,ߙሺݏ݊ܽݎݐ ሻ∀ఈߚ
 

Each cell in rows in Figure 6-18a represents Pr(α, β). For instance, as shown in Figure 6-18, more than 
70% of transitions from regime D are destined for regime D, i.e. traffic situations remain in regime D and 
α = β = D. Each cell in columns in Figure 6-18b represents Pc(α, β). Among NTS transitions from (and 
to) regimes F, E, D, C, and B, more than 50% remain in (or originate) the same regimes.  

 

Figure 6‐18: Proportions of NTS transitions from origins to destinations 

Regime G is the most unstable regime because once the traffic is under regime G, it remains under regime 
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transitions to H means that there is a fluctuation between G and H. 
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Regime B is rather stable with about 57% of NTS transitions from B remain in B. From B, about 28% of 
transitions are to G and 8% are to H. To B, about 29% are from G and 5% are from H. It means that the 
percentage of transitions from H to B is low. 

The direct transitions between regimes B, G, and H and regimes A, E, and F are rare. The percentages of 
transitions between regimes B, G, and H or regimes A, E, and F with regimes C and D are low because 
regimes C and D are stable. 

6.4.2.2. NTS	Pattern	Statistics	

A TS pattern represents 30’ evolution of TS under six traffic regimes. There are eight TR candidates 
(from A to H) for each of six traffic regimes. Therefore, there are totally 68= 1’679’616 possible patterns. 
There are transitions that can never occur such as from A to H to A. For this reason, the total number of 
NTS transition patterns during the whole study period is 11’782 among 1’050’372 available patterns 
(there must be at least 30’ consecutive data to produce a pattern). There are patterns that repeat more than 
other patterns.  

The pattern DDDDDD, i.e. the traffic remain under regime D for 30 minutes, repeats the most at 86’624 
times, i.e. 8.25% of available patterns. After that, patterns EEEEEE, FFFFFF, BBBBBB, and CCCCCC 
contribute 4.30%, 2.40%, 2.28%, and 1.54% of available patterns. This result conforms to high 
percentages of transitions from and to one regime for regimes B, C, D, E, and F. 

6.4.3. PTS	Patterns	

Figure 6-19 presents the evolution of traffic under traffic regimes before crashes used in this study. Each 
cell column represents a crash, each cell row represents the moment of the PTS before crashes. Each cell 
is a PTS and the color within each cell represents the traffic regime of that PTS. The top row represents 
the frequencies of corresponding patterns. 

The PTS pattern HHHHHH repeats the most - eight times – which means that even the traffic is stable 
under regime H, the crash risk is still high. There are 64 crashes (i.e. 53.3%) for which the traffic comes 
only to regimes G and H such as the pattern 23, 25, 27-29, 36-38, 41, 46, 47, 56, 57, 58-64, and 66-72. 

PTS patterns are also observed within NTS data. Figure 6-20 presents the repetition frequencies of PTS 
patterns and the pre-crash rate which is the ratio between the frequencies of PTS patterns in pre-crash data 
and PTS pattern in NTS data. The pattern indices in Figure 6-20 are the same to pattern indices in Figure 
6-19. The PTS patterns BBBBBB and CCCCCC are the most popular in NTS data. After that, the 
frequencies of PTS patterns GBBBBB and HHHHHH are also high. It means that the chance for the 
traffic to end up with a crash after these patterns is not high. 

There are patterns that can lead to higher pre-crash rate such as HGBCHH (one of four cases ended up 
with a crash), HHHBHB (two of ten cases ended up with a crash), CGHCHC (one of seven cases ended 
up with a crash), and GDDGHB (one of eight cases ended up with a crash). 
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Figure 6‐19: PTS Pattern repetitions 

 

 

Figure 6‐20: PTS patterns observed in NTS data 
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6.5. Summary	

This chapter presents the decisions to sample NTS that are relevant to PTS and then concentrates on 
uncovering the characteristics of eight traffic regimes. The fundamental Speed/Flow diagrams on two 
lanes cannot properly characterize each of traffic regimes as only four variables can be presented and 
different regimes overlap in the diagrams. 

Three groups of traffic regimes are observed: group of low traffic, group of medium traffic and group of 
high traffic. The typical one-weekday traffic evolution starts from midnight with the first group, then 
changes to the second group at around 5:00 to 6:00 AM before reaching the third group and remain in the 
third group during day time. The traffic in the evening changes to the second group and then the first 
group until midnight. Weekend traffic evolution is slightly different with the traffic coming at the third 
groups at some time near noon. 

Within the first group, traffic under regime E is denser than under regimes A and F. Regime F represents 
special traffic conditions when there is only traffic on one lane. 

Regimes C and D are classified into the second group and are similar in traffic characteristics. The only 
difference between C and D is that regime C occurs under rainy conditions whereas regime D occurs 
under normal weather conditions. 

In the third group, regime H represents high flow or congested traffic conditions whereas regimes B and 
G represents traffic conditions leading to and following regime H, respectively. There is high fluctuation 
between regimes H and G and between regimes G and B. 

Regarding to PTS evolution, it is observed that before almost of crashes, the traffic falls into regime H at 
least once (Regime H represents high flow or congested conditions).  

In the next chapter, the development of risk identification models under regimes B, C, G, and H will be 
presented. No model is developed under regimes A, D, E, and F and whenever, a new traffic situation is 
classified into one of these regimes, it will be automatically declared as NTS. 
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Chapter	7	Real‐time	Risk	Identification		

This chapter dedicates to the identification of real-time traffic crash risks. The issues addressed here 
include selecting the most appropriate method for developing models capable of identifying traffic risk, 
improving the performance of developed models, interpreting results. 

7.1. Overview	

Relating to RIM development, Table 7-1 summarizes the results obtained from previous chapters. 

Table 7‐1: Results from previous chapters 

Index Parameter Value 
1 Number of Traffic Regimes considered 8, namely from A to H. 
2 Traffic regimes with high Risk Chance B, C, G, and H. 
3 Number of variables used 22 (see Table 5-1 in Chapter 5)

According Figure 3-1, after defining NTS and PTS and sampling NTS to obtain Traffic regimes, RIM can 
be developed under each traffic regime. As presented in 3.4.2, the technique employed for RIM 
development should be a supervised learning technique. This is because the classes of outputs are known: 
NTS and PTS. Besides, the selected supervised learning method needs to match the following criteria: 

1) Accept categorical variables such as time of the day and day of the week in inputs. 
2) Should be resistant to the imbalance between NTS and PTS. 
3) Should facilitate the interpretation of results 

In Chapter 6, NTS and PTS are matched under Traffic Regimes such that NTS and PTS under each 
regime are the most comparable to each other. As Risk Chance under regimes A, D, E, and F is zero or 
almost zero, there is no need to develop RIM under such regimes. Under each of four regimes B, C, G, 
and H, a RIM is developing to differentiate between NTS and PTS. Given a new traffic situation, the role 
of RIM is to classify that traffic situation into one of two classes: NTS or PTS. It means that the traffic 
situation must have occurred for RIM to make the classification. It also means that RIM do not make any 
prediction yet just identify what has happened. 

Based RIM, real-time prediction model is also established to provide short-term prediction 

In the next sections, the selection of a supervised learning method is presented with respect to three 
criteria 1), 2), and 3) above. Thereafter, results of the application of the selected method are discussed. 
The result interpretation is also discussed with regard to the causality of crashes. Consequently, short-
term crash risk prediction is discussed with applicability of the developed framework in reality.  
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7.2. Supervised	Learning	Method	

7.2.1. Overview	

Many methods can do supervised learning, especially when the outputs are binary such as NTS and PTS. 
The discussion in this section will focus on addressing the following questions: 

1) As there are two approaches of supervised learning methods, i.e. regression and classification, 
which approach is more appropriate for the current study? 

2) Among the methods of the selected approach (that can be regression or classification), how to the 
most appropriate method?  

The answer to these questions can be found based on the criteria 1), 2), and 3) in section 7.1 and by 
testing different methods. 

7.2.1.1. Data	Settings	

To make the results comparable, a single data set is used. Here, data under traffic regime H is used 
because PTS population and Risk Chance under regime H are higher than under any other regime. Risk 
Chance under regime H is 0.0043 and IMRO is 98’883:420≈235:1.  

Let X be the matrix of TS (including NTS and PTS) whose rows are TS or observations and columns are 
variables. The number of variables M is 22 (M=22) according to Table 5-1. Therefore, X=[X1 X2 X3 … X22] 
where Xj (1≤j≤M) represents j-th column of matrix X. The number of observations P is 
98’883+420=99’303 (P=99’303). Therefore, X=[x1; x2; …; xP] where xi represents the i-th row of matrix 
X and xi = [xi1 xi2 … xiM] where xij (1≤j≤M) represents j-th element of row vector xi. Similarly, column 
vector Y=[y1; y2; …; yP] where yi represents the i-th response of the original function f for the i-th 
observation xi: yi= f(xi). A function g is an estimated version of function f. The outputs Y’=g(X) are the 
estimations of Y given by g. It is function g that we attempts to obtain and g should be as close to f as 
possible. 

7.2.1.2. Supervised	Learning	Candidates	

Among three criteria 1), 2), and 3) in section 7.1, the first and the third criteria can be used to limit the 
number of candidates. The candidates in the short list include Logistic Regression – LR (Pampel, 2000), 
Classification and Regression Trees – CART (Breiman et al., 1984), and Random Forests – RF (Breiman, 
2001). 

Logistic Regression (Pampel, 2000) is used for prediction of the probability of occurrence of an event by 
fitting data to a logit function. Logistic Regression is a generalized linear model used for binomial 
regression with the use of several predictor variables that may be either numerical or categorical. 
Interpreting results of logistic regression is facilitated thanks to its regression coefficients. 

CART (Breiman et al., 1984) is a non-parametric learning technique, using the methodology of tree 
building by recursively partitioning data in two smaller data set. CART classifies objects or predicts 
outcomes by selecting from a large number of variables the most important one in determining the 
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outcome variable. Variables of inputs can be either numerical or categorical. Result interpretation is 
supported by the importance of variable on the built tree, which is estimated by the weighted impurity 
reduction obtained from all the nodes of the tree where that variable is decisive. Further explanation about 
CART can be found in section Appendix C. 

Random Forest (Breiman, 2001) is an ensemble learning method that generates many classification and 
regression trees, trains the trees and aggregates their results. As RF is built based on trees, categorical or 
numerical variables are accepted. RF also offers the estimation on the important of variables used, which 
would facilitate the results interpretation. 

Several other popular methods such as Neural Networks, Support Vector Machines, etc. are not in the 
short list because they are based on numerical calculations and interpreting their results is not an easy 
task. 

With three selected methods (LT, CART, and RF) that can support categorical variables and facilitate 
result interpretation, the next task is to determine the one performing the best with data in the current 
study. The remaining of section 7.2 will discuss about that. 

7.2.2. Classification	Approach	

7.2.2.1. Problem	Statement	

Given X and Y, where Y contains labels NTS and PTS corresponding to xi. Find function g that estimates 
function f: f(X) =Y. This is a classification problem as the response Y is categorical. 

Rows in X and Y are randomly divided into two sets: training set and test set. The training set called 
TrainingSet contains indices of rows in X and Y used for training purpose. The test set called TestSet 
contained indices of rows in X and Y used for testing purpose. Here, 70% of rows (i.e. 69’438 rows 
including 69’218 NTS and 220 PTS) in X are used for training, 30% of data (i.e. 29’760 rows including 
29’665 NTS and 95 PTS) in X are used for testing. 

7.2.2.2. Result	Comparison	

Here, LR, CART, and RF are used as classification methods whose outputs are two classes NTS and PTS. 
Logistic Regression – LR is used as a classification method by maintaining an output threshold of 0.5. 
TrainingSet is used to develop the models. Once the models are developed, TestSet is input to test the 
prediction capacity of each model. Results of each model are summarized in Table 7-2.  

The performance of each model related to each data set is given in detail in percentages of NTS and PTS 
correctly classified. This is important as NTS and PTS populations are imbalanced. If the performance of 
models with NTS and PTS is represented by the percentage of both NTS and PTS correctly classified, the 
performance on the minor class (i.e. PTS class) might be neglected. The performance of RF with NTS and 
PTS in TestSet is one example: percentage of PTS correctly classified is low (9.4%) yet the combined 
percentage of NTS and PTS correctly identified is 99.71% (9 PTS and 29’665 NTS correctly classified on 
the total of 29’760 data in TestSet). 
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Here, it is clear that the performance of models with PTS is really low, especially with PTS in TestSet. As 
one of the objectives in the current research is to identify traffic crash risk, such low performance of 
classification approaches related to PTS identification makes them undesirable to be selected. 

Table 7‐2: Performance (percentage of NTS or PTS correctly classified) of RL classification approach 

Method 
TrainingSet  TestSet  

NTS PTS NTS PTS 
LR 100.00 0.50 100.00 0.00 

CART 99.97 68.64 99.71 10.53 
RF 100.00 100.00 100.00 9.40 

 

7.2.3. Regression	Approach	

7.2.3.1. Problem	Statement	

Given X and Y, where Y contains numerical outputs yi corresponding to xi. yi represents the probability for 
the i-th observation (i.e. xi) to become pre-crash and called pre-crash probability. Pre-crash probability 
ranges from 0.000 to 1.000 with 0.000 representing pre-crash probability of an NTS and 1.000 
representing that probability of PTS. There are traffic situations having pre-crash probability between 
0.000 and 1.000. The traffic situations need to be classified as PTS or NTS. Therefore, a pre-crash 
threshold is defined to be a pre-crash probability value between 0.000 and 1.000 such that: 

 A traffic situation having pre-crash probability greater than or equal to the pre-crash threshold 
will be classified as PTS. 

 A traffic situation having pre-crash probability smaller than the pre-crash threshold will be 
classified as NTS. 

Thereby, the problem in this case includes two tasks: 

1) Developing a model g that estimates function f: f(X) =Y. This is a regression problem as the 
response Y is numerical. 

2) Defining the pre-crash threshold for classifying a TS into NTS or PTS. 

To solve the tasks, rows in X and Y are randomly divided into three sets: training, calibration and 
validation set. The training set called TrainingSet contains indices of rows in X and Y used for training 
purpose. The calibration set called CalirationSet contains indices of rows in X and Y used for calibrating 
pre-crash threshold. The valitation set called ValidationSet contained indices of rows in X and Y used for 
testing purpose. Here, the ratio between TrainingSet, CalirationSet, and ValidationSet is 6:2:2. 

 



 

7-103 

   

7.2.3.2. Mean	Squared	Errors	

The performance of regression techniques are estimated by the mean squared errors of NTS and PTS in 
TrainingSet and CalirationSet.  TrainingSet and CalirationSet are each divided into two parts for NTS 
and for PTS resulting four data sets: TrainingSetPTS, TrainingSetNTS, CalirationSetPTS, and 
CalirationSetNTS. The performance of the function g is summarized in four error terms: TrPE, TrNE, 
TePE, and TeNE corresponding to errors of g with four data sets TrainingSetPTS, TrainingSetNTS, 
CalirationSetPTS, and CalirationSetNTS, respectively. The four error terms are calculated according to 
Equation 9(a), (b), (c), and (d). 

Equation 9: Four error terms 

(a) TrPE ൌ
ଵ
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∑ ൫y୧ െ yᇱ୧൯

ଶ
୧∈୘୰ୟ୧୬୧୬୥ୗୣ୲୔୘ୗ  

(b) TrNE ൌ
ଵ
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ଶ
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(c) TePE ൌ
ଵ
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(d) TeNE ൌ
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Table 7-3 presents the four error terms given by three regression techniques. It can be seen that the 
imbalance of NTS and PTS data sets influences much to the differences between mean squared errors of 
NTS and PTS observations estimated by three regressions: the mean squared errors for PTS are much 
higher than for NTS in both TrainingSetPTS and CalirationSet. It means that the imbalance in data lowers 
the pre-crash probability for all TS, either NTS or PTS. Among three regression techniques, LR is 
influenced the most by the imbalance of data sets with highest mean squared errors for PTS. On the 
contrary, RF is also influenced by the imbalance of data but with lower mean squared errors for PTS.  

Table 7‐3: Mean squared errors of regression approaches 

Regression technique TrPE TrNE TePE TeNE 
LR 0.944 0.65x10‐4 0.954 0.76 x10‐4 

CART 0.334 5.63 x10‐4 0.863 13.22 x10‐4 

RF 0.104 0.21 x10‐4 0.848 1.78 x10‐4 

7.2.3.3. Pre‐crash	Threshold		

The mean squared errors are highly influenced by the imbalance of data sets. The traditional probability 
of 0.5 corresponding to the squared error presented in Table 7-3 which works well with balanced data sets 
is not applicable for the developed models. For this reason, the pre-crash thresholds need to be tuned for 
the models to gain higher accuracy. 

Once the pre-crash threshold for each model is set, any traffic situation having probability returned from 
the model greater than or equal to the pre-crash threshold is classified as pre-crash; otherwise the traffic 
situation is classified as non-crash. 

In present chapter, the pre-crash threshold for a model is set in two steps: 
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 Develop the model with TrainingSet  
 Test the developed model with CalirationSet. The threshold is set using CalirationSet based on 

some criteria (presented below). Note that in this chapter, there is no third data set to validate the 
prediction performance of the model together with the pre-crash threshold. 

The pre-crash threshold to be set should satisfy the following criteria: 

1) Percentage of PTS in CalirationSet correctly classified should be at least 70%. This is to 
guarantee that the model can detect the risk as one of the objectives of the current study. 

2) Percentage of NTS in CalirationSet correctly classified should be at least 70%. This is to 
guarantee that the model is not trivial. There are cases where the criterion 1) is achieved yet in 
return the percentage of NTS correctly identified is low. Criterion 2) is to avoid these cases. 

3) Among all the thresholds satisfying criteria 1) and 2), choose the threshold that gives maximum 
sum of percentages of NTS and PTS correctly classified. 

Figure 7-1 illustrates how to determine the threshold. Horizontal axis represents all potential pre-crash 
thresholds which are zoomed in the interval from 0.00 to 0.20 as the model has low performance with 
thresholds than 0.20. Vertical axis represents percentages of NTS and PTS from TrainingSet and 
CalirationSet correctly classified and the sum of percentages of PTS and NTS from CalirationSet. Two 
curves representing percentages of PTS and NTS in TrainingSet are drawn in grey. Two curves 
representing percentages of PTS and NTS in TrainingSet are drawn in black. All the curves representing 
percentages do not lie above the horizontal line of 100%. The curve lie beyond the line of 100% 
represents the sum of percentages of NTS and PTS in CalirationSet. Applying criteria 1) and 2), the 
threshold interval is determined to be from 0.014 to 0.065. Among pre-crash threshold in that interval, the 
threshold of 0.038 is found to give maximum sum of percentages of NTS and PTS in CalirationSet 
(163.4). Therefore, the pre-crash threshold is set to be 0.038. 

  

Figure 7‐1: Pre‐crash threshold determination using RF regression 
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With the pre-crash threshold of 0.038: 

 percentage of PTS in TrainingSet correctly classified is 100% 
 percentage of NTS in TrainingSet correctly classified is 90.19% 
 percentage of PTS in CalirationSet correctly classified is 82.11% 
 percentage of NTS in CalirationSet correctly classified is 81.30% 

7.2.3.4. Classification	Performance	

Table 7-4 summarizes the pre-crash thresholds and the performance of three regression techniques: LR; 
CART; and RF. It is unable to set a threshold for CART as the criterion 1) is not satisfied. CART 
classifies all TS in TrainingSet correctly and classifies NTS in CalirationSet with high accuracy. 
However, CART cannot classify correctly more than 20% of PTS in CalirationSet. Therefore, according 
to criterion 1), no pre-crash threshold is set for CART. 

LR has good performance and a pre-crash threshold can be set. However, RF outperforms LR for TS in 
TrainingSet and for PTS in CalirationSet. For ValidationSet representing new traffic situations as this 
data set is not used to train models or to define thresholds, RF creates the clear difference with LR in term 
of both percentages of NTS and PTS correct identified. 

Table 7‐4: Pre‐crash thresholds and performance (%) of regression techniques 

Technique 
Pre-crash 
Threshold 

TrainingSet CalirationSet ValidationSet 
PTS  NTS  PTS  NTS  PTS  NTS  

LR 0.007 68.18 85.68 72.63 85.31 55.43 67.31
CART - - - - - - -

RF 0.006 100.00 93.59 85.44 76.09 70.35 75.31

Therefore, RF is selected as supervised learning method that will be used for developing risk 
identification models in the current research. 

7.2.4. Summary	

Section 7.2 is dedicated to the choice of a supervised machine learning method which is the most 
appropriate to the current study. Finally, Random Forests Regression method is selected because it can: 

 Work with both categorical and numerical variables. 
 Facilitate result interpretation with its internal evaluation of importance of variables while 

developing models (See Appendix C). 
 Prove its better performance with the data in the current study in comparison with the 

performance of other techniques (See section 7.2.3.4). 
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7.3. TR‐based	Risk	Identification	Models	

7.3.1. Overview	

In this section, RIM are first developed using all 22 variables to attain certain accuracy. Thereafter, the 
developed models are refined to reduce the number of variables making the models more compact while 
maintaining the accuracy. 

7.3.2. Random	Forests	

Random Forest (Breiman, 2001) is an ensemble learning method that generates many classification and 
regression trees (CART), trains the trees and aggregates their results. Successive trees do not depend on 
earlier trees - each is independently constructed using a bootstrap sample of the data set. Here, the 
summary of Random Forests is presented. More detailed explanation can be found in Appendix C. 

According to Breiman, (2001), the motivation for inventing RF is that CART is unstable together with its 
moderate accuracy. Maximum trees usually work well with training data but have low performance with 
test data. Tree pruning can improve CART performance with test data and result in trees with relatively 
higher accuracy. However, CART is unstable as even a small change in training data could also lead to 
totally different trees which make tree interpretation become problematic. Therefore, the main idea of RF 
is to create many maximum trees such that there is no correlation between any pair of trees and then 
aggregate trees’ results. With regards to the current research, Random Forests can do the following: 

 Provide classification and regression of traffic situations with high accuracy 
 Provide the estimation of variable importance for the variables used to define traffic situations. 

More details on Random Forest are presented in Appendix C. 

7.3.3. RIM	Performance	

Applying Random Forests Regression to train TR-based RIM as presented in section 7.2.3, four models 
are obtained corresponding to four highly risky traffic regimes B, C, G, and H. Under each regime, the 
developed RIM is used to test six data sets: NTS and PTS for training, calibration, and validation, the 
results are summarized in Table 7-5. The results for all four regimes are calculated based on data sets 
clustered and classified into four regimes B, C, G, and H. 

Table 7‐5: Summary of RIM’s results 

Traffic 
Regime 

Likelihood 
Threshold 

Training (%) Calibration (%) Validation (%) 
NTS PTS NTS PTS NTS PTS 

B 0.0045 98.94 100 97.64 80.00 88.77 83.33 
C 0.0002 95.64 100 92.01 100.00 78.91 90.00 
G 0.0003 93.37 100 89.76 91.89 85.45 87.80 
H 0.0060 93.59 100 85.44 76.09 70.35 75.31 

All four regimes 95.67 100.00 91.93 84.77 82.83 83.62 
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Identifying PTS under regime H is more challenging as the percentage of PTS (for validation) correctly 
identified is the lowest, i.e. 75.31%. Especially, this percentage is achieved only when the percentage of 
NTS correctly identified is at lowest level – 70.35%, at the limit for a trivial model according to criterion 
2) of pre-crash threshold. It means that about 25% out of PTS under regime H cannot be correctly 
identified and about 30% of NTS are wrongly considered as PTS. 

Under the other regimes B, C, and G, percentages of NTS and PTS (for validation) correctly identified are 
much higher than under regime H. However, the percentages of wrongly identified cases are still high. 

Totally, more than 80% out of NTS and PTS under four traffic regimes B, C, G, and H are correctly 
identified. For PTS, 83.62% is the percentage of all PTS correctly identified. For NTS, 82.83% is just the 
percentage of NTS correctly identified under four regimes B, C, G, and H. This is because any traffic 
situation falling into regimes A, D, E, and F is automatically identified as NTS. Therefore, in the whole 
NTS population, the percentage of NTS correctly identified is much higher (about 91%), i.e. there are 
about 10% of NTS wrongly identified as PTS. 

In reality, if an alarm is raised each time a traffic situation is identified as PTS, there will be the wrong 
alarms at 10% of the times – which is a huge amount. Together with high percentage of PTS incorrect 
identified as NTS, this is the biggest issue for the developed model to be applied in reality. 

However, traffic situations are considered so far just like independent observations. Fortunately, as 
presented in section 6.4.3, PTS seem to move together according to certain patterns. Therefore, analyzing 
the patterns of PTS correctly identified would be the path to increase the performance of the overall 
model. 

7.3.4. RIM	Refinement	

The objective of RIM refinement is to make the developed models more compact by reducing the number 
of variable used while simultaneously maintaining the accuracy of the models at similar level as presented 
in Table 7-5. The refinement is undertaken independently under each regime. 

In Random Forests Regression, one of outputs is the internal estimation of importance of the variables 
used in developing the models (See Appendix C). Figure 7-2 presents the normalized importance of the 
variables. The normalization is applied to each regime and is simply the division of the original variable 
importance to the maximum variable importance under the regime. The normalization aims to project all 
positive importance of variables into the same scale of 0.0 to 1.0. 
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Figure 7‐2: Importance of variables under four regimes B, C, G, and H 

The importance of a variable is estimated based on a concept called Out-Of-Bag (OOB) error: a variable 
is more important if it provokes higher OOB error and vice versa (More detail is available in section 
8.5.3.b).  Therefore, based on variable importance, the following decisions are taken to refine the models: 

 Variable X22(Prec) under regime G should be removed as its importance is negative which 
means that the presence of X22 values increases the OOB error, i.e. the relationship between X22 
and crash occurrences is random. 

 Refine the models by iteratively removing variables having low importance (by applying 
refinement algorithm presented in Appendix C)  

Under regime B, variable X22 has zero importance and can be removed. The performance of revised 
model under regime B with 21 variables is similar to the performance of the model with 22 variables. 
Further elimination of any other variable reduces the performance of the model. 

Under regime C, the variables having lowest importance estimation are X8 (LVSpd), X1(TDay), X16 
(H%HV), X22 (Prec), X20 (HFCg), and X5 (HAHw). These variables are in turn removed from variable 
sets to develop new models (by applying refinement algorithm presented in Appendix C). However, the 
performance of obtained models is much lower than the model presented in section 7.3.2. 

Under regime G, new model with X22 excluded is developed. As expected, the new model performs 
better than the model with all 22 variables. The importance of the remaining 21 variables is also re-
estimated and presented in Figure 7-3. When more variables are excluded, the developed model performs 
worse than the model with 21 variables (only X22 is excluded). 

Regime H is similar to regime B with potentially removable variables are X22 (Prec), X2 (WDay), X5 
(LAHw), and X21 (HSCg). However, by removing one of those variables, the corresponding models have 
the reduced performance compared to the performance of the model with 22 variables. 
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Figure 7‐3: Revised importance of variables under four regimes B, C, G, and H 

Finally, the refinement by removing variables is only applied to models under regimes B and G with the 
elimination of variable X22 (the precipitation).  

The performance of refined models is summarized in Table 7-6 where the results are unchanged for RIM 
under regimes C and H and slightly changed for RIM under regimes B and G. The importance of 
variables is also re-estimated and presented in Figure 7-3. For regimes B and G, X22 is not used and 
therefore has zero importance. 

Table 7‐6: Summary of revised RIM’s results 

Traffic 
Regime 

Likelihood 
Threshold 

Training (%) Calibration (%) Validation (%) 
NTS PTS NTS PTS NTS PTS 

B 0.0045 99.35 100 98.26 80.00 91.53 83.33 
C 0.0002 95.64 100 92.01 100.00 78.91 90.00 
G 0.0002 92.70 100 88.87 94.59 84.05 87.80 
H 0.0060 93.59 100 85.44 76.09 70.35 75.31 

All four regimes 95.67 100.00 91.93 84.77 82.83  83.62 

 

7.3.5. Critical	Factors	

7.3.5.1. Overview	

Each variable plays certain role in the performance of TR-based RIM. The role of a variable in a model is 
quantified by the importance of that variable. Under each regime, several variables such as X4 and X11 
contribute more than other variables such as X1, X8, and X16 as X4 and X11 has higher importance than 
X1, X8, and X16. 
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According to section 8.5.3.b, the importance of a variable is estimated via the OOB error that the variable 
produces when its values in OOB data are permuted. That variable becomes more important if the OOB 
error caused by the permutation of its values becomes high. Variables such as X22 (Prec) under regimes 
B and G have non-positive importance and do not contribute to the classification process. 

The presence of variables in Figure 7-3 indicates that each variable is used in revised models because they 
have certain importance in improving the models’ performance. However, the performance of the models 
depends heavily on some most important variables: the performance of a model reduces dramatically if 
one of those variables is unused. Those variables are called Critical Factors – CF. 

It is worth noting that finding Critical Factors in the current study should not be confused with feature 
selection that attempts to select variables for developing models. Model refinement as presented in 
section 7.3.4 can be considered as form of feature selection. 

Critical Factors are the variables who contribute the most to the differentiation between NTS and PTS. 
Therefore, results can be interpreted based on Critical Factors to identify the main causality of crashes. 
Knowing Critical Factors would help to prevent the traffic from developing further and ending up with 
crashes. Preventive measures can also be designed aiming to change the values of Critical Factors to 
redirect the traffic in the way that conditions leading to crashes are cleared.  

Critical Factors are decided based partly on variable importance estimated by Random Forests. Each 
variable is also tested in following scenarios: 

 Scenario 1: Developing single variable models. The importance of a variable is reflected by the 
performance of the corresponding model. A variable which is more important than another 
variable is the one whose corresponding model has higher performance than the model of the 
other variable. 

 Scenario 2: The importance of a variable is reflected by the performance reduction of the model 
when that variable is removed. A variable is more important than another variable if the 
performance reduction caused by that variable is higher than the performance reduction cause by 
the other variable.  

7.3.5.2. Results	

In both scenarios 1 and 2, the performance used for comparison is the sum of percentages of NTS and 
PTS correctly identified. All the models are developed using Random Forests and by following the 
algorithm presented in Appendix C. 

A variable that is selected as a Critical Factor if it satisfies the following criteria: 

1) It is one of 5 most important factors estimated by Random Forest presented in Figure 7-3. 
2) It is one of 10 most important factors estimated according scenario 1. 
3) It is one of 10 most important factors estimated according scenario 2. 

The first criterion is the most important as the importance of variables is estimated by RIM. The other two 
criteria are used as additional justification for the variables that have satisfied the first criterion. 
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Table 7-7 presents the list of critical factors selected under each regime based on the criteria above. 
Although non-traffic factors are not useable for developing preventive measures, they are necessary for 
improving the performance of the developed models. 

Table 7‐7: List of Critical Factors under each regime 

Regime Critical Factors 
Traffic Factors Non-traffic factors 

B X3 (LFlow), X8 (LVSpd), X9 (L%HV), X11 (HASpd) X1 (TDay) 
C X4 (LASpd), X11 (HASpd), X17 (Spd#), X21 (HSCg) X2 (WDay) 
G X8 (LVSpd), X9 (L%HV), X17 (Spd#), X20 (HFCg)  
H X8 (LVSpd), X9 (L%HV), X17 (Spd#), X20 (HFCg) X1 (TDay) 

According to Table 7-7, the following points are observed: 

1) Most of Critical Factors relate to traffic status on the right lane: X3, X4, X8, X9, and X17. 
2) Many Critical Factors are different representations of speed: X4, X8, X11, X17, and X21. 
 

Regime B represents increasing traffic with X18 (LFCg) and X20 (HFCg) (i.e. the flow change compared 
to the previous traffic situation on both lanes) being positive most of the time. According to section 
6.4.2.1, the traffic from regime B usually comes to regime H (5%), regime G (29%), and for most of the 
time remains in regime B (57%). As traffic flow is increasing the average speed is decreasing, vehicles try 
to change from the slow lane to the faster lane. However, this change is not easy as the occupancy on the 
slow lane is high (about 8.0-9.0%, see X6 – LOcc Figure 6-13) due to the high percentage of heavy 
vehicles on the slow lane (the percentage of heavy vehicles on slow lane under regime B is the highest). 
Car drivers who would like to change lanes under regime B find themselves blocked on the slow lane. As 
the traffic is increasing still try to quit this situation and lose the necessary attention to front vehicles. 
Crashes might have occurred in such scenarios. By examining crashes of which corresponding PTS were 
just before the crash occurrence, the main cause mentioned in the crash records is inattention.  

Regime C represents the most fluid traffic among four traffic regimes B, C, G, and H. According to 
Figure 6-18, the traffic under regime C is stable, i.e. it remains under regime C most of the time (about 
70%). Besides, the traffic usually falls into regime C during weekend or public holidays. One of traffic-
related Critical Factors under regime C is abnormal (too high or too low) in comparison with other traffic 
regimes. Yet, one important factor found in crash records is that for crashes related to traffic regime C 
(i.e. there is at least one PTS falling into regime C), most of drivers are not professional. However, this 
predetermination needs to be examined more as there are only 9 such crash. 

Traffic-related Critical Factors under regimes G and H are the same. However, the trend of traffic under 
these two regimes is opposite: the traffic on both lanes under regime H is increasing while decreasing 
under regime G. In both cases, it means that there is a big change of traffic. In addition, traffic transitions 
between regimes G and H are very frequent (53% of the transitions from H are to G and 43% of 
transitions to H are from G). This fluctuation can be observed before many crashes (see section 6.4.2.2). 
In general, traffic flow under both regimes G and H is high and occur mostly during day time and on 
weekdays. Road users during these periods are experienced commuters who would like to avoid 
congestion and might use their experience to quit the location before congestion is formed. If many 
drivers react at the same time, traffic will become fluctuated. In this case, if drivers remain in their current 
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state (no lane changing, no overtaking, etc.), the fluctuation will be reduced and hence, the chance to 
avoid crashes will be high. 

7.4. 	Real‐Time	Motorway	Traffic	Risk	Identification	Model	(MyTRIM)	

7.4.1. Overview		

Although TR-based RIM have high performance in identifying NTS and PTS as presented in Table 7-6, 
that performance is not sufficient for a real-life application as the wrong identification rate remains high. 
As discussed in section 7.3.3, TR-based RIM just consider traffic situations as independent observations 
which might be the reason for limiting their performance. 

Therefore, the objective of this section is to improve the overall performance based on results obtained 
from TR-based RI with taking into account the fact that PTS usually come together in pattern before 
turning into crashes. As such, the evolution of six PTS before each crash (as the pre-crash zone of a crash 
include 6 PTS, see section 5.4) is examined. This is done in model called Real-Time Motorway Traffic 
Risk Identification Model – MyTRIM. The target of MyTRIM is, one the one hand, to identify the fact that 
crashes will occur shortly and, on the other hand, to reduce the wrong identification rate of crash 
occurrences. 

Here, we distinguish two concepts in a real-time framework: warning and alarm. A warning is raised 
when the crash risk is identified and is outputs of TR-based RIM. Warnings can be given after every time 
a traffic situation is identified as PTS. An alarm is raised when a crash is going to occur. If a warning is 
an instant signal and dependent on one traffic situation, an alarm should the results of several consecutive 
traffic situations.  

A warning can fall into one of two states: correct and false. A correct warning is raised when a PTS is 
correctly identified as PTS. A false warning is raised when an NTS is incorrectly identified as PTS. 
Besides, the term “missed warning” is also used to indicate the fact that a PTS is incorrectly identified as 
NTS (the PTS was missed). 

Similarly, an alarm can fall into one of two states: correct and false. A correct alarm is raised before a 
crash occurrence. A false alarm is raised when there is no crash occurring after that. The term “missed 
alarm” is used to indicate the fact that there is no alarm before a crash occurrence. 

In this section, the relationship between warnings and alarms is analyzed. As the percentage of false 
warnings, correct warnings and missed warnings are known (that is the percentages of NTS identified as 
PTS, of PTS correctly identified, and of PTS identified as NTS, respectively), analyses are undertaken to 
find the pattern of warnings that can trigger an alarm such that the percentage of correct alarms is 
maximized whereas the percentages of missed alarms and of false alarms are minimized. 

For 30 minutes before crashes, six TS of 5-minute intervals are classified into PTS and NTS. To identify 
crash occurrences, MyTRIM memorizes historical risk status called length of risk memory - Lrm. 
However, questions can be posed as presented in Figure 7-4.a) and Figure 7-4.b).  
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Figure 7‐4: Historical risk status 

Figure 7-4.a) presents the need to predict the status of the next traffic situations given the status of several 
last traffic situations identified by TR-based RIM. If there is a way to identify the status of the next traffic 
situation with high accuracy, counter measures can be implemented to change traffic situations with risky 
status. To verify that idea, historical crashes need to be analyzed. 

Figure 7-4.b) presents several examples where traffic risk status is identified for the first five traffic 
situations before crashes. If crash occurrences cannot be identified before the sixth traffic situation, there 
will be no time left to avoid the crashes. Moreover, Figure 7-4.b) also presents the need to determine the 
value of Lrm and the pattern of risk status that can indicate crash occurrences in the next traffic situation. 

The pattern of risk status is decided to be consecutive traffic situations identified as PTS. This decision is 
to restrain the false percentage of alarms - which is the motivation for developing MyTRIM. Depending 
on the value of Lrm, this pattern can be PTS, PTS-PTS, PTS-PTS-PTS, PTS-PTS-PTS-PTS, or PTS-PTS-
PTS-PTS-PTS which correspond to value of Lrm ranging from 1 to 5. 

7.4.2. False	Alarm	&	Missed	Alarm	

7.4.2.1. Definition	

The proportion of false alarms among all non-crash traffic conditions is called false alarm rate. As false 
alarms are wrong decision, false alarm rate should be minimized. Because false alarm is only related to 
non-crash conditions, NTS data are exclusively used to analyze the false alarm rate. 

The proportions of missed alarms and correct alarms among all crashes are called missed alarm rate and 
correct alarm rate, respectively. As missed alarms are wrong decisions, the missed alarm rate should be 
minimized. To calculate the missed alarm and true alarm rates, only PTS are used. 
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7.4.2.2. False	Alarm	

The procedure to test the false alarm rate includes: 

1) Select all non-crash data, i.e. NTS. 
2) Classify each NTS into one of Traffic Regimes.  
3) Classify each NTS into one of two classes: NTS or PTS. 
4) Check false alarm rate with different lengths of risk memory, Lrm=1, 2, 3, 4, and 5. 

In step 3), if the NTS belongs to one of regimes A, D, E, or F, it is automatically identified as NTS. If the 
NTS belongs to one of regimes B, C, G, or H, the corresponding RIM is used to classify the NTS into 
NTS or PTS. Finally, after step 3), the NTS is classified into NTS or PTS class. 

In step 4), each NTS is regarded as the current traffic situation – cTS. Lrm values are counted from cTS to 
the NTS before cTS and so on. As the NTS counted in Lrm are consecutive in term of time, any missing 
NTS among Lrm will stop processing that NTS pattern. 

Figure 7-5 presents the false alarm frequencies according to different lengths of risk memory, Lrm. If the 
alarm is raised after each warning (i.e. Lrm=1), the alarm frequency will be high, resulting high false alarm 
rate. The false alarm rate reduces quickly when the length of risk memory increases. To obtain the low 
false alarm rate, high value of Lrm is recommended. 

 

Figure 7‐5: False alarm frequencies as function of Lrm 

To prevent crash risks, the maximum length of risk memory is 5 as the risks are assumed to be present as 
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7.4.2.3. Missed	Alarm		

The procedure to test the missed alarm rate includes: 

1) Select all pre-crash data, i.e. PTS 
2) Classify each PTS into one of Traffic Regimes.  
3) Classify each PTS into one of two classes: NTS or PTS. 
4) Check missed alarm rate with different length of risk memory, Lrm=1, 2, 3, 4, and 5. 

Steps from 1) to 3) are similar to the procedure applied to test false alarm rate presented in section False 
Alarm. In step 4), a missed alarm for a crash is counted if there are not enough Lrm consecutive PTS 
identified as PTS in the period from 5 to 30 minutes before the crash. It is worth reminding that all PTS 
are extracted in pre-crash zones, i.e. 30 minutes before crashes. 

Figure 7-6 presents the PTS identification before all crashes. Each vertical line represents the risk 
evolution identified by RIM for each crash from 30 minutes before crashes to the crash occurrences. 
Black cells represent PTS incorrectly identified (i.e. identified as NTS). White cells represent PTS 
correctly identified. For example, for the first crash, all six PTS are correctly identified by RIM. For 
crashes 60 and 94, only two PTS are correctly identified whereas; 4 remaining PTS are not correctly 
identified (i.e. identified as NTS). Crash 1 is preventable using any Lrm value from 1 to 5 as it is possible 
to raise an alarm at least 5 minutes before the crash. Crash 60 is only preventable if Lrm is set to 1 so that 
preventive measures are implemented at 25 minutes before the crash. If Lrm is greater than 1, there are not 
enough Lrm consecutive PTS correctly identified and crash 60 becomes unpreventable. Similarly, crash 94 
is preventable at 15 minutes before the crash only with Lrm =1 and is unpreventable with Lrm >1. 

 

Figure 7‐6: Evolution of risk identified before crashes 
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Figure 7-7 summarizes the frequencies of missed alarm according to five different Lrm values (from 1 to 
5). The missed alarm frequency increases quickly as Lrm increases. Therefore, to minimize that missed 
alarm rate, it is necessary to maintain shorter length of risk memory. 

 

Figure 7‐7: Missed alarm frequencies as function of Lrm 

7.4.2.4. False–	Missed	Tradeoff	

The results obtained from sections 7.4.2.2 and 7.4.2.3 are in contrast: to reduce false alarm rate, 
increasing the length of risk memory is needed whereas to reduce the missed alarm rate, reducing the 
length of risk memory is necessary. Therefore, there is no length of risk memory that minimizes both 
missed and false alarm rates. 

Figure 7-8 presents the missed and false alarm rates as functions of the length of risk memory. Due to the 
low number of crashes, the missed alarm rate increases quickly. On the contrary, high number of non-
crash cases results in high number of false alarms although the false alarm rate is low. The choice of the 
length of risk memory can be decided by traffic operators. The cost for making all crashes preventable, 
i.e. Lrm=1, is the false alarm rate at 3.7%. This means that there is about 53 minutes per day in average 
that the traffic is put in alarm state. If the false alarm rate is minimized, i.e. only about 0.2% or 2.88 
minutes per day with Lrm=5, the missed alarm rate will be high at 35%. The false alarm rate of 0.2% is 
also the minimum rate, which indicates that positive false alarm rate is unavoidable. 
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Figure 7‐8: False and missed alarm rates as function of Lrm 

Finding the best value of Lrm is challenging. However, depending on the priority of traffic operators, 
following scenarios might be considered. 

 Scenario 1: If the crash rate of the considered road section (this is a supposed location, not the 
case of the study site of the current research) is very high, traffic operators might want to do a 
campaign to make drivers pay more attention to the danger of the location. Then, Lrm=1 is 
recommended. Human lives are the most important. With this value, the chance to prevent all 
rear-end and sideswipe crashes is high, i.e. the chance to save human lives is high. Although the 
false alarm rate is high, this might be a good way to draw the attention of drivers. 

 Scenario 2: In general, high false alarm rate is undesirable. In the end, it is the false alarms that 
disturb drivers and traffic operators. If MyTRIM is applied in real life, current traffic conditions 
will be compared to traffic conditions before the application of MyTRIM in term of the 
disturbance it causes and the utility it brings. Therefore, Lrm=5 would make the influence of 
MyTRIM in term of disturbance more transparent whereas the chance to save human lives 
remains high (about 65% of crashes). In fact, Lrm=5 is the best choice because crashes are rare 
events. High false alarm rate would gradually make drivers ignore the presence of alarms while 
for a long time, crashes do not occur. 

Other lengths of risk memory, i.e. Lrm=2, 3, or 4, can also be used. However, these values are more 
suitable for scenario 1. This is because false alarm rates corresponding to these values are high. 

7.4.3. Applicability	

In a real-time framework, traffic data are constantly collected and processed to generate traffic situations 
for the last aggregation interval, called the current traffic situation or cTS. Thereafter, cTS is classified 
into class of NTS or NTS.  

If MyTRIM is used by traffic operators, what is the information to be sent to traffic operators? 
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There can be two cases discussed in sub-sections below. 

7.4.3.1. 	Binary	Outputs	

If traffic operators are only interested in whether there is crash occurrence during the next traffic 
situations or not, the outputs of MyTRIM can be binary with two values corresponding to answers “yes” 
and “no” from MyTRIM to the operators.  

In this case, the value of Lrm needs to be defined in advance. 

Figure 7-9 presents an example of binary outputs returned by MyTRIM to traffic operators. At current 
moment (Now), traffic operators receive signal from MyTRIM saying that there will be a crash 
occurrence during the next traffic situation.  

 

Figure 7‐9: An example series of binary outputs returned by MyTRIM 

Binary outputs are more suitable for cases where Lrm value is low, i.e. Lrm =1, 2, or 3 and traffic operators 
wait to activate preventive measures. 

7.4.3.2. Multiple	Level	Outputs	

If false alarm rate is more sensitive to traffic operators, the five outputs of MyTRIM corresponding to five 
Lrm values with respect to cTS can be combined and provided to traffic operators. Five outputs can be 
combined because the output value “yes” of higher Lrm also implies the output value “yes” of lower Lrm. 
Therefore, the combined output is the output “yes” of the highest Lrm. 

Figure 7-10 presents four examples of multi-level outputs. In Case 1, no risk is identified at the 
beginning. At the second period, risk is identified, the output of MyTRIM is “yes” with Lrm=1, “no” with 
other Lrm values, the combined output is “yes” at level 1. At the third period, risk is identified; the output 
of MyTRIM is “yes” with Lrm=1 and 2 and “no” with other Lrm values, the combined output is “yes” at 
level 2 and so on. At the sixth period, risk is identified; the output of MyTRIM is “yes” with Lrm=1, 2, 3, 
4, and 5, the combined output is “yes” at level 5. 
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Figure 7‐10: Examples of multi‐level outputs 

Similarly in Case 2, the risk develops from the second to the fourth period up to level 3. Thereafter, the 
risk disappears and the combine output become “no”. 

Case 3 can never occur as the risk jumps from “no” to “yes” at level 4. Case 4 can never occur either as 
the risk jumps from “yes” level 1 to “yes” level 4. 

7.5. Summary	

This chapter discusses about the development of Traffic Regime – based Risk Identification Models – 
TR-based RIM under highly risky traffic regimes and Motorway Traffic Risk Identification Model - 
MyTRIM. The obtained RIM allow identifying high percentages of NTS and PTS in validation data sets 
which indicates the high accuracy of the models in identifying new traffic situations into one of two 
classes: NTS and PTS. RIM are also refined such that variables having no impact on models’ 
performance can be eliminated.  

The developed RIM also identify variable importance. The most important variables are detected and 
called Critical Factors. The importance of variables is estimated by several approaches to find the correct 
Critical Factors. Critical Factors are useful in understanding causality of crashes and provide preliminary 
idea on developing preventive measures. 

Also the performance of RIM is high, the overall false warning rate remain very high. This is why 
MyTRIM is developed. MyTRIM functions based on a parameter called length of risk memory - Lrm 
whose value ranges from 1 to 5. Lrm=5 is the most desirable as the false alarm rate is at acceptable level 
whereas the correct alarm rate remains high. 

The applicability of MyTRIM is also discussed with respect to the form of MyTRIM’s outputs which can 
be binary or multi-level. While binary output is more appropriate in term of crash prevention, multi-level 
output might be better for traffic operators who would like to observe the evolution of traffic risk in real-
time. 
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Chapter	8	Conclusions	

8.1. Summary	

The current research investigates the motorway traffic crash risk identification by elaborating a 
methodology aimed at developing models capable of identifying real-time, called Motorway Traffic Risk 
Identification Models - MyTRIM. With a selected study site, the proposed methodology is implemented to 
exploit individual vehicle traffic data combined with meteorological as well as crash data, aiming to 
differentiate traffic conditions leading to crashes from other traffic-related conditions. 

The imbalance between pre-crash and non-crash cases is one of the problems addressed in the current 
research (according to the rarity of crashes on motorways). A methodology for sampling non-crash data 
relevant to pre-crash data is proposed in the current research, and aims at avoiding an arbitrary selection 
of non-crash data (in comparison with pre-crash data). Results of data sampling process are clusters called 
Traffic Regimes. 

Different classification and regression approaches were tested in order to choose the most suitable one - 
Random Forests Regression - that is capable of handling the data imbalance problem and have good 
performance with data in the current research. Under each Traffic Regime, a TR-based Risk Identification 
Model is developed to differentiate between NTS and PTS. Critical factors are also identified, which is 
useful in understanding causality of crashes and provides preliminary idea on developing preventive 
measures 

Also the performance of RIM is high, the overall false warning rate remain very high. This is why 
MyTRIM is developed. MyTRIM functions based on a parameter called length of risk memory - Lrm 
whose value ranges from 1 to 5. Lrm=5 is the most desirable as the false alarm rate is at acceptable level 
whereas the correct alarm rate remains high. 

The applicability of MyTRIM is also discussed with respect to the form of MyTRIM’s outputs which can 
be binary or multi-level. While binary output is more appropriate in term of crash prevention, multi-level 
output might be better for traffic operators who would like to observe the evolution of traffic risk in real-
time. 

In the next section, the contributions of the current research are presented. Thereafter, the applicability of 
the obtained results is discussed in section 8.3. Section 0 examines the potential improvements in terms of 
performance of MyTRIM. Subsequently, possible future research directions are discussed in section 0. 

8.2. Research	Contributions	

Here, the main contributions of the current investigation are discussed in details. 

8.2.1. New	Methodology	for	Modeling	Risk	Identification		

Table 8-1 summarizes the differences in the methodology and compares them to the methodologies 
proposed in previous studies in term of raw data and variable use. 
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Table 8‐1: Difference between risk identification modeling methodologies  

Studies Traffic variables from raw data 
Agg. 
Interval 

Single 
station? 

Oh et al, 2001 Lane-based volume, occupancy, and average speed 10 sec Yes 
Golob et al., 2008 Lane-based volume and occupancy 30 sec No 
Lee et al., 2003 Lane-based volume, occupancy, and average speed 20 sec No 
Abdel-Aty et al., 
2005 

Lane-based volume, occupancy, and average speed 30 sec No 

Hourdakis et al., 
2006 

Individual vehicle data - No 

Hossain et al., 
2010 

Station-based volume and average speed 5 min No 

Current research Individual vehicle data - Yes 

 

Most of the studies presented in the literature consider multiple traffic detector stations as a way to create 
new variables. The common trend of those studies, especially in studies by Hossain et al. and Abdel-Aty 
et al., is to perform tests using a different number of detector stations upstream and downstream crash 
locations. The only single station-based study was developed by Oh et al. However, none of these studies 
discusses potential variables that can be created by means of analysis. As a consequence, an important 
variable, the speed difference between lanes (identified in the current research as one of main factors 
contributing the high crash risk), was therefore ignored.  

Besides, individual vehicle data is used by Hourdakis et al., 2006 and by the current research. However, 
Hourdakis et al., 2006 developed their model based on multiple traffic detectors. 

8.2.2. Methodology	for	sampling	non‐crash	traffic	data	

The work presented in this section is motivated by the rarity of motorway crashes, leading to the low 
performance of machine learning techniques, as illustrated in section 3.3.1. Four methodologies for 
sampling non-crash data are testedas follows: 

i) S1 by Oh et al, 2001: non-cash cases at 30 min before and pre-crash cases right before crashes, 

ii) S2 by Abdel-Aty et al, 2008: : matched case control – controlling the  time of the day and the day 
of the week as well as weather conditions, 

iii) S3 by Pande et al, 2007: random selection, and 

iv) S4: Methodology proposed in the current research. 

 

The methodology for the test includes the following steps: 

 Define pre-crash cases. Pre-crash cases are the same when the last three sampling methodologies 
(S2, S3, and S4) are applied. When applying S1, only one pre-crash case is accounted for right 
before the crash. The remaining cases are considered non-crash cases for S1, S2, and S3. 
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 Sample non-crash data. Apply non-crash data sampling methodologies. 
 Develop a risk identification model using Random Forest regression based on pre-crash data and 

on sampled non-crash data. 

As a Random Forest regression is applied, the data is divided into three sub-sets: training, calibration, and 
validation data. Table 8-2 presents the results of the developed models using four non-crash data sampling 
methodologies (S1, S2, S3, and S4) for validation. 

The methodology S1 presents a low performance as non-crash data is simply selected by taking data at 30 
minutes before crashes. The application of S3 improves the model’s performance, yet it is still low. This 
happens because the chance for irrelevant non-crash data, selected for comparison with pre-crash data, is 
equal to the chance for relevant non-crash data. The performance improves by applying S2; meaning by 
controlling the time of the day, the day of the week, and meteorological conditions; thereby the search 
space is reduced. However, the developed model does not perform well with new traffic conditions, 
which are not accounted for by such controls. With the proposed methodology S4, new traffic conditions 
are classified into existing traffic regimes. In several regimes, new conditions can be immediately 
declared as non-crash because crashes (rear-end or sideswipe) difficultly occur under those regimes. 
Under different circumstances, new traffic conditions are tested and classified into pre-crash or non-crash. 
Therefore, the performance of models developed using the proposed non-crash data sampling 
methodology S4 is much improved. 

Table 8‐2: Performance of data sampling methodology 

Data sampling methodology NTS (%) PTS (%) 

S1 51.00 39.00 

S2 68.00 67.00 

S3 58.45 61.45 

S4 (Proposed method) 89.83 83.62 

8.2.3. Improvement	of	Risk	Assessment	Accuracy	

Risk assessment relates to the capacity of models to correctly identify pre-crash and non-crash traffic 
conditions. As the data used in other studies is not available, there is no mean to verify the accuracy of 
such models. Table 8-3 presents the summary of the best accuracy reported in those studies. 

The missed alarm and the false alarm rates presented in Table 8-3 relate to the respective percentages of 
pre-crash and non-crash cases incorrectly identified as non-crash and pre-crash cases, respectively. A 
model is more explicative if it has lower missed and false alarm rates. 

For each study, there is at least one data set that is used to develop the risk identification model, called 
training data set. Moreover, depending on the learning method (classification or regression), one or two 
other data sets can be used. The two other data sets are calibration and validation data sets.  The accuracy 
presented in Table 8-3 is applicable to validation data sets (i.e. data sets that represent new data). 
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Table 8‐3: Stated accuracy of relevant studies 

Studies 
Missed 
Alarm 
(%) 

False 
Alarm 
(%) 

Note 

Oh et al, 2001 - - 
One data set for Training, calibration, and 
validation 

Lee et al, 2003 - - 
One data set for Training, calibration, and 
validation 

Hourdakis et al, 2006 41.67 6.81 One data set for calibration and validation 

Abdel-Aty et al, 2005-2008 26.10 30.00 Two data sets for training and validation 

Pande et al, 2005-2007 26.00 34.00 Two data sets for training and validation 

Hossain et al, 2010 36.67 20.00 One data set for calibration and validation 

Proposed RIM 10.27 16.38 Three different data sets 

 

Two studies by Oh et al. 2001 and Lee et al. 2003 cannot be compared to other studies as no validation 
data sets were used. Two more studies, by Hourdakis et al. 2006 and Hossain et al. 2010, combine 
calibration and validation data sets in one single set and employ regression methods. Therefore, the 
developed models are not assessing new traffic data. Only two data sets are used in the studies of Abdel-
Aty et al. and Pande et al., as the methods used were based on classification. Therefore, among the 
previous studies, only the results by Abdel-Aty et al. and Pande et al. are validated. However, the 
accuracy reported in those studies is much lower than the accuracy obtained by applying the methodology 
proposed in the current research. 

8.2.4. Crash	Risk	Prediction	

In previous studies, traffic crash risk assessment was well studied. A further improvement was suggested 
by Abdel-Aty et al. and Pande et al. in preventing crash risks: once the risk is identified, the incoming 
traffic conditions are also at high risk and preventive measures such as variable speed limits are 
immediately activated. In this case, the activation of preventive measures is dependent on the 
performance of risk identification models, again rather low (see Table 8-3).   

In the current study, crash risk prediction is undertaken based on the test of several consecutive time 
intervals Lrm, called length of risk memory. The future crash risk is more certain if traffic conditions 
during those time intervals are identified as risky. As illustrated in Figure 7-8, false alarm and missed 
rates cannot be altogether minimized, yet an optimal value of Lrm can be selected based on the location of 
the study site. 

It is worth noting that by fixing Lrm=1, MyTRIM works exactly as the model suggested by Abdel-Aty et 
al. and Pande et al.: whenever a risk is identified, the traffic crash risk is predicted to occur during the 
next time interval. 
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8.3. Applications	

As discussed in 7.4.3, MyTRIM can be used by traffic operators. MyTRIM can provide binary or multiple 
level outputs. Besides, with the current version of MyTRIM, the following immediate applications can be 
considered in the context of the selected study site: 

1) To provide directly to drivers the real-time traffic crash risk status (warning, alarm or both) via a real-
time traffic information system, such as Variable Message Signs. This helps drivers to take the 
necessary precautions when they are within risky traffic conditions. Drivers have though no 
obligation to change their driving behavior. 

2) To be used as a tool for evaluating traffic crash risks at the same road location before and after a 
change at the corresponding road section. The change can be, for instance, the opening/closure of a 
new on-ramp upstream or of a new off-ramp downstream. It is advisable that there should not be any 
infrastructural change at the location of the traffic detectors where the data MyTRIM is applied for 
the evaluation. 

 

8.4. Potential	Improvement	

The performance of developed models in the current research is high although the model development 
process can be improved. Figure 8-1 presents the potential areas of improvement to optimize the obtained 
results. With the developed models, different design choices in methodology can be selected aiming to 
optimize performance.  

 

Figure 8‐1: Potential improvement for optimizing performance  
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Several improvements can be implemented when defining NTS and PTS. Most of traffic related variables 
characterizing traffic situations in the current research are related to speed and flow. These variable 
choices facilitate the result interpretation as the variables are fundamental. The use of other variables such 
as risk indicators (for instance, TTC, PBTR, MARS, etc.) can be tested. The duration of the aggregation 
can also be optimized. Here, 5-minute intervals are used. However, this duration can be optimized with 
respect to the prediction performance of MyTRIM. 

Similarly, in sampling non-crash cases and in developing risk identification models, the choices of 
normalization, feature extraction, clustering, and supervised data mining techniques can also be 
optimized.  

8.5. Future	Research	Directions	

Starting from the current study, following research directions can be targeted: 

 Extending to a larger study site/road network 
– Use of a series of detectors 
– Use of floating car data. 

 Extending to other data types such as Vehicle-To-Vehicle - V2V data/Vehicle-To-Infrastructure - 
V2I data 

 Developing algorithms to manage motorways with objective based on Risk Indicators	

8.5.1. Extensions	to	Larger	Study	Sites		

So far, MyTRIM is developed for Swiss 2x2 motorways (i.e. motorways with two lanes per direction on 
the Swiss motorway network). The methodology for developing MyTRIM is flexible and can be applied 
to different study sites with similar road designs. 

Depending on the availability of traffic detectors installed at the study sites and the number of lanes per 
direction, more variables can be added as inputs to develop the model. If there are many traffic detectors 
and the spacing between the detectors is low enough, variables representing traffic variation between 
neighbor detector stations (VT4 variables, see section 2.4.2) can be used. 

Environmental factors (if available) can also be used as inputs for the model. Potential meteorological 
variables include:visibility, temperature, wind direction and speed, etc. 

To this extent, data from floating cars can be used to characterize traffic situations. Using this type of data 
would produce another type of variables (other than VT1, VT2, VT3, and VT4) that is not based on traffic 
detectors. 

8.5.2. Extensions	to	Other	Traffic	Data	Types	

Other traffic data types such as V2V or V2I are other alternatives providing traffic characteristics. The 
developed models are based on centralized traffic data collectors (i.e. traffic detectors). V2I data, with the 
infrastructure playing the role of centralized data collector, can be used to characterize the traffic at the 
infrastructure location.  
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In a V2V cooperative system the processors are every individual vehicle, there is no centralized 
processor. In this case, V2V data alone cannot provide the overview of traffic conditions of whole road 
sections. However, local traffic characteristics for each vehicle can be available. Thereby, it is possible 
that local risk identification models are developed at each vehicle. 

8.5.3. Risk‐based	Motorway	Management	Algorithm	

In the current study, VSL is the only active traffic management strategy employed as a countermeasure 
for preventing traffic crash risk when the risk is predicted to occur. The application of ramp metering, 
dynamic lane marking, managed lanes or the combination of them can potentially be used to prevent 
crash risks.  

Based on the developed models, algorithms for managing risky traffic conditions can be elaborated 
aiming to make the traffic safer. 
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Appendix	A:	List	of	Abbreviations	
 

Abbreviation Full Phrase 

AADT Annual Average Daily Traffic 

AL Average over Lanes 

CART Classification and Regression Tree 

CF Critical Factors 

cTS Last/current Traffic Situations 

DETEC Federal Department of the Environment, Transport, Energy and Communications 

DS Differentiation between Stations 

ETSC European Transport Safety Council 

EU European Union 

FEDRO Swiss Federal Roads Office 

FSO Swiss Federal Statistics Office 

IMRO IMbalance RatiO 

imp() Impurity 

IR Impurity Reduction 

km/h Kilometer per hour 
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LB Lane - Based 

LR Logistic Regression 

Lrm Length of Risk Memory 

m/s Meter per second 

MeteoSwiss Swiss Federal Office of Meteorology and Climatology 

MPL Multi-Layer Perceptron 

MyTRIM MotorwaY Traffic Risk Identification Model 

NTS Non-crash Traffic Situation 

OD Origin-Destination 

OECD Organization for European Economic Cooperation 

OOB Out-Of-Bag 

PC Principal Component 

PCA Principal Component Analysis 

PET Post-Encroachment Time 

PTS Pre-crash Traffic Situation 

RF Random Forest 

RIM Risk Identification Model 

TCT Traffic Conflict Technique 
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TET Time Exposed Time-to-collision 

TIT Time Integrated Time-to-collision 

TR Traffic Regime 

TS Traffic Situation 

TTC Time-To-Collision 

V2I vehicle to infrastructure 

V2V vehicle to vehicle 

Varim Variable important of CART 

VIM Variable IMportance 

VMS Variable Message Signs 

vph Vehicles per hour 

VSL Variable Speed Limits 

VTx Variable Type x (x=1 to 4) 

WHO World Health Organization 

WL Weak Learners 
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Figure B‐3: Ten crash types. Source: (FSO, 2005) 
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Appendix	C:	Random	Forests	

C.1.	Overview	

Random Forest – RF is the main machine learning method used in the current research. In this chapter, 
the detailed of this method is introduced.  

As RF is built based on Classification and Regression Trees - CART, it is essential that CART is also 
presented to provide step by step understandings of Random Forests. 

C.2.	Classification	and	Regression	Trees	(CART)	

1. Introduction		

CART (Breiman, Friedman, Olshen and Stone, 1984) is a non-parametric learning technique, using the 
methodology of tree building by recursively partitioning data in two smaller data set. CART classifies 
objects or predicts outcomes by selecting from a large number of variables the most important one in 
determining the outcome variable. To lower the training error presented in, CART reduces the training 
error at each partitioning step.  

CART starts with the whole training data set, divides it into two subsets according to a partitioning 
criterion. The procedure repeats for each subset until the subset is not divisible according to a certain 
stopping criterion. Recursive partitioning creates a binary tree structure. Each partitioning is undertaken at 
a node of the tree. When a subset is not divisible, the corresponding node is called a leaf of the tree. 

When a subset is divisible, it is partitioned into two smaller subsets. The partitioning is undertaken based 
on a split of a decisive variable. The decisive variable and the split are selected from candidate 
combinations of each variable and each of its potential splits. For a numerical variable, all of its values 
found in the data set under consideration are sorted. Any mean between two consecutive sorted values is a 
potential split value and the split based on that value is a potential split. Therefore, if there are h sorted 
values for variable Xj, there will be h-1 potential split values for Xj. For a categorical variable, any 
partitioning of categorical values into two disjointed subsets is a potential split. A partitioning of 
categorical values is undertaken by finding one subset of the values and then the other subset includes the 
remaining values unselected for the first subset. Therefore, if there are h categorical values, there will be 
ଵ

ଶ
∑ ∏ ሺ݄ െ ݉ሻ௟

௠ୀ଴
௛
௟ୀ଴  potential splits. 

Consider a node called NodeF where F is the data set corresponding to that node. A variable Xj is called 
decisive at a node NodeF if the split at NodeF is based on that variable. Data set F is partitioned into two 
subsets Fleft and Fright corresponding to NodeFleft and NodeFright, respectively, which are children of 
NodeF. The criteria for partitioning F into Fleft and Fright are based on a measure called impurity that 
represents the homogeneousness of classes in data set F. If there is only one class in F, the impurity of 
NodeF is zero. At NodeF, the impurity is imp(NodeF). The pratitioning at NodeF is based on the split that 
gives the maximum impurity reduction IR(NodeF) calculated according to Equation 10. 
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Equation 10: Impurity Reduction at NodeF 

IR(NodeF)=imp(NodeF)- imp(NodeFleft)- imp(NodeFright) 

2. Learning	Algorithm	

a. Impurity	Measures		

CART proposes both approaches: classification and regression depending on the outputs of the approach. 
The impurity measure also depends on the approach. 

For the classification approach, Gini index is the most widely used as impurity measure imp(NodeF) 
calculated as presented in Equation 11, where pNTS and pPTS  are proportion of NTS and PTS in F, 
respectively. imp(NodeF) is maximum if the proportions of NTS and PTS are equal. 

Equation 11: Gini index measuring impurity in classification trees 

ሻܨ݁݀݋ሺܰ݌݉݅ ൌ 1 െ ሺ݌ே்ௌ
ଶ ൅ ௉்ௌ݌

ଶ 	ሻ 

For the regression approach, the sum of squared errors in F is used to estimate the imp(NodeF).  

Equation 12: Sum of squared errors as impurity measure in regression trees 

ሻܨ݁݀݋ሺܰ݌݉݅ ൌ෍ሺݕ௜ െ ܿிሻଶ	݁ݎ݄݁ݓ	ܿி ൌ෍ݕ௜
௜∈ி௜∈ி

 

b. CART	Growing	Algorithm	

Figure C-1 presents the algorithm for training CART. Let I is the set of data set. The algorithm starts with 
the data set containing all training data called TSSet and I={TSSet}. Thereafter, the algorithm comes to a 
loop to process all the data sets available in I. 

For any data set F available in I, F is picked up from I (i.e. F is removed from I). For each variable Xj, 
find all possible splits and find the split IRj that gives maximum reduction of impurity. For all variables, 
find IRmax which is the maximum reduction of impurity among all IRj. Thereafter, F is partitioned based 
on the split giving IRmax into Fleft and Fright.  

Relating to the stop criteria, Fleft and Fright are considered to be whether divisible. If Fleft (or Fright) is 
divisible, it is put in I (i.e. I=I U { Fleft (or Fright)}. If Fleft (or Fright) is not divisible, the node corresponding 
to Fleft (or Fright) become a leaf of the tree. 

There are many criteria to consider whether F is divisible. One of the criteria is to check whether there is 
one class or one observation in data set F. The tree obtained based on this criterion is the maximum tree. 
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The maximum trees have one class at each leaf (for classification trees) or one observation at one leaf (for 
regression trees) and therefore according to Equation 5(l), have zero bias. 

 

Figure C‐1: CART training algorithm 

c. Tree	Pruning	

One of issues of CART is that the maximum CART fits very well the training data yet has low 
performance with test data (i.e. the generalization of maximum CART is poor). For this reason, the 
obtained tree is pruned to improve the generalization. However, in this study, tree pruning is not of 
interest because the main purpose is to introduce Random Forest who makes use of maximum trees. The 
readers who are interested in CART pruning can have more information in (Breiman, Friedman, Olshen 
and Stone, 1984). 

3. Variable	Importance	

The importance of a variable on a tree is estimated by the weighted impurity reduction obtained from all 
the nodes of the tree where that variable is decisive. At NodeF which is not a leaf, the importance of the 
decisive variable Xj is the impurity reduction obtained at NodeF weighted by the proportion of 
observations branching to NodeF compared to the whole training data set TSSet. Let Varim(Xj) the 
importance of variable Xj for the whole tree, VarimF(Xj) the importance of Xj at NodeF, PropF the 
proportion of observations split into data set F compared to the whole data set TSSet. VarimF(Xj) is 
calculated based on Equation 13. 
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Equation 13: Importance of decisive variable at a node 

ி൫݉݅ݎܸܽ ௝ܺ൯ ൌ  ܨ݁݀݋ܰ	ݐܽ	݈ܾ݁ܽ݅ݎܽݒ	݁ݒ݅ݏ݅ܿ݁݀	ݏ݅	݆ܺ	݁ݎ݄݁ݓ	ி݌݋ݎሻܲܨ݁݀݋ሺܴܰܫ

Varim(Xj) is calculated based on Equation 14.  

Equation 14: Importance of variable Xj for the whole tree 

ሺ݉݅ݎܸܽ ௝ܺሻ ൌ ෍ ிሺ݉݅ݎܸܽ ௝ܺሻ
஺௟௟	ே௢ௗ௘ி	௪௛௘௥௘	௑ೕ		௜௦	ௗ௘௖௜௦௜௩௘

 

Intuitively, a variable can become more important if: 

It is decisive for many times, i.e. it reduces much the impurity on the tree. 
It is decisive at the nodes at or near the root of the tree where the proportion of observations compared to 
the whole data set is high. 

A variable having zero importance is the variable that is not decisive at any node of the tree. That variable 
does not participate or contribute to the classification or regression process. 

C.3.	Random	Forests	(RF)	

1. Introduction		

Random Forest (Breiman, 2001) is an ensemble learning method that generates many classification and 
regression trees (CART - (Breiman, Friedman, Olshen and Stone, 1984)), trains the trees and aggregates 
their results. Successive trees do not depend on earlier trees - each is independently constructed using a 
bootstrap sample of the data set.  

According to Breiman, (2001), the motivation for inventing RF is that CART is an unstable together with 
its moderate accuracy. Maximum trees usually work well with training data but have low performance 
with test data. Tree pruning can improve CART performance with test data and result in trees with 
relatively higher accuracy. However, CART is unstable as even a small change in training data could also 
lead to totally different trees which make tree interpretation become problematic. Therefore, the main idea 
of RF is to create many unstable trees (i.e. the maximum trees) fitting very well the training data such that 
there is no correlativity between any pair of trees and then aggregate trees’ results. 

2. Weak	Learners	(WL)	

According to Schapire, (1990), a weak learner (WL) is the learner that can produce an hypothesis that 
performs only slightly better than random guessing. The author also concluded that it was possible to 
convert a mediocre learning algorithm into one that performs extremely well. 
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According to Breiman and Cutler, (2004), a weak learner is a prediction function that has low bias which 
comes at the cost of high variance. Breiman and Cutler also demonstrate the idea stated in (Schapire, 
1990) that converting weak learners in some way can generate a learn having high prediction power. 

Maximum trees are good example of weak learners as they fit very well with training data. Figure A-2 
presents the performance of four weak learners which are regression trees (CART) in predicting outputs 
of the sine function y=sin(2πx). Training and test data are generated using the given sine function. Four 
training data sets are randomly generated to fit four weak learners. The test data set is generated and 
represented in Figure A-2 as Original Function. Thereafter, the test data are input to four weak learners. 
The outcomes of the test are illustrated in Figure A-2 as “Weak learner 1”, “Weak learner 2”, “Weak 
learner 3”, and “Weak learner 4”. It is clear that there is high variance between the predicted outputs of 
weak learners and the expected outputs from the original function. However, if outputs of weak learners 
for each input are averaged, the averaged output is the better estimation of the original output. According 
to (Breiman, 2001), if the number of weak learners come to infinitive, the average outputs are precisely 
the outputs of the original function. The converted learner, which is averaging in this example, is called 
an ensemble learner. 

3. Randomization	

In reality, it is not always possible to get training data such as in the example illustrated in Figure A-2. In 
many cases, there is only one training data set. Therefore, it is necessary to use the training data set 
effectively.  By applying maximum trees as WL, another issue is that for one training data set, there can 
be only one maximum tree generated. 

 

Figure C‐1: Maximum regression trees as weak learners and averaging weak learners 

Therefore, (Breiman and Cutler, 2004) prove that if the independent, identically distributed randomization 
of weak learners is used, the bias of the ensemble learner is approximately unchanged compared to the 
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bias of weak learners whereas; the variance is significantly reduced. The authors also point out that 
generated WL should have low correlation to get higher performance of the ensemble learner that 
aggregates WL.  

The independent, identically distributed randomization is used to generate the t-th tree in two steps below: 

1) Generate a bootstrap sample of the training set called Bt where t=1:Ntree (the total number of trees).  
2) Grow the maximum tree using generated data set such that: 

a) At each node, m variables are selected at random out of M variables. 
b) The split used is the best split on these m variables. 

A tree is obtained from two randomizations: the training data set for that tree and the selection of 
variables at each node of the tree. Bt is the set of indices of observation selected for the t-th tree and is 
sampled by replacement from TrainingSet. 

4. Learning	Algorithm	

The algorithm for building RF is presented in Figure A-3(a). Trees in RF are trained in the similar manner 
with training CART (see Section b). The algorithm for growing trees in RF is presented in Figure A-3(b).  

The inputs for training RF include: 

 The training data set TSSet which is a part of the whole available data set contained in matrix X. 
TSSet is also equal to TrainingSet mentioned in Section 0. 

 The number m of variables randomly selected at each tree node. 
 The number Ntree of trees grown in RF. 

According to (Breiman, 2001), m is recommended to be squared root of M (which is the total number of 
variables in matrix X) and Ntree is selected by trying different values. 

Growing a tree in RF based on the data set Lt is similar to growing CART using Lt presented in Figure A-
3. The main difference is that at each node of the tree in RF, the split is determined among potential splits 
given by m randomly selected variables whereas the split in CART is determined among all potential 
splits given by all M variables. 

Besides growing trees, there are other processing steps as presented in Figure A-3(a) such as calculating 
error Et for the t-th tree, calculating Out-Of-Bag error for the whole RF, and evaluating variable 
importance. These processing steps are discussed in sections 5 and 6 of this chapter. 



 

C-143  

 

 

Figure C‐2: RF training algorithm 

When all trees are grown, RF aggregates the results. For RF regression, there are Ntree trees grown and the 
likelihood for the i-th observation xi (i.e. Traffic Situation) given by the t-th tree is Tt(xi), the likelihood 
for the i-th observation by RF is presented in Equation 15. 

Equation 15: Aggregating trees to generate outputs of RF regression 

௜ሻݔሺܨܴ ൌ
1

௧ܰ௥௘௘
෍ ௧ܶሺݔ௜ሻ		

ே೟ೝ೐೐

௧ୀଵ

 

For RF classification, the class for the input xi is given by the major vote of trees’ outputs. 

5. Out‐Of‐Bag	Data	and	Errors	

The size of data for training RF is n. By sampling with replacement, the probability for a datum to be 
selected is 1/n and the probability for the datum not to be selected is (n-1)/n. The size of sampled data is 

also equal to n. Therefore the probability for a datum not to be selected in the sample data is ቀ1 െ
ଵ

௡
ቁ
௡

. If 

n is large then lim௡→ஶ ቀ1 െ
ଵ

௡
ቁ
௡
ൌ ݁ିଵ ൎ 0.37 (or 37%) is the proportion of data not sampled from 

original training data. These data are called Out-Of-Bag (OOB) data for the tree grown base on the data 
sampled. The index of observations in OOB data for the t-th tree is contained in OOBt data set. 
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For the t-th tree in RF, observations in OOBt are not used for training the tree. Therefore, OOBt can be 
used to test the prediction performance of the tree as new data. The term Et presented in Error! 
Reference source not found.(a), called Out-Of-Bag error of the t-th tree, is the test error of t-th tree for 
observations corresponding to OOBt. Et is calculated according to Equation 16. 

Equation 16: Out‐Of‐Bag error of the t‐th tree 

௧ܧ ൌ ෍ ൫ݕ௜ െ ௜ሻ൯ݔ௧ሺ݁݁ݎܶ
ଶ
	; 	݁ݎ݄݁ݓ	

௜∈ைை஻೟

ݐ	݂݋	ݐݑ݌ݐݑ݋	݄݁ݐ	ݏ݅	௜ሻݔ௧ሺ݁݁ݎܶ െ  ௜ݔ	ݎ݋݂	݁݁ݎݐ	݄ݐ

For an observation xi of TSSet, there is a set called OOBTreei containing the indices of all the trees, for 
which xi is in the OOB data. Let OEi the mean squared error of all the trees whose indices are in 
OOBTreei for xi as input. OEi is calculated according to Equation 17. 

Equation 17: Out‐Of‐Bag error of i‐th observation (xi) in TSSet 

௜ܧܱ ൌ
1

௜ሻ݁݁ݎܶܤሺܱܱ݁ݖ݅ݏ
෍ ሺݕ௜ െ ௜ሻሻଶݔ௧ሺ݁݁ݎܶ

௧∈ைை஻்௥௘௘೔

 

Finally, let OE the Out-Of-Bag error of RF, OE is estimated according to Equation 18(a) or Equation 
18(b) 

Equation 18: Out‐Of‐Bag error of Random Forests 

(a) ܱܧ ൌ ∑ ௜ܧܱ
௉
௜ୀଵ  

(b) ܱܧ ൌ
ଵ

௉
∑ ଵ

௦௜௭௘ሺைை஻்௥௘௘೔ሻ
∑ ሺݕ௜ െ ௜ሻሻଶ௧∈ைை஻்௥௘௘೔ݔ௧ሺ݁݁ݎܶ

௉
௜ୀଵ  

6. Variable	Importance		

Let VIM(Xj) the variable importance of variable Xj. There are two different methods for estimating the 
VIM(Xj). These two methods usually give similar estimation of variable importance. Two methods: using 
CART-like technique and using value permutation error are described in this section. 

a. Using	Mean	VIM	over	Trees	(CART‐like	Technique)	

Equation 14 estimates the importance of variable using CART (Section 3). Although trees are grown in 
RF in a slightly different way compared to growing CART, the principle for evaluating variable 
importance for CART is still applicable for each tree of RF. VIMt(Xj) is the importance of variable Xj 
estimated by the t-th tree in RF. VIMt(Xj) can be estimated by following Equation 14. VIM(Xj) is estimated 
by following Equation 19. 
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Equation 19: Estimation of variable importance by CART‐like technique 

൫ܯܫܸ ௝ܺ൯ ൌ ෍ ௧൫ܯܫܸ ௝ܺ൯

ே೟ೝ೐೐

௧ୀଵ

 

b. Using	Value	Permutation	

The t-th tree has a error Et for its OOBt data set. For each variable, it values in OOBt are permuted over all 
observations in OOBt while keeping values of other variables unchanged. Put down the tree the 
observation in OOBt. As the relationship between variables in the observations is broken, the OOB error 
Et is expected to increase to become Etj (i.e. OOB error of t-th tree when values of variable Xj are 
permuted). The average increase of OOB error of a variable over all the trees divided by the standard 
deviation of the increase is the estimation of the variable importance as presented in Equation 20. A 
variable whose permuted values cause high increase of OOB error is more important than a variable 
whose permuted values cause lower increase of OOB error. 

Equation 20: Variable importance by using OOB error 

(a) ܽܯܫܸ݃ݒ൫ ௝ܺ൯ ൌ ∑ ௧௝ܧ
ே೟ೝ೐೐
௧ୀଵ  

(b) ܯܫܸ݀ݐݏ൫ ௝ܺ൯ ൌ ∑ ሺܧ௧௝ െ ൫ܯܫܸ݃ݒܽ ௝ܺ൯ሻଶ
ே೟ೝ೐೐
௧ୀଵ  

(c) ܸܯܫ൫ ௝ܺ൯ ൌ
௔௩௚௏ூெ൫௑ೕ൯

௦௧ௗ௏ூெ൫௑ೕ൯
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Appendix	D:	RIM	Refinement		

D.1.	Overview	

This appendix is the complement to section 7.3.4 discussing on the refinement of regime-based Risk 
Identification Models. This appendix also attempts to prove that the models presented in section 7.3.4 are 
better than other models. 

D.2.	Refinement	Algorithm	

Given a set X of variables X={Var_1, Var_2, …, Var_n} and six data sets: NTS and PTS for training, 
NTS and PTS for calibration, and NTS and PTS for validation. The process to train regime-based RIM is 
used to develop RIM and is summarized below: 

 Models are developed using training data sets. 
 Pre-crash thresholds are set using calibration data sets. Threshold criteria are applied. 
 Model performance is evaluated using validation data sets. 

When a model is developed and there is no pre-crash threshold satisfying the first two threshold criteria 
(see section 7.2.3.3), the model is call inappropriate which means that the model will not be further 
considered. The first two threshold criteria require that a threshold to be set should identify at least 70% 
of NTS and 70% of PTS in the calibration data sets. 

Figure D-1 illustrates the recurrent function to find good models – the models which are not inappropriate 
and having high performance. The function Refine takes as input the set of initial variables and returns the 
set of models. In the body of Refine function, there are calls to four functions: DevelopModel, 
SetThreshold, Validate and Refine (self-call). The function DevelopModel takes as input the set of 
variables and develops a model with the variables using training data sets. The call to function Refine 
inside its body is a recurrent call to develop models with smaller sets of variables. For instant, the set X’ 
of variables contains 1 variable less than the set X. From the set X’, models with subsets of variables can 
be developed. However, the call Refine (X’) is applicable only if model M - result of DevelopModel(X’) is 
not inappropriate – which means that a model is not refined if the model cannot satisfy the first two 
threshold criteria. 

If the model M is not inappropriate, its pre-crash threshold is set using the third threshold criteria via 
function SetThreshold. Thereafter, model M is validated using validation data sets via function Validate. 
Model M is considered a good model if it can satisfy the following two validation criteria: 

1) 70% of PTS in validation data set identified 
2) 70% of NTS in validation data set identified 

The model having the best performance should satisfy the validation criteria and have the greatest total 
sum of percentages of NTS and PTS in validation data sets identified. 
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Figure D‐1: Recurrent function for refining models. 
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