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Abstract 

We address the subject of strong electron-phonon coupling in pyramidal quantum 

dots and pursue detailed physical, analytical and numerical investigations. The strong 

coupling polaron states in a pyramidal GaAs/AlGaAs quantum dot are computed nu-

merically with an enhanced matrix diagonalization method that accounts for the par-

ticular structure of the Hamiltonian and uses an irregular reciprocal space discretiza-

tion. Electron-electron interactions and multiple phonon interactions are neglected. 

We study quantum dots with either three or four confined electron states associated 

with two or three electron levels, respectively. Further, we develop a set of analytical 

tools to predict and interpret the polaron states of a more general model of quantum 

dots. Applying these tools to the particular case allows a complete classification of 

the polaron states and reveals new physical insight. 
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Isosurfaces of the "vibrational density functions" of a strong coupling polaron state in 

a pyramidal GaAs/AlGaAs quantum dot. Those functions are the Fourier transforms of 

the respective "normal mode distribution functions". Detailed explications are given 

in chapter 5 of this report. 
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The model of the pyramidal quantum dot has been developed at EPFL by Fabienne 

Michelini [1, 2]. 
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1 Introduction 

1.1 Underlying motivation 

Quantum dots are point-like nanoscale heterostructures with an attractive potential 

for charge carriers. Their physical interest relies on yet undiscovered physical proper-

ties and promising technological applications. 

First, specific theoretical and experimental investigations of the interactions inside 

quantum dots offer a key tool for fundamental quantum research. Namely, interac-

tions between electrons, phonons and photons reveal some essence of quantum be-

havior, since superpositions and entanglement lead to observable consequences. 

Second, several potential technological applications based on quantum dots were 

proposed. For example, we mention the application of quantum logic in a hypotheti-

cal new generation of computers referred to as "quantum computers" [3]. Their fun-

damental information units are discrete energy states, which can form superposi-

tions, unlike the classical "zero-one" information. For a physical system to be an ap-

propriate representation of quantum information, it needs to satisfy the DiVincenzo's 

criteria [4]. Explicitly, one should dispose of suitable tools to prepare the system in a 

given initial state, to apply universal quantum operations and to perform appropriate 

measurements, all keeping the environmental decoherence low. Many researchers 

affirm that localized electrons in quantum dots could exhibit an appropriate represen-

tation of quantum information [e.g. 5]. 

Another promising application of quantum dots, which is somewhat more concrete, 

relies on their particular optical properties. Certain quantum dots reveal the capacity 

to efficiently emit single photons or pairs of correlated photons. The feasibility of such 

controlled photon emitters has been shown theoretically [6, 7] as well as experimen-

tally in the case of CdSe quantum dots [8], InAs quantum dots [9] and GaAs quan-

tum dots [10]. The latter cases have been investigated at EPFL [11, 12] using the 

pyramidal heterostructures presented in this report (see section 4.1). 

 

1.2 State of the art 

Up to the late eighties of the past century, quantum dots were mainly theoretical 

objects, their systematic production being impossible. Thereafter, significant progress 

in the in the micro fabrication technology of heterostructures allowed the physical 

realization of different small confinement structures, such as quantum wires and 

quantum dots. This achievement enabled reproducible experimental investigations 

and induced an intensive research on quantum dots. 
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Preliminary theoretical studies led to the prediction that electron relaxation in quan-

tum dots is inefficient [13, 14], meaning that the typical mechanical relaxation times 

prevail the photon emission times. This prediction was based on the widely spaced 

energy spectrum of the electron states in quantum dots and the narrow dispersion of 

the longitudinal optical (LO) phonon spectrum. Unless an electron energy separation 

is accidentally found in the vicinity of the LO-phonon energy, the relaxation through 

LO-phonon emission was considered impossible by virtue of Fermi's golden rule. This 

concept was referred to as "phonon bottleneck". It led to consider another relaxation 

channel through interactions with longitudinal-acoustic (LA) phonons. Those interac-

tions are nevertheless negligibly weak for electronic energy separations above a few 

meV. Consequently, the phonon bottleneck should prevent excited electrons (or exci-

tons) in quantum dots from relaxing to their ground state. 

First experimental investigations of relatively large quantum dots (~1000Å) showed 

in deed poor luminescence from electron-hole ground state recombination [15] and 

proved evidence of luminescence associated with excited energies [16, 17, 18]. 

Those results seemed to confirm the concept of phonon bottleneck. 

Yet, many later experimental attempts to confirm this concept with smaller quantum 

dots failed [e.g. 19, 20]. Instead of confirming the phonon bottleneck, the electron-

hole pairs were observed to relax efficiently to their ground states and to recombine 

radiatively. Some effort was made to explain this unexpected feature, keeping the 

bottleneck concept unchanged. For example, partial explanations resulted from the 

inclusion of multi-phonon processes involving LO+LA decay [21] and Auger relaxation 

processes [22]. 

The deep theoretical impact, however, came about the millennium change with the 

affirmation that electrons in quantum dots are subject to strong coupling with certain 

superpositions of phonon states [30, 31, 32, 33]. Thus, the prevailing observable 

entity is the polaron rather than the electron. A major manifestation of this strong 

coupling feature is the multiplication of optical transition possibilities. In addition, the 

polaron concept offers a new way of electron relaxation: In the entangled superposi-

tions of electron and phonon states, phonon-phonon interactions translating the crys-

tal anharmonicity imply changes in the electronic part [33, 23]. 

Many subsequent theoretical investigations [e.g. 24] and direct observations of 

strong electron-phonon coupling [25, 26] have confirmed the new concept of "strong 

coupling polarons". Together with the unexplained observations of the efficient elec-

tron relaxation, this strong-coupling evidence brought the community to reject the 

concept of "phonon-bottleneck" in favor of the "strong coupling polaron" concept. 

Recently, some dots with large electron confinement have nevertheless revealed inef-

ficient energy relaxation [27, 28]. 
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In consequence of the strong coupling concept, the perturbation theory no longer 

presents an acceptable approach to the relaxation process. In particular, the irre-

versible treatment of electron-phonon interactions through Fermi's golden rule is no 

longer applicable. 

 

1.3 Objectives and main results 

Quantum dots are subject to experimental and theoretical research activities at EPFL. 

Recently, the envelope functions of electron states confined to a pyramidal quantum 

dot have been computed [1]. Similar computations have been performed with an 

enhanced quantum dot model including a vertical quantum wire [2, 29]. A long-term 

objective is the description of the electron capture from the quantum wire and the 

subsequent relaxation inside the quantum dot. As mentioned in section 1.2, the 

relaxation process is subject to regimes of strong electron-phonon coupling [30, 31, 

32, 33] and thus we consider the polarons as the crucial physical entities. 

Our goal is to compute the strong coupling polaron states in a pyramidal 

GaAs/AlGaAs quantum dot with three or four confined electron states. A particularly 

important point in such a complex problem is to find theoretical tools that allow to 

predict the physical results and to provide physical interpretation. 

Our main results can be summarized as follows: 

1) Physics: We compute the polaron states of quantum dots with three or 

four electron states and classify them with respect to their en-

ergy shift, degeneracies and mutual coupling. In particular, the 

states are grouped in nearly independent subsets, each of which 

is associated to a physical image of coupled crystal vibrations. 

2) Analysis: We develop a set of analytical tools that allows to predict and to 

interpret the polaron spectrum of a more general quantum dot 

model. This leads us to introduce a "natural basis" of polaron 

states with a suitable analytical expression and physical sense. 

3) Numerics: We represent the crystal dynamics by normal modes, which are 

irregularly distributed in the reciprocal space. This irregular dis-

cretization is generated adaptively in function of the particular 

electronic wave functions. For this application, the Fröhlich Ham-

iltonian is transcribed to an irregular, finite reciprocal space dis-

cretization. The resulting numerical method leads us to fast con-

vergence and short computation times. 

4) Computing: The developed program code allows to study a large set of quan-

tum dots with an arbitrary number of discrete energy levels. 
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1.4 About this text 

Even though the presented research is somewhat an entangled mixture of physical 

insight, analytical developments and numerical methods, we address the physical 

side in the first instance. Thus, analytical and numerical parts are mainly developed 

in appendix, whereas the principal part focuses on physical aspects. 

We first present an introduction to the dynamics of electrons and nuclei in chapter 2. 

Particular importance is assigned to the conceptual basis, physical assumptions and 

mathematical representations. Using these fundamentals, we introduce the interac-

tion between electrons and phonons, first in a general configuration of atoms, then in 

a general crystal and finally in a polar diatomic crystal. This naturally leads to the 

Fröhlich interaction, which we discuss physically. A reader familiar with those notions 

is invited to skip this chapter and step on to chapter 3. There, we define a general 

model of a polar quantum dot and develop analytical tools for the prediction and 

physical interpretation of the polaron states. Those tools will be used later to inter-

pret the computational results. From the general model we are led to chapter 4, 

which describes the particular physical system of a pyramidal GaAs/AlGaAs quantum 

dot. Important aspects about the numerical implementation of this system are ex-

posed briefly. In chapter 5 we present the computational results obtained for quan-

tum dots with three or four confined electron states. The strong coupling polaron 

states are classified and physically interpreted. Thereafter we critically review the 

employed mathematical tools as well as the physical results with respect to the state 

of the art (chapter 6). We conclude with an overview and some windows to future 

research in chapter 7. 

Separated from the main part by a blue page, chapter 8 constitutes an extended ap-

pendix – quite as long as the rest of the report. Therein we show analytical develop-

ments and demonstrations, numerical methods, details about the program code, ad-

ditional results and original historical sources. The references are listed in chapter 9. 
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2 Conceptual basics of nuclei-electron dynamics 

This chapter resumes generalities about nuclei-electron dynamics with a particular 

focus on phonon-electron interactions. The reader familiar with those general con-

cepts is invited to continue with chapter 3, p. 33. 

A generally accepted scheme of treating the dynamics of a large number of atoms 

such as found in molecules and crystals is exposed in section 2.1. The underlying 

physical assumptions are step wisely introduced and widely discussed: "Adiabatic 

approximation", "Born-Oppenheimer approximation", "Harmonic approximation", 

"Hartree approximation". 

On this conceptual basis, we focus on the interaction between phonon and electrons. 

Section 2.2 exposes a general theory of electron-phonon interaction. This theory is 

then applied to the particular case of periodic crystals in section 2.3. Finally the case 

of polar crystals is regarded in great detail in section 2.4. In this framework the Fröh-

lich Hamiltonian is developed and its physical meaning is carefully discussed. 

The whole chapter focuses on physical assumptions and interpretations. Mathemati-

cal developments are exposed briefly or even skipped. They are all given in the ex-

tended developments of appendix 8.1. 

Source remark: 

The sections 2.1 and 2.2 are mostly based on chapter 9 of François Reuse's carefully 

composed notes on quantum electrodynamics [34]. Chapter 2.3 is equally inspired by 

chapter 3.7 of F. Reuse and chapter 4 of F. Mila's lecture notes on the subject of su-

perconductivity [35]. Chapter 2.4 is composed on the basis of a chapter from R. 

Evrard in the textbook "Polarons in Ionic Crystals and Polar Semiconductors" [36] 

and a text from J. Devreese published in the Encyclopedia of Applied Physics [37]. 

 

2.1 Basic schemes of electron-nuclei dynamics 

This section gives a general description of the dynamics of a system of charged parti-

cles, which we call a "general molecule". It includes macroscopic systems such as 

crystals. The main intention is to clarify the underlying physical assumptions and to 

shine light on the structure of the mathematical representations. 

The physical model and the theory describing its evolution are introduced. They are 

mathematically represented by a Hilbert space and a Hamiltonian operator acting 

inside this space. Then, the dynamical variables of the system are decoupled in three 

sections: electron-nuclei decoupling through the Born-Oppenheimer approximation, 
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nuclei-nuclei decoupling through harmonic normal modes, electron-electron decoup-

ling through the mean field approximation. An overview and a discussion of the final 

Hamiltonian conclude this section. 

2.1.1 Physical model of a "general molecule" 

We consider a set of  nuclei N µ  with positive charge eZµ+  and mass Mµ  and  elec-

trons 

n

ν  with negative charge  and mass . Those particles move in vacuum 

without external fields. Electromagnetic radiation between the particles are neglected 

as well as the particle spins. The spins only appear by the mean of Pauli's exclusion 

principle. The so described model is treated in a non-relativistic quantum mechanical 

scheme. 

e− em

Electrons are identical fermions. In order to account for their exchange antisymmetry 

a completely antisymmetric space is chosen. The nuclei are considered distinguish-

able and are described in a symmetric space. 

( ) ( )n N
molecule electrons nuclei electron nucleus

⊗ ⊗
     = ⊗ = ⊗H H H H S HA  

A  is the orthogonal projector on the completely antisymmetric subspace.  is the 

orthogonal projector on the completely symmetric subspace. In this way any arbi-

trary vector of  represents a physical state. 

S

molecule H

The dynamics of the system is given by a Hamiltonian operator containing all kinetic 

terms and all Coulomb interaction terms, 

molecule electrons nuclei electrons nuclei e nuclei
H H 1 1 H V − −

= ⊗ + ⊗ +  

where 
2 2n

electrons
1 'e 0 '

p e 1
H

2m 8 r r
ν

ν ν ν ν νπε= ≠

= +
−

∑ ∑    

2 2N

nuclei
1 '0 '

P Ze
H

2M 8 R R

µ µ

µ µ µµ µ µ
πε= ≠

= +
−

∑ ∑    

2 N n

e nuclei
1 10 nuclei electrons

Ze
V

4 r 1 1 R

µ

µ ν ν µ
πε− −

= =

= −
⊗ − ⊗

∑ ∑    

rν  and pν  are the position and momentum operators of the electrons. Rµ  and Pµ  are 

the positions and momentum operators of the nuclei. They satisfy the standard 

commutations relations, 

' ' electronsr , p i 1ν ν ννδ⎡ ⎤ =  ⋅⎣ ⎦  'r , r 0ν ν⎡ ⎤ =⎣ ⎦  'p , p 0ν ν⎡ ⎤ =⎣ ⎦  

' ' nucleiR ,P i 1µ µ µµδ⎡ ⎤ =  ⋅⎣ ⎦  'R ,R 0µ µ
⎡ ⎤ =⎣ ⎦  'P ,P 0µ µ

⎡ ⎤ =⎣ ⎦  
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We note that operators belonging to different particles naturally commute because 

they act on different parts of a product space. This is not related to the exchange 

symmetries of identical particles. However, due to those exchange symmetries, there 

is no physical eigenstate of a given operator rν  or pν  if there is more than one elec-

tron. 

All potential energy terms of  relate to 2-body interactions. There is no free 

evolution term so far. The plan over the next three sections is to decouple step by 

step all the 2-body interactions. 

moleculeH

2.1.2 Decoupling of the two body interactions 

Nuclei-electron decoupling: "Born-Oppenheimer approximation" 

(An extended version of this section is found in appendix 8.1.1.) 

Inside the reduced space , the Hamiltonian  describes an unstable 

dynamic of negative particles that all repel each other. In the same way  de-

scribes an unstable system of positive particles in the space . In this section, 

we shall include the mean effect of the nuclei in the electron Hamiltonian  and 

the mean effect of the of the electrons in the nuclei Hamiltonian . Finally, the 

electron and the nuclei dynamics yield stable solutions, which are close to the solu-

tion of the full Hamiltonian. This approximate decoupling of the electronic and nuclear 

motion is globally referred to as the "Born-Oppenheimer approximation". 

electrons H electronsH

nucleiH

nuclei H

electronsH

nucleiH

The mean influence of the electrons on the nuclei is treated in the "adiabatic ap-

proximation". It considers the electrons as slaves without inertia. They follow instan-

taneously the relatively slow nuclear motion. Mathematically, the rapid variable are 

decoupled from the slow ones and the electrons are considered to be always in the 

ground state around the instantaneous nuclear configuration. The electrons only con-

tribute to the nuclear dynamics by the mean of a potential ( )0E R. , which is the elec-

tronic ground state energy of the instantaneous nuclear configuration. Adding this 

contribution to the nuclei Hamiltonian, the latter becomes 

( ) ( )
2 2N

adia (0)
nuclei 0 0

1 '0 '

P Ze
H E

2M 8 R R

µ µ

µ µ µµ µ µ
πε= ≠

R. E R.⎡ ⎤= + + −⎢ ⎥⎣ ⎦−
∑ ∑   . 

To keep the electrons' contribution small their energy ( )(0).0E R  in the crystals 

equilibrium configurat (0)R.ion  has been subtracted. 
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In a second step, we look for an approximate electronic Hamiltonian in the subspace 

, which accounts for the mean influence of the nuclei. This is generally done 

by assuming that the nuclei are classical charges retained in the equilibrium positions 

electrons H

(0)R. . They act on the electrons by Coulomb interaction, such that 

2 2 2n N n
equil
electrons (0 )

1 ' 1 1e 0 0' electrons

Zp e 1 e
H

2m 8 4r r r R 1

µν

ν ν ν µ νν ν ν µ
πε πε= ≠ = =

= + −
− − ⋅

∑ ∑ ∑ ∑     

We have thus found an approximate Hamiltonian that separates the electronic and 

nuclear dynamics from one another: 

Born Oppenheimer equil adia
electrons nuclei electrons nucleiH H 1 1− = ⊗ + ⊗ H  

The two components of this Hamiltonian yield stable configurations of the electrons 

and nuclei. At low temperatures this configurations are close to the true crystal con-

figuration. The Hamiltonian differs from the full Hamiltonian  by a residual 

term 

moleculeH

( ) ( )

2 N n
res

nucleie nuclei (0)
1 10 nuclei electrons electrons

(0)
electrons 0 0 nuclei

Z Ze
V 1

4 r 1 1 R r R 1

1 E R. E R. 1

µ µ

µ ν ν µ ν µ
πε− −

= =

⎡ ⎤
⎢ ⎥= − − ⊗⎢ ⎥⊗ − ⊗ − ⋅⎢ ⎥⎣ ⎦

⎡ ⎤− ⊗ − ⋅⎢ ⎥⎣ ⎦

∑ ∑   

               

 

Nuclei-nuclei interaction: "Harmonic normal modes" 

(An extended version of this section is found in appendix 8.1.1.) 

The next step is to decouple the nuclear coordinates from one another inside the re-

duced space . The standard method consists in neglecting the anharmonic part 

of the potential energy around the equilibrium configuration and to perform a canoni-

cal transformation giving rise to independent normal modes. The energy quanta of 

each such mode are referred to as "phonons". 

nuclei H

Explicitly, the nuclei potential admits the following development around the equilib-

rium configuration, 

( )
( )

adia
2 nucleiadia i j

nuclei 'i j(0) (0 )
' ( ,i ),( ', j )0 ''

Q. 0

V Q.Ze 1
V Q

8 2! Q QR R

µ
µ µ

µ µ µ µ µ µµ µ
πε ≠

=

∂
= +   

∂ ∂−
∑ ∑ Q 3+ O

                                                                                                      

 

adia,(0)
nucleiV

                                                                                                                                                                    

adia,harm
nucleiV

                                                                                                                                                                      

adia,res
nucleiV

                                                              

 

There is no linear term, since the equilibrium configuration corresponds to a mini-

mum of the potential energy. The last term contains all the anharmonic contribu-
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tions. Neglecting this term yields the "harmonic approximation" or "harmonic normal 

mode approximation". The nuclei Hamiltonian under this approximation writes 

( )
2N

adia,harm adia,harm
nuclei nuclei

1

P
H V

2M
µ

µ µ=

= +∑ Q.  . 

In a first step the dynamical variables ( )Q ,Pµ µ  are considered classical variables. It 

always exists is a particular set of canonically conjugate coordinates, in which the 

Hamiltonian  becomes decoupled (see appendix). In those coordinates the 

Hamiltonian looks like 

adia,harm
nucleiH  

( )adia,harm 2 2 2
nucleiH Pα α α

α

ω = +  ∑ Q , 

where 2
αω  are the eigenvalues of the dynamical matrix (see appendix). Each couple 

(Q ,P )α α  describes an independent harmonic oscillator with angular frequency αω . 

Since the ionic displacements depend linearly on Qα , each couple (Q ,P )α α  describes a 

collective harmonic oscillation of all the nuclei at one same frequency. Therefore the 

new coordinates are called "normal mode coordinates". There are  modes:  

global translations, 3  global rotations and 3N

3N 3

6−  vibrations. The set of all those 

modes is called . A

The harmonic notation is now transcribed to quantum mechanics. The 3N  modes are 

independent properties of motion of the nuclei system. Therefore, each mode α  can 

be assigned a restricted orthogonal subspace modeα  H  of the full space . The full 

space is isomorphic to the product space  defined by 

nuclei H

modesF

nuclei modes modeαα  ∈  ≡ ⊗∼
A

H F H       

This space is called "Fock space of normal modes". 

Qα  and Pα  are considered as quantum mechanical operators acting in this space. The 

commutation relations of the nuclei coordinates transform to 

modesQ ,P i 1α β αβδ⎡ ⎤ = ⋅⎣ ⎦               Q ,Q 0α β⎡ ⎤ =⎣ ⎦                P ,P 0α β⎡ ⎤ =⎣ ⎦  

We remind, that operators belonging to different normal modes naturally commute 

because they act on different parts of the product space. This is not related to ex-

change symmetries of identical particles. 

The dynamics of the nuclei system is given by the Hamiltonian operator 

( )adia,harm 2 2 2
modes modeH P Q Hα α α α

α α

ω  
∈ ∈

= + =∑ ∑
A A
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The operator modeH α  describes a quantum mechanical harmonic oscillator in the space 

modeα  H  and acts trivially on all other modes. The standard way to solve the dynamics 

described by modeH α  is to introduce the "annihilation operator" dα  and "creation op-

erator" †dα  of one energy quanta, 

†
modeH d dα α α αω =  

The operator †N d dα α α=  is hermitian and its spectrum can be shown to contain all 

non-negative integers. Therefore, the energy eigenstates of each mode α  corre-

spond to equally-spaced discrete energies, separated by αω . Further, the spectrum 

is non-degenerate. Thus a complete set of commuting observables is given by { }Nα . 

The corresponding orthogonal basis is noted 

{ }{ }n ,n ,n ,... : n ,n ,... 0,1,2,3,...α β γ α β ∈  

Physically, the vector n ,n ,n ,...α β γ  represents a state, where the mode α  is 

 excited, i.e. it has an energy n timesα − nα αω , and so on. The annihilation and crea-

tion operators act on the basis vectors as follows 

1d ..,n ,.. n ..,n ,..α α α α −=              and            †
1d ..,n ,.. n 1 ..,n ,..α α α α += +   

which justifies their names. This is precisely the mathematical structure of a system 

of identical bosons. Thus we are led to consider the nuclei vibrations as composed by 

bosonic particles, called "phonons", which can occupy any of the modes α ∈ A . 

The full dynamic beyond the harmonic approximation is described by the Hamiltonian 

( )adia 2 2 2 adia,res
modes modesH P Q Vα α α

α

ω
∈

= + +∑
A

  

where ( )adia,res adia,res
modes nucleiV V= Q.  contains the anharmonic part of the potential. This term 

is not diagonal and therefore yields interactions between different normal modes or 

"phonon-phonon-interactions". 

Electron-electron decoupling: "Hartree approximation" 

In opposition to the nuclei dynamics, there is no standard way of solving the Hamil-

tonian  inside the reduced space . One possible approach is the "Har-

tree approximation" also called "self-consistent field approximation" or "mean field 

approximation". It considers the electrons to evolve in a time independent potential 

equil
electronsH electrons H

( )scV r  representing the Coulomb interaction with all the nuclei in their equilibrium 
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positions and all the electrons in their collective ground state. In this approximation 

the Hamiltonian takes the decoupled form 

( )
2n

equil , sc sc
electrons

1 e

p
H V

2m
ν

ν
ν =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ r  

where the potential ( )scV r  is found by solving the following equations simultane-

ously: 

1) ( )
2

sc

e

p
V r

2m τ τ τϕ ε ϕ
⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

 

2) ( ) ( ) ( )
3 3

2 N n 20sc 3 3
0(0)

1 10

y Ze
V x d y where y d y y

4 x y x R

µ
τ

µ τµ

ρ
ρ ϕ

πε = =

⎡ ⎤
⎢ ⎥= −              ≡⎢ ⎥− −⎢ ⎥⎣ ⎦

∑ ∑∫ ∫  

The solution ( )scV r  yields electronic states which themselves create this potential. 

( )scV r  is therefore called "consistent with itself" or "self-consistent". It can be found 

by iterative methods and is supposed to be unique. 

Different one-electron energy eigenstates are distinguished by an index τ . This index 

also contains the spin part of the electron state. Since equation (1) only covers the 

spatial part of the state, each energy eigenstate τϕ  has to be doubled to account for 

the two-fold spin degeneracy, ,τ τ τε ϕ ϕ+ −  →  . 

equil , sc
electronsH   differs from the full electronic term  by a residual term  such 

that 

equil
electronsH equil ,res

electronsV

equil equil ,sc equil ,res
electrons electrons electronsH H V= +  

where ( )
2n

equil , sc sc
electrons

1 e

p
H V

2m
ν

ν
ν =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ r  

( )
3

2 n
0equil ,res 3

electrons
' 10 ' e

ye 1 1
V d

4 2 r r r y 1ν ν νν ν ν

ρ

πε ≠ =

⎡ ⎤
⎢ ⎥= −

− − ⋅⎢ ⎥⎣ ⎦
∑ ∑ ∫

lectrons

y   

Physically, the residual potential accounts for the facts that the electrons are eventu-

ally not in their ground state and that an electron doesn't interact with itself. 

2.1.3 Overview and discussion 

The accessible states of the system are represented in the Hilbert space 

( ) ( )n
molecule electrons modes electron modeαα

⊗
    ∈

= ⊗ = ⊗ ⊗
A

H H F H HA   
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The evolution of the system derives from the Hamiltonian operator 

}

}

equil , sc adia,harm free
molecule electrons modes electrons modes molecule

equil ,res adia,res res int
electrons modes electrons modes moleculee modes

equil
electrons

H H 1 1 H H

V 1 1 V V H

H

− −

= ⊗ + ⊗

+ ⊗ + ⊗ +

  

 

  

  

                  
adia
modesH

                   

 

where ( )
2n

equil , sc sc
electrons

1 e

p
H V

2m
ν

ν
ν =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ r  

 adia,harm 2 2 2
modesH P Qα α α

α
ω

∈

= +∑
A

 
  

 
( )

3

2 n n
0equil ,res 3

electrons
1 ' 10 ' e

'

ye 1 1
V d

4 2 r r r y 1ν ν ν ν ν
ν ν

ρ

πε = =
≠

⎡ ⎤
⎢ ⎥= −⎢ ⎥− − ⋅
⎢ ⎥⎣ ⎦

∑ ∑ ∫
lectrons

y   

(residual interaction between electron and electron) 

  

(interaction between normal mode and normal mode) 

( )adia,res adia,res
modes nucleiV V= Q.

 ( )

( )( ) ( )

2 N n
res

modese modes (0 )
1 10 modes electrons electrons

(0)
electrons 0 0 modes

Z Ze
V 1

4 r 1 1 R Q. r R 1

1 E R. Q. E R. 1

µ µ

µ ν ν µ ν µ
πε− −

= =

⎡ ⎤
⎢ ⎥= − − ⊗⎢ ⎥⊗ − ⊗ − ⋅⎢ ⎥⎣ ⎦

⎡ ⎤− ⊗ − ⋅⎢ ⎥⎣ ⎦

∑ ∑   

          

 

(residual interaction between electron and normal mode) 

There are two useful decompositions. First, a particle nature based decomposition in 

electrons, normal modes and mutual interaction, 

equil adia res
molecule electrons modes electrons modes e modes

H H 1 1 H V − −
= ⊗ + ⊗ +  

It directly results from the Born-Oppenheimer approximation. Second, there is an 

interaction-based decomposition in free evolution and 2-body interaction, 

free res
molecule molecule moleculeH H H= +  

free
moleculeH  only contains potential energy terms acting on a single electron or a single 

mode. It describes the free evolution of the electrons and normal modes in the 

framework of the introduced approximations, which were the Born-Oppenheimer ap-

proximation, the harmonic approximation and the self-consistent field approximation. 
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2.2 Electron-phonon interaction in general molecules 

In this chapter, we investigate the residual interaction term  between elec-

trons and normal modes. 

res

e modes
V − −

The developments being purely mathematical they are presented in all detail the ap-

pendix (8.1.2). Here, the ideas of the development are summarized and the results 

are discussed from a physical viewpoint. 

2.2.1 Overview of the mathematical development 

It can be shown (see appendix), that the interaction term  admits the follow-

ing development, similar to a Taylor series: 

res

e modes
V − −

( ) ( )res (1) (2)
,e modes

,

res (1) res (2)
e modes e modes

V F r. Q F r. Q Q

V V

α α α β α β
α α β

−

− −

−
∈ ∈

  
− −

= ⊗ + ⊗∑ ∑ +…
A A

 

with ( )(1)

Q. 0

W
F r.

Qα
α =

∂
=  

∂
   ,      ( )(2)

Q. 0

1 W
F r.

2! Q Qαβ
α β =

∂
=

∂ ∂
   ,      etc. 

and ( )
2 N n

(0)
0 electrons(0)

1 10 electrons

Ze
W E

4 r R 1

µ

µ ν ν µ
πε = =

⎡ ⎤
⎢ ⎥= − − ⋅⎢ ⎥− ⋅⎢ ⎥⎣ ⎦

∑ ∑   R. 1  

The operators W ,  and  are transcribed to second quantization, which 

leads to a compact form of the interaction term with physical meaning. In appendix 

8.1.2 the methods of second quantization for bosonic and fermionic particles are in-

troduced carefully. The respective annihilation and creation operators are noted as 

follows: 

F res

e modes
V − −

dα : "annihilation operator of one phonon in the normal mode α " 

†dα : "creation operator of one phonon in the normal mode α " 

aτ : "annihilation operator of one electron in the state τ " 

†aτ : "creation operator of one electron in the state τ " 

Further, J  represents the set of all electron energy eigenstates τ  and 0J  is the sub-

set of states, which are occupied in the collective electronic ground state. Its com-

plement 0J J \ J∗ ≡  contains all the excited one-electron states. Based on these nota-

tions, we define the following auxiliary operators, 

†
0J " annihilationoperator of ahole"c a

J " annihilationoperator of anelectron"b a

τ τ

τ τ

τ

τ ∗

∀ ∈     ≡

∀ ∈     ≡
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Their adjoints are consequently given by 

†
0

† †

J " creationoperator of ahole"c a

J " creationoperator of anelectron"b a

τ τ

τ τ

τ

τ ∗

∀ ∈     =

∀ ∈     =
 

In the second quantization the operator W  is shown to become 

† † †

.. .. .. ..

W w c c w b c w c b w b b†
τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ′ ′ ′ ′ ′ ′ ′     = −  +  +  +  ∑ ∑ ∑ ∑ τ ′  

with 
( ) ( )

3

*
2N

3

(0)
1 0

x xZ e
w d x

4 x R

τ τµ
τ τ

µ µ

ϕ ϕ

πε
′

′ 
=

−  
≡   

−
∑ ∫  

Thus the terms of  can be written in the second quantization. For the first 

order term we obtain explicitly 

res

e modes
V − −

res (1) † † † †

e modes
... ... ... ...

† † † † † † † †

... ... ... ...

V M c c d M b c d M c b d M b b d

M c c d M b c d M c b d M b b d

α α α α
τ τ τ τ α τ τ τ τ α τ τ τ τ α τ τ τ τ α

α α α α
τ τ τ τ α τ τ τ τ α τ τ τ τ α τ τ τ τ α

−
 

′ ′ ′ ′ ′ ′ ′ ′    −

′ ′ ′ ′ ′ ′ ′ ′    

= −    +   +  +  

−    +   +  +  

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

 

where 
( ) ( )

3

*
2 N

3

(0) (0 )
10

x xe
M w Z X d x

2 2 4 R x R

τ τα
τ τ α τ τ µ αµ

µα α µ µ

ϕ ϕ

ω ω πε
′

′ ′  
=

⎡ ⎤
− ∂ ⎢ ⎥=   =       ⋅  ⎢ ⎥∂ −⎢ ⎥⎣ ⎦

∑ ∫D  

...
∑ is the sum over all normal modes α  and over the states τ  and τ ′ , on which the 

respective hole or electron operators are defined. 

Note that equal electronic wave functions with different spins give two different 

states 1τ  and 2τ . If τ  were only an index of the wave function, we had an additional 

sum over the two spin states in the expression of Mα
τ τ ′ . 

2.2.2 Discussion 

The eight terms of  correspond to different physical pictures shown in Fig. 1. 

All those terms describe interactions between one phonon and one electron. The in-

teractions, which don't conserve the energy, have very small or vanishing matrix 

elements. 

res (1)

e modes
V −

 
−

A similar derivation is used to obtain the further terms , , etc. 

 contains 16 terms,  32 terms,  64 terms and so on. How-

ever, the corresponding matrix elements decrease rapidly as we go to higher order 

terms. It can thus be assumed that the first term contains the most important contri-

bution in the sense that it yields the most probable interactions. The higher order 

res (2)

e modes
V −

 
−

res (3)

e modes
V −

 
−

res (2)

e modes
V −

 
−

res (3)

e modes
V −

 
−

res (4)

e modes
V −

 
−
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terms describe interactions, which involve several phonons: Generally, the term 

 gives the interaction between  phonons and one electron. res (k )

e modes
V −

 
−

k

We emphasize that  never gives interactions between phonons and several 

electrons. All electron-electron interactions are contained in the residual term 

, which has been introduced in chapter 0. Electron-phonon interactions, which 

involve several electrons are thus obtained by the simultaneous application of 

 and . 

res

e modes
V − −

equil ,res
electronsV

res

e modes
V − −

equil ,res
electronsV

 

E

EF

E

EF

E

EF

E

EF

E

EF

E

EF

E

EF

E

EF

 

Fig. 1: Visualization of the different first order interactions between phonon and elec-

trons. The images are in the same order as the eight terms of the explicit ex-

pression. Filled circles represent electrons, empty circles holes and the dashed 

lines phonons. EF is the Fermi energy of the molecule. The interactions, which 

don't conserve the energy, have very small or vanishing matrix elements. 

 

2.3 Electron-phonon interaction in perfect crystals 

The goal of the present chapter is to apply the electron-phonon interaction of the 

general molecule to the particular case of a crystal. Therefore we make use of the 

particular structure of the electrons and normal modes, which result from the high 

symmetry of the crystal. On one hand this application serves as an important exam-

ple of the general theory. On the other hand it gives a physical understanding of the 

perfect crystal, which is necessary to understand interactions in crystals with impuri-

ties or heterostructures. 
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Again the extended development is shown in appendix (8.1.3). Here, the general 

ideas are briefly mentioned and the result is discussed from a physical viewpoint. 

2.3.1 From the molecule to the crystal 

Passing from to the general molecule to the crystal we are subject to one conceptual 

change: The crystal electrons can be considered as either bound to specific ions or as 

valence electrons dispersed all over the structure. Every nucleus together with its 

bound electrons will be considered as one physical entity called "ion". Those ions are 

treated as point charges. In the general theory of the molecule, the nuclei become 

ions and the electrons become the valence electrons. To keep a record of this con-

ceptual change, we write . res res

e nuclei e ions
V V− −− −

    →    

The mean positions of the ions of a crystal form a periodic structure, which is usually 

decomposed in a Bravais lattice BL  and a basis B . Each ion µ  is described by two 

vectors l BL∈  and b B∈ , where l  indicates the position of the primitive cell and b  

the location of the ion within the cell. The equilibrium position of the ion is thus given 

by (0)

( l ,b )
R l= + b . 

2.3.2 Electrons and phonons in crystals 

The mean electrical potential of a crystal has the periodicity of the underlying Bravais 

lattice. In this case the Bloch Theorem states, that the electronic energy eigenstates 

are of the form 

ik r

k k
(r ) u (r )eϕ ⋅=   

where 
k

u (r )  has the periodicity of the lattice. Further the functions 
k

u (r )  can be 

chosen to be orthonormal. 

Every wave function 
k
(r )ϕ  gives two simultaneously accessible states, with opposite 

spins σ . A one-electron state τ  is thus entirely described by a couple (k, )σ :   

(k , )τ σ    →    . 

For any derivation in the reduced Hilbert space without spins, it is important to re-

member that equal wave functions with opposite spins are orthogonal. We shall add 

to the index σ , 

( ) ik r

k , k
r u (r )e

σ
ϕ ⋅=  , 

and use the Kronecker Delta-function to mark the orthogonality, 
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( ) 3

k , k , k , k , k k
, d r (r ) (r ) σ σ σσ σ σ σ σϕ ϕ ϕ ϕ δ δ∗ δ′ ′  ′ ′  

=    =  ∫ ′
 

The ionic motion of the crystal is again described in independent normal modes. 

Those modes are shown to be plane waves of the vibration amplitude, indexed by a 

wave vector q  (see appendix). Each plane wave is associated with  normal 

modes, where  is the number of basis points of the underlying crystal. The phonon 

annihilation and creation operators are called  and , where  is 

an additional index to distinguish between different normal modes with the same 

wave vector. 

3r

r

(q, j )d †
(q, j )d j 1,...,3r=

2.3.3 Residual interaction term 

In the general theory the interaction term between electron and phonons  

has been developed in series. In the case of a crystal, the first order term is shown to 

be 

res

e modes
V − −

( )res (1) (q, j ) †
( q, j ) (q , j )b ,k ,k k , k ,e ions

(q, j ),b ,k ,k ,

V M a a d
σ σ

σ
−

 +
−′ ′−

′

 =     +∑ d  

with ( ) ( )
3

i q k k x(q, j ) iq b 3
3b,k ,k (q, j ),b k k

(q, j )b

N
M i q U q e d x e u (x)u (

16 Mπ ω
′+ + ⋅− ⋅ ∗

′ ′
x)

⎡ ⎤
= −    ⋅        ⎢ ⎥

⎢ ⎥⎣ ⎦
∫Ñ  

The factor 3r
q, j ∈Ñ , called "polarization vector", is explained in appendix 8.1.3. 

In the electron-hole-notation, 

res (1) † † † †
q, j q , j q , j q , jk , k , k , k , k , k , k , k ,e modes

... ... ... ...

† † † † † †
q, j q , j q , jk , k , k , k , k , k ,

... ... ...

V M c c d M b c d M c b d M b b

M c c d M b c d M c b d M

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

−
 

′ ′ ′−

′ ′ ′

= −    +   +  +  

−    +   +  +

∑ ∑ ∑ ∑

∑ ∑ ∑ † †
q, jk , k ,

...

b b d
σ σ′

 ∑

d
′

 

where the sum goes over all normal modes  ∑ ( )q, j , over all the basis vectors 

b B∈ , and over all the states ( )k,σ  and ( )k ,σ′  on which the respective hole or exci-

tation operators are defined. 

2.3.4 Discussion 

We first realize that the first order term of  has the structure obtained in the 

case of the generic molecule. There are eight terms that describe different interac-

tions between one electron and one phonon. However, in case of a crystal the matrix 

elements are easier to calculate. In praxis the difficult part is to know the ionic 

res

e modes
V − −

potential ( )U r . It is needed to obtain the Fourier components ( )U q  and to solve the 
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tential ( )U r . It is needed to obtain the Fourier components ( )U q  and to solve the 

eigensystem of the dynamical matrix (see appendix). 

An important particularity of the crystal is the relation between the electron momen-

tums k  and k′  and the phonon momentum q . As shown in appendix 8.4.3 the sum 

q k k′+ −  has to be an element of the reciprocal lattice. We can also write 

k k q G′ = + −  

where G  is a reciprocal lattice vector. Since we only consider wave vectors k , k′ , q  

inside the first Brillouin zone, there is only one possible solution for G . The interac-

tion is called "normal process" If G 0=  and "umklapp process" if G 0≠ . In the latter 

case k q+  lies outside the first Brillouin zone. G  guaranties that k′  is again in the 

first Brillouin zone (see Fig. 2). 

1st zone

2nd zone 3rd zone

k
k

k’
k’

q

q

G

Normal process Umklapp process

 
Fig. 2: Difference between normal and umklapp process in the reciprocal space. 

We also mention an important application of the presented theory: Based on the ex-

plicit form of  one can derive an effective interaction between electrons 

through intermediate interactions with phonons. By virtue of this effective interaction 

electrons tend to attract themselves at very low temperatures and to generate bos-

onic pairs, which form a Bose-Einstein condensate. The latter state is the supercon-

ducting state of a crystal. 

res (1)

e modes
V −

 
−

Finally, we shine light on the fact that the crystal theory is somewhat too restrictive 

for the aimed application of quantum dots. In fact,  only accounts for elec-

trons in the Bloch state. Thus no other states, such as quantum dot electrons inside 

the crystal can be treated. Nevertheless the theory of the perfect crystal is essential 

to understand the physics of the imperfect crystals and heterostructures. 

res (1)

e modes
V −

 
−
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2.4 Electron-phonon interaction in polar crystals: "Fröhlich 

Hamiltonian" 

This section presents a very different approach to electron-phonon interactions. It 

considers a diatomic crystal with two-point basis, in which optical modes cause po-

larization waves. We establish the interaction of a single electron in the crystal with 

this polarization waves. Since this approach is restricted to a particular set of crystals 

it is less general than the one described in chapter 2.3. However, it considers the 

interaction with a general electron state with no restriction to Bloch states. 

The underlying physical model is first explained in detail. Then, the classical equa-

tions of motion are established using the classical theories of mechanics and electro-

dynamics. From the equations of motion we go over to the quantum mechanical in-

teraction term while skipping a large part of mathematical development and the 

quantization. The mathematical development doesn't present a physical interest and 

the quantization is very similar to the quantization of the normal modes presented in 

appendix respective to the previous chapters. 

2.4.1 Physical model 

A perfect crystal with two ions per unit cell is considered as the dielectric medium of 

an electrodynamic description. It is subjected to a displacement field D , which in-

duces a polarization field P . The resulting electric field is 

( )
0

1
E D

ε
= − P  

This is the field, which acts on charges that lie inside the crystal but don't belong to 

it. The "effective electric field", which acts on an ion of the crystal differs from E  by 

the fact that the ion doesn't feel its own contribution to the polarization P . An ade-

quate approximation of this field is 

eff
0

1
E E

3ε
= + P  

While the whole crystal acts like a dielectric medium, we consider a single electron 

inside the crystal as not belonging to the medium. This electron constitutes the 

charge distribution and fixes the displacement field D  by the virtue of the Gauss law 

( ) ( )D x e x rδ∇ ⋅ = −  −  

where r  is the position of the electron. 
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2.4.2 Equations of motion 

Polarization field 

We first derive the dipole induced by a single ion with valence , which is displaced 

by a vector u

Z

 from its equilibrium position. 

1) Due to its charge  the displaced ion yields a local dipole equal to Z e Z eu  . 

2) When ions are displaced from their equilibrium positions, they suffer some 

deformation as a consequence of the overlap of the electronic shells with 

neighboring ions. This contribution is to a first approximation linear in the 

ionic displacement and gives rise to a small correction term equal to uλ−  , 

0λ > . 

3) The electrons of the ion are further displaced by the local electric field effE . 

This leads to a third polarization term, which is mainly linear in effE . It is writ-

ten as effEα , where α  is called the "electronic polarizability". 

The total microscopic dipole becomes 

effZ eu u Eξ λ α=   −  +   

The constant λ  can be considered as correction of the valence charge . We can 

merely introduce a renormalized charge , such that 

Z e 

*Z *Z e Z e λ≡  − . Thus 

*
effZ eu Eξ α=  +   

Next, we consider a single primitive cell with two ions. For a given displacement u+  

and u−  of the positive and negative ion the local dipoles become 

*
effZ eu Eξ α+ + +=  +  

*
effZ eu Eξ α− − −= −  +  

where α+  and α−  are the electronic polarizability of the positive and negative ion 

respectively. The mean polarization density inside the primitive cell is 

( ) ( ) ( )*
effcell cell

1 1
P Z e u u

V V
ξ ξ α α+ − + − + − E⎡ ⎤= + = − + +⎣ ⎦  

where  is the volume of the primitive cell. To simplify this expression, we intro-

duce the relative displacement w u

cellV

u+ −≡ −  and the total electronic polarizability 

α α α+≡ + − . Then, 
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( )*
effcell

1
P Z ew E

V
α=  +   

The effective electric field effE  is not directly accessible. Therefore we express it as a 

function of E  and P  and solve again for P . We obtain 

cell cell*
0 0

cell cell cell cell
0 0

3 V 3 VZ e
P w

V 3 V V 3 V
ε εα

ε α ε α
⎡ ⎤ ⎡

=   +   ⎢ ⎥ ⎢−  −⎣ ⎦ ⎣
E

⎤
⎥
⎦

 

which is a first "equation of motion". 

Ionic motion 

The ions are subjected to electrical forces, which are supposed to be decomposed in 

a short-range and a long-range component. The short-range force comes from the 

electrostatic interaction between two ions of the same unit cell. The long-range force 

is due to the interaction with all the other ions through the global polarization field. 

We can thus write 

short longF F F= +  

( )
( )

short
K u u K w positive ions

F
K u u K w negative ions

+ −

+ −

⎧  − − = −         ⎪=   ⎨
  + − = +   ⎪⎩

 

*
efflong

*
eff

Z eE positive ions
F

Z eE negative ions

⎧  +         ⎪=   ⎨
  −   ⎪⎩

 

where we have introduced the short-range force constant . K 0>

Newton's equation of motion yields 

( ) *
effm u K u u Z e E+ + + −= − − +   and ( ) *

effm u K u u Z e E− − + −= + − −   

Combining those equations we obtain 

*

0

P
w K w Z e E

3
µ

ε

⎛ ⎞
 = −  + +⎜ ⎟⎜ ⎟

⎝ ⎠
 

where 
m m

m m
µ + −

+ −

≡
+

   "reduced mass"      and       w u u+ −≡ −    "relative position" 

Using the expression of P , we obtain a second equation of motion, 

( )
cell2 2

0
cellcell

00

3 VK Z e Z e
w w

3 V3 V

ε
µ µ ε αµ ε α

∗ ∗⎡ ⎤
E

⎡ ⎤
⎢ ⎥= − + +   ⎢ ⎥−⎢ ⎥− ⎣ ⎦⎣ ⎦
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Solving the equations of motion 

The results of two previous sections are summarized in the following system of equa-

tions 

(1) 11 12w b w b E=  +   

(2) 21 22P b w b E=  +   

As shown in [38] the b-coefficients can be related to measurable quantities: ,  

and  are functions of the relative dielectric constants in a static (

12b 21b

22b rε ) and high fre-

quency (ε∞ ) field.  can be expressed as a function of the longitudinal optical pho-

non frequency 

11b

LOω . This is a very important conclusion since it means that all the 

employed microscopic quantities don't have to be measured. 

In order to solve for the three unknown variables E , P  and w , a third equation is 

needed. We suppose that the motion of the ions is too slow for induction phenomena 

to occur, which means that B 0= . Thus, another equation is given by 

(3a) E 0∇ × =  

This relation leads to longitudinal plane wave solutions and excludes transverse ones. 

We note that a vector field is only partially determined by its curl. To complete the 

equation, an expression for its divergence is needed. We can use the Gauss law 

( ) ( )D x e x rδ∇ ⋅ = −  −  combined with the relation 0D Eε P= + . This gives the last 

equation 

(3b) ( ) ( )
0

1
E r e r r Pδ′ ′∇ ⋅ = −  −  − ∇ ⋅

ε
 

The equations (1), (2), (3a), (3b) constitute a complete set of equations to solve for 

E , P  and w . 

2.4.3 Fröhlich Hamiltonian 

The solution of the equation of motion is obtained by introducing a cubic volume V  in 

which all the physical functions have to satisfy the periodic boundary conditions. The 

mathematical derivation of the solution is long but doesn't present a lot of physical 

aspects. Therefore we don't present it here and refer the reader to [39]. The solution 

of the crystal motion can be decomposed in normal modes, which physically repre-

sent longitudinal waves of the polarization field. When quantifying those polarization 

modes we obtain a Hamiltonian governing the interaction between the polarization 

modes and the single electron. This Hamiltonian has first been derived by H. Fröhlich 

[40] in 1949 (see original text in appendix 8.7.4). Its explicit form is 
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( )Fröhlich iq r * iq r †
q q qe phonons

q

H g e d g e−
⋅ − ⋅

−
=   +   ∑ qd , where 

2
LO

q 2
r0

e 1 1
g i

2 V q
ω

ε εε ∞

⎛ ⎞ 
= − −⎜ ⎟

  ⎝ ⎠
 

The wavevectors q  associated with the polarization modes satisfy the periodic 

boundary conditions of the quantization volume V . The polarization modes are ex-

pressed in second quantization by the annihilation and creation operators of longitu-

dinal optical phonons qd  and †
qd . Since there is only one longitudinal optical mode 

per wave vector q  we don't need the degeneracy index  introduced in chapter 2.3. 

The electron position operator 

j

r  has not yet been transformed to second quantiza-

tion. We like to write the interaction Hamiltonian in the same form as in chapter 2.2 

and 2.3. Thus, it is extended to the n electron−  formalism although we don't account 

for interaction terms which involve more than one electron. The second quantization 

of the electronic coordinates is achieved by (see [41]) 

( )Fröhlich q † q † †
q qe phonons

, Jq

H M a a d Mτ τ τ τ τ τ τ τ
τ τ

 

−

∗

′ ′ ′ ′  −
′  ∈

=    +  ∑ ∑ a a d  

where     ( ) ( )
3

2
q 3 iqLO

2
r0

e 1 1
M i d x e x

2 V qτ τ τ τ
ω

ψ ψ
ε εε

⋅ ∗
′ ′ 

∞

⎛ ⎞ 
= − −     ⎜ ⎟

  ⎝ ⎠
∫ x x  

This interaction is again written in the electron-hole-notation 

Fröhlich q † q † † q q †
q q qe phonons

... ... ... ...

q † † q † † † q † q †
q q q

... ... ...

H M c c d M b c d M c b d M b b d

M c c d M b c d M c b d M b b

τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

− ′ ′ ′ ′ ′ ′ ′ ′    −

′ ′ ′ ′ ′ ′ ′    

= −    +   +  +  

−    +   +  +  

∑ ∑ ∑ ∑

∑ ∑ ∑

q

†
q

...

dτ ′∑

 

where the sum  ∑ goes over all reciprocal lattice vectors q  and over the states τ  

and τ ′ , on which the respective hole or excitation operators are defined. 

2.4.4 Discussion 

We discuss the framework and the limitations of the Fröhlich interaction. 

A comparison of the Fröhlich Hamiltonian to the general electron-phonon interaction 

of chapter 2.2 immediately shows that Fröhlich only constitutes a first order term. 

Explicitly, the Fröhlich interaction is linear in the normal mode coordinates and thus 

only describes interactions with one phonon. This limitation arises from the linearity 

of the underlying physical model: The polarization field P , the electric field E  and 

the ionic displacement w  were assumed to depend linearly on each other. 

It is further necessary to emphasize the difference between "polar" and "optical" 

modes. Any crystal consisting of a Bravais lattices and basis with more than one ion 

possesses both acoustic and optical modes. In acoustic modes the ions at different 
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basis points oscillate with equal phase, in optical modes the phases are shifted. If the 

ions at different basis sites are all equal, such as in diamond, the ionic motion does 

not induce a polarization field. Thus the modes of a monatomic crystal are called 

"non-polar acoustic" and "non-polar optical". However, if the ions of the crystal basis 

are different, their valence charges are generally different and the ionic motion 

causes a polarization field. The modes of a diatomic or multi-atomic crystals are thus 

referred to as "polar acoustic" and "polar optical". Fig. 3 shows the modes in case of 

a crystal with a two-point basis. From the images it is obvious that polar acoustic 

modes cause very weak polarization fields compared to the polar optical ones. In 

practice the term "polar mode" is thus often used as a synonym of "optical mode" in 

the case of a polar crystal, although rigorously one should say "polar optical mode". 

 "acoustic mode" "optical mode" 

"non-polar mode" 

(two-point basis with equal 

valence charges) 

Examples: Si, Diamond 

  

"polar mode" 

(two-point basis with differ-

ent valence charges) 

Examples: GaAs, AlAs, InAs, 

InSb 

+

_

 

+

+

_

__
 

(Fröhlich Hamiltonian) 

Fig. 3: Distinction between acoustic, optical, polar and non-polar modes of a crystal 

with two-point basis. The Fröhlich Hamiltonian only applies to the polar optical 

modes (right, bottom). 

In the derivation of the Fröhlich Hamiltonian we consider a polar crystal with two dif-

ferent ions per basis. They are supposed to move in opposite directions, which leads 

to oscillations with opposite phases, thus to optical modes. Therefore, we conclude 

that the Fröhlich interaction only accounts for "polar optical modes". 

Further, the derivation is based on the assumption that magnetic induction phenom-

ena can be neglected. Thus transverse optical modes have been excluded. This as-

sumption is justified by two considerations. First, at low temperatures the ionic mo-

tion can be shown to be slow enough, that the influence of induction is negligible 

compared to the electrostatic interaction. Second, the energy spectrum of the inter-

acting electron is often discrete with large energy spacings (e.g. in quantum dots). If 

the electronic energy quanta are large compared to the energy quanta of the acoustic 

phonons, then the interaction can be expected to be small. 
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Finally, we emphasize that the Fröhlich interaction only accounts for one-electron 

interactions. When transcribing the Fröhlich Hamiltonian to the multiple electron for-

malism all the electrons are considered to interact separately with the polar optical 

phonon. This is in agreement with the general derivation of chapter 2.2. In 2.2.2 it 

was explained that interactions with several electrons are obtained by the simultane-

ous application of the electron-electron interaction . Thus the fact that Fröh-

lich works with a single electron doesn't represent a conceptual limitation. 

equil ,res
electronsV

To conclude the discussion, the application field of the Fröhlich Hamiltonian is sum-

marized in the following compact form: 

The Fröhlich Hamiltonian describes to first order (in the normal mode coordinates) 

the electrostatic interaction  between a single but general electron state and the 

longitudinal optical phonons in a diatomic crystal with two-point basis. 
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3 General quantum dot systems and analytical results 

We shall introduce a quite general quantum dot system with an appropriate mathe-

matical representation. Then, we develop analytical tools to solve the polaron 

dynamics and to reveal important physical interpretations. 

 

3.1 Physical model 

We consider an arbitrary quantum dot formed by a heterostructure in a semiconduc-

tor consisting of a diatomic crystal with two-point basis. Those specifications are nec-

essary for the Fröhlich interaction to be valid, as we could show in section 2.4.4. 

Within the Born-Oppenheimer approximation (see 2.1.2), we shall consider the elec-

tronic and ionic components of the crystal as decoupled up to remaining interactions 

between electronic and ionic excitations. By virtue of the harmonic approximation, 

the ionic state of motion is decomposed in independent normal modes (see 2.1.2). 

Applying the scheme of second quantization, this leads to consider the crystal as a 

gas quantized excitations called "phonons". Those phonons are restricted to bulk 

phonons. As for the electrons, we do not need to specify the method to evaluate their 

dynamics (e.g. mean field or k⋅p-method). We shall, however, suppose that the elec-

tronic ground states and the excited states confined to the quantum dot are known. 

Further, we adopt the "electron-hole"-semantics. Thus, the term "electron" always 

refers to an excitation above the collective ground state, such as an electron confined 

to the quantum dot. 

We assume that the phonon gas and the electrons interact exclusively through the 

Fröhlich interaction. In section 2.4 this interaction is shown to exhibit a first order 

contribution (in the normal mode coordinates) of the electrostatic interaction be-

tween a single but general electron state and the longitudinal optical phonons in a 

diatomic crystal with a two-point basis. Thus, only the longitudinal optical phonons 

are involved in our considerations. We shall therefore restrict the crystal description 

to a gas of LO-phonons. 

The whole system is considered at sufficiently low temperatures for the electron and 

phonon numbers to be restricted to zero and one. 
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3.2 Mathematical representation 

3.2.1 System representation (Hilbert space) 

The electron confined in the quantum dot is represented in the Hilbert space  of 

dimension  The n  energy eigenstates are noted 

e H

n . 1 ,..., n  ed with increas-

ing energies. We call g  the degeneracy of the most excited energy level. Thus the 

set of "not fully excited" energy eigenstates is 

, order

1 ,..., n g  − . 

The LO-phonon gas introduced in section 3.1 is completely described by the number 

of excitations in every normal mode (see 2.1.2). We shall call N  the number of nor-

mal modes and iq , i 1,...,N= , the respective wavevector. Those vectors are con-

fined to a primitive cell of the reciprocal lattice, usually taken as the first Brillouin 

zone. Further, they are chosen to satisfy the periodic boundary conditions of an arbi-

trary quantization volume V  (see 2.4.3). We emphasize that this volume is a purely 

mathematical tool, since it is topologically impossible to realize a three-dimensional 

object with periodic boundary conditions in all dimensions. In the framework of the 

low temperature approximation, the total number of phonons is at most one, which 

translates in saying that each normal mode is at most once excited. A suitable basis 

of this model contains the zero-phonon state 0  and the  one-phonon states N i1q . 

Together with the vector product defined by the orthonormality of those states, they 

span a Hilbert space ph H  of dimension N 1+ . 

The strength of the Fröhlich interaction is inversely proportional to the norm of the 

wavevector iq . Thus, the predominant contribution comes from small wavevectors 

close to the zone center, where the phonon dispersion is very narrow. We shall there-

fore take the phonons as monochromatic, their energy being equal to 

LO i LO LO(q )ε ε ω= ≡ . 

The combined system of electron and crystal is represented in a tensor product space 

. We decide on writing the non-entangled product states as e  ⊗H Hph

electron state phonon state electron state phonon state     ≡  ⊗   

Product states of an electron states on the most excited level and an arbitrary one-

phonon state are only reached through anti-resonant interaction. This interaction 

doesn't conserve the energy and the corresponding coupling term is very small. 

Therefore, such states can be safely neglected. Finally, the relevant Hilbert space  

is spanned by the "tensor product basis" 

H
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{ }i i i1 0 , 2 0 ,..., n 0 , 1 1q , 2 1q ..., n g 1q : i 1...N            −     = , 

where  is the degeneracy of the most excited electron level. This space exhibits 

 dimensions. Fig. 4 shows a visualization of the tensor product basis 

states in the particular case of three electron levels. 

g

n (n g)N+ −

 
Fig. 4: Representation of the zero-phonon states (red) and the one-phonon states (blue) 

included in our quantum dot model with three electron levels A, B, C. 

3.2.2 System evolution (Hamiltonian) 

The system evolution is governed by a Hamiltonian operator 

free FröhlichH H H= +  

The one-body term 

i i

N
free † †

ph e L0 q q
i 1

H a a 1 1 dτ τ τ
τ

ε ε
=

⎛ ⎞⎛ ⎞
= ⊗ + ⊗ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ d  

describes the free evolution of the electrons confined in the quantum dot and the free 

evolution of the LO-bulk-phonons. This free evolution inherently comprehends the 

Born-Oppenheimer approximation (nuclei-electron decoupling), the harmonic ap-

proximation (nuclei-nuclei decoupling) and a suitable approximation for the mean 

interaction between electrons, such as given by Hartree-Fock. Extended explanations 

to these approximations were developed in section 2.1. 

The interaction term, taken as the Fröhlich Hamiltonian, has the form 

( )i i

i i

N
q qFröhlich † † †

q q
i 1 ,

H M a a d M aτ τ τ τ τ τ τ τ
τ τ

 ∗

′ ′ ′ ′  
′=   

=    +  ∑ ∑ a d  

with    

( ) ( ) ( ) ( )i i i

3 3

2
q iq x3 3LO

2
r0 i i

e 1 1
M i d x e x x d x e x

2 V q q V
τ τ τ τ τ τ

ω λψ ψ ψ ψ
ε εε

⋅ ⋅∗ ∗
′ ′ ′ 

∞

⎛ ⎞ 
= − −     =   ⎜ ⎟

  ⎝ ⎠
∫ ∫ iq x x  
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The sum over iq  goes over all the reciprocal space vectors inside the first Brillouin 

zone, which yield plane waves with the periodicity of the quantization volume V  (see 

2.4.3). 

In the product state basis introduced above, the Hamiltonian has the following matrix 

representation: 

1

n

x

H

ε

ε

                                                                     

=

x

x

 
  

                                                                     

1 LO

1 LO

2 LO

n g LO

x

x x

x x

ε ε

ε ε

ε ε

ε ε−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟+
⎜ ⎟
⎜ ⎟
⎜ ⎟

+⎜ ⎟
⎜ ⎟+    ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

 

The diagonal elements come from the free evolution term, whereas the two off di-

agonal blocks contain the Fröhlich coupling elements. The dimension number of this 

Hamiltonian is equal to  and thus depends on the number of normal 

modes , which is proportional to the quantization volume V .  is generally large 

and becomes infinite if V  becomes infinite. 

n (n g)N+ −

N N

Previous theoretical investigations emphasized that the evolution problem of such a 

quantum dot system is hardly approached by perturbation theory [30, 31, 32, 33]. 

However, finding the non-approximate evolution given by a very large Hamiltonian, 

which means diagonalizing a high dimensional matrix, represents a complex numeri-

cal task. We will nevertheless introduce analytical simplifications, which drastically 

reduce the dimension of the relevant Hilbert space. Those analytical simplifications 

and a set of tools for physical interpretation will be developed of the following sec-

tion. 

 

3.3 Analytical results and interpretation tools 

This section summarizes some analytical key results. In particular, we introduce a 

non-orthonormal basis, which we call the "natural basis", to represent all the quan-

tum dot polarons. This basis allows us to investigate the substructure of the polaron 

space and to associate a physical image to each polaron. 

We will emphasize the physical aspects, while keeping the mathematical derivations 

brief. The mathematical developments are expended in the appendix (8.1). 
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3.3.1 Hilbert space reduction, "Natural Basis" 

We intend to determine the evolution described by the Hamiltonian . 

This task is equivalent to finding all the eigenstates and eigenenergies of this Hamil-

tonian – a high dimensional diagonalization problem. 

free FröhlichH H H= +

Recent research activities have revealed that the solution of this problem yields a 

small number of polaron states, which are coupled to the quantum dot electronic 

states, and a large number of dispersed bulk phonons [30, 31, 32, 34]. 

In this work, we show the existence of an orthogonal decomposition of  in spaces 

that are stable under the action of . In particular, we introduce a stable subspace 

, "called reduced space", which contains all the quantum dot polarons, i.e. pola-

rons that couple to certain quantum dot electronic states. We reveal that this space 

exhibits a small dimension allowing numerical methods to work efficiently. Finally, we 

show that  contains all the zero-phonon states – states that are often taken as 

initial states of a relaxation process. By virtue of those particular features, we shall 

restrict our considerations to . 

H

H

red H

red H

red H

First, we note that  can be decomposed in zero-phonon and one-phonon sub-

spaces: 

H

n g

0ph 1ph 0ph 1ph1 ττ

−

       +=

⎛ ⎞
= ⊕ = ⊕ ⊕⎜ ⎟

⎝ ⎠
H H H H H    

where { }(0ph vect 0 : 1,...,nτ τ  ≡    =H )  "zero-phonon subspace" 

{ }( )1ph ivect 1q : i 1,...,Nτ τ   +  ≡    =H  "one-phonon subspace of electron τ " 

For each electron energy eigenstate 1...nτ =  we define the orthogonal projector 

1ph 1phP :τ τ   +    +   →H H  

Further, we define the subspaces 

( )A, 1ph 0ph 1phP Hτ τ  +   ≡ ⊆H H τ + H  and their orthogonal complements 

B, A,τ τ ⊥H H  such that A, B, 1phτ τ τ    ⊕ =H H H  +  

In this way, we are led to the following orthogonal decomposition of , H

( ) ( )
n g n g

0ph A,1 B,1 A,n g B,n g 0ph A, B,1 1
... τ ττ τ

− −

    −  −    = =

⎛ ⎞ ⎛
= ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕⎜ ⎟ ⎜

⎝ ⎠ ⎝
H H H H H H H H H

⎞
⎟
⎠
 

In appendix 8.2.1 we prove that the particular structure of the Fröhlich Hamiltonian 

and the monochromaticity of the LO-phonon spectrum imply that all the subspaces 

B,τ H  are stable, i.e. B, B,H τ τ τ  ⊆     ∀H H . This is an essential feature that we shall ex-
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ploit in the following. As all the states of a given space B,τ H  have the same energy 

equal to LO τε ε+ , it follows that the spaces B,τ H  are highly degenerate eigenspaces of 

the evolution operator. In physical terms, those spaces represent the large bath of 

superpositions of degenerate one-phonon states, which do not couple to confined 

electron states. 

We address particular attention to the remaining orthogonal part, which we call "re-

duced space ". From the decomposition shown above it follows that red H

        "reduced space" (
n n

red 0 ph A, 0 ph 1ph 0ph1 1
P Hτ ττ τ       +  = =

⎛ ⎞ ⎛≡ ⊕ ⊕ = ⊕ ⊕⎜ ⎟ ⎜
⎝ ⎠ ⎝

H H H H H )⎞
⎟
⎠

This space exhibits a list of four physical key properties: 

  is stable under the action of H , i.e. . Consequently a state 

vector initially contained in  stays inside  over time. This follows di-

rectly from the stability of its orthogonal complements 

red H red redH   ⊆H H

red H red H

B,τ H . 

  is the only subspace of  that couples different electron states. In other 

words,  contains all the eigenstates of the full Hamiltonian , which in-

volve several electron states. This immediately derives from the feature that 

all the spaces 

red H H

red H H

B,τ H  only contain uncoupled states. 

 As shown in appendix 8.2.1,  exhibits a small number of dimensions that 

is independent of the number of normal modes, 

red H

( ) ( )reddim n n g 1= − +H .  is 

the number of electron eigenstates and  the degeneracy of the most excited 

level. 

n

g

  contains all the zero-phonon states, which are often considered as initial 

states. 

red H

In consequence of those fundamental features, the reduced subspace  of the 

orthogonal decomposition 

red H

red B,1 B,n g...   = ⊕ ⊕ ⊕H H H H −  

constitutes the physically interesting space. 

Natural basis 

A basis of the reduced Hilbert space  is naturally obtained by summing the basis 

vectors of its subparts (see definition above). We shall call this basis the "natural 

basis": 

red H
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N

i i
i 1

0 , 1q 1q H 0 , 1...n, 1...n gν τ τ ν ν τ
=

⎧ ⎫
             =   =  −⎨ ⎬

⎩ ⎭
∑        "natural basis" 

Ferreira, Verzelen and Bastard have emphasized [42] that only one-phonon superpo-

sitions of the type 
N

i ii 1
1q 1q H 0τ τ ν

=
      ∑  are involved in electron-phonon coupling 

regimes. Our affirmation, that the subspace  contains all the quantum dot pola-

rons agrees well with this statement. 

red H

It might surprise that we decide to use this non-orthonormal basis. We will, however, 

show, that the natural basis allows to develop analytical tools to classify the polarons, 

to give them a simple mathematical expression and to associate a physical image to 

each polaron. Furthermore, the vectors of the natural basis have themselves interest-

ing physical interpretations. As for the zero-phonon states 0ν  , they can be inter-

preted as isolated electron states. The one-phonon states 
N

i ii 1
1q 1q H 0τ τ ν

=
      ∑  

yield the following physical interpretation: 

 They are sums of one-phonon tensor product states associated with one fixed 

electron state τ . The weight of each such states is given by i if (q ) 1q H 0τ ν=     . 

The inverse Fourier transform of this function gives the physically meaningful "vi-

brational density function". Since i1q H 0τ ν     is itself mainly proportional to the 

Fourier transform of the wave function product τ νψ ψ  (see Fröhlich Hamiltonian in 

3.2), its inverse Fourier transform is again proportional to τ νψ ψ . This function is 

localized in the quantum dot, since its two factors are localized. We conclude that 

the one-phonon basis states of the natural basis are normal mode superpositions 

that are localized in the quantum dot! 

 The one-phonon states of the natural basis can also be viewed as the states 

H 0ν   projected on the one-phonon subspace associated with the electron state 

τ . This image immediately reveals that the one-phonon states of the natural ba-

sis couple to the zero-phonon states. 

A critical discussion on the use of the natural basis is held in chapter 6. 
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Some other insight 

Up to here, the orthogonal decomposition of the Hilbert space  was presented from 

an abstract viewpoint. Two additional viewpoints may help to sharpen our under-

standing: 

H

 Matrix representation: 

There is a partially orthogonal basis of the Hilbert space , in which the matrix 

representation of the Hamiltonian operator  is bloc-diagonal: 

H

H

red

B, 1

B, n g

H

H
H'

H

τ

τ

 
=

= −

⎛ ⎞
 ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟    
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

This matrix is obtained from the initial matrix  by a similarity transformation, 

which implies the existence of a non-singular matrix  such that . 

H

S 1H' S HS−=

 Conserved physical quantity: 

The system evolution conserves a quantity  that is different from the energy. 

This quantity is associated with a hermitian operator 

x

X , which commutes with 

the Hamiltonian operator , H H, X 0=⎡ ⎤⎣ ⎦ . Such an operator is easily obtained by 

combining all the orthogonal projectors on the different stable subspaces. For ex-

ample, 

( )
n g

B,
1

X projector onH τ
τ

τ
−

=

≡ ⋅   ∑  

In this way, 

H, X 0=⎡ ⎤⎣ ⎦        and       red

B,

0 if
X x with x

if τ

ψ
ψ ψ

τ ψ
 

 

⎧     ∈⎪=         = ⎨
    ∈⎪⎩

H

H
 

3.3.2 Physical symmetries and substructure of the reduced Hilbert space 

After having developed a suitable representation of quantum dot polarons in a gen-

eral quantum dot model in the previous section, we shall now investigate the conse-

quences of a spatial symmetry. In particular, we show that a symmetry plane allows 
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to decompose the reduced polaron space , introduced in the previous section, in 

two decoupled subsets. 

red H

We introduce this subject with a general remark about a single spatial symmetry. Let 

us suppose that the quantum dot system obeys a symmetry represented by the 

symmetry operator , which commutes with the Hamiltonian . It follows 

that the eigenstates of  can be chosen to be simultaneous eigenstates of . The 

respective eigenvalues are noted 

P H, 0=⎡ ⎤⎣ ⎦P

H P

p . From the commutation property it follows that 

p  represents a conserved physical quantity and that the system evolves independ-

ently inside different eigenspaces of . Therefore, the total Hamiltonian can be 

solved independently for each eigenvalue of the symmetry operator. Thus, the Hilbert 

space  yields an orthogonal decomposition in decoupled subspaces, each of 

which is associated with a different eigenvalue of . 

P

red H

P

In this work, we investigate pyramidal quantum dots that exhibit three vertical sym-

metry planes, which constitute the symmetry group C3V (see Fig. 5). 

 
Fig. 5: Vertical symmetry planes (σ1, σ2, σ3) of the pyramidal quantum dot investigated 

in this work. Those symmetries define the group C3V. The considerations of this 

paragraph only use one the symmetry plane σ1, which constitutes the group CS. 

In this case, the quantum dot yields three symmetry operators, which do not com-

mute mutually. Thus, our previous considerations about the general symmetry op-

erator P  e not easily extendable. An efficient investigation of the symmetry group 

C

ar

3V requires group theory. In the frame of this work, we decide on restricting the 

symmetry considerations to the group CS that consists in one symmetry plane taken 

as σ1. This allows us to bypass group theory and to develop conclusions for the pola-

ron states of a more general quantum dot system. We could nevertheless lose certain 

additional features related to the higher symmetry. 

We define  as the symmetry operator associated with the symmetry plane σP 1, 

which is associated with x-z-plane. Thus, the symmetry operator P  inverses the y-

coordinate and exhibits two different eigenvalues p 1= ± , called "y-parity". From the 

preliminary remark of this section it follows, that the Hilbert space  can be de-

composed in two decoupled orthogonal parts associated with a different y-parity, 

red H
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red red red
+ −

   = ⊕H H H  

In the appendix (8.2.2), this general result is developed in a pedestrian way in order 

to obtain another insight as well as to find the suitable natural basis associated with 

the two restrictions of . If the electron eigenstates of the Hamiltonian are chosen 

to be simultaneous eigenstates of the symmetry operator, we prove that the bases of 

 and  are simple subsets of the "natural basis". Explicitly we find (see 

8.2.2): 

red H

red
+

 H red
−

 H

N

red i i
i 1

: 0 , 1q 1q H 0 , 1...n, 1...n g, p 1νν τ τ ν ν τ+
 

=

⎧ ⎫
                  =   =  −   = +⎨ ⎬

⎩ ⎭
∑H  

N

red i i
i 1

: 0 , 1q 1q H 0 , 1...n, 1...n g, p 1νν τ τ ν ν τ−
 

=

⎧ ⎫
                  =   =  −   = −⎨ ⎬

⎩ ⎭
∑H  

red
+

 H  is of dimension ( )n n g 1+ − +  and red
−

 H  is of dimension ( )n n g 1− − + , where n  

and  are the number of electron eigenstates with positive and negative parity, re-

spectively. 

+

n−

The decomposition of  in two decoupled orthogonal subspaces implies that the 

matrix representation of the Hamiltonian  becomes further bloc-diagonal: 

red H

redH

( ) ( )

( ) ( )

red

n n g 1 n n g 1

red

red

n n g 1 n n g 1

H

H

H

+ +

− −

+

− +  × − +

−

− +  × − +

⎛ ⎞
⎜ ⎟

        ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟        
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

3.3.3 Degeneracies and "zero-shift polaron states" 

We show the existence of coupled eigenstates of  with no energy shift relative to 

the free evolution spectrum. Such eigenstates appear in consequence of the degen-

eracy of certain electron eigenstates. 

redH

In section 3.3.1 we could demonstrate that the set of eigenstates of the reduced 

Hamiltonian  contains all the eigenstates of the full Hamiltonian H , which super-

pose different electron eigenstates. In return, it can be shown that every eigenstate 

of  is a superposition of different electron states. We emphasize, however, that 

certain eigenstates of  might be pure superpositions of different degenerate elec-

redH

redH

redH
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tron eigenstates. Such eigenstates of  are also eigenstates of the free Hamilto-

nian , although they couple different electron states. In the following, we agree 

on calling those states "zero-shift eigenstates". 

redH

freeH

In the present quantum dot system, the electron energy eigenstates are either non-

degenerate or twice degenerate due to the spatial symmetry with respect to the x-z-

plane (spin degeneracy is neglected). Let us consider two degenerate electron states 

τ+  and τ− , where the sign refers to the wave function's parity along the y-

coordinate. 

In appendix 8.2.3 we show that  yields eigenstates of the form redH

N N

0 i i i i
i 1 i 1

a 1q 1q H 0 b 1q 1q H 0ν ν
ν

ψ τ τ ν τ τ+ + − −
= =

⎡ ⎤
=       +       ⎢ ⎥

⎣ ⎦
∑ ∑ ∑ ν , 

where ν  ranges over the  electron states with parity pn p . 

Those eigenstates have a strictly non-shifted energy equal to 

LO LO LOτ τ τε ε ε ε ε ε
+ −

+ ≡ + ≡ + . 

More precisely, if an electron level τε , below the most excited level, is degenerate 

(2x), then it gives rise to  linearly independent eigenvectors of  with zero en-

ergy shifts with respect to the spectrum of the free Hamiltonian. For the total re-

duced Hamiltonian  it follows the existence of 

pn p
redH

redH ( )n n n+ −  = +  linearly independent 

zero-shift eigenvectors with energies equal to LOτε ε+ . Let us call  is the number of 

degenerate electron levels below the most excited level or, as we shall say, the num-

ber of "not fully excited electron levels" (see Fig. 4, section 3.2.1). Then, the total 

number of strictly non-shifted states adds up to n

d

d⋅ . 

We emphasize that the choice of zero-shift eigenvectors is not unique. Since the 

zero-shift eigenvectors associated with one degenerate level τ  have an identical en-

ergy LOτε ε+ , they span an eigenspace zero,
red

τ 
 H . As there are  linear independent 

zero-shift eigenstates, the energy 

n

LOτε ε+  is -times degenerated and n zero,
red

τ 
 H  has 

dimension . Every superposition of zero-shift eigenstates inside n zero,
red

τ 
 H  is again a 

zero-shift eigenstate of . Furthermore, we mention that the large bath of uncou-

pled polarons contains many more eigenstates with an energy equal to 

redH

LOτε ε+ . In 

fact, all the states contained in the subspaces B,τ  +H  and B,τ  −H  introduced in section 

3.3.1 have the energy LOτε ε+ . Any superposition of zero-shift eigenstates of zero,
red

τ 
 H  

and states from B,τ  +H  and B,τ  −H  is again an eigenstate of . H
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At this point, one might wonder about the difference between "zero-shift states" and 

the large bath of uncoupled polarons. The crucial point about the zero-shift states is 

that they couple different electron states, even though those electron states are de-

generate. A zero-shift state can never be expressed as a superposition of vectors 

from the uncoupled subspaces B,τ  +H  and B,τ  −H  since those spaces are both orthogo-

nal to , in which the zero-shift states are contained. Furthermore, they are su-

perpositions of natural basis states. Therefore they represent physically localized 

crystal deformations (see "Natural basis", 3.3.1), unlike the delocalized functions of 

red H

B,τ  +H  and B,τ  −H . We conclude that the "zero-shift eigenstates" are indeed a particular 

category of coupled eigenstates. 

3.3.4 Strong coupling subspaces 

We shall investigate now the strength of all the matrix elements of the reduced Ham-

iltonian associated with the quantum dot polarons. These considerations will allow us 

to identify strong coupling subspaces inside  with weak mutual interaction. red H

The following notations are recalled:  is the number of electron state,  is the de-

generacy of the most excited level and d  is the number of not fully excited degener-

ate electron levels. 

n g

In the appendix (8.2.4) we prove that for each electron index 1,...,nν =  the sub-

space 

N

red i i
i 1

vect 0 , 1q 1q H 0 , 1...n gν ν τ τ ν τ 
=

⎧ ⎫
≡               =  −⎨ ⎬

⎩ ⎭
∑H  

contains  orthogonal vectors with strong mutual coupling. In return, 

those vectors are very weakly coupled to all the other subspaces 

n g d 1− − +

red
µ

 H , µ ν≠ . This 

has crucial consequences for the diagonalization of : There are n g  ei-

genvectors of  with dominant contribution of 

redH d 1− − +

redH red
ν

 H  and quasi vanishing contribu-

tion of all the other subspaces red
µ

 H , µ ν≠ . A good approximation of these eigenvec-

tors is thus obtained by diagonalizing , defined as the restriction of  to redHν
redH red

ν
 H . 

Altogether, there are  subspaces n red
ν

 H . Thus,  has redH ( )n n g d 1− − +  eigenvectors, 

which are nearly contained in only one of the subspaces red
ν

 H . 

Finally, we show in appendix 8.2.4 that an eigenstate of , which is nearly con-

tained in a space 

redH

red
ν

 H , can never be one of the "zero-shift states" introduced in the 

previous section. Since there are n d⋅  such "zero-shift states" and ( )n n g d 1− − +  
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eigenstates associated with strong coupling subspaces, any of the ( )n n g 1− +  quan-

tum dot polarons is either a zero-shift state or an eigenstate associated with a strong 

coupling subspace. 

3.3.5 Similar subspaces 

We argue in this section that the strong coupling subspaces red
ν +

 H  and red
ν −

 H  associated 

with the two degenerate electron states ν+  and ν−  are similar restrictions of the 

Hamiltonian . Therefore, those subspaces have similar eigenvectors and eigen-

values. In particular, we prove in appendix 8.2.5 that the diagonal matrix elements 

of the Hamiltonian, restricted do the subspaces 

redH

red
ν +

 H  and red
ν −

 H , are analytically equal. 

To demonstrate this statement we need to introduce the normalized natural basis of 

red
ν +

 H  and red
ν −

 H  introduced in section 3.3.1. 

3.3.6 Overview: Three types of polaron states 

Let us now summarize the important steps of section 3.3 and give a conclusive 

classification of the polarons in quantum dots. 

We have represented the quantum dot system in a Hilbert space  and described its 

evolution by the Hamiltonian operator 

H

free FröhlichH H H= + . The particular structure of 

this operator allowed us to restrict the physical considerations to a "reduced sub-

space" , which excludes the large and highly degenerate set of bulk polarons. red H

A mathematical representation of  is given by the non-orthonormal basis red H

N

i i
i 1

0 , 1q 1q H 0 , 1...n, 1...n gν τ τ ν ν τ
=

⎧ ⎫
             =   =  −⎨ ⎬

⎩ ⎭
∑ , 

Using this basis and taking into account one symmetry plane, we could show that the 

reduced subspace  exhibits the following substructure: red H

  can be decomposed in two decoupled, orthogonal subspaces associated 

with symmetric and antisymmetric electronic wave functions. Bases of those 

spaces are simple subsets of the natural basis. (see 3.3.1) 

red H

 If the system posses degenerate electron levels below the most excited level, 

there are "zero-shift eigenstates" inside . They couple different degener-

ate electron states. (see 3.3.2) 

red H

  contains  nearly independent strong coupling subspaces, one for each 

electron level 

red H n

1,...,nν = . Those strong coupling subspaces have bases, which 

are simple subsets of the natural basis. (see 3.3.4) 
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 Due to degenerate electron states, certain strong coupling subspaces reveal 

similar polaron states. (see 3.3.5) 

Further, we emphasize the completeness of the above classification by saying that all 

the quantum dot polaron states are either "zero-shift states" or states, which are 

nearly contained in one of the strong coupling subspaces. Consequently, we are led 

to the following final classification of the polarons in our quantum dot: 

 "bulk polarons" 

Energy eigenstates of H , which do not couple different electron states. 

Those states are orthogonal to  and represent the large majority of the 

polarons. Their energies are non-shifted with respect to the free evolution 

spectrum. Physically, they correspond to superpositions, which are not lo-

calized in the quantum dot. Such polarons are characterized by the elec-

tron index 

red H

τ  of their subspace B,τ H . 

 "normal quantum dot polarons" 

Energy eigenstates of H , which couple different electron states and yield 

an energy that is shifted relative to the free evolution spectrum. Those 

states are contained in  and associated with one of its strong coupling 

subspaces 

red H

red
ν

 H . Such polarons are characterized by the electron index ν  

of the corresponding strong coupling subspace red
ν

 H . Further, they yields 

the property of quasi-degeneracy if ν  is a degenerate electron level. 

 "zero-shift quantum dot polarons" 

Energy eigenstates of , which couple degenerate electron states and 

yield a strictly non shifted energy. Those states are contained in a zero-

shift subspace . Their energy is equal to 

H

zero,
red red

τ 
 ⊂H H LOτε ε+ . Those pola-

rons are characterized by the electron index τ  of the zero-shift subspace. 

 

This classification concludes the analytical discussion of this section. 
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4 Present physical system 

We shall now introduce a model of an actual quantum dot together with an appropri-

ate analytical representation and numerical implementation. 

 

4.1 Model overview and previous computations 

The quantum system of interest consists in GaAs/GaAlAs quantum dots grown by 

organometallic chemical vapor deposition in inverted tetrahedral pyramids on pat-

terned (111)B GaAs substrates. The created dot is embedded in complex one- and 

two-dimensional barriers, i.e. quantum wires and quantum wells, presented in Fig. 6 

as modeled by F. Michelini [2]. The system belongs to the symmetry group C3V, i.e. it 

exhibits three vertical symmetry planes with a mutual angle of 120°. 

z [111]

VQWRLQWs

x [112]

y [110]

         

QD

VQWs

Fig. 6: Model of the pyramidal quantum dot (10nm); source: [2]. 

LEFT: 3D visualization. QD = "quantum dot", VQWR = "vertical quantum wire", 

 VQW = "vertical quantum well", LQW = "lateral quantum well". 

RIGHT: Projection on the x-z-plane (symmetry plane). The different zones of the 

 heterostructure contain different fractions of Al, that are indicated by 

 their percentage values. 

In the next chapter, the studies are carried out for three different dot heights h=10 

nm, 7.5 nm, 5 nm. 
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4.2 Previously computed electron states 

The envelope functions of the confined electron states in the quantum dots have 

been evaluated numerically using the k·p-method [1, 2] with a finite element 

scheme. In the case of , the quantum dot yields three confined energy lev-

els: the first and the third are non-degenerated and the second is twice degenerated 

(spinless case). Fig. 7 shows isosurface plots of the respective envelope functions for 

the 10nm-dot. The states labeled 

h 10nm=

A , B+  and C  yield even envelope functions 

along the y-axis, whereas B−  has an odd envelope function. 

Energy Aε  

 

 

 Energy Bε  

      

 Energy Cε  

 

Fig. 7: Envelope functions of the electron eigenstates in the pyramidal quantum dot 

(10nm) as computed by F. Michelini [2]. The notation of the states used in this 

report is indicated. 

The energies of these electron states are shown in Tab. 1. For the 5nm dot only two 

levels (three states) are bound. 

 Aε  [meV] Bε  [meV] Cε  [meV] 

10nm dot 43.08 72.22 84.91 

7.5nm dot 51.67 83.22 86.89 

5nm dot 63.36 97.14 unbound 

Tab. 1: Energies of the electron eigenstates in the pyramidal quantum dot, computed by 

F. Michelini [2]. 
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4.3 Numerical implementation 

In this work, we have developed and embedded suitable numerical tools to compute 

the polaron states in the pyramidal quantum dots. In particular, we use an adaptive 

irregular discretization of the reciprocal space to efficiently represent the phonon con-

tinuum. In this frame, we transcribe the Fröhlich Hamiltonian, usually valid for regu-

lar discretization, in a scheme of irregular discretization. The direct space discretiza-

tion is accomplished with the finite element method already used to compute the 

electronic envelope functions [1, 2]. 

Numerical methods and mathematical developments are expended in the appendix 

(8.3). Here we shall only present some leading ideas relative to the reciprocal space 

discretization, which are new in this work. 

The Fröhlich matrix elements are subject to strong variation with the wavevector q . 

A good discretization accounts for this dependence by a varying point density. The 

latter is achieved by an irregular discretization, which is adaptively refined in the re-

gions of strong variation of the Fröhlich elements. 

We prove in the appendix (8.3.3) that, in an irregular discretization, the volume iΩ  

surrounding a given wave vector iq  enters in the calculation of the Fröhlich elements. 

Therefore, each vector iq  is assigned a volume iΩ , taken as the volume of its 

Wigner-Seitz-cell. 

To generate the well adapted irregular mesh, we start with a regular mesh with a 

small number of nodes. Then, the Wigner-Seitz-volume of each mesh node is com-

puted and the Fröhlich matrix elements are evaluated. The mesh neighbors with the 

highest fluctuation of their Fröhlich elements are added a new node in between. The 

same procedure is repeated until the convergence of the polaron spectrum is 

reached. The convergence criterion is fulfilled if the maximal variation of all the pola-

ron energies between two successive steps is smaller than a preset threshold. 

A three-dimensional visualization of the adaptively generated irregular mesh of the 

first Brillouin zone is shown in Fig. 24. The three images are different zooming stages 

of the same mesh. 
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Fig. 8: Adaptive discretization of the first Brillouin zone. Only the Wigner-Seitz-cells 

are drawn. Left: total zone, middle: zoomed to center by a factor 10, right: 

zoomed to center by a factor 100. 

This adaptive construction of an irregular discretization with simultaneous evaluation 

of the Wigner-Seitz volume defines a complex computational problem that demands 

sophisticated program structures. Yet, this effort is justified by the following advan-

tages: 

 The polaron spectrum computed based on an adaptive irregular mesh is 

shown to converge with about 500  wavevectors iq , whereas an optimized 

regular mesh requires more than 100 000′  wavevectors. (convergence thresh-

old = 1 eVµ ). 

 Our mesh adapts itself to an arbitrary set of envelope functions. Thus, the 

method can be used without modifications to investigate other dot structures. 

 The structure of the adaptively created mesh, carefully visualized, gives itself 

an insight in the physics. 

 

Further explanations can be found in the appendix (8.3). 
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5 Computational results and interpretation 

In this chapter we discuss and interpret the computational results. The quantum dot 

system has been explained in chapter 4. The results obtained for quantum dots with 

two and three electron levels are grouped in different sections 5.1 and 5.2, respec-

tively. 

 

5.1 Quantum dot with two electron levels 

We present the results for a pyramidal quantum dot, where the second electron level 

is twice degenerate. Three different dot heights have been investigated: 10nm, 

7.5nm and 5nm. In the latter case, the dot size is in deed small enough to contain 

only two electron energies, whereas for the 10nm and 7.5nm quantum dot a third 

level appears, which we neglect. 

5.1.1 Electronic structure and polaron basis 

The tensor product basis (electron state ⊗  phonon state) of the full Hilbert space H  

writes (section 3.2) 

{ }iA 0 , B 0 , B 0 , A 1q , i 1,...,N+ −         =  

where  is the number of normal modes. Those product states are the eigenstates 

of the free evolution without Fröhlich interaction. The corresponding free energies for 

the different dot sizes are given in Tab. 2. 

N

 Aε  [meV] 

(non-degenerate) 
Bε  [meV] 

(2× degenerate) 
A LOε ε+  [meV] 

(N× degenerate) 

10nm dot 43.08 72.22 78.98 

7.5nm dot 51.67 83.22 87.57 

5nm dot 63.36 97.14 99.26 

Tab. 2: Energies of the tensor product states of the two-level system 

In section 3.3.1 we have introduced the reduced subspace  containing all the 

quantum dot polaron states. This space has six dimensions according to the general 

considerations of section 3.3.1. Its "natural basis" is composed of the three zero-

phonon states 

red H

{ }A 0 , B 0 , B 0+ −        

and the three one-phonon states 
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N N N

i i i i i i
i 1 i 1 i 1

A 1q A 1q H A 0 , A 1q A 1q H B 0 , A 1q A 1q H B 0+ −
= = =

⎧ ⎫
                  ⎨ ⎬

⎩ ⎭
∑ ∑ ∑  

The quantum dot polarons have been computed numerically using the numerical 

methods described in section 4.3. The convergence threshold has been set to 

. 0.001meV

5.1.2 Computational results 

Polaron energies 

Fig. 9 depicts an overview of the polaron energies obtained for the three different dot 

heights (10nm, 7.5nm, 5nm). Blue lines indicate the free evolution spectrum without 

Fröhlich interaction, which we have numerically shown in Tab. 2. Red lines show the 

polaron energies with inclusion of the Fröhlich interaction. Short notations attached 

to each level allude to the classification of the respective polaron states. This classifi-

cation is developed in the interpretation part (5.1.3). We mention, however, that cer-

tain computed energy levels, are equal up to the convergence precision. They have 

been added the suffix "quasi-degenerate", which accounts for the impossibility of 

deciding numerically whether the degeneracies are analytical. This important ques-

tion will be addressed in section 5.1.3. 

 
Fig. 9: Polaron spectrum of the two-level system for the three dot sizes. Blue lines indi-

cate the free evolution spectrum, red lines include Fröhlich interaction. 
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Polaron eigenvectors in the natural basis 

We shall normalize the natural basis to represent the polaron states, in order to ren-

der the vector components comparable. We emphasize, however, that the normalized 

natural basis is still non-orthogonal. Tab. 3 shows the computed polaron vectors of 

the 10nm quantum dot, represented in this basis and suitably ordered for interpreta-

tion purposes. Smaller dot sizes (7.5nm and 5nm) reveal quite similar polaron states. 

The respective numerical tables are found in appendix Fehler! Verweisquelle 

konnte nicht gefunden werden.. 

|A  0> |A  1q> (|A  0>) |B+ 0> |A  1q> (|B+ 0>) |B- 0> |A  1q> (|B- 0>)

 polaron state 1 41.470 0.9792 0.2029 0.0001 0.0003 0.0000 0.0000

 polaron state 6 80.590 0.2029 0.9791 0.0064 0.0138 0.0000 0.0000

 polaron state 3 70.827 0.0002 0.0002 0.9246 0.3810 0.0000 0.0000

 polaron state 4 80.377 0.0030 0.0170 0.3809 0.9245 0.0000 0.0000

 polaron state 2 70.825 0.0000 0.0000 0.0000 0.0000 0.9237 0.3832

 polaron state 5 80.378 0.0000 0.0000 0.0000 0.0000 0.3832 0.9237

State Vector

 2 level system
size = 10nm

Energy
[meV]

Subspace A Subspace B+ Subspace B-

 
Tab. 3: Polaron eigenvectors of the two-level system expressed in the normalized natu-

ral basis, 10nm dot 

The state numbers are ordered with increasing energy. Red fields indicate the most 

important components and yellow fields all the other components larger than 0.1. 

Blue fields stand for analytically vanishing components, as derived from the symme-

try considerations of section 3.3.2. For the one-phonon natural basis vectors, the 

following abbreviations have been used in the table: 

( )
N

i i
i 1
N

i i
i 1

A 1q A 1q H A 0
A 1q A 0

A 1q A 1q H A 0

=

=

      
     ≡

      

∑

∑
 

( )
N

i i
i 1
N

i i
i 1

A 1q A 1q H B 0
A 1q B 0

A 1q A 1q H B 0

+
=

+

+
=

      
     ≡

      

∑

∑
 

( )
N

i i
i 1
N

i i
i 1

A 1q A 1q H B 0
A 1q B 0

A 1q A 1q H B 0

−
=

−

−
=

      
     ≡

      

∑

∑
 

The six vectors of the natural basis are ascribed to three subspaces indexed by the 

letters A, B+ and B– . Those are the "strong coupling subspaces" introduced in the 

analytic developments of section 3.3.4. In the respective notation they write 
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"Subspace A" A
red ≡ H ,   "Subspace B+" B

red
+

 ≡ H ,   "Subspace B–" B
red

−
 ≡ H . 

Polaron eigenvectors in the tensor product basis 

Tab. 4 gives the polaron vectors represented in the tensor product basis (electron 

state  phonon state). The coloring scheme matches with the previous table. ⊗

|A  0> |B+ 0> |B- 0> all |A  1q>

 polaron state 1 41.470 0.9792 0.0001 0.0000 0.2029

 polaron state 6 80.590 0.2029 0.0064 0.0000 0.9792

 polaron state 3 70.827 0.0002 0.9246 0.0000 0.3810

 polaron state 4 80.377 0.0030 0.3809 0.0000 0.9246

 polaron state 2 70.825 0.0000 0.0000 0.9237 0.3832

 polaron state 5 80.378 0.0000 0.0000 0.3832 0.9237

 2 level system
size = 10nm

Energy
[meV]

State Vector

 
Tab. 4: Polaron eigenvectors of the two-level system expressed in the tensor product 

basis, 10nm dot 

In order to reveal the meaning of this representation and to motivate the results pre-

sented below, we are led to some analytical explanations. Every polaron vector yields 

a tensor product basis representation of the type 

( )
N

A B B i
i 1

c A 0 c B 0 c B 0 q A 1qξ+ + − −
=

  +   +   +   ∑ i , 

where Ac , , .and Bc + Bc − ( )iqξ  are complex coefficients. 

In Tab. 4, the first three columns under "state vector" show the complex magnitudes 

of the coefficients Ac ,  and . The forth column is the module of the vectors' 

projection on the one-phonon subspace, calculated as 

Bc + Bc −

( )
N 2

i
i 1

qξ
=
∑ . The discrete func-

tions ( )iqξ , might be physically interpreted as "normal mode distribution functions". 

They will be depicted graphically. Before doing so, we should nevertheless acquire 

some insight about those functions. 

Discussion of the polaron eigenvectors 

From the natural basis representation (section Tab. 3) we conclude that the polaron 

states appear in pairs, which lie exactly or almost exactly in one of the three sub-

spaces A, B+ or B– . Each such subspace contains only one one-phonon state of the 

natural basis and thus only one type of normal mode distribution function. For the 

subspace A, for example, the one-phonon basis vector (without normalization) writes 
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N

i i
i 1

A 1q A 1q H A 0
=

      ∑  

Thus, the polaron states contained in this subspace have normal mode distribution 

functions ( )iqξ  proportional to iA 1q H A 0    . In the same way, we find that the 

strong coupling subspaces B+ and B– exhibit a particular type of normal mode distri-

bution functions. Explicitly we find, 

Subspace A: ( )i iq A 1q H Aξ       0∼  

Subspace B+: ( )i iq A 1q H Bξ +      0∼  

Subspace B–: ( )i iq A 1q H Bξ −      0∼  

This argument reveals that two polarons associated with the same subspace have 

almost proportional functions ( )iqξ , which essentially depend on the phonon distri-

bution function of a one-phonon state in the natural basis. Therefore, we can restrict 

ourselves to the visualization of only one function ( )iqξ  per strong coupling sub-

space. In the present case, the polaron states 1 and 6 are contained in the subspace 

A, the states 3 and 4 in the subspace B+ and the states 2 and 5 in the space B–. For 

these three pairs, some one-dimensional representations of the functions ( )iqξ  are 

shown in the first row of Fig. 10. Properly speaking, the figures show the modules of 

the functions ( )iqξ  along the qx-, qy-, and qz-directions. The images in the second 

row depict the isosurfaces of the functions' module, implicitly defined by 

( )qξ  is a continuous linear interpolation of ( )qξ i . ( )q constξ = , where the 

Since phase information is lost in these representations, we mention that the func-

tions of the left and the middle column are symmetrical, whereas those of the right 

column are antisymmetric with respect to the x-z-plane. This reflects the y-parity of 

the underlying subspaces (section 3.3.2). Further, we emphasize that the small ir-

regularities on the isosurfaces are not related to physical aspects. They are caused by 

the inexact discretization of the reciprocal space for q-values far from the zone cen-

ter. In fact, we recall our implementation of an adaptive discretization method that 

only refines the reciprocal space meshing of numerically relevant zones (section 4.3). 

Of partial interest is the inversed Fourier transforms of the normal mode distribution 

functions ( )iqξ . Those transforms are physically interpreted as "vibrational density 

functions" of the crystal. We emphasize that only longitudinal optical vibrations are 

considered in the present model (section 3.1). These density functions are repre-
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sented in the third row of Fig. 10. Again, the images show isosurfaces, implicitly de-

fined by 

( )ˆ r consξ = t , where ( ) ( )3 iq rˆ r d q e qξ ξ⋅=    ∫  

Finally, the forth row shows isosurfaces of the electronic envelope functions Aψ , Bψ +  

and Bψ −  used for comparison. The orientation and the scale of these images is the 

same as in the third row. We already mention the remarkable similarity of the elec-

tronic envelope function and the vibrational density functions. This similarity will be 

discussed in section 5.1.3. 

All the images of Fig. 10 refer to the 10nm quantum dot. The respective results for 

the dot sizes of 7.5nm and 5nm are presented in appendix Fehler! Verweisquelle 

konnte nicht gefunden werden.. Here we only show one example of the small 

dependence of the vibrational density function on the dot size (see Fig. 11). 
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   Polaron states 1 and 6    Polaron states 3 and 4    Polaron states 2 and 5 

   ( )i iq A 1q H Aξ       0∼     ( )i iq A 1q H Bξ + 0      ∼     ( )i iq A 1q H Bξ −      0∼  
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Fig. 11: Vibrational density functions in direct space (3D isosurfaces of the modules), 

Left: 10nm dot, Middle: 7.5nm dot, Right: 5nm dot 

5.1.3 Interpretation of the quantum dot polaron states 

Let us discuss our numerical results more in detail using the analytical tools devel-

oped in section 3.3. 

General structure of the energy spectrum 

The energy spectrum shown in Fig. 9 reveals that one polaron energy lies close to the 

energy of the state A 0  , two polaron energies lie close to B 0±   and three lie close 

to A 1q  . This feature could have been predicted from our natural basis, used to 

represent the quantum dot polaron states (section 3.3.1). In fact, the those basis 

states write: 

N N N

i i i i i i
i 1 i 1 i 1

A 0 , B 0 , B 0 , A 1q A 1q H A 0 , A 1q A 1q H B 0 , A 1q A 1q H B 0+ − + −
= = =

⎧ ⎫
                         ⎨ ⎬

⎩ ⎭
∑ ∑ ∑  

We can numerically show, that the off-diagonal matrix elements of the Hamiltonian in 

this basis are small compared to the diagonal ones. Thus, one can expect that the 

polarons have energies close to the free energies of those basis states. This leads 

indeed to one polaron energy in the vicinity of A 0  , two close to B 0±   and three 

close to A 1q  . 

Global classification of polarons states 

For completeness we mention that the large majority of polarons are "bulk polarons" 

(section 3.3.6), which are is spread over the dispersed bulk. Mathematically, those 

states are orthogonal to , defined as the small space of quantum dot polarons. 

The six remaining polarons are "normal quantum dot polarons" (section 3.3.6), de-

fined as quantum dot polaron states with non-vanishing energy shift. There are no 

"zero-shift polarons". This affirmation is revealed numerically by the fact that none of 

the six polaron energies overlaps a free evolution energy (see Fig. 9), but it also de-

rives from analytic considerations. In fact, we have shown in section 3.3.3 that only 

red H
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electronic degeneracies on a level below the most excited level can cause "zero-shift 

polarons". In the present case, however, the only degenerate level Bε  is itself the 

most excited level. In consequence there are no "zero-shift polarons" in the two-level 

system. 

Symmetry plane and independent subspaces 

From now on, we restrict ourselves to the reduced space , which only contains 

the six quantum dot polarons. In the section 3.3.2 we have shown that the plane-

symmetry of the pyramidal quantum dot implies that  contains two decoupled 

orthogonal parts, called  and 

red H

red H

red
+

 H red
−

 H , associated with different parities of the elec-

tronic wave functions. Applying our general developments of this section to the pre-

sent case, those spaces become 

N N

red i i i i
i 1 i 1

: A 0 , B 0 , A 1q A 1q H A 0 , A 1q A 1q H B 0+
 + +

= =

⎧ ⎫
                     ⎨ ⎬

⎩ ⎭
∑ ∑H  

N

red i i
i 1

: B 0 , A 1q A 1q H B 0−
 − −

=

⎧ ⎫
            ⎨ ⎬

⎩ ⎭
∑H  

We conclude that  contains the subspaces A and B+ used to present the results 

(5.1.2), and 

red
+

 H

red
−

 H  is identified with the subspace B– . The numerical computation has 

indeed revealed the analytically exact decoupling of red
+

 H  and  by the fact that 

four states came out with numerically vanishing contribution of  and two states 

with vanishing contribution of 

red
−

 H

red
−

 H

red
+

 H  (see Tab. 3 of the previous section). 

Weakly coupled and independent "strong coupling subspaces" 

We further identify the subspaces A, B+ and B– with the "strong coupling subspaces" 

that we have introduced in section 3.3.4. There we have justified the small mutual 

coupling of those spaces. Of course, there is no coupling at all between the space B– 

and the other two spaces because of the plane-symmetry discussed above. The af-

firmation of section 3.3.4 is, however, that even the spaces A and B+ are only 

weakly coupled. The numerical computation is in good agreement with this prediction 

as can be seen in Tab. 3. 

Types of superpositions 

We wonder about the types of superpositions found in each quantum dot polaron. 

Therefore, we will consider each strong coupling subspace (A, B+, B–) separately. 

The subspace A is spanned by the basis (section 3.3.4) 
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N

i i
i 1

A 0 , A 1q A 1q H A 0
=

⎧ ⎫
         ⎨ ⎬

⎩ ⎭
∑  

This basis only involves one electron state A . Thus, the two polarons 1 and 6 con-

tained in this subspace do not involve different electron states, but still superpose the 

zero-phonon states with one-phonon states. 

As for the subspace B+, a suitable basis is given by (section 3.3.4) 

N

i i
i 1

B 0 , A 1q A 1q H B 0+ +
=

⎧ ⎫
         ⎨ ⎬

⎩ ⎭
∑  

It follows that the two polarons 3 and 4 contained in this space do involve the two 

electron states B+  and A . At the same time, they involve the superpositions of 

zero-phonon states with one-phonon states. However, it should be stressed that 

these polarons are entangled superpositions of electronic and phononic parts and 

thus those parts cannot be treated separately. 

The consequences for the states 2 and 5 in the strong coupling subspace B– are the 

same up to the sign difference. 

Degeneracies 

The numerical results show evidence for two degeneracies between the polarons as-

sociated with the subspaces B+ and B– (see Fig. 9). We ascribe those degeneracies 

to an additional symmetry, which we did not include in the analytical considerations. 

In fact, the pyramidal quantum dot exhibits three vertical symmetry planes that con-

stitute the symmetry group C3V. In the analytical investigations of the system sym-

metry, we have exploited only one symmetry plane, which constitutes the group CS. 

The real symmetry, which is higher, causes the degeneracy of the electron states 

B+  and B−  and implies a relation between their respective envelope functions. 

Since phonons exhibit a spherical symmetry and the pyramidal quantum dots the 

symmetry C3V, the composed polaron system belongs again to the symmetry group 

C3V. Therefore, the polarons yield the same symmetry ass the electrons, which justi-

fies the degeneracy between the states associated with the subspaces B+ and B–. 

Thus, we interpret the polaron energies, numerically classified as quasi-degenerate, 

as indeed analytically degenerate.  

Vibrational density function 

A physical picture of each polaron is given by the respective "vibrational density func-

tion" (see row 3 of Fig. 10). This function reveals some crucial features. First, it 

shows that the crystal vibrations associated with one of the six polarons are highly 

confined to the quantum dot. Second, the comparison between the images of row 3 
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and 4 of Fig. 10 yields that the electronic envelope functions are very similar to the 

vibrational density functions ( )iqξ of the respective strong coupling subspace. We 

explain this feature by a closer look at the functions ( )iqξ . In fact, they are all pro-

portional to Fröhlich matrix elements, which depend on iq  by the Fröhlich integral 

3 iq x
Ad x e (x) (x)νψ ψ⋅    ∫ , 

where ν  is the electron index of the strong coupling subspace. 

Since A(x)ψ  is an s-like envelope function it is nearly isotropic. In consequence, the 

inverse Fourier transform of the integral above is again similar to (x)νψ . This ex-

plains the similarity between the electronic envelope functions and the vibrational 

density functions in the two-level quantum dot. 

Dot size dependence 

The dot size dependence of the polaron energies is revealed in Fig. 9. First, we note 

that the polaron coupling increases with decreasing dot size, meaning that the en-

ergy shifts become larger. We associate this feature with the increasing confinement 

of the electron states and the close-up of the free energies of the states A 1q   and 

B 0   with decreasing dot size. 

An interesting particularity is observed with the two highest energy levels, one of 

which is twice degenerate (see Fig. 9). Those levels are exchanged when passing 

from the 10nm quantum dot to the 7.5nm dot. Continuity considerations imply that 

in between the two levels there is an accidental degeneracy, giving rise to a three 

fold degeneracy. This crossing is compatible with our previous conjecture about the 

influence of symmetry on degeneracies. 

 

5.2 Quantum dot with three electron levels 

In this section, we present computational results relative to the 10nm quantum dot 

with three electron levels, where the second level is twice degenerate. These results 

are in many aspects similar to the two-level system. Therefore, we shall explain them 

more briefly and focus on the differences with the previous case. 

5.2.1 Electronic structure and polaron basis 

The tensor product basis (electron state ⊗  phonon state) of the Hilbert space H  

writes 
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{ }i i iA 0 , B 0 , B 0 , C 0 , A 1q , B 1q , B 1q , i 1,...,N+ − + −               =  

where  is the number of normal modes. Those product states are the eigenstates 

of the free evolution without Fröhlich interaction. The respective energies are shown 

in Tab. 5. 

N

zero-phonon product states one-phonon product states 

A 43.08 meVε =   

B 72.22 meVε =   

C 84.01meVε =   

A LO 78.98 meVε ε+ =   

B LO 108.12 meVε ε+ =   

 

Tab. 5: Energies of the tensor product states of the three-level system 

The reduced subspace  containing all the polaron states of physical interest has 

16 dimensions according to our general analytic derivations (3.3.1). The natural basis 

is given by the four zero-phonon states 

red H

{ }A 0 , B 0 , B 0 , C 0+ −          

and the twelve one-phonon states 

N N N

i i i i i i
i 1 i 1 i 1

A 1q A 1q H 0 , B 1q B 1q H 0 , B 1q B 1q H 0 , A,B ,B ,Cν ν ν ν+ + − − + −
= = =

⎧ ⎫
                   =⎨ ⎬

⎩ ⎭
∑ ∑ ∑  

The quantum dot polarons of such a system have been computed numerically using 

the numerical methods described in section 4.3. The convergence threshold has 

again been set to 0 . .001meV

5.2.2 Computational results 

Polaron energies 

To investigate the energy shift with increasing Fröhlich coupling, we have introduced 

a constant called "tuning factor". This factor multiplies the Fröhlich constant, such 

that its value  corresponds to the true physical situation. In a series of independent 

computations, this tuning factor was varied from 0  to . The polaron energies as a 

function of the tuning factor are given in Fig. 12. The short notations attached to 

each level indicate the classification of the respective polaron states. This classifica-

tion is developed in the interpretation part (5.2.3). Similarly to the case of two elec-

tron levels, quasi-degenerate levels appear (section 5.1.2). Those levels are labeled 

"quasi-degenerate". 

1

2
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Fig. 12: Polaron spectrum of the three-level system. Blue lines indicate the free evolu-

tion spectrum without Fröhlich interaction (F. Michelini [2]), red lines include 

Fröhlich interaction. The tuning factor multiplies the Fröhlich coupling constant. 

The value 1.0 corresponds to the true physical situation. 

Polaron eigenvectors in the natural basis 

The polaron vectors represented in the normalized natural basis are shown in Tab. 6. 

They are suitably ordered to facilitate the interpretation. 

|A  0> |A  1q>
(|A  0>)

|B+ 1q>
(|A  0>)

|B- 1q>
(|A  0>)

|B+  0> |A  1q>
(|B+ 0>)

|B+ 1q>
(|B+ 0>)

|B- 1q>
(|B+ 0>)

|C  0> |A  1q>
(|C  0>)

|B+ 1q>
(|C  0>)

|B- 1q>
(|C  0>)

|B-  0> |A  1q>
(|B- 0>)

|B+ 1q>
(|B- 0>)

|B- 1q>
(|B- 0>)

 polaron state 1 41.21 0.978 0.198 0.048 0.049 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000

 polaron state 7 80.51 0.196 0.980 0.024 0.024 0.000 0.001 0.000 0.000 0.012 0.015 0.001 0.000 0.000 0.000 0.000 0.000

 polaron state 14 108.47 0.074 0.019 0.693 0.695 0.000 0.000 0.001 0.010 0.016 0.001 0.054 0.052 0.000 0.000 0.000 0.000

 polaron state 3 69.53 0.000 0.000 0.000 0.000 0.927 0.326 0.175 0.058 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000

 polaron state 5 80.09 0.000 0.001 0.000 0.000 0.315 0.945 0.082 0.027 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000

 polaron state 15 109.70 0.000 0.000 0.000 0.000 0.202 0.022 0.929 0.308 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000

 polaron state 8 85.38 0.004 0.005 0.001 0.001 0.000 0.000 0.000 0.000 0.955 0.288 0.046 0.047 0.000 0.000 0.000 0.000

 polaron state 4 78.40 0.002 0.025 0.000 0.000 0.000 0.001 0.000 0.000 0.287 0.958 0.011 0.011 0.000 0.000 0.000 0.000

 polaron state 13 108.22 0.005 0.001 0.176 0.176 0.000 0.000 0.003 0.003 0.065 0.004 0.709 0.721 0.000 0.000 0.000 0.000

 polaron state 11 108.12 0.000 0.000 0.179 1.093 0.000 0.000 0.125 1.188 0.000 0.000 0.437 0.345 0.000 0.000 0.000 0.000

 polaron state 9 108.12 0.000 0.000 0.740 0.388 0.000 0.000 0.390 0.358 0.000 0.000 0.058 0.087 0.000 0.000 0.000 0.000

 polaron state 10 108.12 0.000 0.000 0.065 0.711 0.000 0.000 0.021 0.868 0.000 0.000 0.575 0.625 0.000 0.000 0.000 0.000

 polaron state 2 69.53 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.927 0.326 0.058 0.175

 polaron state 6 80.09 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.315 0.945 0.027 0.082

 polaron state 16 109.70 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.202 0.022 0.308 0.929

 polaron state 12 108.12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.949 0.315

Subspace B-Subspace C

State Vector

 3 level system
size = 10nm

Energy
[meV]

Subspace A Subspace B+

 
Tab. 6: Polaron eigenvectors of the three-level system represented in the normalized 

natural basis 
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The state numbers are ordered with increasing energy. For the 4 "zero-shift states" 

(see analytical derivations 3.3.3), the non-zero coefficients are colored green. For the 

other 12 states with shifted energies, red fields mark the main contribution, dark 

yellow fields other important coefficients (>0.2) and bright yellow fields slightly im-

portant coefficients (>0.02). All the white fields contain very small, but non-

vanishing values, whereas blue stands for analytically vanishing coefficients. 

For the one-phonon basis vectors, the following abbreviations have been used: 

( )
N

i i
i 1
N

i i
i 1

1q 1q H 0
1q 0

1q 1q H 0

τ τ ν
τ ν

τ τ ν

=

=

      
     ≡

      

∑

∑
 

The sixteen basis vectors are grouped in four "strong coupling subspaces" indexed by 

the letters A, B+, B– and C. In the notation used in section 3.3, they are noted A
red H , 

,  and , respectively. B
red

+
 H B

red
−

 H C
red H

We emphasize that the four zero-shift polarons (with green coefficients) are degen-

erate. Every superposition of those states is again an eigenstate. Thus, the shown 

coefficients only represent one linearly independent choice. 

Polaron eigenvectors in the tensor product basis 

The following tables show the polaron eigenvectors in the tensor product basis (elec-

tron state  phonon state). The coloring corresponds to the one of the previous ta-

ble. 

⊗

|A  0> |B+  0> |B-  0> |C  0> all
|A  1q>

all
|B+ 1q>

all
|B- 1q>

 polaron state 1 41.21 0.978 0.000 0.000 0.000 0.198 0.048 0.049

 polaron state 7 80.51 0.196 0.000 0.000 0.012 0.980 0.024 0.024

 polaron state 14 108.47 0.074 0.000 0.000 0.016 0.019 0.704 0.706

 polaron state 3 69.53 0.000 0.927 0.000 0.000 0.326 0.175 0.058

 polaron state 5 80.09 0.000 0.315 0.000 0.000 0.945 0.082 0.027

 polaron state 15 109.70 0.000 0.202 0.000 0.000 0.022 0.929 0.308

 polaron state 8 85.38 0.004 0.000 0.000 0.955 0.288 0.046 0.047

 polaron state 4 78.40 0.002 0.000 0.000 0.287 0.958 0.011 0.011

 polaron state 13 108.22 0.005 0.000 0.000 0.065 0.005 0.700 0.712

 polaron state 11 108.12 0.000 0.000 0.000 0.000 0.000 0.464 0.886

 polaron state 9 108.12 0.000 0.000 0.000 0.000 0.000 0.738 0.675

 polaron state 10 108.12 0.000 0.000 0.000 0.000 0.000 0.590 0.807

 polaron state 2 69.53 0.000 0.000 0.927 0.000 0.326 0.058 0.175

 polaron state 6 80.09 0.000 0.000 0.315 0.000 0.945 0.027 0.082

 polaron state 16 109.70 0.000 0.000 0.202 0.000 0.022 0.308 0.929

 polaron state 12 108.12 0.000 0.000 0.000 0.000 0.000 0.949 0.315

 3 level system
size = 10nm

Energy
[meV]

State Vector

zero-phonon subspace one-phonon subspace

 
Tab. 7: Polaron eigenvectors of the three-level system represented in the tensor prod-

uct basis. 
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In the tensor product basis, every state vector has the decomposition 

( ) ( ) ( )
N N N

A B B C i i i i i
i 1 i 1 i 1

c A 0 c B 0 c B 0 c C 0 q A 1q q B 1q q B 1qξ η ζ+ + − − + +
= = =

  +  +  +   +   +  +  ∑ ∑ ∑ i , 

where Ac , , ,  as well as Bc + Bc − Cc ( )iqξ , ( )iqη , ( )iqζ  are complex coefficients. 

The three functions ( )iqξ , ( )iqη , ( )iqζ  are again interpreted as "normal mode den-

sity functions" associated with the electron indices , BA +  and , respectively. B−

In Tab. 7 the four columns under "zero-phonon subspace" show the modules of the 

coefficients Ac , ,  and . The three columns under "one-phonon subspace" 

give the magnitude of the vectors' projection on the one-phonon subspaces associ-

ated with the three electron indices , 

Bc + Bc − Cc

A B+  and B− . Explicitly, they are obtained from 

the functions ( )iqξ , ( )iqη , ( )iqζ  by 

"All |A  1q>"= ( )
N 2

i
i 1

qξ
=
∑     "All |B+  1q>"= ( )

N 2

i
i 1

qη
=
∑     "All |B–  1q>"= ( )

N 2

i
i 1

qζ
=
∑  

We point out an important conclusion from the natural basis representation: The 12 

shifted polaron states (all except the four with green coefficients) are nearly con-

tained in one of the four strong coupling subspaces. Yet, polarons contained in the 

same strong coupling subspace have proportional normal mode density functions 

( )iqξ , ( )iqη , ( )iqζ  (see extended explication of 5.1.2). They are indeed proportional 

to certain Fröhlich matrix elements as shown in Tab. 8. 

 

proportional func-

tion of ( )iqξ  

proportional func-

tion of ( )iqη   

proportional func-

tion of ( )iqζ  

Subspace A ( )A
red ≡ H  

iA 1q H A 0     iB 1q H A 0+    iB 1q H A 0−    

Subspace B+ ( )B
red

+
 ≡ H  

iA 1q H B 0+     iB 1q H B 0+ +    iB 1q H B 0− +    

Subspace B– ( )B
red

−
 ≡ H  

iA 1q H B 0−     iB 1q H B 0+ −    iB 1q H B 0− −    

Subspace C ( )C
red ≡ H  iA 1q H C 0     iB 1q H C 0+    iB 1q H C 0−    

Tab. 8: Types of "normal mode distribution functions" in each strong coupling subspace 

Graphical representations in the reciprocal space of these 12 functions can be found 

in appendix Fehler! Verweisquelle konnte nicht gefunden werden.. Here, we 

focus on their inverse Fourier transforms that are interpreted as "vibrational density 

functions" of the longitudinal optical crystal vibrations. In contrast to the two-level 

system, we deal now with three such functions and not just one. They are associated 
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with different electron states and appear in entangled superpositions. Those three 

functions are shown for the four strong coupling subspaces in Fig. 13 to Fig. 16. 

         
Fig. 13: Vibrational density functions of the polaron states nearly contained in the sub-

space A. 

         
Fig. 14: Vibrational density functions of the polaron states nearly contained in the sub-

space B+ . 

         
Fig. 15: Vibrational density functions of the polaron states nearly contained in the sub-

space B – . 

         

Fig. 16: Vibrational density functions of the polaron states nearly contained in the sub-

space C. 
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So far, we have focused on the 12 shifted polaron states. Let us now consider the 

four "zero-shift polarons" (section 3.3.3). By their nature, those states involve only 

pairs one-phonon states with degenerate electron index. Explicitly, they contain con-

tributions from iB 1q+   and iB 1q−  , but there is strictly no contribution from 

iA 1q  . Thus, the function ( )iqξ  vanishes for all iq . Furthermore, the choice of the 

coefficients ( )iqη  and ( )iqζ  is not unique, since all the four zero-shift polarons are 

degenerate. A linearly independent choice has already been fixed in the natural basis 

representation (see green fields, Tab. 6). The polaron state 12 does not mix strong 

coupling subspaces, since it is ascribed to the only antisymmetric subspace B– . The 

vibrational density functions of this state are proportional to the ones shown in Fig. 

15 (blue and green). For the other three zero-shift states the vibrational density 

functions are depicted in Fig. 17. 

     

     

     

Fig. 17: Vibrational density functions of the three symmetrical zero-shift polarons "9", 

"10" and "11". 

Again, the respective normal mode density functions in q-space are shown in appen-

dix Fehler! Verweisquelle konnte nicht gefunden werden.. 
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5.2.3 Interpretation of the quantum dot polarons 

General structure of the energy spectrum 

Similarly to the case of two electron levels (section 5.1.3), the structure of the natu-

ral basis predicts how many polaron energies are associated with each energy of the 

free spectrum. 

The natural basis (section 3.3.1) is given by the four zero-phonon states 

{ }A 0 , B 0 , B 0 , C 0+ −          

and the twelve one-phonon states 

N N N

i i i i i i
i 1 i 1 i 1

A 1q A 1q H 0 , B 1q B 1q H 0 , B 1q B 1q H 0 , A,B ,B ,Cν ν ν ν+ + − − + −
= = =

⎧ ⎫
                   =⎨ ⎬

⎩ ⎭
∑ ∑ ∑  

If follows from this representation that every free energy gives rise to a certain number of 

polarons according to Tab. 9. This affirmation is in well agreement with the numerical re-

sults shown in Fig. 12. 

A 0   B 0±   C 0   A 1q   B 1q±   

1 2 1 4 8 

Tab. 9: Number of quantum dot polarons associated with each free energy of the three-

level system. 

Effect of the additional electron levels 

The polaron ground state energy offers an ideal tool to illustrate the effects of the 

additional electron level with respect to the two-level system, since the ground state 

energy can never be lifted by an interaction term. Its down-shift is somehow a meas-

ure of the interaction strength. For the two-level system the polaron ground state 

energy lies at 41.5meV, corresponding to a shift of –1.6meV. As for the three-level 

system the same level lies at 41.2meV, corresponding to a shift of –1.9meV. This 

reveals a small, but non negligible contribution of third electron level to the polaron 

ground state energy. The influence of this electron level on the first excited polaron 

energy is even higher. Whereas the two-level system exhibits a shift of –1.4meV, the 

three-level system yields –2.7meV. This strong variation relies on the proximity of 

the third electron state to the first excited polaron level. For more excited polaron 

energies, the discussions becomes more complicated because the additional zero- 

and one-phonon states of the three-level system give contradictory contributions to 

the polaron energy-shifts. 
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Global classification of polaron states 

First, there is a large majority of "bulk polarons" without coupling to the quantum dot 

electronic states as explained in the case of two levels (section 5.1.3). All the re-

maining states are contained in the reduced space red ,H  defined as the small space 

of quantum dot polarons. Our analytical derivation of the "zero-shift states" pre-

sented in section 3.3, implies the existence of four "zero-shift states" in the present 

three-level system. In fact, we recall that each degenerate electron level, which lies 

strictly below the most excited level, gives a number of "zero-shift states" equal to 

the total number of electron states. The present quantum dot yields one degenerated 

electron level ( Bε ) and the total number of electron states, including degenerate 

states, equals four. Thus, we obtain indeed four "zero-shift polaron states" on the 

level of the state B 1q±  . This prediction is in agreement with the computational re-

sult: The energies of the polarons 9, 10, 11 and 12 all are numerically equal to the 

free energy of B 1q±   (see Tab. 6). 

All the other quantum dot polarons are "normal quantum dot polarons" in the classifi-

cation scheme, which we have introduced in this work (section 3.3.6). Finally, we 

conclude that the quantum dot has a large set of bulk "polarons", twelve "normal 

quantum dot polarons" and four "zero-shift polarons". 

Symmetry plane and independent subspaces 

We have shown the detailed consequences of this symmetry in the frame for two 

electron levels (section 5.1.3). In the case of three levels, the symmetric subspace 

 contains the subspaces A, B+ and C (section 5.2.2), whereas the antisymmetric 

complement 

red
+

 H

red
−

 H  is identified with the subspace B–. The analytical decoupling of 

those two parts agrees with the numerical evidence found in Tab. 6. 

Strong coupling subspaces 

The analytical derivations of section 3.3.4 predict that there are four "strong coupling 

subspaces", one associated with each electron index A, B+, B– and C. Those spaces 

have only weak mutual coupling. In order to visualize the polaron states we have 

already widely used this particular feature (section 5.2.2). 

Superposition types 

By contrast with the case of two levels, all the 16 polarons superpose several elec-

tron states. This is for example shown in the natural basis representation of Tab. 6. 

However, it appears that the three polarons associated with the strong coupling sub-

space C involve superpositions of the electron state C . Further, it is numerically 
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obvious (Tab. 6) that the four "zero-shift states" only superpose the two electron 

states B+  and B−  as predicted by the analytical considerations (section 3.3.3). The 

remaining nine polarons involve superpositions of the electron states A , B+  and 

B− . Concerning the phonon component of the polarons, we emphasize that the four 

"zero-shift superpositions" involve only one-phonon states (see ??? for analytical, 

Tab. 6 for numerical), whilst the remaining twelve polarons involve also zero-phonon 

states. 

Degeneracies 

The numerical results show evidence for three degeneracies between the polarons 

associated with the subspaces B+ and B– (see Fig. 12). Like in the two-level system, 

we ascribe those degeneracies to an additional symmetry (C3V), which we did not 

include in the analytical considerations. Thus, the high numerical similarities of the 

pairs of so-called "quasi-degenerate" states are most likely analytical degeneracies. 
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6 Discussion 

A number of different aspects of this work needs to be discussed. First, we shall ad-

dress the strong coupling regime in quantum dots. Second, our results for the quan-

tum dot with two electron levels are compared with the results of other groups. 

Third, we discuss the relevance of our analytical results. 

Evidence of strong coupling 

A typical signature of a strong coupling regime is the failure of the perturbation the-

ory. In Fig. 18 the red lines represent some of the pyramidal quantum dot polaron 

energies as a function of the Fröhlich coupling constant, whilst the black lines were 

derived from first order perturbation theory and the green line gives one example of 

second order perturbation. The large difference between the non-perturbative 

method and both (!) perturbative approaches for a tuning factor of 1 points out the 

limitations of perturbation theory. This evidence of strong coupling is in good agree-

ment with recently published results [30, 31, 32, 33]. 
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Fig. 18: Polaron energies calculated in the non-perturbative scheme used in this work 

(red) and in a first order perturbative approach (black). The artificial tuning fac-

tor multiplies the Fröhlich constant allowing to control the interaction strength. 
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Discussion of the quantum dot with two electron levels 

The polaron states in diverse quantum dots with two electron levels have been inves-

tigated recently (see for example Verzelen et al. 2000, [33]). In opposition to many 

of those cases, our quantum dot presents the particular feature, that its first excited 

electron level lies below the ground state level combined with one LO-phonon. To 

compare the differences of the respective polaron spectra, we shall consider the ex-

ample of a quantum dot with cylindrical symmetry [33]. Its second electron level is 

twice degenerate (like in our case) and the free evolution sates are referred to as 

S0 , S1  and P 0± . For the pyramidal quantum dot the respective notations were 

A0 , A1q  and B 0± . Fig. 19 shows the electron and polaron spectra of the two 

quantum dots. We note that the free evolution states S1  and P 0±  are inverted 

with respect to A1q  and B 0± . 

      
Fig. 19: LEFT: Energy spectra of the polarons (left) and electrons (right) corresponding 

to the cylindrical quantum dot studied by Bastard et al. [33]. 

RIGHT: Energy spectra of our quantum dot (dot size = 5nm) 

The two polaron spectra qualitatively differ by the fact that the polaron S1  has an 

energy in between the two free evolution states S1  and P 0± , whereas the corre-

sponding state 4  lies above the two levels A1q  and B 0± . We argue that the 

polaron state S1  (or 4 ) always yields a higher energy than S1  (or A1q ). This 

comes from the strong Fröhlich interaction between S1  and S0  (or A1q  and 

A0 ), which is indeed much stronger than the interaction between S1  and P 0±  

(or A1q  and B 0± ). In fact, the Fröhlich integral between two s-functions over-

weighs the one between an s- and a p-function. In the analytic scheme developed in 

this work, S1  and S0  are part of the same "strong coupling subspace", which only 

interacts weakly with the subspace of P 0± . 
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Natural basis and subsequent concepts 

In this work, we introduced a non-orthonormal basis of quantum dot polarons, which 

we decided to call the "natural basis". It contains the all the free electron states plus 

the one-phonon states of the type 
N

i ii 1
1q 1q H 0τ τ ν

=
      ∑  (section 3.3.1). This form 

of one-phonon basis states is coherent with the recent conclusion that pure electron 

states can only couple to precisely those states (Ferreira, Verzelen and Bastard [43]).  

Through analytical investigations of the Fröhlich interaction between this non-

orthonormal natural basis states, we have proved the following key properties of 

quantum dot polarons: 

 Independent of analytical symmetries, we could prove that the total reduced 

Hilbet space, defined as the space containing all the quantum dot polarons, 

contains subspaces with weak mutual interaction, which we called "strong 

coupling subspaces". Many quantum dot polarons are nearly contained in one 

of those subspaces. Further, we could identify the number of strong coupling 

subspaces with the number of electron states confined to the quantum dot 

and derive the number of polarons associated with each strong coupling sub-

space. 

 If the quantum dot presents certain degeneracies (see 3.3.4), the system ex-

hibits quantum dot polarons with strictly non-vanishing energy-shift. Unlike 

the bulk polarons those "zero-shift quantum dot polarons" superpose different 

degenerate electron states and represent localized crystal excitations in the 

quantum dot. 

To the best of our knowledge neither the concept of "zero-shift quantum dot pola-

rons" nor the concept of "strong coupling subspaces" seem to have been pointed 

out before. We are convinced that both concepts reveal new physical insight in 

the dynamics of quantum dots, such as shown in chapter 5. 
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7 Conclusion 

Our objective was to compute and to study the polaron states in a pyramidal 

GaAs/AlGaAs quantum dot. Mathematical analysis, computational developments and 

physical interpretations have allowed us to answer many questions and to discover at 

least as new many questions (!), which will inspire our future research. 

For example, we have raised the problem of the three-fold rotational symmetry of 

the quantum dot, which leads to observable consequences, namely degeneracies, in 

the polaron spectrum. A suitable tool to handle this symmetry relies on group theory 

and thus we propose to investigate the substructure of the quantum dot polaron 

space using group theory. 

Further, the inclusion of the quantum wire electronic states is a promising perspec-

tive in the view of additional polaron energy shift. Those quantum wire electron 

states constitute a continuum decomposed in one-dimensional normal modes. This 

representation is similar to the normal mode representation of the crystal vibrations. 

We shall thus conjecture that a new basis could simplify the description of coupled 

quantum wire states, analogically to the "natural basis" for polarons. 

Finally, we are ready to face the problem of capture and relaxation. The capture of 

charge carriers from the quantum wire might be influenced by strong coupling and be 

treated with a non-perturbative approach such as outlined in the previous paragraph. 

The relaxation inside the quantum dot is partially driven by phonon-phonon interac-

tions as emphasized by Verzelen et al. [33]. We shall study this relaxation path in the 

future. 
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8 Appendix 

8.1 Extended discussion of electron-crystal interaction 

This section is an extension of chapter 2 giving detailed mathematical developments. 

8.1.1 Extension of section 2.1.2 

Nuclei-electron decoupling: "Born-Oppenheimer approximation" 

Inside the reduced space , the Hamiltonian  describes an unstable 

dynamic of negative particles that all repel each other. In the same way  de-

scribes an unstable system of positive particles in the space . In this section, 

we shall include the mean effect of the nuclei in the electron Hamiltonian  and 

the mean effect of the of the electrons in the nuclei Hamiltonian 

electrons H electronsH

nucleiH

nucleiH

electronsH

nucleiH . Finally, the 

electron and the nuclei dynamics yield stable solutions, which are close to the solu-

tion of the full Hamiltonian. This approximate decoupling of the electronic and nuclear 

motion is globally referred to as the "Born-Oppenheimer approximation". 

In a first step, we give an approximate Hamiltonian describing the nuclei dynamics in 

the subspace , which accounts for the mean influence of the electrons. The 

commonly used approximation is an "adiabatic approximation". It considers the elec-

trons as slaves without inertia. They follow instantaneously the relatively slow nu-

clear motion. Mathematically, the electrons are considered to be always in the ground 

state around the instantaneous nuclear configuration. To do so, we regard the nuclei 

as classical particles located in the positions 

nucleiH

classR.  at a given moment in time. The 

electrons contribute to the nuclear dynamics by the mean of a potential ( )class
0E R. , 

which is the electronic ground state energy of the instantaneous nuclear configura-

tion. Explicitly, it is the ground state energy of the time independent Schrödinger 

equation 

( )
2 2 2n N n

class

class
1 ' 1 1e 0 0' electrons

Zp e 1 e
E R.

2m 8 4r r r R 1

µν

ν ν ν µ νν ν ν µ

ψ ψ
πε πε= ≠ = =

⎧ ⎫
⎪ ⎪+ − =⎨ ⎬

− − ⋅⎪ ⎪⎩ ⎭
∑ ∑ ∑ ∑     

Including this contribution, the nuclei potential becomes 

( )
2

class
0class class

'0 '

Ze
E R.

8 R R

µ

µ µ µ µ
πε ≠

+
−

∑   
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This potential has stable solutions. It namely allows obtaining the classical equilib-

rium configuration (0)R.  of the nuclei. This configuration minimizes the potential en-

ergy, i.e. 

( )
2

(0)
0(0) (0) (0)

'0 '

Ze
E R. 0 1...N

8R R R

µ

µ µµ µ µ

µ
πε ≠

⎡ ⎤
∂ ⎢ ⎥+ = ∀ =⎢ ⎥∂ −⎢ ⎥⎣ ⎦

∑          

If this equation yields several solutions, the absolute minimum is chosen. To keep the 

electronic contribution to the nuclei Hamiltonian small, it is convenient to subtract 

( )(0)
0E R.  from the potential above, such that the final potential yields 

( ) ( )
2

class (0)
0 0class class

'0 '

Ze
E R. E R.

8 R R

µ

µ µ µ µ
πε ≠

+ −
−

∑   

It is a function of classical position variables. By virtue of the spectral theorem or a 

Taylor development it is extended to an operator function of quantum mechanical 

operators. In such a way we obtain an approximate Hamiltonian describing the nu-

clear dynamics in the adiabatic approximation, 

( ) ( )
2 2N

adia (0)
nuclei 0 0

1 '0 '

P Ze
H E

2M 8 R R

µ µ

µ µ µµ µ µ
πε= ≠

R. E R.⎡ ⎤= + + −⎢ ⎥⎣ ⎦−
∑ ∑    

In a second step, we look for an approximate electronic Hamiltonian in the subspace 

, which accounts for the mean influence of the nuclei. This is generally done 

by assuming that the nuclei are classical charges retained in the equilibrium positions 

electronsH

(0)R. . They act on the electrons by Coulomb interaction, such that 

2 2 2n N n
equil
electrons (0 )

1 ' 1 1e 0 0' electrons

Zp e 1 e
H

2m 8 4r r r R 1

µν

ν ν ν µ νν ν ν µ
πε πε= ≠ = =

= + −
− − ⋅

∑ ∑ ∑ ∑     

We have thus found an approximate Hamiltonian that separates the electronic and 

nuclear dynamics from one another: 

Born Oppenheimer equil adia
electrons nuclei electrons nucleiH H 1 1− = ⊗ + ⊗ H  

This approximation is referred to as "Born-Oppenheimer approximation". It differs 

from the original Hamiltonian  by a residual correction term moleculeH

( ) ( )

2 N n
res

nucleie nuclei (0)
1 10 nuclei electrons electrons

(0)
electrons 0 0 nuclei

Z Ze
V 1

4 r 1 1 R r R 1

1 E R. E R. 1

µ µ

µ ν ν µ ν µ
πε− −

= =

⎡ ⎤
⎢ ⎥= − − ⊗⎢ ⎥⊗ − ⊗ − ⋅⎢ ⎥⎣ ⎦

⎡ ⎤− ⊗ − ⋅⎢ ⎥⎣ ⎦

∑ ∑   
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Finally, 

equil adia res
molecule electrons nuclei electrons nuclei e nuclei

H H 1 1 H V − −
= ⊗ + ⊗ +  

where 
2 2 2n N n

equil
electrons (0 )

1 ' 1 1e 0 0' electrons

Zp e 1 e
H

2m 8 4r r r R 1

µν

ν ν ν µ νν ν ν µ
πε πε= ≠ = =

= + −
− − ⋅

∑ ∑ ∑ ∑     

( ) ( )
2 2N

adia (0)
nuclei 0 0

1 '0 '

P Ze
H E

2M 8 R R

µ µ

µ µ µµ µ µ
πε= ≠

R. E R.⎡ ⎤= + + −⎢ ⎥⎣ ⎦−
∑ ∑    

( ) ( )

2 N n
res

nucleie nuclei (0)
1 10 nuclei electrons electrons

(0)
electrons 0 0 nuclei

Z Ze
V 1

4 r 1 1 R r R 1

1 E R. E R. 1

µ µ

µ ν ν µ ν µ
πε− −

= =

⎡ ⎤
⎢ ⎥= − − ⊗⎢ ⎥⊗ − ⊗ − ⋅⎢ ⎥⎣ ⎦

⎡ ⎤− ⊗ − ⋅⎢ ⎥⎣ ⎦

∑ ∑   

               

 

 

Nuclei-nuclei decoupling: "Harmonic normal modes" 

The next step is to decouple the nuclear coordinates from one another inside the re-

duced space . The standard method consists in neglecting the anharmonic part 

of the potential energy around the equilibrium configuration and to perform a canoni-

cal transformation giving rise to independent normal modes. The energy quanta of 

each such mode are referred to as "phonons". 

nuclei H

Harmonic approximation 

We consider the nuclei as classical point charges located in { }Rµ . The potential 

( ) ( )
2

adia (0)
nuclei 0 0

'0 '

Ze
V E R

8 R R

µ

µ µ µ µ
πε ≠

⎡ ⎤= + −⎢ ⎥⎣ ⎦−
∑ . E R.  

is developed in series around the equilibrium configuration (0)R. . To simplify the no-

tation, we introduce the displacement vectors (0)Q R Rµ µ µ≡ − , 

( )
( )

adia
2 nucleiadia i j

nuclei 'i j(0) (0 )
' ( ,i ),( ', j )0 ''

Q. 0

V Q.Ze 1
V Q

8 2! Q QR R

µ
µ µ

µ µ µ µ µ µµ µ
πε ≠

=

∂
= +   

∂ ∂−
∑ ∑ Q 3+ O

                                                                                                      

 

adia,(0)
nucleiV

                                                                                                                                                                    

adia,harm
nucleiV

                                                                                                                                                                      

adia,res
nucleiV

                                                              

 

There is no linear term, since the equilibrium configuration corresponds to a mini-

mum of the potential energy. The residual term  contains the anharmonic con-

tribution to the interaction potential. Neglecting this residual term yields the "har-

adia,res
nucleiV

  79 



monic approximation". Further we neglect the constant contribution , which 

simply shifts the energy scale. 

adia,(0)
harmV

Finally, 

( )
2N

adia,harm adia,harm
nuclei nuclei

1

P
H V

2M
µ

µ µ=

= +∑ Q.   

Classical normal mode solution 

It always exists is a particular set of canonically conjugate coordinates, in which the 

Hamiltonian  becomes decoupled. To demonstrate it, we shall adapt the fol-

lowing tensor notations: 

adia,harm
nucleiH  

x
1
y

1
3Nz

1

z
N

P
P

P P

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟≡ ∈
⎜ ⎟

  ⎜ ⎟
⎜ ⎟
⎝ ⎠

,    "momentum and displacement vec-

tor" 

x
1
y
1

3Nz
1

z
N

Q
Q

Q Q

Q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟≡ ∈
⎜ ⎟

  ⎜ ⎟
⎜ ⎟
⎝ ⎠

( ,i ),( , j ) ij 3N 3NM Mµ µ µ µµδ δ′ ′ ×≡   ∈M      "mass matrix", diagonal, positive i , j 1,2,3=

( )adia
nuclei

( ,i ),( , j ) 3N 3Ni j
'

Q. 0

V Q.
M

Q Qµ µ
µ µ

′ 

=

∂
≡ ∈

∂ ∂ ×D  "dynamical matrix", symmetrical, 

positive 

Thereby, the Hamiltonian takes the simple form 

( )adia,harm T 1 T
nuclei

1
H P P Q

2
 −=  +M D Q  

In appendix 8.4.1 it is proved that the non-symmetrical matrix ( )1−M D  has positive 

non-degenerate eigenvalues 2
αω , 

( )1 2X Xα α αω− =  M D  

The with eigenvectors Xα  can be orthonormalized in the sense 

TX Xα β αβδ =M  

They constitute a basis of , in which we shall decompose the nuclei coordinates: 3N

Q Q Xα α
α

=  ∑  and P P Xα α
α

=   ∑ M  

Those relations define a set of new coordinates 
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TQ X Qα α=   M  and TP X Pα α=   

which can be verified to be canonically conjugate. In those coordinates the Hamilto-

nian looks like 

( )adia,harm 2 2 2
nucleiH Pα α α

α

ω = +  ∑ Q  

Thereby we have proved the existence of a canonical transformation, which decoup-

les the nuclei coordinates, and derived its explicit form. What do the new coordinates 

physically represent? Each couple ( )Q ,Pα α  describes an independent harmonic oscilla-

tor with angular frequency αω . Since the ionic displacements depend linearly on Qα , 

each couple (Q ,P )α α  describes a collective harmonic oscillation of all the nuclei at one 

same frequency. Therefore the new coordinates are called "normal mode coordi-

nates". There are 3N  modes:  global translations, 3  global rotations and 3N3 6−  

vibrations. The set of all those modes is called . A

Quantum mechanical normal mode solution, phonons 

The  modes are independent properties of motion of the nuclei system. Therefore, 

each mode 

3N

α  can be assigned a restricted orthogonal subspace modeα  H  of the full 

space . The full space is isomorphic to the product space  defined by nuclei H modesF

nuclei modes modeαα  ∈  ≡ ⊗∼
A

H F H       

This space is called "Fock space of normal modes". 

Qα  and Pα  are considered as quantum mechanical operators acting in this space. The 

commutation relations of the nuclei coordinates transform to 

modesQ ,P i 1α β αβδ⎡ ⎤ = ⋅⎣ ⎦               Q ,Q 0α β⎡ ⎤ =⎣ ⎦                 P ,P 0α β⎡ ⎤ =⎣ ⎦  

We remind, that operators belonging to different normal modes naturally commute 

because they act on different parts of the product space. This is not related to ex-

change symmetries of identical particles. 

The dynamics of the nuclei system is given by the Hamiltonian operator 

( )adia,harm 2 2 2
modes modeH P Q Hα α α α

α α

ω  
∈ ∈

= + =∑ ∑
A A

  

The operator modeH α  describes a quantum mechanical harmonic oscillator in the space 

modeα  H  and acts trivially on all other modes. The standard way to solve the dynamics 

described by modeH α  is to introduce the "annihilation operator" and "creation opera-

tor" of one energy quanta, 
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Q i P
d

2
α α

α
α

ω
ω
+  

= α           and          † Q i P
d

2
α α α

α
α

ω
ω
−  

=  

They can be shown to satisfy the following commutation relations 

†
modesd ,d 1α β αβδ⎡ ⎤ = ⋅⎣ ⎦              d ,d 0α β⎡ ⎤ =⎣ ⎦              † †d ,d 0α β⎡ ⎤ =⎣ ⎦  

and the Hamiltonian becomes 

†
modeH d dα α α αω =  

The operator †N d dα α α=  is hermitian and its spectrum can be shown to contain all 

non-negative integers. Therefore, the energy eigenstates of each mode α  corre-

spond to equally-spaced discrete energies, separated by αω . Further, the spectrum 

is non-degenerate. Thus a complete set of commuting observables is given by { }Nα . 

The corresponding orthogonal basis is noted 

{ }{ }n ,n ,n ,... : n ,n ,... 0,1,2,3,...α β γ α β ∈  

Physically, the vector n ,n ,n ,...α β γ  represents a state, where the mode α  is 

 excited, i.e. it has an energy n timesα − nα αω , and so on. The annihilation and crea-

tion operators act on the basis vectors as follows 

1d ..,n ,.. n ..,n ,..α α α α −=              and            †
1d ..,n ,.. n 1 ..,n ,..α α α α += +   

which justifies their names. In section "Bosonic second quantization" (8.1.2) we will 

see that this mathematical structure exactly corresponds to the one used to describe 

a system of identical bosons. This leads us to consider the nuclei vibrations as com-

posed by bosonic particles, called "phonons", which can occupy any of the modes 

α ∈ A . 

The full dynamic beyond the harmonic approximation is described by the Hamiltonian 

( )adia 2 2 2 adia,res
modes modesH P Q Vα α α

α

ω
∈

= + +∑
A

  

where ( )adia,res adia,res
modes nucleiV V= Q.  contains the anharmonic part of the potential. This term 

is not diagonal and therefore yields interactions between the normal modes or "pho-

non-phonon-interactions". 

8.1.2 Extension of section 2.2 

First, this term is developed in series. This allows distinguishing important contribu-

tions from less important ones. Second, the different terms of the series are ex-

pressed in the notation of second quantization. This allows considering the interaction 
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as a sum of elementary interactions between single quanta of vibration and elec-

trons. 

Development in series 

Starting with the residual interaction term between electrons and modes 

( )

( )( ) ( )

2 N n
res

modese modes (0 )
1 10 modes electrons electrons

(0)
electrons 0 0 modes

Z Ze
V 1

4 r 1 1 R Q. r R 1

1 E R. Q. E R. 1

µ µ

µ ν ν µ ν µ
πε− −

= =

⎡ ⎤
⎢ ⎥= − − ⊗⎢ ⎥⊗ − ⊗ − ⋅⎢ ⎥⎣ ⎦

⎡ ⎤− ⊗ − ⋅⎢ ⎥⎣ ⎦

∑ ∑   

          

 

we admit the following Taylor development in the tensor product space 

( ) ( )res (1) (2)
,e modes

,

res (1) res (2)
e modes e modes

V F r. Q F r. Q Q

V V

α α α β α β
α α β

−

− −

−
∈ ∈

  
− −

= ⊗ + ⊗∑ ∑ +…
A A

 

where the coefficients are given by 

( )
res

(1) e modes

Q. 0

W
F r.

Qα
α

− −

=

∂
=  

∂
   ,      ( )

res
(2) e modes

Q. 0

W1
F r.

2! Q Qαβ
α β

− −

=

∂
=

∂ ∂
   ,      etc. 

res

e modes
W − −

 is the restriction of the operator  to the subspace  obtained 

when replacing the operators 

res

e modes
V − − electrons H

R ,Qµ α  by classical variables. When writing , we 

drop all constant terms, since our interest concentrates on the derivates of , 

res

e modes
W − −

res

e modes
W − −

( )
2 N n

res
0 electre modes

1 10 electrons

Ze
W E

4 r R 1

µ

µ ν ν µ
πε− −

= =

⎡ ⎤
⎢ ⎥= − − ⋅⎢ ⎥− ⋅⎢ ⎥⎣ ⎦

∑ ∑   onsR. 1  

The definition of two new operators 

N

(0)
1

X
Q R

α αµ
µα µ=

∂ ∂
≡ = ⋅

∂ ∂
∑D  

( ) ( )
2 N n

res (0) (0)
0 elece modes (0)

1 10 electrons

Ze
W W R E R. 1

4 r R 1

µ
µ

µ ν ν µ
πε− −

= =

⎡ ⎤
⎢ ⎥≡ = − − ⋅⎢ ⎥− ⋅⎢ ⎥⎣ ⎦

∑ ∑   trons  

allows simplifying the Taylor coefficients of ( )F r . , 

( )(1)F r . Wα =  αD    ,      ( )(2)F r . Wαβ α β=  D D    ,      etc. 

Over the following sections these coefficients are transcribed in second quantization, 

which leads to a compact form of the interaction term . res

e modes
V − −

  83 



Generalities about second quantization 

Bosonic second quantization 

We call H  the Hilbert space appropriate to represent one boson. We consider N  

identical bosons, i.e. particles that behave symmetric in the exchange of one pair. To 

account for this symmetry we construct a Hilbert space , which only contains 

completely symmetric states, by writing 

NF

( )N N⊗=F S H  

where  is the orthogonal projector on the symmetric subspace. S

If , this space is identical to the complex body, in which we can fix one arbi-

trary normalized basis vector 

N 0=

0 . This vector represents the vacuum state. To con-

struct a basis of , , we start with an orthonormal basis of , let's say NF N 0> H

{ }:α α ∈ A . A vector of  is given by NF

N

1 N s(1) s(N )
s

1
,..., ...

N !
α α α α

  ∈

≡ ⊗ ⊗∑
P

 

where  is the group of permutations of the set N P { }1,...,N . The vectors can be shown 

to be orthonormal, 

{ } { }1 N 1 N
1 N 1 N

1 if ,..., ,...,
,..., ,...,

0 otherwise

α α β β
α α β β

⎧  =⎪= ⎨
⎪⎩

 

Further they satisfy the symmetry relation 

1 N s(1) s(N ) N,..., ,..., sα α α α  =          ∀ ∈ P  

This relation makes our notation very redundant. We can define a much shorter and 

unique notation by simply writing the number of times a certain state is occupied. If 

1
nα  bosons are in state 1α , 

2
nα  bosons in state 2α  and so on, we simply note 

1 2
n ,n ,...α α . 

In this notation the exchange symmetry no longer appears. An orthonormal basis of 

 is given by NF

{ }
1 2 i i

i

n ,n ,... : n 1,2,... , n Nα α α α
⎧ ⎫

∈   =⎨ ⎬
⎩ ⎭

∑  

The orthonormalization relations are 
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i i
21 2 1

1 iif n n
n ,n ,... n ,n ,...

0 otherwise

α α
α α α α

∀ ⎧ ′ =⎪′ ′ = ⎨
⎪⎩

 

By definition we call "Fock space of bosons" the direct sum of the spaces  over all 

numbers of bosons, 

NF

( )N N

N 0

∞
⊗

=
≡ ⊕ =F F S H  

The scalar product is defined by the scalar product over  and the condition 

 if . An orthonormal basis of  is given by 

NF

N M⊥F F N M≠ F

{ }{ }1 2 i
n ,n ,... : n 0,1,2,...α α α ∈   

We define the "annihilation operator", 

N N 1

1

d :

..,n ,.. n ..,n ,..
α

α α

−

−

            →     

         
F F

α

 

which destroys one boson in the state α . It can be shown that its adjoint acts like a 

"creation operator" of one boson in the state α , 

† N N 1

1

d :

..,n ,.. n 1 ..,n ,..
α

α α

+

+

            →     

    +      
F F

α

 

From these definitions, we deduce the commutation relations 

†d ,d 1α β αβδ⎡ ⎤ = ⋅⎣ ⎦              d ,d 0α β⎡ ⎤ =⎣ ⎦              † †d ,d 0α β⎡ ⎤ =⎣ ⎦  

Those relations translate the completely symmetrical structure of the Fock space. 

At this point, our reasoning gets a physical meaning: In section 2.1.2 (and its exten-

sion 8.1.1), the nuclei dynamics of the molecule has been decomposed in independ-

ent normal modes, which can be occupied an arbitrary number of times. The modes 

are called α  and the energy eigenstates 
1 2

n ,n ,...α α . The introduced annihilation 

and creation operators act exactly like the ones introduced to describe a system of 

identical bosons. This leads us to consider the nuclei motion as composed by identical 

bosonic particles called "phonons", which can occupy any of the modes α ∈ A . The 

exchange symmetry of the phonons appears when we step back to the redundant 

notation 

1 N s(1) s(N )
s

1
,..., ...

N !
α α α α

∈

≡ ⊗ ⊗∑
NP

 

Fermionic second quantization 

  85 



The electrons are subject to a fermionic second quantization. Up to now the set of n  

electrons has been treated in the Hilbert space . To keep a trace of the num-

ber of electrons let's introduce the notation 

electrons H

( ){ }nn
electrons electrons electron

⊗

  ≡ =F H A H  

Now we introduce a much larger space  containing all possible numbers of 

electrons. This space is called the "Fock space of electrons", 

electronsF

( ){ }nn
electrons electrons electronn 0 n 0

∞ ∞ ⊗

= =
≡ ⊕ = ⊕F F A H  

To complete the definition, we define the scalar product on  as the one in-

duced from the scalar product on , when choosing the subspaces to be or-

thogonal: 

electronsF

n
electronsF

n n
electrons electrons if n n′ ′  ⊥        ≠F F  

The antisymmetry of  implies that all orthogonal one-electron states can at 

most be occupied ones. Therefore a suitable basis of the Fock space  is given 

by 

n
electronsF

electronsF

{ }{ }1 2 i
n ,n ,... : n 0,1τ τ τ ∈  

where iτ  are the energy eigenstates of . equil ,sc
electronsH

We define the "annihilation operator" of an electron in the state τ , 

( )

n n 1
electrons electrons

k

1 2 k 1 2 k

a :

n ,n ,...,n 1,... 1 n ,n ,...,n 0,...

τ

τ τ τ τ τ τ τ τ

−

= =

                                →        

=       −  =      
F F

 

Its adjoint can be shown to act as a "creation operator" of an electron in the state τ , 

† n n 1
electrons electrons

1 2 k 1 2 k

a :

n ,n ,...,n 0,... n ,n ,...,n 1,...

τ

τ τ τ τ τ τ τ τ

+

= =

                                 →        

=       =      
F F

 

These definitions lead to the commutation relations 

{ }†
electronsa ,a 1τ τ =  

all the other commutators being trivial. 

Using those new operators, the free electron Hamiltonian  can be transcribed 

to second quantization, 

equil ,sc
electronsH

equil ,sc †
electrons

J

a aτ τ τ
τ

ε  
∈

= ∑«  
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where τε  is the energy of the one-electron state τ  and J  is the set of all energy ei-

genstates τ . Further, we call 0J  the set of states τ , which is occupied in the elec-

tronic ground state configuration. Its complement 0J J \ J∗ ≡  contains all the excited 

one-electron states. Based on these notations, we define the following auxiliary op-

erators, 

†
0J " annihilationoperator of ahole"c a

J " annihilationoperator of anelectron"b a
τ τ

τ τ

τ

τ ∗

∀ ∈     ≡

∀ ∈     ≡
 

Their adjoints are consequently given by 

†
0

† †

J " creationoperator of ahole"c a

J " creationoperator of anelectron"b a
τ τ

τ τ

τ

τ ∗

∀ ∈     =

∀ ∈     =
 

The free electron evolution expressed in these new operators yields 

0
0 0 0

equil ,sc † † †
electrons electrons

J J J J

cons tant

a a b b c c 1τ τ τ τ τ τ τ τ τ τ
τ τ τ τ

ε ε ε ε
∗

  
∈ ∈ ∈ ∈

= = − + ⋅∑ ∑ ∑ ∑«  

Let's shift the zero of the energy by dropping the constant contribution, 

0

equil ,sc † †
electrons

J J

b b c cτ τ τ τ τ τ
τ τ

ε ε
∗

  
∈ ∈

= −∑ ∑«  

Second quantization of the interaction term 

The new molecular Hilbert space is 

( ) (n (
molecule electrons modes electron moden 0 n 0

∞ ∞
⊗ ⊗

  = =

⎡ ⎤ ⎡= ⊗ = ⊕ ⊗ ⊕⎢ ⎥ ⎢⎣ ⎦ ⎣
H F F H S HA )3N 6)−

 
⎤
⎥⎦
 

We shall transform the electron-phonon interaction term to second quantization, 

( ) ( )res (1) (2)
,e modes

,

res (1) res (2)
e modes e modes

r . r .α α α β α β
α α β

−

− −

−
∈ ∈

  
− −

= ⊗ + ⊗∑ ∑ +…
A A

’ ≈ – ≈ – –

’ ’

 

where the electronic terms are analogically given by 

( )(1) r .α =  α≈ D ÷    ,      ( )(2) r .αβ α β=  ≈ D D ÷    ,      etc. 

and the phonon term by 

( )†d d
2α α α

αω = +–  

The remaining problem is to find ÷  expressed in second quantization. In order to 

pass to this notation, we adopt the following notations 
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Electronic field operator: ( ) ( )
J

x x aτ τ
τ

Ψ ϕ
∈

=  ∑  

Electronic density operator: ( ) ( ) ( ) ( ) ( )* †

,

x x x x x a aτ τ τ
τ τ

Ψ Ψ ϕ ϕ+
τ′ ′

′

= = ∑  √   

A straightforward development yields (see appendix 8.4.2) 

( ) ( )2
0 0 electrons3

(0)
0 electrons

x x 1e Z
d x

4 x R 1

µ

µ µ

ψ ψ

πε

− ⋅
= −

− ⋅
∑∫

√ √
÷

3

N

=1
        

We use the definition 

( ) ( )
3

*
2N

3

(0)
1 0

x xZ e
w d x

4 x R

τ τµ
τ τ

µ µ

ϕ ϕ

πε
′

′ 
=

−  
≡   

−
∑ ∫  

in order to obtain a simplified expression, 

( )
( )

0
0 0

0
0

† †
0 0 electrons

, J

† † †
electrons

, J J J , J
J J

† †

, J J
J

w a a a a 1

w a a 1 w a a w a a w a a

w a a w a a w

τ τ τ τ τ τ
τ τ

†
τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ
τ τ

τ τ τ τ τ τ τ τ τ
τ τ τ

τ

ψ ψ

δ
∗ ∗ ∗

∗

′ ′ ′ 
′ ∈

′ ′ ′ ′ ′ ′ ′ ′     
′ ′ ′ ∈ ∈ ∈  ∈

′∈ ∈

′ ′ ′ ′  
′ ∈ ∈

′∈

=  − ⋅

=  − ⋅ +  +  +  

= −  +  +

∑

∑ ∑ ∑

∑ ∑

÷

0

† †

J , J
J

a a w a aτ τ τ τ τ τ τ
τ τ τ
τ

∗ ∗

′ ′ ′ ′  
′ ′∈  ∈
∈

 +  ∑ ∑

′∑

†

 

In terms of electron and hole operators, 

† † †

.. .. .. ..

w c c w b c w c b w b bτ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ′ ′ ′ ′ ′ ′ ′     = −  +  +  +  ∑ ∑ ∑ ∑÷ ′  

Thus the terms of  can be written in the second quantization. For the first 

order term we obtain explicitly 

res

e modes− −
’

res (1) † † † †

e modes
... ... ... ...

† † † † † † † †

... ... ... ...

M c c d M b c d M c b d M b b d

M c c d M b c d M c b d M b b d

α α α α
τ τ τ τ α τ τ τ τ α τ τ τ τ α τ τ τ τ α

α α α α
τ τ τ τ α τ τ τ τ α τ τ τ τ α τ τ τ τ α

−
 

′ ′ ′ ′ ′ ′ ′ ′    −

′ ′ ′ ′ ′ ′ ′ ′    

= −    +   +  +  

−    +   +  +  

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

’  

where 
( ) ( )

3

*
2 N

3

(0) (0 )
10

x xe
M w Z X d x

2 2 4 R x R

τ τα
τ τ α τ τ µ αµ

µα α µ µ

ϕ ϕ

ω ω πε
′

′ ′  
=

⎡ ⎤
− ∂ ⎢ ⎥=   =       ⋅  ⎢ ⎥∂ −⎢ ⎥⎣ ⎦

∑ ∫D  

...
∑ is the sum over all normal modes α  and over the states τ  and τ ′ , on which the 

respective hole or electron operators are defined. 

Note that equal electronic wave functions with different spins give two different 

states 1τ  and 2τ . If τ  were only an index of the wave function, we had an additional 

sum over the two spin states in the expression of Mα
τ τ ′ . 
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Discussion 

(see section 2.2.2) 

8.1.3 Extension of section 2.3 

Introduction 

First, the electron structure of the crystal is pointed out. Then, the phonon dispersion 

is derived and we shall see that one can choose better normal mode coordinates than 

the ones shown in chapter 3. Therefore, we enlarge the mathematical frame of the 

general method by introducing complex coordinates, without changing the underling 

physics. Based on the explicit electron and phonon states, the general electron-

phonon interaction term is derived to first order. The chapter ends with a discussion 

of physical aspects and applications. 

Passing from to the general molecule to the crystal we are subject to one conceptual 

change: The crystal electrons can be considered as either bound to specific ions or as 

valence electrons dispersed all over the structure. Every nucleus together with its 

bound electrons will be considered as one physical entity called ion. Those ions are 

treated as point charges. In the general theory of the molecule, the nuclei become 

ions and the electrons become the valence electrons. To keep a record of this con-

ceptual change, we write . res res

e nuclei e ions
V V− −− −

    →    

Electrons in crystals 

The mean electrical potential of a crystal has the periodicity of the underlying Bravais 

lattice. In this case the Bloch Theorem states, that the electronic energy eigenstates 

are of the form 

ik r

k k
(r ) u (r )eϕ ⋅=   

where 
k

u (r )  has the periodicity of the lattice. Further the functions 
k

u (r )  can be 

chosen to satisfy the orthonormality relations 

3

k k k
d r (r ) (r )

k
ϕ ϕ δ∗

′ ′ 
  =∫  

Rigorously, every wave function 
k
(r )ϕ  gives two simultaneously accessible states, 

with opposite spins σ . A one-electron state τ  is thus entirely described by a couple 

(k , )σ : 

(k , )τ σ    →     
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For any derivation in the reduced Hilbert space without spins, it is important to re-

member that equal wave functions with opposite spins are orthogonal. We shall add 

to the index σ , 

( ) ik r

k , k
r u (r )e

σ
ϕ ⋅=  , 

and use the Kronecker Delta-function to mark the orthogonality, 

( ) 3

k , k , k , k , k k
, d r (r ) (r ) σ σ σσ σ σ σ σϕ ϕ ϕ ϕ δ δ∗

′ ′  ′ ′  
=    =  ∫ δ

′
 

Phonons in crystals 

The mean positions of the ions of a crystal form a periodic structure, which is usually 

decomposed in a Bravais lattice BL  and a basis B . Each ion µ  is described by two 

vectors l BL∈  and b B∈ , where l  indicates the position of the primitive cell and b  

the location of the ion within the cell. The equilibrium position of the ion is thus given 

by (0)

( l ,b )
R l= + b . 

We first consider the ions as classical particles represented in a real phase space. The 

normal mode coordinates of a crystal are obtained by a suitable canonical transfor-

mation of the ionic coordinates. However, the general method, which consists in solv-

ing eigensystem 

( )1 2X Xα α αω− =  M D  

is hard to apply and the resulting canonical transformation is laborious to deal with 

because it doesn't make use of the symmetries of the crystal. A more convenient 

canonical transformation is thus obtained by using the symmetry properties. There 

are two standard ways. The first results in a canonical transformation with real nor-

mal mode coordinates, which all depend on both the position and momentum vari-

ables: 

( )Q Q Q,Pα α= ∈  and ( )P P Q,Pα α= ∈ . 

3NQ ∈  is the vector containing all the ionic displacements and 3NP ∈  the vector 

containing the ionic moments. Such a canonical transformation is presented in ref. 

[44]. 

The second approach uses complex coordinates, which exclusively depend on the 

position or momentum variables: 

( ) †Q Q Q X Qα α α= =      ∈  M  and ( ) †P P P X Pα α α= =     ∈   
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This is the form of canonical transformation, which we have used to write  in 

second quantization in chapter 2.2. Therefore, we shall use complex coordinates. 

First, we note that the total ionic potential has the translational symmetry of the Bra-

vais lattice. Thus, the dynamical matrix only depends on the mutual distance of two 

ions but not on their absolute position, 

res

e modes
V − −

( ) ( )3 3R,R b,b
l l M for fixed b and b×′ ′  

′ ′= −       ∈          D D +  

We define the discrete Fourier transpose of the dynamical matrix, 

( ) ( )iq R
3 3q,b,b b,b

R

e R M for fixed b and b− ⋅
×′ ′  

∈

′≡        ∈          ∑
B

K D  

There are r  different vectors b  or b′ , where  is the number of ions per unit cell. 

The matrix 

r

q K  obtained when varying b  and b′  is thus of dimension . We 

solve the eigensystem 

3r 3r×

2
q' q , j q , j q , jω    =   K Ñ Ñ  

where 3r
q, j ∈Ñ  is called "polarization vector". The index j 1 3r= … . distinguishes 

different eigenvalues and eigenvectors of q K . Since q, j Ñ  are the eigenvectors of a 

hermitian matrix, they are orthogonal. Their norm is chosen in a way to satisfy the 

orthonormalization relations 

†
j jq , j q , j q q(q, j ),(b,i ) (q , j ),(b ,i )

b ,i 1,2,3

δ δ  ∗
′  ′ ′ ′  ′ ′  

=

⋅ =  =  ∑Ñ Ñ Ñ Ñ  

We define 

iq l

(q , j ),( l ,b,i ) (q , j ),(b ,i )
b

1
X e

NM
⋅=   Ñ  

The index i 1  indicates the three spatial components. The new vectors  

satisfy the generalized orthonormalization relations 

,2,3= (q , j )X  

†
j j(q , j ) (q , j ) q q(q, j ),( l ,b,i ) b (q , j ),( l ,b ,i )

l ,b,i

X X X M X δ δ  ∗  
′ ′ ′ ′ ′ ′

  =   =  ∑M  

The fact that those vectors only depend on the primitive cell by a phase factor iq le ⋅  is 

a direct consequence of the translational symmetry of the Bravais lattice. As shown 

in ref. [45], they induce a canonical transformation 

( ) †
(q, j ) (q , j ) (q , j )Q Q Q X Q= =      ∈  M  and ( ) †

(q, j ) (q , j ) (q , j )P P P X P= =     ∈   
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where  is the vector of the ionic displacements and 3NQ ∈ 3NP ∈  the vector of the 

ionic moments. The physical picture of the new coordinates results from the inversion 

of the transformation relations. It appears that each couple ( )(q , j ) (q , j )Q ,P  describes a 

plane wave with spatial wave vector q  and temporal angular frequency q, jω . An ex-

tended discussion of the dispersion relation of particular crystals was held in the pre-

vious report [46]. 

The new coordinates decouple the ionic Hamiltonian as follows 

( )adia,harm 2
ions (q, j ) (q , j ) (q , j ) (q , j ) (q , j )

q , j

1
H P P Q

2
ω∗ ∗=  +   ∑ Q  

Obviously, the real and imaginary parts of the same normal mode coordinate depend 

on each other. From the canonical transformation, we immediately obtain the relation 

(q , j ) ( q , j )Q Q∗
−=  

Thus coupling between real an imaginary components of the normal mode coordi-

nates represents a physical symmetry between the wave vectors q  and q− . In fact, 

those vectors are applied on each other by the inversion symmetry of the Bravais 

lattice. 

We summarize: Allowing the canonical transformation to be complex, we have found 

a transformation, which is mathematically easy to manipulate. Furthermore, this 

transformation is physically reasonable as it uses the translational and inversion 

symmetry of the lattice. 

We now step to the quantum mechanical description. In this case the complex coor-

dinates become non-hermitian operators, which can be shown to satisfy the commu-

tation relations 

j j ions(q, j ) (q , j ) q qQ ,P i 1δ δ ′ ′ ′ ′ 
⎡ ⎤ =  ⋅⎣ ⎦  

The Hamiltonian becomes 

( )adia,harm † 2 †
ions (q, j ) (q , j ) (q , j ) (q , j ) (q , j )

q , j

1
H P P Q

2
ω=  +   ∑ Q

d

 

Again, we can introduce annihilation and creation operators  and , such 

that 

(q , j )d †
(q, j )d

adia,harm †
ions (q, j ) (q , j ) (q , j )

q , j

H dω= ∑  and  †
j j ions(q, j ) (q , j ) q qd ,d 1δ δ 

′ ′ ′ ′ 
⎡ ⎤ =  ⋅⎣ ⎦

The normal mode operators  then become (q , j )Q
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( )q, j ) ( q , j ) (q , j )
(q , j )

d d
2ω

+
  ( −= +–  

Derivation of the interaction term 

To be logically coherent we shall apply the general method of chapter 2.2 to obtain 

the electron-phonon interaction in the scheme of second quantization. Let's remind 

this method: 

1) write the residual interaction potential , which describes the interaction 

between ionic and electronic excitations 

res

e ions
V − −

2) write the operator W , which is the restriction of  to the subspace 

 obtained when replacing the operators R

res

e ions
V − −

electrons  H µ  by the classical equilibrium 

positions 

3) transcribe W  to its corresponding operator  in second quantization ÷

4) differentiate ÷  to obtain the operator (1)
(q, j ) (q , j )=  ≈ D ÷  

5) write the first interaction term in second quantization, 

( )res (1) (1)
(q , j ) (q , j )e modes

(q, j )

r .−
 

 −
= ⊗∑’ ≈ –  

Because of the translational symmetry of the Bravais lattice the form of the electro-

static potential of an ion only depends on its position within the unit cell but not on 

the absolute position in the lattice. Therefore the global potential can be written as 

( )res

b ( l ,e ions
( l ,b ),

V U rν
ν

− −
= −∑ b)

R  

which gives 

( )(0)

b ( l ,
( l ,b ),

W U r Rν
ν

= −∑ b)
 

In second quantization this term becomes 

( ) ( )
3

3 (0)

b ( l ,b )
( l ,b )

d x U x R x=  −  ∑ ∫÷ √  

where ( )x√  is the density operator, 

( ) ( ) ( ) ( ) ( ) †

k , k , k , k ,
, k ,k

i(k k ) x †

k k k , k ,
k ,k

x x x x x a a

u (x)u (x)e a a

σσ σ σ σ
σ σ

σ σ
σ

Ψ Ψ δ ϕ ϕ+ ∗
′ ′ ′

′ ′

′∗ − ⋅
′ ′

=± ′

= =    

          =       

∑ ∑

∑ ∑

σ
 √  

 

Explicitly we obtain 
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( )
3

3 (0 ) i(k k ) x †

b ( l ,b ) k k k ,
( l ,b ),k ,k ,

d x U x R u (x)u (x)e a a
k ,σ σ

σ

′∗ − ⋅
′ ′

′

=  −     ∑ ∫  ÷  

To find the first Taylor coefficient  we make use of the formula obtained in sec-

tion " Development in series" (8.1.2), 

(1)
(q , j )′≈

(1)
(q , j ) (q , j ) (q , j ),( l ,b ) (0)

( l ,b ) ( l ,b )

X
R

∂
=  =  

∂
∑≈ D ÷ ÷  

After substitution of 
(q , j ),( l ,b )

X  and  a long but straightforward derivation yields 

(see appendix 8.4.3) 

÷

( )
( ) ( )

3

i q k k x(1) iq b 3 †
(q, j ) 3 (q, j ),b k k k , k ,

b,k ,k ,
b

N
i q U q e d x e u (x)u (x) a a

2 M σ σ
σπ

′+ + ⋅− ⋅ ∗
′ ′

′

⎡ ⎤
= −   ⋅             ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫≈ Ñ  

if q k k RL′+ − ∈  and  otherwise. (1)
(q, j ) 0=≈

( )U q  is the Fourier Transform of the potential, ( )
( )

( )
3

3 i
3 / 2

1
U q d x U x e

2π
− ⋅=  ∫ q x . 

Using the relation ( )q, j ) ( q , j ) (q , j )
q

d d
2ω

+
  ( −= +–  

we finally obtain 

( ) ( )res (1) (1) (q, j ) †
(q, j ) (q , j ) ( q , j ) (q , j )b ,k ,k k , k ,e ions

(q, j ) (q , j ),b ,k ,k ,

r . M a a d d
σ σ

σ
−

 +
 −′ ′−

′

= ⊗  =     +∑ ∑’ ≈ –  

with ( ) ( )
3

i q k k x(q, j ) iq b 3
3b,k ,k (q, j ),b k k

(q, j )b

N
M i q U q e d x e u (x)u (

16 Mπ ω
′+ + ⋅− ⋅ ∗

′ ′
x)

⎡ ⎤
= −    ⋅        ⎢ ⎥

⎢ ⎥⎣ ⎦
∫Ñ  

Or in the usual notation 

res (1) † † † †
q, j q , j q , j q , jk , k , k , k , k , k , k , k ,e modes

... ... ... ...

† † † † † †
q, j q , j q , jk , k , k , k , k , k ,

... ... ...

M c c d M b c d M c b d M b b d

M c c d M b c d M c b d M

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

−
 

′ ′ ′−

′ ′ ′

= −    +   +  +  

−    +   +  +

∑ ∑ ∑ ∑

∑ ∑ ∑

’

† †
q, jk , k ,

...

b b d
σ σ′

 ∑

′
 

where the sum goes over all normal modes  ∑ ( )q, j , over all the basis vectors 

b B∈ , and over all the states ( )k,σ  and ( )k ,σ′  on which the respective hole or exci-

tation operators are defined. 

Discussion 

(see section 2.3.4) 
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8.2 Extended analytical discussion of the polaron dynamic 

In this section we give the extended mathematical developments for results present 

in section 3.3. 

8.2.1 Restriction to the relevant subspace 

We show the existence of an orthogonal decomposition of  in spaces that are sta-

ble under the action of H . In particular, the decomposition yields a stable subspace 

, which contains all the polarons that couple different electron states. Further-

more, this space is showed to have a small dimension allowing numerical methods to 

work efficiently. Finally,  contains all the zero-phonon states – the states that 

are often taken as initial states of a relaxation process. Thus  is the only sub-

space of  that concerns our considerations. 

H

red H

red H

red H

H

First, we note that  can be decomposed in zero-phonon and one-phonon sub-

spaces: 

H

n g

0ph 1ph 0ph 1ph1 ττ

−

       +=

⎛ ⎞
= ⊕ = ⊕ ⊕⎜ ⎟

⎝ ⎠
H H H H H    

where { }( )0ph vect 0 : 1,...,nτ τ  ≡    =H  

{ }( )1ph ivect 1q : i 1,...,Nτ τ   +  ≡    =H  

For any electron energy eigenstate 1...nτ =  we define the orthogonal projector 

1ph 1phP :τ τ   +    +   →H H  

Further, we define 

( )A, 1ph 0ph 1phP Hτ τ τ  +   ≡ ⊆H H  + H  and 

B, A,τ τ ⊥H H  such that A, B, 1phτ τ τ    ⊕ =H H H  +  

In this way,  yields the orthogonal decomposition, H

( ) ( )
n g n g

0ph A,1 B,1 A,n g B,n g 0ph A, B,1 1
... τ ττ τ

− −

    −  −    = =

⎛ ⎞ ⎛
= ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕⎜ ⎟ ⎜

⎝ ⎠ ⎝
H H H H H H H H H

⎞
⎟
⎠
 

Theorem (stable subspaces) 

If B,τ H  are defined as the orthogonal complements of ( )A, 1ph 0phP Hτ τ  +  ≡H H  inside 

1ph τ   + H , then B,τ H  are stable in time. Explicitly, B, B,H τ τ τ  ⊆     ∀H H . 
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To prove this theorem we use the particular structure of the Fröhlich Hamiltonian and 

the monochromaticity of the LO-phonon spectrum (demonstration see appendix 

8.4.4). 

The theorem implies that the space 

(
n n

red 0 ph A, 0 ph 1ph 0ph1 1
P Hτ ττ τ       +  = =

⎛ ⎞ ⎛≡ ⊕ ⊕ = ⊕ ⊕⎜ ⎟ ⎜
⎝ ⎠ ⎝

H H H H H )⎞
⎟
⎠
       "reduced space" 

is also stable, i.e. . This is space contains , which contains the initial 

state vector of the system at zero temperature. Thus, the relaxation process will be 

described inside . 

red redH   ⊆H H 0ph H

red H

We shall now find a basis of . The orthogonal projector red H 1phP τ   +  can be written as 

N

1ph i i
i 1

P 1qτ τ τ   + 
=

=     ∑ 1q . 

A basis of A,τ H  is thus given by the set of  non-orthogonal vectors n

N

i i
i 1

1q 1q H 0 1,...,nτ τ ν ν
=

⎧ ⎫
         :   = ⎨ ⎬

⎩ ⎭
∑  

A non-orthogonal basis of  is given by the basis vec-

tors of its orthogonal components: 

red 0 ph A,1 A,n g...     ≡ ⊕ ⊕ ⊕H H H H −

N

i i
i 1

0 , 1q 1q H 0 , 1...n, 1...n gν τ τ ν ν τ
=

⎧ ⎫⎛ ⎞⎪ ⎪              =   =  −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑  

If those n(  vectors are linearly independent (which is almost certain to hap-

pen), then the dimension of  is equal to n(

n 1 g)+ −

red H n 1 g)+ − . An orthonormal basis of 

 is obtained by Gram-Schmidt orthonormalization. red H

Overview 

We summarize. There is a particular decomposition of the total Hilbert space, 

red B,1 B,n g...   = ⊕ ⊕ ⊕H H H H −

)

, 

where all the subspaces are stable under the action of the Hamiltonian . In particu-

lar, there is a low dimensional stable subspace  with four major properties: 

H

red H

  has a small dimension that is independent of the number of normal 

modes, 

red H

( ) (reddim n n g 1= − +H . 
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  is the only subspace of  that couples different electron states. More 

precisely,  contains all the eigenstates of the full Hamiltonian , which 

involve several electron states. 

red H H

red H H

  is stable under the action of H , i.e. . Consequently a state 

vector initially contained in  stays inside  over time. 

red H red redH   ⊆H H

red H red H

  contains all the zero-phonon states, which are often considered as initial 

states. 

red H

A non-orthogonal basis of  is given by red H

N

i i
i 1

0 , 1q 1q H 0 , 1...n, 1...n gν τ τ ν ν τ
=

⎧ ⎫⎛ ⎞⎪ ⎪              =   =  −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑  

which can be orthonormalized by the Gram-Schmidt procedure. 

Other viewpoints 

Up to here, the presented viewpoint was an abstract consideration of mathematical 

spaces. Two other viewpoints help to sharpen our understanding: 

 Matrix representation: 

There is an orthonormal basis of the Hilbert space H , in which the matrix 

representation of the Hamiltonian operator H  is bloc-diagonal: 

red

B, 1

B, n g

H

H
H'

H

τ

τ

 
=

= −

⎛ ⎞
 ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟    
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

This matrix is obtained from the initial matrix  by a similarity transformation, 

which means that there is a non-singular matrix  such that . 

H

S 1H' S HS−=

 Conserved physical quantity: 

The system evolution conserves a quantity  that is different from the energy. 

This quantity is associated with a hermitian operator 

x

X , which commutes with 

the Hamiltonian operator H , H, X 0=⎡ ⎤⎣ ⎦ . Such an operator is easily obtained by 

combining all the orthogonal projectors on the different stable subspaces. For ex-

ample, 
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( )
n g

B,
1

X projector onH τ
τ

τ
−

=

≡ ⋅   ∑  

In this way, 

H, X 0=⎡ ⎤⎣ ⎦        and       red

B,

0 if
X x with x

if τ

ψ
ψ ψ

τ ψ
 

 

⎧     ∈⎪=         = ⎨
    ∈⎪⎩

H

H
 

8.2.2 Symmetry-degeneracies and substructure of the relevant subspace 

The quantum dot system is supposed to obey a physical symmetry represented by 

the symmetry operator , which commutes with the Hamiltonian . It fol-

lows that the eigenstates of  can be chosen to be simultaneous eigenstates of . 

The respective eigenvalues associated with  are noted 

P H, 0=⎡ ⎤⎣ ⎦P

H P

P p . Explicitly, 

H ψ ε ψ=  pψ ψ=P  

Since  commutes with , P H p  represents a conserved physical quantity and the sys-

tem evolves independently inside subspaces associated with different eigenvalues of 

. Therefore, the total Hamiltonian can be solved independently for each eigenvalue 

of the symmetry operator and the polaron states in different eigenspaces of  are 

independent from one another. 

P

P

Our system has one spatial symmetry with respect to the x-z-plane. Thus the sym-

metry operator  inverses the y-coordinate and yields two different eigenvalues P

p 1= ± , called "y-parity". It follows, that the Hilbert space  can be decomposed in 

two decoupled orthogonal parts associated with a different y-parity. This general re-

sult is now developed in a pedestrian way in order to get a better insight as well as to 

find the suitable natural basis associated the two restrictions of . 

red H

red H

By virtue of the symmetry  the electronic envelope functions can always be chosen 

either even or odd in the y-coordinate. The parity along the y-axis of the envelope 

function 

P

νψ  of a given electron state ν  is noted pν . In the frame of the envelope 

function approximation, the matrix element 0 H 1qν τ     between a zero-phonon 

state and a one-phonon state is proportional to the Fröhlich Integral 

( ) ( ) ( ) ( )yx z iq yiq x iq z3 iq xd x e x x dx e dz e dy e x xν τ ν τψ ψ ψ ψ⋅    =      ∫ ∫ ∫ ∫

x

. 

Using the y-parity of the envelope functions, the y-integral can be written as 

( ) ( ) ( )y yiq y iq y

0

e p p e xν τ ν τψ ψ
∞

−+    ∫ . 
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Since 

( )
( )

y y
yiq y iq y

y

2 cos q y if p p 1
e p p e

2i sin q y if p p 1

ν τ

ν τ

ν τ

−
⎧         = +⎪+   = ⎨

        = −⎪⎩
 

we conclude that the parity of 0 H 1qν τ     in  is equal to yq p pν τ⋅ . 

This symmetry consideration allows to decompose the relevant Hilbert space  in 

two decoupled orthogonal subspaces. First, the existence of two decoupled subspaces 

is proven and thereafter the orthogonality of those subspaces is verified. 

red H

We recall the (non-orthonormal) natural basis of , red H

N

i i
i 1

0 , 1q 1q H 0 , 1...n, 1...n gν τ τ ν ν τ
=

⎧ ⎫
              =   =  −⎨ ⎬

⎩ ⎭
∑  

Inside , the non-vanishing off-diagonal matrix elements of the Hamiltonian are 

either elements between a zero-phonon and a one-phonon state or elements be-

tween two one-phonon states with equal index 

red H

τ . Explicitly those matrix elements 

are 

 

( ) ( )

( ) ( )
i i

N N N

i i i i i
i 1 i 1 i 1

f q g q

0 H 1q 1q H 0 0 H 1q 1q H 0 f q g qν τ τ µ ν τ τ µ
= = =

⎛ ⎞
        =         =⎜ ⎟

⎝ ⎠
∑ ∑ ∑ i  

 ( ) ( ) ( )
N N N

i i i i LO i
i 1 i 1 i 1

0 H 1q 1q H 1q 1q H 0 f q g qτν τ τ τ τ µ ε ε
= = =

⎛ ⎞ ⎛ ⎞
            = + ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ i  

The unit difference of these two expressions is due to the fact that one-phonon states 

of the natural basis are not normalized. The normalization introduces another energy 

term. 

The -parity of yq ( ) ( )if g q⋅  can be written as 

( ) ( )f g f gp p p p p p p p pν τ τ µ ν⋅ = ⋅ = ⋅ ⋅ ⋅ = ⋅ µ  

It follows that the sum over  vanishes if i p pν µ 1⋅ = − . In other words, if the envelope 

functions of two electron states ν  and µ  have different y-parity, then H  has an 

analytically vanishing matrix element between 0ν   and 
N

i i
i 1

1q 1q H 0τ τ µ
=

      ∑  for 

all 1,...,n gτ = − . 

We conclude that  can be decomposed in two decoupled subspaces, both stable 

under the action of the Hamiltonian , 

red H

redH
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red red red
+ −

   = ⊕H H H . 

A suitable non-orthogonal basis of those subspaces is given by, 

N

red i i
i 1

: 0 , 1q 1q H 0 , 1...n, 1...n g, p 1νν τ τ ν ν τ+
 

=

⎧ ⎫
                  =   =  −   = +⎨ ⎬

⎩ ⎭
∑H  

N

red i i
i 1

: 0 , 1q 1q H 0 , 1...n, 1...n g, p 1νν τ τ ν ν τ−
 

=

⎧ ⎫
                  =   =  −   = −⎨ ⎬

⎩ ⎭
∑H  

red
+

 H  has dimension ( )n n g 1+ − + , and red
−

 H  has dimension ( )n n g 1− − + , where n  

and  are the number of electron eigenstates with positive and negative parity, re-

spectively. 

+

n−

It remains to verify that  and red
+

 H red
−

 H  are orthogonal. Different zero-phonon states 

are orthogonal and all the zero-phonon states are orthogonal to all the one-phonon 

states. It remains to check if two one-phonon states from red
+

 H  and  are or-

thogonal, 

red
−

 H

ij

N N

j j i i
j 1 i 1

N N

j i j i
j 1 i 1

N

i i
i 1

0 H 1q 1q 1q 1q H 0

0 H 1q 1q H 0 1q 1q

0 H 1q 1q H 0

δ

µ τ τ τ τ ν

µ τ τ ν τ τ

µ τ τ ν

= =

= =

=

⎛ ⎞ ⎛ ⎞
               ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=             

=         

∑ ∑

∑ ∑

∑

  

As discussed before, this sum vanishes if the envelope functions µψ  and νψ  have 

different y-parity. Therefore  and red
+

 H red
−

 H  are orthogonal. 

The decomposition of  in two orthogonal subspaces, decoupled by , implies 

that the matrix representation of the Hamiltonian  is bloc diagonal: 

red H redH

redH

( ) ( )

( ) ( )

red

n n g 1 n n g 1

red

red

n n g 1 n n g 1

H

H

H

+ +

− −

+

− +  × − +

−

− +  × − +

⎛ ⎞
⎜ ⎟

        ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟        
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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8.2.3 Zero-shift polarons 

We show the existence of coupled eigenstates of  with no energy shift relative to 

the free evolution spectrum. Such eigenstates appear in consequence of the degen-

eracy of certain electron eigenstates. 

redH

We recall that the set of eigenstates of the Hamiltonian  contains all the eigen-

states of the full Hamiltonian , which superpose different electron eigenstates of 

. In return, it can be shown that every eigenstate of  is a superposition of 

different electron eigenstates of the free Hamiltonian . The reader's attention is 

called to the fact that certain eigenstates of  might be pure superpositions of 

different degenerate electron eigenstates of the free Hamiltonian. Such eigenstates of 

 are also eigenstates of the free Hamiltonian , although they couple different 

electron states. In the following, we agree on calling those states "zero-shift eigen-

states". 

redH

H

freeH redH

freeH

redH

redH freeH

In the present quantum dot system, the electron energy eigenstates are at most 

twice degenerate due to one spatial symmetry with respect to the x-z-plane (spin 

degeneracy is neglected). We consider two degenerate electron states τ+  and τ− , 

where the sign refers to the wave function's parity along the y-coordinate. The corre-

sponding zero-phonon states 0τ+   and 0τ−   belong to different orthogonal sub-

spaces  and , respectively. Therefore, an eigenstate of the Hamiltonian  

can never be a superposition of 

red
+

 H red
−

 H redH

0τ+   and 0τ−  . However, the one phonon states 

1qτ+   and 1qτ−   appear both in any of the states red
+

 H  and . Inside red
−

 H red
+

 H , for 

example, we find natural basis states of the form 

N

i i
i 1

1q 1q H 0τ τ ν+ +
=

      ∑  and 
N

i i
i 1

1q 1q H 0τ τ ν− −
=

     ∑  , 

where ν  ranges over all the electron states with an even envelope function in the y-

coordinate. Eigenstates of  that are pure superpositions of such basis states have 

an energy equal to 

redH+

LO LO LOτ τ τε ε ε ε ε ε
+ −

+ ≡ + ≡ + . In other words, those polarons have 

zero energy shifts relative to the spectrum of the free Hamiltonian, although they 

couple different electron states. 

For simplicity, we shall consider a fixed y-parity p 1= +  or p 1= − . Then, every zero-

shift eigenstate of  associated with the electron level p
redH τ  has the form 

N N

0 i i i i
i 1 i 1

a 1q 1q H 0 b 1q 1q H 0ν ν
ν

ψ τ τ ν τ τ+ + − −
= =

⎡ ⎤
=       +       ⎢ ⎥

⎣ ⎦
∑ ∑ ∑ ν , 
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where ν  ranges over the  electron states with y-parity pn p pν = . 

It will now be investigated if and how many such eigenstates exist. A necessary and 

sufficient condition for 0ψ  being an eigenstate of  is that p
redH p

red 0H ψ  has zero pro-

jection on all the basis vectors of , which are orthogonal to p
red H 0ψ . Those basis 

vectors are explicitly: 

N

i i
i 1

0 , 1q 1q H 0 , 1...n, p p, 1...n g, ,νν µ µ ν ν µ µ τ µ τ+ −
=

⎧ ⎫
              =  =  =  −  ≠  ≠⎨ ⎬

⎩ ⎭
∑  

The projection of p
red 0H ψ  on any one-phonon state i1qµ  , µ τ+≠ , µ τ−≠ , vanishes, 

since  has zero matrix elements between different one-phonon states. Thus, the 

necessary and sufficient condition for 

p
redH

0ψ  being a zero-shift eigenstate of  is 

that 

p
redH

p
red 0H ψ  has zero projection on the  vectors pn 0ν   with parity p . Explicitly, we 

require 

p
red 00 H 0 suchthat p pνν ψ ν  =      ∀       = . 

These are  linearly independent equations for the  coefficients pn p2n aν  and bν . Thus 

there are  linearly independent solutions of p p2n n n− = p aν  and bν . 

We conclude: Every degenerate and not fully excited electron energy τε  gives rise to 

 linearly independent eigenvectors of  with zero energy shifts with respect to 

spectrum of the free Hamiltonian. For the total reduced Hamiltonian  it follows 

the existence of 

pn p
redH

redH

(n n n )+ −  = +  linearly independent zero-shift eigenvectors with ener-

gies equal to LOτε ε+ . If  is the number of degenerate and not fully excited electron 

energies, then the total number of strictly non-shifted states adds up to n . 

d

d⋅

We emphasize that the choice of zero-shift eigenvectors is not unique. Since the 

zero-shift eigenvectors associated with one degenerate level τ  have an identical en-

ergy LOτε ε+ , they span an eigenspace zero,
red

τ 
 H . As there are n  linear independent 

zero-shift eigenstates, the energy LOτε ε+  is -times degenerated and n zero,
red

τ 
 H  has 

dimension . Every superposition of zero-shift eigenstates inside n zero,
red

τ 
 H  is again a 

zero-shift eigenstate of . Furthermore, the full Hilbert space  contains many 

more eigenstates with energy 

redH H

LOτε ε+ . Those states are elements of the subspaces 

B,τ  +H  and B,τ  −H . The latter were defined as the spaces spanned by eigenvectors of H  

of the form 
N

i
i 1

c 1qτ+
=

  ∑ i  and 
N

i
i 1

c 1qτ−
=

  ∑ i , respectively. All those superpositions have 
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the energy LOτε ε+  equal to the energy of the zero-shift subspace zero,
red

τ 
 H . Thus 

zero,
B, B, red

τ
τ τ

 
  +   −  ⊕ ⊕H H H  is the complete eigenspaces of the full Hamiltonian H  with en-

ergy LOτε ε+ . Any superposition of zero-shift eigenstates of zero,
red

τ 
 H  and states from 

B,τ  +H  and B,τ  −H  is again an eigenstate of . The crucial point, however, is that a 

zero-shift eigenvector of  can never be expressed as a superposition of vectors 

from the uncoupled subspaces 

H

redH

B,τ  +H  and B,τ  −H  since they are both orthogonal to 

. Thus, the zero-shift eigenstates are indeed a particular category of coupled 

eigenstates. 

red H

Finally, an additional important property is developed, which will be used in the next 

section. The demonstration above yields that  possesses n  eigenstates, such 

that 

redH d⋅

red0 H 0ν ψ ν  =    ∀  . 

On the other hand, the total number of eigenstates of  is redH (n n )g 1− + . Thus, the 

total number with non-vanishing contribution of the zero-phonon states adds up to 

( ) (n n )g 1 n d n n g d 1− + − ⋅ = − − + . 

This conclusion will be used in the following section. 

8.2.4 Strong coupling substructure 

In this section the strength of the matrix elements of the Hamiltonian are investi-

gated in detail. These considerations allow to identify strong coupling subspaces of 

 with weak mutual coupling. We emphasize, however, that our procedure con-

sists in a justifying argumentation and not an analytically strict development. 

red H

We recall the (non-orthonormal) natural basis of , red H

N

i i
i 1

0 , 1q 1q H 0 , 1...n, 1...n gν τ τ ν ν τ
=

⎧ ⎫
              =   =  −⎨ ⎬

⎩ ⎭
∑  

Inside , the non-vanishing off-diagonal matrix elements of the Hamiltonian are 

either elements between a zero-phonon and a one-phonon state or elements be-

tween two one-phonon states with equal index 

red H

τ . Explicitly those matrix elements 

write 

 

( ) ( )

( ) ( )
i i

N N N

i i i i i
i 1 i 1 i 1

f q g q

0 H 1q 1q H 0 0 H 1q 1q H 0 ig qν τ τ µ ν τ τ µ
= = =

⎛ ⎞
        =         =⎜ ⎟

⎝ ⎠
∑ ∑ ∑ f q  

 ( ) ( ) ( )
N N N

i i i i LO i
i 1 i 1 i 1

0 H 1q 1q H 1q 1q H 0 f q g qτν τ τ τ τ µ ε ε
= = =

⎛ ⎞ ⎛ ⎞
            = + ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ i  
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The reader bothered by the unit difference of these two expressions, is recalled that 

the one-phonon states of the natural basis are not normalized. Their normalization 

leads to another energy unit. 

These matrix elements are large if the overlap of the functions ( )f q  and ( )g q  is 

large. In particular, this overlap becomes eminent if the two functions are equal. 

( )f q  and ( )g q  are equal if an only if the underlying state indices are equal, µ ν= . 

Thus, one can expect that the Hamiltonian couples mainly the states of the set 

N

i i
i 1

0 , 1q 1q H 0 , 1...n gν τ τ ν τ
=

⎧ ⎫
              =  −⎨ ⎬

⎩ ⎭
∑  

for a given ν . In other words, the vectors inside the subspace, 

N

red i i
i 1

vect 0 , 1q 1q H 0 , 1...n gν ν τ τ ν τ 
=

⎧ ⎫
≡               =  −⎨ ⎬

⎩ ⎭
∑H  

are strongly coupled. On the other hand, the coupling between different subspaces 

red
ν

 H  and red
µ

 H  is relatively weak. Thus, we shall call the spaces red
ν

 H  "strong coupling 

subspaces". 

The weak coupling argument based on a small overlap of the functions ( )f q  and 

( )g q  fails in the case of zero-shift superpositions. The justification is that such su-

perpositions have by their nature vanishing contribution of zero-phonon states 0ν  . 

Therefore, weak coupling terms between one-phonon basis states become important. 

In the previous section (8.2.3) it was shown that  yields nd  zero-shift eigen-

states, where  is the number of degenerate and not fully excited electron levels. 

Inside one subspace 

redH

d

red
ν

 H  of dimension n g 1− +  and the remaining number of 

strongly coupled states can thus be shown to sum up to n g d 1− − + . 

We summarize: Every subspace red
ν

 H  with orthogonal (!) basis 

N

i i
i 1

0 , 1q 1q H 0 , 1...n gν τ τ ν τ
=

⎧ ⎫
              =  −⎨ ⎬

⎩ ⎭
∑  

contains  orthogonal vectors with strong mutual coupling by the Hamilto-

nian. In return, those vectors are very weakly coupled to all the other subspaces 

n g d 1− − +

red
µ

 H , µ ν≠ . 

This has crucial consequences for the diagonalization of : There are n g  

eigenvectors of  with strong contribution of 

redH d 1− − +

redH red
ν

 H  and quasi vanishing contribution 

  104 



of all the other subspaces red
µ

 H , µ ν≠ . A good approximation of these eigenvectors is 

obtained by diagonalizing , defined as the restriction of  to redHν
redH red

ν
 H . All to-

gether, there are n  subspaces red
ν

 H . Thus,  has redH ( )n n g d 1− − +  eigenvectors, 

which are nearly contained in one of the subspaces red
ν

 H , exclusively. 

8.2.5 Similar subspaces 

We justify the affirmation that strong coupling subspaces red
ν +

 H  and red
ν −

 H  of two de-

generate electron states ν+  and ν−  yield a similar restriction of the Hamiltonian 

. Therefore, those subspaces have similar eigenvectors and eigenvalues. redH

The basis of red
ν

 H  developed in the previous section is 

N

i i1q  
i 1

0 , 1q H 0 , 1...n gν τ τ ν τ
=

⎧ ⎫
            =  −⎨ ⎬

⎩ ⎭
∑ . 

This basis is orthogonal but non-orthonormal because the one-phonon states are not 

normalized. For the following considerations, it is useful to use the orthonormalized 

basis 

N

, i i
i 1

0 , 1q 1q H 0 , 1...n gτ νν χ τ τ ν τ
=

⎧ ⎫
               =  −⎨ ⎬

⎩ ⎭
∑ , 

where the normalization factor ,τ νχ  is given by 

1 / 2N 2

, i
i 1

1q H 0τ νχ τ ν
−

=

⎡ ⎤
=     ⎢ ⎥

⎣ ⎦
∑ . 

Now the case of two degenerate electron states ν+  and ν−  is considered, where 

the sign refers to the y-parity of the envelope functions. Their respective strong cou-

pling subspaces are 

N

red , i i
i 1

0 , 1q 1q H 0 , 1...n gν
τ νν χ τ τ ν τ+

 + + +
=

⎧ ⎫
=                =  −⎨ ⎬

⎩ ⎭
∑H     and 

N

red , i i
i 1

0 , 1q 1q H 0 , 1...n gν
τ νν χ τ τ ν τ−

 − − −
=

⎧ ⎫
=                =  −⎨ ⎬

⎩ ⎭
∑H  

We show that the restrictions of the Hamiltonian  (or ) to redH H red
ν +

 H  and red
ν −

 H  are 

nearly equal. First, the diagonal elements of  in the bases of H red
ν +

 H  and red
ν −

 H  are 

shown to be strictly equal. 

For elements between two zero-phonon states the independence on the y-parity is an 

immediate consequence of the electron degeneracy, 

  105 



0 H 0 νν ν+ +    = ε  and 0 H 0 νν ν ε− −    =     0 H 0 0 H 0ν ν ν ν+ + − −⇒        =      

The matrix elements between two one-phonon states write 

N N

, j j ', i i
j 1 i 1

0 H 1q 1q H 1q 1q H 0τ ν τ νχ ν τ τ χ τ τ ν
± ±± ±

= =

⎛ ⎞ ⎛ ⎞
              ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑  

Regrouping and orthonormality yield 

LO i , j

N N
2

, j j i i
j 1 i 1

N
2

, i i LO
i 1

N 2

iN 2
2 i 1

, i LO ,
i 1

0 H ' 1q ' 1q H 1q 1q H 0

0 H 1q 1q H 0

1q H 0
1q H 0

τ

τ ν

ε δ

τ ν τ

τ ν τ τ ν

χ ν τ τ τ τ ν

χ ν τ τ ν ε

τ ν
χ τ ν ε χ

τ

±

+

±

±

± ±
= =

 

± ± +
=

±
=

± +
=

                

=             

     
=         = =

∑ ∑

∑

∑
∑ LO LON 2

i
i 1

1q H 0
τ τε ε

ν
+ +

=

 =
    ∑

 

This quantity is again independent of the y-parity. Thus, the diagonal elements of the 

restriction of H  to the subspaces red
ν +

 H  and red
ν −

 H  are equal. Since the diagonal matrix 

elements are highly predominant, the similarity of the two strong coupling subspaces 

red
ν +

 H  and red
ν −  is obvious.  H
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8.3 Numerical implementation 

We give insight in sophisticated numerical tools used to perform the computation of 

the polaron states in the pyramidal quantum dot. In particular, we present a person-

alized method using an irregular adaptive discretization of the reciprocal space 

(8.3.2). For this method to be applicable, we have transcribed the Fröhlich Hamilto-

nian to an irregular discretization (8.3.3). 

Further, we summarize some notions of finite element method used for the integra-

tion of Fröhlich integrals (8.3.1) and give relations between discrete space discretiza-

tion and reciprocal space discretization (8.3.4). 

8.3.1 Direct space discretization 

Generalities 

A finite element method with a mesh of trilateral prism is used (see Fig. 20) is used 

to represent the pyramidal quantum dot in direct space. 

 
Fig. 20: Finites elements covering the pyramidal heterostructure, F. Michelini [1, 2] 

In opposition to finite difference methods, the finite element method presents the 

special feature of interpolating the values of the modelized functions by the mean of 

interpolation functions attached to each element. Those interpolation functions  

derive from universal functions initially defined with respect a master element. 

h

  107 



 
Fig. 21: Prismic finite elements 

One finite element  inside a large mesh is shown in Fig. 21. The respective element 

corners are referred to as "nodes" and distinguished by an index . Each element is 

endowed with a set of intrinsic coordinates 

m

i

( )m m m, ,ξ η ζ , that are the images of the 

coordinates of the master element. 

A three-dimensional function ψ  is interpolated as 

( ) ( )
6

m,i i
i 1

r h , ,ψ ψ ξ η ζ
=

=  ∑ , 

where  is the element containing the vector m r  and m,iψ  is the "exact" value of the 

function ψ  at the node i  of the element . The interpolation functions are chosen 

as linear functions and defined with respect to the coordinates of the mater element, 

m

( ) ( )
( )
( )

( ) ( )
( )
( )

1 1
1 42 2

1 1
2 52 2

1 1
3 62 2

h 1 1 h 1 1

h 1 h 1

h 1 h 1

ξ η ζ ξ η ζ

ξ ζ ξ ζ

η ζ η ζ

= − − −          = − − +

= − = +

= − = +

 

The transformation between the coordinates ( )m m m, ,ξ η ζ  and the absolute coordi-

nates  is obtained by the particular interpolation functions (x,y, z)

( ) ( ) ( )
6 6 6

i i i i i i
i 1 i 1 i 1

x x h , , y y h , , z z h , ,ξ η ζ ξ η ζ ξ η ζ
= = =

=            =            =  ∑ ∑ ∑  

In the present modelization the mesh nodes are such that 

1 4 1

2 5 2

3 6 3

x x y y

x x y y

x x y y

 =                           =

= =

= =

4

5

6

 

Thus, the Jaccobian between  and ( )x,y, z ( )m m m, ,ξ η ζ  is shown to write 
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( ) ( )( )
( ) ( ) ( ) ( )

m m m
1

m,4 m m m,5 m m,6 m m,1 m m m,2 m m,3 m2

m
m m m m,2 m,1 m,3 m,1 m,3 m,1 m,2 m,1

m m m

x x x

z 1 z z z 1 z zy y y
J

x x y y x x y y
z z z

ξ η ζ
ξ η ξ η ξ η ξ

ξ η ζ

ξ η ζ

∂ ∂ ∂
∂ ∂ ∂

− − + + − − − − −∂ ∂ ∂
≡ =

∂ ∂ ∂ ⎡ ⎤×  − − − − −⎣ ⎦
∂ ∂ ∂

∂ ∂ ∂

η
 

This Jaccobian allows to perform numerical integrations in direct space. The two 

cases of interest are the integration of the norm of an electronic envelope function 

and the integration of a Fröhlich matrix element. 

Norm integration 

( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )

3 *

crystal

6 6
3 *

m,i i m m m m, j j m m m
m i 1 j 1element m

11 1 6 6
*

m m,i i m, j j
m i 1 j 10 0 1

m,i , j

d r r r

d r r , r , r r , r , r

d d d J , , , ,

A

ξ

ψ ψ ψ ψ

ψ ϕ ξ η ζ ψ ϕ ξ η ζ

ξ η ζ ξ η ζ ψ ϕ ξ η ζ ψ ϕ ξ η ζ

= = 

−

= =−

 

=    

⎛ ⎞⎛ ⎞
=      ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
=  , ,      ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=

∫

∑ ∑ ∑∫

∑ ∑ ∑∫ ∫ ∫

 

6 6
*
m,i m, j

m i 1 j 1

ψ ψ
= =

    ∑∑ ∑
 

where    ( ) ( ) ( )
11 1

m,i , j m i j
0 0 1

A d d d J , , , , , ,
ξ

ξ η ζ ξ η ζ ϕ ξ η ζ ϕ ξ η ζ
−

 
−

=   ∫ ∫ ∫  

The integration is laborious but straightforward. We find 

( )m,i , j m i , jA c d = ⋅  

with 

( ) ( ) ( ) ( ) ( )1
m m,2 m,1 m,3 m,1 m,3 m,1 m,2 m,1 1 4 2 5 3 6720c x x y y x x y y z z , z z , z z⎡ ⎤= − − − − − − − − −⎣ ⎦  

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) (

i , j

12,4,4 4,4,2 4,2,4 6,2,2 2,2,1 2,1,2

4,4,2 4,12,4 2,4,4 2,2,1 2,6,2 1,2,2

4,2,4 2,4,4 4,4,12 2,1,2 1,2,2 2,2,6
d

6,2,2 2,2,1 2,2,1 12,4,4 4,4,2 4,2,4

2,2,1 2,6,2 1,2,2 4,4,2 4,12,4 2,4,4

2,1,2 1,2,2 2,2,6 4,2,4 2,4,4 4,4,12

⎛
⎜
⎜
⎜
⎜= ⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

)
)

)
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Integration of a Fröhlich matrix element 

The Fröhlich integral is developed as follows: 

( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

3 iq r *
'

crystal

6 6
3 iq r *

,m,i i m m m ',m, j j m m m
m i 1 j 1element m

* 3 iq r
,m,i ',m, j i m m m j m m m

elem

d r e r r

d r e r , r , r r , r , r

d r e r , r , r r , r , r

τ τ

τ τ

τ τ

ψ ψ

ψ ϕ ξ η ζ ψ ϕ ξ η ζ

ψ ψ ϕ ξ η ζ ϕ ξ η ζ

⋅

⋅

= = 

⋅

   

⎛ ⎞⎛ ⎞
=          ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=       

∫

∑ ∑ ∑∫

( ) ( ) ( ) ( )

6 6

m i 1 j 1 ent m

11 16 6
iq r , ,*

,m,i ',m, j m i j
m i 1 j 1 0 0 1

d d d J , , e , , , ,
ξ

ξ η ζ
τ τψ ψ ξ η ζ ξ η ζ ϕ ξ η ζ ϕ ξ η ζ

= =  

−
⋅

= = −

=       

∑∑ ∑ ∫

∑∑ ∑ ∫ ∫ ∫

 

The remaining integral, 

( ) ( ) ( ) ( )
11 1

iq r , ,
m i j

0 0 1

d d d J , , e , , , ,
ξ

ξ η ζξ η ζ ξ η ζ ϕ ξ η ζ ϕ ξ η ζ
−

⋅

−

    ∫ ∫ ∫ , 

can be computed in different ways: 

1) Analytical: possible, but slow and complicated (about 100 exponentials) 

2) Numerical: possible, but slow 

3) Approximated: relatively fast 

( ) ( ) ( ) ( )

( ) ( ) ( )

m

m m

11 1
iq r , ,

m i j
0 0 1

11 1
iq r iq r

m i j
0 0 1

d d d J , , e , , , ,

e d d d J , , , , , , e A

ξ
ξ η ζ

ξ

ξ η ζ ξ η ζ ϕ ξ η ζ ϕ ξ η ζ

ξ η ζ ξ η ζ ϕ ξ η ζ ϕ ξ η ζ

−
⋅

−

−
⋅ ⋅

 
−

    

≈     =

∫ ∫ ∫

∫ ∫ ∫ m,i , j 

 

In our problem, the third method has been used, which is well justified by the slow 

variation of the exponential compared to the mesh density. In deed, the maximal 

relevant wavevector yields a magnitude smaller than 1
maxq 0.5nm−∼ , whereas the 

node step in the relevant zones is in the order of . The error induced 

by the third approximation can thus be shown to be smaller than 1%. 

mind 0.05n∼ m

8.3.2 Reciprocal space discretization 

The underlying Bravais lattice of GaAs is a face-centered cubic lattice with conven-

tional cubic cell has side a 0.565Å . Its reciprocal lattice is a body-centered cubic 

lattice with conventional cubic cell of side 1s 4 / a 22.24nmπ −= . The normal mode 

wavevectors q  are confined to a primitive cell of the reciprocal lattice, usually taken 

as the first Brillouin zone. The latter is a truncated octahedron with large radius 

 and small radius 1s / 2 11.12nm− 1s 3 / 4 9.63nm−  (see Fig. 22). 
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Fig. 22: First Brillouin zone of the body-centered cubic lattice 

The Fröhlich matrix elements are subject to strong variation with wavevector q . A 

good discretization accounts for this dependence by a varying point density. The lat-

ter is achieved by an irregular discretization, which is adaptively refined in the re-

gions of strong variation of the Fröhlich elements. 

In an irregular discretization the volume iΩ  surrounding a given wave vector iq  en-

ters the calculation of the Fröhlich elements (see 8.3.3). Therefore, each vector iq  is 

assigned a volume , taken as the volume of its Wigner-Seitz-cell. This cell is de-

fined as the region of all the points 

iΩ

q  that are closer to iq  than to any other vector 

iq , j i  ≠ . 

How does the refinement work? To generate the well adapted irregular mesh, a regu-

lar initial mesh with a small number of points is created. Then, the Wigner-Seitz-

volume of each mesh node is computed. Simultaneously, each node is associated a 

neighbor-list, containing all the neighbors with touching Wigner-Seitz-cells. Thereaf-

ter, the Fröhlich matrix element associated with each mesh node is evaluated and 

polaron spectrum of the given mesh is computed. For each pair of neighbors the fluc-

tuation of the Fröhlich matrix element is evaluated. The neighbors with the highest 

fluctuation are added a new node in between. The same procedure is repeated until 

convergence of the polaron spectrum is obtained. The convergence is reached if the 

maximal variation of all the polaron energies between two successive steps is smaller 

than a preset threshold. 

Fig. 23 shows a two-dimensional example of the meshing in two successive steps. 

Starting with a regular mesh in q-space (black), the Fröhlich elements of each node 

are evaluated. The neighbors with the highest fluctuation are chosen for further re-

finement (blue). The resulting new mesh is less regular and admits more sophisti-

cated Wigner-Seitz volumes (red) 
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Fig. 23: Two-dimensional visualization of adaptive refinement. Black: initial discretiza-

tion, red: first refinement, blue: neighbors with highest fluctuation. 

A more realistic, three-dimensional visualization of the adaptive irregular meshing of 

the first Brillouin zone is given in Fig. 24. 

             

Fig. 24: Adaptive discretization of the first Brillouin zone. Only the Wigner-Seitz-cells 

are drawn. Left: total zone, middle: zoomed to center by a factor 10, right: 

zoomed to center by a factor 100. 

This adaptive construction of an irregular discretization with simultaneous evaluation 

of the Wigner-Seitz volume defines a complex computational problem that demands 

sophisticated programming structures. The effort seems nevertheless well justified by 

considering the following advantages: 

 The polaron spectrum computed based on an adaptive irregular mesh is 

shown to converge with 500  wavevectors iq , whereas an optimized regular 

mesh requires more than 100 000′  wavevectors to achieve the same preci-

sion. (convergence threshold = 1 eVµ ) 

 The mesh adapts itself to any arbitrary set of envelope functions. Thus, the 

method can be used without modifications to investigate other dot structures. 

 The structure of the adaptively created mesh, carefully visualized, gives itself 

an insight in the physics. 
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8.3.3 Derivation of the Fröhlich Hamiltonian with irregular discretization 

Regular infinitesimal discretization 

This section prepares the transcription of the Fröhlich Hamiltonian to an irregular fi-

nite discretization. The Fröhlich Hamiltonian is given by (see section 3.2.2) 

( )i i

i i

N
q qFröhlich † † †

q q
i 1

H M a a d M aν µ ν µ ν µ µ ν
ν µ

 ∗

  
=    

=    +  ∑ ∑ a d  

with    ( ) ( )i i

3

q iq x3

i

M d x e x
q V

ν µ ν µ
λ ψ ψ⋅ ∗

 =   ∫ x , where λ  is a complex constant 

The cubic quantization volume V , supposed to become infinitely large, implies a 

regular discretization of the reciprocal space, since the wavevectors q  satisfy the 

periodic boundary conditions of this volume. Explicitly, if xv ,  and  design the 

sides of the volume V , then every 

yv zv

( )x y zq q ,q ,q=  satisfies 

x xiq ve 1=  ⇔  x
x

2
q

v
π

∈ Ÿ   ⇒ x
x

2
q

v
π∆ =  

In the same way 

y
y

2
q

v
π∆ =   and  z

z

2
q

v
π∆ = . 

Thus, the volume ω  associated with each wavevector is given by 

( )3 3

x y z
x y z

2 8
q q q

v v v V

π πω ∆ ∆ ∆= = =  

This volume becomes infinitesimal as V  becomes infinite. In the Fröhlich Hamiltonian 

 is replaced by V ω , 

( ) ( )i i

3

q iq x3
3

i

M d x e x
8 qν µ ν µ
λ ω ψ ψ
π

⋅ ∗
 =   

 ∫ x  

For further use we introduce 

( ) ( )i i

3

q iq x3
3 d x e x x

8ν µ ν µ
λϑ ψ
π

⋅ ∗
 =   ∫ ψ    such that   i iq q

i

M
qν µ ν
ω

µϑ  =
 

 

The non-vanishing matrix elements of the Hamiltonian in the natural basis write 

 0 H 0 νµ νν µ δ    = ε  

 i i
N N

q q
i i i i

i 1 i 1 i 1

0 H 1q 1q H 0 0 H 1q 1q H 0 M M
N

ν τ τ µν τ τ µ ν τ τ µ   
= =

⎛ ⎞
        =         =  ⎜ ⎟

⎝ ⎠
∑ ∑

=
∑  
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i i

N N

i i i i
i 1 i 1

N N
q q

LO i i LO
i 1 i 1

0 H 1q 1q H 1q 1q H 0

0 H 1q 1q H 0 M Mτ τ ν τ

ν τ τ τ τ µ

ε ν τ τ µ ε

= =

+ +
= =

⎛ ⎞ ⎛
            ⎜ ⎟ ⎜

⎝ ⎠ ⎝

=          =   

∑ ∑

∑ ∑ τ µ  

⎞
⎟
⎠  

We conclude that the matrix elements of the reduced Hamiltonian, whose dimension 

does not depend on the number of normal modes N , depend on the original Fröhlich 

elements through the sums 

ii
i i

qqN N
q q

i 1 i 1 i i

M M
q q

τ µν τ
ν τ τ µ

ϑ ωϑ ω   
  

= =

 =∑ ∑  

This feature will be used in the irregular discretization. 

Irregular finite discretization 

We consider now an irregular finite partition of the first Brillouin zone in M  volumes 

, , much larger than jΩ j 1,...,M= ω  and inside each of which the Fröhlich integral is 

approximated by a constant.  defines the application, which associates to each 

wavevector index  the index  of its surrounding volume 

f

i j jΩ . Each jΩ  is ascribed a 

vector jQ  indicating a point inside jΩ , usually taken as the bar center. The invari-

ance of the Fröhlich integral inside each volume jΩ  translates to 

( ) ( )ji k Qq q if f i f kτ τ τ τ τ τϑ ϑ ϑ′ ′ ′   = ≡     = . 

The sum above writes 

( )

ii
j ji i

qqN N M
Q Qq q

2
i 1 i 1 j 1 f i ji i i

1
M M

q q q
τ µν τ

ν τ τ µ ν τ τ µ

ϑ ωϑ ω
ϑ ϑ ω  

    
= = =

 = =    ∑ ∑ ∑ ∑
=

 

The second sum goes over j /Ω ω  terms. If the volumes ω  become infinitesimal, the 

sum can be written as a continuous average, i.e. 

( ) j

j
2 2

f i j i

1 1
q q Ω

Ω
ω=

=∑  

Thus 

j j j ji i

j j

N M M
Q Q Q Qq q

j j j2 2
i 1 j 1 j 1

1 1
M M

q qν τ τ µ ν τ τ µ ν τ τ µ
Ω Ω

ϑ ϑ Ω ϑ Ω ϑ Ω      
= = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ =  =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑
j

2

1
q Ω

 

We merely recognize the terms 

j j

j

irregQ Q
j 2

1
M

qν µ ν τ
Ω

ϑ Ω 
  =  
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as the suitable substitutions of the terms 

i iq q

i

M
qν µ ν
ω

µϑ  =
 

. 

We conclude that the transcription to an irregular finite discretization is achieved by 

replacing two replacements: 

 replace constant volumes ω  with the variable volumes jΩ  

 replace 
i

1
q

 with 
j

2

1
q Ω

 

The first replacement is ascribed to the passage from a regular to an irregular discre-

tization and the second replacement rises from the passage from infinitesimal to fi-

nite elements. The description of the irregular finite discretization comprehends, of 

course, finite regular discretizations. The latter require only the second replacement. 

The following table summarizes the mathematical transcription between a regular 

infinitesimal discretization and an irregular finite discretization. 

 Regular infinitesimal discretization ⇔ Irregular finite discretization 

Wavevectors iq ,    (regular) i 1, ...,N= ⇔ jQ ,    (irregu-

lar) 

j 1,...,M=

Reciprocal space volumes 
38

V
πω =    (constant) ⇔ jΩ    (variable) 

Fröhlich matrix elements i iq q

i

M
qν µ ν
ω

µϑ  =
 

 ⇔ 
j j

j

irregQ Q
j 2

1
M

qν µ ν τ
Ω

ϑ Ω 
  =  

Fröhlich Hamiltonian i

i

N
q †

q
i 1

M a a d h.cν µ ν µ
ν µ

 
=    

 +∑ ∑ . .c. ⇔ j

j

M
irregQ †

Q
j 1

M a a d hν µ ν µ
ν µ

 
 

=    

 +∑ ∑  

Tab. 10: Transcription of the Fröhlich Hamiltonian to an irregular finite discretization 

We recall that 

( ) ( )i i

3

q iq x3
3 d x e x x

8ν µ ν µ
λϑ ψ
π

⋅ ∗
 =   ∫ ψ  

2
25 1 / 2 2 1 / 2LO

2
r0 i

e 1 1
3.444 10 J m 6.797 10 eV nm

2 V q
ω

λ
ε εε

− −

∞

⎛ ⎞ 
= − ≈ ⋅   = ⋅  ⎜ ⎟

  ⎝ ⎠
       (GaAs) 

The numerical values of the physical parameters were taken from [21]: 

LO 35.9 meVω =  , 10.9ε∞ = , r 12.9ε = 25 1 / 2 2 1 / 23.444 10 J m 6.797 10 eV nmλ − −≈ ⋅   = ⋅    
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8.3.4 Relations between direct and reciprocal space discretization 

The reciprocal space contains the normal mode wavevectors q . They are used to 

evaluate the Fröhlich integral 

( ) ( )3 iq r *
'

crystal

d r e r rτ τψ ψ⋅   ∫ , 

which is represents spatial frequency analysis of the function ( ) ( ) ( )*
'f r r rτ τψ ψ=  . 

Fourier's theory of frequency analysis yields limiting relationships between direct and 

reciprocal space discretization: A one-dimensional function, that is known on an in-

terval  in discrete points separated by 0, X⎡⎣ ⎤⎦ x∆ , can be spectrally analyzed on the 

interval  with a maximal resolution of 0,1 / 2 x⎡⎣ ⎤⎦ min 1 / 2X∆ν = . 

In the present context, the mesh of the three-dimensional direct space is considered 

as given. It has a maximal diameter  and a minimum separation between 

neighboring nodes of . Analogically to the one-dimensional case, those parame-

ters set an upper limit for the reciprocal space radius and lower limit for the element 

volumes. 

maxd

mind

The highest frequency resolution is obtained in the direction of the maximal diameter 

and corresponds to . There is no use for two wavevectors to be sepa-

rated less than . This is the order of the smallest element size, which should be 

considered. Further refinement does not alter the computation result, but generates 

useless operations. 

min max1 / 2d∆ν =

min∆ν

The highest frequency that can be accounted for is given by the smallest direct space 

step, 

max
min

1
q q

2d
≤ = . 

The present mesh (created by F. Michelini to compute the envelope functions [1, 2]) 

works with minimal node distance in the relevant zone of mind 0.05nm≈ , leading to 

. This is coherent with the size of the first Brillouin zone. 1
maxq 10nm−≈
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8.4 Mathematical extensions and demonstrations 

8.4.1 Eigensystem of the dynamical matrix 

In this section we that the non-symmetrical matrix ( )1−M D  has a positive non-

degenerate spectrum with eigenvectors Xα  that can be orthonormalized in the sense 

TX Xα β αβδ =M . 

First note that a symmetrical matrix S , which is multiplied at left and right with a 

diagonal matrix D  is again a symmetrical matrix. Demonstration: 

( )T T T TDSD D S D DSD= =  

Thus the matrix ( )1−   M D M 1−  is symmetrical and positive. It can be diagonalized, 

the eigenvectors being orthogonal and the eigenvalues being positive. 

1 1 2Y Yα α αω− −   =  M D M  

The positivity of the eigenvalues is expressed in their form of squared real numbers. 

The orthogonality of the eigenvectors and the choice of unitary norms give the or-

thonormalization relations 

TY Yα β αβδ  =  

Multiplying the eigensystem at left with 1−M  yields 

( ) ( )1 1 2 1Y Yα α
α

ω− − −   =   M D M M  

We can thus substitute 1X Yα α
−≡ M  , which gives 

( )1 2X Xα α αω− =  M D  

By inversing the substitution, Y Xα α =  M , the orthonormality relations become 

TX Xα β αβδ =M  

which concludes the demonstration. 

8.4.2 Second quantization method 

All 1-body functions of the electronic position operators can be written in second 

quantization by the relation 
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( ) ( ) ( )
3

n
3

1

f r d x f x xν
ν =

= ⋅∑ ∫ √  

We apply this relation to the operator : (0)W

( ) ( )
2 N n

(0) res (0) (0)
0 electronse modes (0)

1 10 electrons

Ze
W W R. E R. 1

4 r R 1

µ

µ ν ν µ
πε− −

= =

⎡ ⎤
⎢ ⎥= = − − ⋅⎢ ⎥− ⋅⎢ ⎥⎣ ⎦

∑ ∑   . 

The first term transforms to second quantization as follows: 

( )n
3

1 electrons electrons

Z xZ
d x

r R 1 x R 1

µµ

ν ν µ µ=

⋅
=

− ⋅ − ⋅
∑ ∫

√

3

  

For the second term inside the brackets, we use the following relation, which imme-

diately derives from the definition of ( )0E R. : 

( )
2 2 2n N n

0 0 0
1 ' 1 1e 0 0' electrons

Zp e 1 e
E R.

2m 8 4r r r R 1

µν

ν ν ν µ νν ν ν µ

ψ ψ
πε πε= ≠ = =

⎧ ⎫
⎪ ⎪= + −⎨ ⎬

− − ⋅⎪ ⎪⎩ ⎭
∑ ∑ ∑ ∑     

Since we are only interested in the derivates of  with respect to the ionic coordi-

nates, we can merely neglect the first to terms of 

(0)W

( )0E R. .: 

( ) ( )2 2N n N
0 0(0) 3

0 0 0(0) (0)
1 1 10 0electrons electrons

Z xZe e
E R. d x

4 4r R 1 x R 1

µµ

µ ν µν µ µ

ψ ψ
ψ ψ

πε πε= = =

⎧ ⎫ ⋅⎪ ⎪→ − = −⎨ ⎬
− ⋅ − ⋅⎪ ⎪⎩ ⎭

∑ ∑ ∑ ∫
√

3

   

Replacing those expressions yields 

( ) ( )2
0 0 electrons(0) (0) 3

(0)
0 electrons

x x 1e Z
W d x

4 x R 1

µ

µ µ

ψ ψ

πε

− ⋅
   →    = −

− ⋅
∑∫

√ √
÷

3

N

=1
        

8.4.3 Second quantization of the crystal 

( )
3

3 (0 ) i(k k ) x †

b ( l ,b ) k k k ,
( l ,b ),k ,k ,

d x U x R u (x)u (x)e a a
k ,σ σ

σ

′∗ − ⋅
′ ′

′

=  −     ∑ ∫  ÷  

( )
3

(1)
(q , j ) (q , j )

3 (0) i(k k ) x †

(q, j ),( l ,b ) b ( l ,b ) k k k , k ,(0)
( l ,b ) ( l ,b ),k ,k ,( l ,b )

3

(q, j ),( l ,b ) b(0)

( l ,b )

X d x U x R u (x)u (x)e
R

X d x U x
R

a a
σ σ

σ

′∗ − ⋅
′ ′ ′ ′

′ ′ ′′ ′

′ ′

=  

∂
=   −    

∂

∂
=    −

∂

∑ ∑ ∫

≈ D ÷

( )
3

(0) i(k k ) x †

( l ,b ) k k k , k ,
( l ,b ),k ,k ,

R u (x)u (x)e a a
σ σ

σ

′∗ − ⋅
′ ′

′

⎡ ⎤
⎢ ⎥      
⎢ ⎥
⎣ ⎦

∑ ∫
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( ) ( )
( ) ( )

( ) ( )
3 3

3 iK x 3 iK x
3 / 2 3 / 2

1 1
U K d x U x e U x d K U K e

2 2π π
− ⋅ ⋅=           ↔        =   ∫ ∫  

( ) ( )

( )

(0 )
( l ,b )

3 3

iK x R
(1) 3 3 i(k k ) x †

(q, j ) 3 / 2 (q, j ),( l ,b ) k k k , k(0)
( l ,b ),k ,k , ( l ,b )

3 3
3 / 2 (q, j ),( l ,b )

1
X d x d K U K e u (x)u (x)e a a

R2

i
X d x d K

2

,σ σ
σπ

π

⎛ ⎞⋅ −⎜ ⎟ ′∗ − ⋅⎝ ⎠
′ ′ ′ ′

′

′ ′

⎡ ⎤∂⎢ ⎥=         
⎢ ⎥∂⎣ ⎦

= −  

∑ ∫ ∫≈

( )

( )

  

( )

(0 )
( l ,b )

3 3

(0 )
( l ,b )

3

iK x R
i(k k ) x †

k k k , k ,
( l ,b ),k ,k ,

iK R
3 3 i(K k k ) x

3 / 2 (q, j ),( l ,b ) k k

K U K e u (x)u (x)e a a

i
X d K K U K e d x e u (x)u (

2

σ σ
σ

π

⎛ ⎞⋅ −⎜ ⎟ ′∗ − ⋅⎝ ⎠
′ ′

′

− ⋅ ′+ − ⋅ ∗
′ ′ ′

        

= −         

∑ ∫ ∫

∫
3

†

k , k ,
( l ,b ),k ,k ,

x ) a a
σ σ

σ
′

′

⎡ ⎤
   ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫

 

Since 
k k

u (x)u (x)∗
′

  has the periodicity of the Bravais lattice, the integral over  can 

only be different from zero if the exponential also has the periodicity of the Bravais 

lattice. Therefore 

x

( )K k k′+ −  has to be an element of the reciprocal lattice, i.e. 

K k k G RL′+ − = ∈  

( ) ( ) ( ) ( ) (0 )
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Since there is a very large number of ions , N

( )i q G k k l

l

N if q G k k 0e
0 otherwise

′− + − ⋅ ⎧ ′⎪   − + − == ⎨
⎪⎩

∑  
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i q k k x(1) iq b 3 †
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if q k k RL′+ − ∈  and  otherwise. (1)
(q, j ) 0=≈
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8.4.4 Theorem (stable subspaces) 

Consider the decomposition 

( ) ( )0ph A,1 B,1 A,n g B,n g...    −  = ⊕ ⊕ ⊕ ⊕ ⊕H H H H H H −  

with 

( )A, 1ph 0ph 1phP Hτ τ τ  +   ≡ ⊆H H  + H  and 

B, A,τ τ  ⊥H H  such that A, B, 1phτ τ τ    ⊕ =H H H  +  

To prove that the spaces B,τ H  are stable with respect to the Hamiltonian operator , 

it is necessary and sufficient to show that 

H

(1) B,τ H  has zero projection on 0 phH   H  

(2) B,τ H  has zero projection on B,H ν H  for ν τ≠  

(3) B,τ H  has zero projection on A,H ν H  for all ν  

Before proving those properties, it is helpful to introduce a basis ( ){ }τα  of A,τ H  and a 

basis ( ){ }τβ  of B,τ H : 

( )
N

i i
i 1

1q 1q H 0τα τ τ α
=

≡       ∑  

( ) ( )
N

,
j j

j 1

1qτ τ ββ λ τ
=

≡   ∑  

The coefficients ( ),
j
τ βλ  are such that the orthogonality condition ( ) ( ) 0τ τα β =  is satis-

fied. Explicitly, 

( ) ( ) ( ) ( )
N N N

, ,
j i i j i

i 1 j 1 i 1

0 H 1q 1q 1q 0 H 1qτ τ τ β τ βα β λ α τ τ τ λ α τ
= = =

=         =     ∑ ∑ ∑ i  

( )
N

,
i i

i 1

0 H 1q 0 1...n, 1...n, 1...n gτ βλ α τ α β τ
=

    =           ∀ =   =   = −∑         ( )∗  

 Property (1) follows immediately from this relation. In deed, 

( ) ( ) ( )
N N

, ,
i j i i

i 1 i 1

0 H 0 H 1q 0 H 1q 0τ τ β τ βν β ν λ τ λ ν τ
= =

⎛ ⎞
  ≡     =     =⎜ ⎟

⎝ ⎠
∑ ∑  

 B,τ H  has zero projection on 0 phH   H  

 To show property (2), the particular structure of the Hamiltonian is used. The 

Fröhlich Hamiltonian has vanishing matrix elements between two states of identi-
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cal phonon number. The free Hamiltonian is diagonal in the chosen basis. It fol-

lows the total Hamiltonian has vanishing matrix elements between two one-

phonon states unless the two states are identical, 

i j ij i1q H 1q 1q H 1qτντ ν δ δ τ τ    =     i  

Since B,τ H  and B,ν H  (ν τ≠ ) are distinct one-phonon spaces, B,τ H  has zero pro-

jection on B,H ν H . This testifies property (2). 

 For property (3), it has to be shown that ( ) ( )Hν τα β 0=  for any choice of the 

states ( )να  and ( )τβ . We start inserting the unity operator of the one-phonon 

subspace, 

( ) ( ) ( ) ( )
n N

s s
1 s 1

H 1q 1qν τ ν

µ
α β α µ µ β

= =

⎛ ⎞
=      ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ H τ  

Then, replace ( )να  and ( )τβ  by their definition and reorder: 

( ) ( ) ( )

( )

N n N N
,

i i s s j j
i 1 1 s 1 j 1

n N N N
,

j i i s s j
1 s 1 i 1 j 1

H 0 H 1q 1q 1q 1q H

0 H 1q 1q 1q 1q H 1q

ν τ τ β

µ

τ β

µ

α β α ν ν µ µ λ τ

λ α ν ν µ µ τ

= = = =

= = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞
=              ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

=              

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

1q

 

Use the orthogonality, 

( ) ( ) ( )

( )

n N N N
,

j i is s
1 s 1 i 1 j 1

N N
,

j i i j
i 1 j 1

H 0 H 1q

0 H 1q 1q H 1q

ν τ τ β
νµ

µ

τ β

α β λ α ν δ δ µ τ

λ α ν ν τ

= = = =

= =

=          

=          

∑ ∑ ∑ ∑

∑ ∑

j1q H 1q

 

Here the particular structure of the Hamiltonian operator is used, which was men-

tioned above: i j ij i1q H 1q 1q H 1qντν τ δ δ τ τ    =     i . Thus, 

( ) ( ) ( )

( )

N N
,

j i ij i
i 1 j 1

N
,

i i i i
i 1

H 0 H 1q 1q

0 H 1q 1q H 1q

ν τ τ β
ντ

τ β
τν

α β λ α ν δ δ τ τ

λ α ν τ τ δ

= =

=

=          

=         

∑ ∑

∑

iH 1q

 

This expression vanishes if τ ν≠ . It remains to show that this is true if τ ν= . In 

this case, 

( ) ( ) ( )
N

,
i i i

i 1

H 0 H 1q 1qτ τ τ βα β λ α τ τ τ
=

=        ∑ iH 1q  

For this expression to vanish, the monochromaticity of the phonon spectrum is 

considered. Explicitly, 
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i i LO1q H 1q i 1,...,Nττ τ ε ε    = +      ∀ =  

This relation allows to factorize, 

( ) ( ) ( ) ( )
N

,
LO i i

i 1

H 0τ τ τ β
τα β ε ε λ α τ

=

= +     ∑ H 1q  

The sum on the right is equal to zero as stated in property ( )∗ . We conclude that 

( ) ( )Hν τα β = 0  for any choice of the states ( )να  and ( )τβ . 

This concludes the demonstration. 

 

8.5 Computational implementation 

Our program is written in Fortran 90 using the LAPACK library for matrix operations. 

8.5.1 Listing of the modules, subroutines and functions 

The total code contains 3424 command lines. In some versions of this document, it 

has been submitted on the CD attached at the end. The following list contains all the 

modules, subroutines and functions. The left column indicates the unit's type and 

name and the right column yields a short explanation. 

program MAIN (97 lines) main program 

 internal subroutine SIMULATION_START writes the simulation title and measures the initial time 

 internal subroutine SIMULATION_END write the simulation end and total computation time 

  

module MODULE_GLOBAL_VARIABLES (223 lines) contains the global program variables 

 module subroutine INITIATE_GLOBAL_VARIABLES sets certain user defined variables 

  internal function STRING integer to string conversion 

  

module MODULE_GLOBAL_FUNCTIONS (399 lines) contains the global functions 

 module function NORM norm of a three dimensional double complex vector 

 module function DOT_PROD dot product of a three dimensional double complex vect 

 module subroutine CROSS_PROD cross product of a three dimensional double complex vect 

 module function CROSS_PROD_2D cross product of a two dimensional double complex vect 

 module function DISTANCE_LINE_LINE finds the distance between two straight lines in 3D 

 module subroutine INTERSECT_LINE_PLANE finds the intersection of a line with a plane in 3D 

 module function TETRAHEDRON_VOLUME computes a tetrahedron volume 

 module subroutine MIDDLE_PLANE computes the orthogonal middle plane between two points 

 module function DISTANCE_LINE_POINT_2D computes the distance between a line and a point in 2D 

 module subroutine MATRIX_DIAGONALIZATION diagonalizes a hermitian double complex matrix 

 module subroutine MATRIX_INVERSION inverts a hermitian double complex matrix 

 module function COMPLEX_NORM computes the magnitude of a double complex number 

 module function SGN standard sgn function 

 module subroutine POLYNOM1 computes a first degree interpolation polynomial 

 module subroutine POLYNOM3 computes a third degree interpolation polynomial 

 module subroutine ORDER_VECTOR orders the elements of a vector with increasing value 
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 module subroutine ORDER_VECTOR2 orders the elements of a two vectors with increasing values 

 module function STRING integer to string conversion 

  

module MODULE_WIGNER_SEITZ (681 lines) contains functions to compute a wigner-seitz volume 

 module subroutine WIGNER_SEITZ_VOLUME computes a wigner-seitz volume 

  internal subroutine FIND_TRUE_NEIGHBORS finds the wigner-seitz neighbors of a given point 

  internal subroutine TRANSLATE_CENTER_TO_ORIGIN shifts all relevant vectors 

  internal subroutine PREPARE_NEIGHBORS computes the distance to all the neighbor points 

  internal subroutine FIND_MAX_CELL_RADIUS computes the outer sphere radius of a wigner-seitz cell 

  internal subroutine MULTIPLE_MIDPLANE_INTERSECT cuts an initial volume with a set of planes 

 module subroutine ACTUALIZE_CELL_TRIANGLES covers a polyhedron surface with triangles 

 module subroutine CORRECT_CELL_CORNERS corrects wrongly placed cell corners 

 module subroutine ACTUALIZE_CELL_EDGES computes all the edges of a polyhedron 

 module subroutine SAVE_CELL_EDGES saves the edges of a polyhedron 

 module subroutine SAVE_CELL_EDGES_SHORT saves the edges of a polyhedron for code verification 

 module subroutine SAVE_CELL_TRIANGLES saves the surface triangles of a polyhedron 

 module subroutine INITIALIZE_WIGNER_SEITZ sets variables used to compute a wigner-seitz volume 

 module function TEST_TRIANGLE_COMPLANARITY checks whether two triangles are coplanar 

 module function TEST_TRIANGLE_OVERLAP checks whether two coplanar triangles overlap 

 module function TEST_INTERSECT_SEG_SEG_2D computes the intersection of two straight lines in 2D 

  

module MODULE_OUTPUT_ROUTINES (784 lines) contains subroutines to visualize simulation results 

 module subroutine PRINT_POLARON_STATES_ORTHO lists all the polaron vectors in the tensor product basis 

 module subroutine PRINT_POLARON_STATES_NATURAL lists all the polaron vectors in the natural basis 

 module subroutine SAVE_QVECTORS saves all the normal mode vectors used for the computation 

 module subroutine SAVE_ALL_POLARONIC_QSPECTRA1D saves all the phonon density function along a straight line 

 module subroutine SAVE_ALL_POLARONIC_QSPECTRA3D saves all the phonon density function in 3D 

 module subroutine SAVE_ALL_POLARONIC_FTSPECTRA3D saves all the vibrational density function in 3D 

 module subroutine SAVE_ALL_FROEHLICH_QSPECTRA1D saves all the Fröhlich coupling integral along a straight line 

 module subroutine SAVE_ALL_FROEHLICH_QSPECTRA3D saves all the Fröhlich coupling integral in 3D 

 module subroutine SAVE_POLARONIC_QSPECTRUM1D saves one phonon density function along a straight line 

 module subroutine SAVE_POLARONIC_QSPECTRUM3D saves one phonon density function in 3D 

 module subroutine SAVE_POLARONIC_FTSPECTRUM3D saves one vibrational density function in 3D 

 module subroutine SAVE_FROEHLICH_QSPECTRUM1D saves one Fröhlich coupling integral along a straight line 

 module subroutine SAVE_FROEHLICH_QSPECTRUM3D saves one Fröhlich coupling integral in 3D 

 module subroutine SAVE_QFUNCTION_1D interpolates, smoothes and saves a 1D function in q-space 

 module subroutine SAVE_QFUNCTION_3D interpolates, smoothes and saves a 3D function in q-space 

 module subroutine SAVE_FTFUNCTION_3D interpolates, smoothes and saves the FT of a 3D q-function 

 module subroutine SAVE_ENVELOPE_GRAPHS saves all the electronic envelope functions in 1D 

  internal subroutine SAVE_ENVELOPE_GRAPH saves one electronic envelope function in 1D 

 module subroutine OPEN_RESULT loads the results of a previous computation 

 module subroutine SAVE_RESULT saves the results of the running computation 

 module subroutine WRITE_VECTOR writes a formats double real vector 

 module subroutine WRITE_COMPLEX_MATRIX writes a formats double complex matrix 

  

module MODULE_READ_DATA (68 lines) contains subroutines to read the initial simulation data 

 module subroutine READ_DATA reads all the initial simulation data 

 module subroutine READ_ENVELOP_FUNCTIONS reads the electronic envelope functions 

 module subroutine READ_ENERGIES reads the electronic energies 

 module subroutine READ_MESH_COORDINATES reads the direct space mesh nodes 

 module subroutine READ_MESH_ELEMENT_POINTS reads the direct space mesh connections 

  

module MODULE_PREPARE_DATA (248 lines) contains subroutines to prepare the initial simulation
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data 

 module subroutine PREPARE_DATA prepares all the simulation data 

 module subroutine SET_POTENTIAL_WELL_FUNCTIONS creates envelope test-functions of an infinite potential well 

  internal function S creates S-function of an infinite potential well 

  internal function P creates P-function of an infinite potential well 

 module subroutine SET_GAUSSIAN_FUNCTIONS creates envelope test-functions with Gaussian shape 

 module subroutine EVALUATE_ELEMENT_VOLUME computes the volumes of the directs space mesh elements 

 module subroutine EVALUATE_NODE_VOLUME computes the volumes associated with each mesh node 

 module subroutine EVALUATE_MESH_EXTENTION computes the global dimension of the mesh 

 module subroutine EVALUATE_RELEVANT_MESH_NODES evaluates the mesh nodes with important contribution 

 module subroutine NORMALIZE_ENVELOPE_FUNCTIONS normalizes the envelope functions (for test-functions) 

  internal function NORM integrates the norm of an envelope function 

  

module MODULE_RELEVANT_POLARON_STATES (180 lines) contains subroutines to analyze the full Hamiltonian 

 module subroutine RELEVANT_POLARON_STATES finds all the polaron states and en. of the reduces subspace 

 module subroutine EVALUATE_RELEVANT_BASISVECTORS evaluates the natural basis vectors (normalized) 

 module subroutine GRAM_SCHMIDT_ORTHONORMALIZATION computes an orthonormal basis out of the natural basis 

 module subroutine EVALUATE_REDUCED_HAMILTONIAN evaluates the reduced Hamiltonian 

 module function REDUCED_MATRIX_ELEMENT evaluates a single matrix element of the reduced Hamiltonian 

 module subroutine EVALUATE_POLARON_STATES evaluates the polaron states in the tensor product basis 

  

module MODULE_DYNAMIC_POLARON_EVAL (744) lines contains subroutines to compute the polarons adaptively 

 module subroutine DYNAMIC_POLARON_EVALUATION computes all the polarons using an adaptive q-meshing 

 module subroutine ACTUALIZE_MEMORY_VARIABLES saves the result of a given simulation step 

 module function EXIT_CHECK checks exit criteria such as spectrum convergence 

 module subroutine QGRID_REFINEMENT refines the q-meshing in function the fluctuations 

 module subroutine EVALUATE_UNNORMALIZED_FROEHLICH computes the Fröhlich matrix elements without 1/q/sqrt(V) 

 module subroutine EVALUATE_NORMALIZED_FROEHLICH computes the true Fröhlich matrix elements 

 module subroutine EVALUATE_QVOLUMES computes the Wigner-Seitz volume around a q-vector 

 module subroutine GENERATE_INITIAL_QVECTORS generates the initial mesh in q-spaces 

 module subroutine GENERATE_FULL_HAMILTONIAN generates the full Hamiltonian in the tensor product basis 

 module subroutine INITIATE sets the harmonic functions "exponential", "sinus", "cosinus" 

 module function FROEHLICH integrates a single Fröhlich coupling term 

 module subroutine SAVE_CALCULATION saves the intermediate result of the running simulation 

 module subroutine OPEN_LAST_CALCULATION loads the intermediate result of a previous simulation 

 module subroutine SAVE_MEMORY_VARIABLES saves all the simulation outputs of previous simulation steps 
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8.5.2 Visualization tools 

The following two frames show some helpful commands that were used to generate 

most of the graphical data presented in this report. 

GNU PLOT 

2D Graphs 

plot 'file.dat' 

plot 'file.dat' with lines 

3D Graphs 

splot 'file.dat' 

splot 'file.dat' with lines 

Opitions 

set xlabel "X axis" 

set ylabel "Y axis" 

set zlabel "Z axis" 

set multiplot 

. 

. 

. 

unset multiplot 

set pm3d 

set palette rgb 9,9,2 

unset colorbox 

set xrange [-20:40] 

set yrange [-35:35] 

set zrange [0:0.05] 

set dgrid3d 30,30 

set style data lines 

splot 'graph.dat' 

 

MATLAB 

This self-explaining code was used with MATLAB (6.1.0.450) to plot all the isosur-

faces shown in this report. 

n       = 50; nb of points along a cube side 

radius  = 20; half length of the cube side 

axe     = 20; half length of the drawn cube side 

x(1:n)  = -radius:((radius*2)/(n-1)):radius+0.000001; 

y(1:n)  = -radius:((radius*2)/(n-1)):radius+0.000001; 

z(1:n)  = -radius:((radius*2)/(n-1)):radius+0.000001; 

[X,Y,Z] = meshgrid(x,y,z); V(1:n,1:n,1:n) = 0; 

V(1:n^3) = import_file(1:n^3); is replaced with the actual file name 

p = patch(isosurface(x,y,z,V,sum(sum(sum(V)))/n^3*2)); 

xlabel('x [nm]'); ylabel('y [nm]'); zlabel('z [nm]'); 

isonormals(X,Y,Z,V,p); 

set(p,'FaceColor','red','EdgeColor','none'); 

daspect([1 1 1]); 

view(3); 

axis tight; 

camlight; 

lighting gouraud; 

view(-50, 30); 

axis([-axe axe -axe axe -axe axe]) 
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8.6 Additional computational results 

8.6.1 Quantum dot with two electron levels 

Tab. 11 and Tab. 12 show the energies and polaron state vectors in the normalized 

natural basis for the dot sizes 7.5nm and 5nm. For explications about the significa-

tion of these tables the reader is referred to 5.1.2. 

|A  0> |A  1q> (|A  0>) |B+ 0> |A  1q> (|B+ 0>) |B- 0> |A  1q> (|B- 0>)

 polaron state 1 50.011 0.9786 0.2057 0.0001 0.0007 0.0000 0.0000

 polaron state 4 89.229 0.2056 0.9785 0.0087 0.0165 0.0000 0.0000

 polaron state 2 81.307 0.0003 0.0004 0.8752 0.4837 0.0000 0.0000

 polaron state 6 89.484 0.0041 0.0169 0.4837 0.8751 0.0000 0.0000

 polaron state 3 81.350 0.0000 0.0000 0.0000 0.0000 0.8768 0.4808

 polaron state 5 89.440 0.0000 0.0000 0.0000 0.0000 0.4808 0.8768

Subspace A Subspace B+ Subspace B-

State Vector
 2 level system
size = 7.5nm

Energy
[meV]

 
Tab. 11: Polaron eigenvectors of the two-level system expressed in the normalized natu-

ral basis, 7.5nm dot 

|A  0> |A  1q> (|A  0>) |B+ 0> |A  1q> (|B+ 0>) |B- 0> |A  1q> (|B- 0>)

 polaron state 1 61.556 0.9769 0.2137 0.0001 0.0011 0.0000 0.0000

 polaron state 3 94.563 0.2137 0.9769 0.0037 0.0038 0.0000 0.0000

 polaron state 4 101.064 0.0003 0.0006 0.8036 0.5952 0.0000 0.0000

 polaron state 5 101.837 0.0016 0.0053 0.5952 0.8036 0.0000 0.0000

 polaron state 2 94.551 0.0000 0.0000 0.0000 0.0000 0.8033 0.5956

 polaron state 6 101.849 0.0000 0.0000 0.0000 0.0000 0.5956 0.8033

 2 level system
size = 5nm

State Vector
Energy
[meV]

Subspace A Subspace B+ Subspace B-

 
Tab. 12: Polaron eigenvectors of the two-level system expressed in the normalized natu-

ral basis, 5nm dot 

Tab. 13 and Tab. 14 show the polaron state vectors in the tensor product basis for 

the dot sizes 7.5nm and 5nm. The respective "normal mode distribution functions" 

and "vibrational density functions" are shown in Fig. 25 to Fig. 28. Again, further ex-

plications and the 10nm dot results are shown in 5.1.2. 

|A  0> |B+ 0> |B- 0> all |A  1q>

 polaron state 1 50.011 0.9786 0.0001 0.0000 0.2057

 polaron state 4 89.229 0.2056 0.0087 0.0000 0.9786

 polaron state 2 81.307 0.0003 0.8752 0.0000 0.4837

 polaron state 6 89.484 0.0041 0.4837 0.0000 0.8752

 polaron state 3 81.350 0.0000 0.0000 0.8768 0.4808

 polaron state 5 89.440 0.0000 0.0000 0.4808 0.8768

 2 level system
size = 7.5nm

Energy
[meV]

State Vector

 
Tab. 13: Polaron eigenvectors of the two-level system expressed in the tensor product 

basis, 7.5nm dot 
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|A  0> |B+ 0> |B- 0> all |A  1q>

 polaron state 1 61.556 0.9769 0.0001 0.0000 0.2137

 polaron state 3 94.563 0.2137 0.0037 0.0000 0.9769

 polaron state 4 101.064 0.0003 0.8036 0.0000 0.5952

 polaron state 5 101.837 0.0016 0.5952 0.0000 0.8036

 polaron state 2 94.551 0.0000 0.0000 0.8033 0.5956

 polaron state 6 101.849 0.0000 0.0000 0.5956 0.8033

 2 level system
size = 5nm

Energy
[meV]

State Vector

 
Tab. 14: Polaron eigenvectors of the two-level system expressed in the tensor product 

basis, 7.5nm dot 

 

         
Fig. 25: Isosurfaces of the phonon density functions associated with the subspaces A, 

B+, B– , 7.5nm dot 

         
Fig. 26: Isosurfaces of the phonon density functions associated with the subspaces A, 

B+, B– , 5nm dot 

 

         
Fig. 27: Isosurfaces of the vibrational density functions associated with the electron 

states A, B+, B– (= Fourier transforms of Fig. 25). 7.5nm dot 
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Fig. 28: Isosurfaces of the vibrational density functions associated with the electron 

states A, B+, B– (= Fourier transforms of Fig. 26). 7.5nm dot 

8.6.2 Quantum dot with three electron levels 
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The Fourier transforms of these 12 functions, representing the "vibrational density" 

of the crystal, are shown in section 5.2.2. 

The coefficients ( )iqη , ( )iqζ  of the zero-shift state inside the subspace B– ( )B
red

−
 ≡ H  

are proportional to the other coefficients inside the same subspace (see third row of 

the 12 images above). ( )iqξ  vanishes. 

For the other three zero-shift states, the choice of the coefficients ( )iqη , ( )iqζ  is not 

unique. One linearly independent choice is represented by the following isosurfaces 

 ( )iqη  ( )iqζ  

               

               

               

The Fourier transforms of these 6 functions, representing the "vibrational density" of 

the crystal, are shown in section 5.2.2. 
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8.7 A long time ago 

8.7.1 History of the "phonon", "polaron" and "Fröhlich interaction" 

We shall briefly present the historical origins of three concepts, which lie among oth-

ers at the basis of present-day research on quantum dots. 

In the twenties, the Indian physicist Raman discovered that monochromatic light 

could change its frequency when being diffracted in a medium – an effect that was 

later referred to as the "Raman effect". It seemed that the diffraction of light could 

be explained based on inelastic scattering of microscopic particles; a scattering be-

tween particles of light and particles of molecular vibration or between photons and 

phonons as we shall say later. Today, the Raman-spectroscopy is one of the com-

monly used methods to determine the phonon energies of crystals. 

On the theoretical level, the Russian physicist Tamm found in 1930 that the motion 

of a solid lattice is built up on discrete quanta of kinetic energy approximately associ-

ated with harmonic normal modes. He called them "quanta of sound". In 1932, Jakow 

Frenkel (Fig. 29) writes that those quanta of sound behave in many aspects as if they 

were independent particles. Therefore, he suggests calling them "phonons" in anal-

ogy with the "photons", the quanta of electromagnetic vibration [47]. The respective 

extract of Frenkel's original text is printed in appendix 8.7.1. 

 

 
Fig. 29: JAKOW I. FRENKEL 

among the fathers of the 

"phonon" 

 
Fig. 30: LEW LANDAU 

among the fathers of the 

"polaron" 

 
Fig. 31: HERBERT FRÖHLICH

father of the "Fröhlich inter-

action" 

Ever since Raman, Tamm and Frenkel the concept of phonons has been very success-

ful. Its first achievement was the explanation of the Raman effect in terms of inelas-

tic photon-phonon scattering. Later, many other interactions involving phonons were 

developed, one of which is the interaction between electrons and phonons. A particu-

lar type of these interactions is the "Fröhlich interaction", which we widely apply 

within this report. It was introduced in 1949 by Herbert Fröhlich (Fig. 31) [40]. The 
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abstract of the respective original document is printed in appendix 8.7.4. The ideas of 

the derivation and an extended physical interpretation of the Fröhlich interaction is 

presented in section 2.4. Nowadays, phonons are considered as one possible set of 

basis states in the Hilbert space associated with the crystal system. They are quan-

tum mechanical forms that behave in their mathematical structure like bosonic parti-

cles. They are part of a large amount of quasi-particles, which are all quantized exci-

tations of many-particle-systems. Another example of such quasi-particles is the "po-

laron", a coupled electron-phonon state. To the best of our knowledge, its physical 

content was first outlined by Lew Landau (Fig. 30) in 1933 [48]. An extract of his 

original document, composed in German, is shown in appendix 8.7.3. 
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8.7.2 Frenkel's introduction of the "phonon", 1932 

The text below is a copy of Frenkel's original text, in which he introduces the term 

"phonon" [49]. The crucial sentence is highlighted in yellow. 
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8.7.3 Landau's early vision of the "polaron", 1933 

The copy below shows an original text of Lew Landau written on the subject of elec-

trons surrounded by a field of crystal deformation, a physical picture of the "polaron". 
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8.7.4 Fröhlich's derivation of his interaction, 1949 

The following copy shows the abstract of Fröhlich's original document about interac-

tions between electrons and longitudinal polarization waves. 
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