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Abstract

To any compact Riemann surface of genus g one may assign a principally polarized abelian variety
(PPAV) of dimension g, the Jacobian of the Riemann surface. The Jacobian is a complex torus
and we call a Gram matrix of the lattice of a Jacobian a period Gram matrix. The aim of this
thesis is to contribute to the Schottky problem, which is to discern the Jacobians among the
PPAVs.
Buser and Sarnak approached this problem by means of a geometric invariant, the �rst successive
minimum. They showed that the square of the �rst successive minimum, the squared norm of the
shortest non-zero vector, in the lattice of a Jacobian of a Riemann surface of genus g is bounded
from above by log(4g), whereas it can be of order g for the lattice of a PPAV of dimension g.
The main goal of this work was to improve this result and to get insight into the connection
between the geometry of a compact Riemann surface that is given in hyperbolic geometric terms,
and the geometry of its Jacobian. We show the following general �ndings :

1. For a hyperelliptic surface the �rst successive minimum is bounded from above by a uni-
versal constant.

2. The square of the second successive minimum of the Jacobian of a Riemann surface of
genus g is equally of order log(g).

3. We provide re�ned upper bounds on the consecutive successive minima if the surface con-
tains several disjoint small simple closed geodesics and a lower bound for the norm of
certain lattice vectors of the Jacobian, if the surface contains small non-separating simple
closed geodesics.

If the concrete geometry of the Riemann surface is known, more precise statements can be made.
In this case we obtain theoretical and practical estimates on all entries of the period Gram ma-
trix. Here we establish upper and lower bounds based on the geometry of the cut locus of simple
closed geodesics and also on the geometry of Q-pieces.

In addition the following two results have been obtained :
First, an improved lower bound for the maximum value of the norm of the shortest non-zero
lattice vector among all PPAVs in even dimensions. This follows from an averaging method from
the geometry of numbers applied to a family of symmetric PPAVs.

Second, a new proof for a lower bound on the number of homotopically distinct geodesic loops,
whose length is smaller than a �xed constant. This lower bound applies not only to geodesic
loops on Riemann surfaces, but on arbitrary manifolds of non-positive curvature.

Keywords : Riemann surfaces, Jacobians, Schottky problem, principally polarized abelian
varieties, harmonic functions, hyperbolic geometry, simple closed geodesics, collars.
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Zusammenfassung

Jeder kompakten Riemannschen Fläche vom Geschlecht g kann eine prinzipal polarisierte abelsche
Varietät (PPAV) der Dimension g zugeordnet werden. Diese Varietät ist ein komplexer Torus
und wird Jacobi-Varietät der Riemannschen Fläche genannt. Wir nennen eine Gram-Matrix des
Gitters einer Jacobi-Varietät Perioden-Gram-Matrix. Das Problem, die Jacobi-Varietäten von
den übrigen PPAVs zu unterscheiden, wird Schottky Problem genannt.
Buser und Sarnak gelang eine solche Unterscheidung anhand einer geometrischen Invarianten,
dem ersten sukzessiven Minimum. Sie zeigten, dass das Quadrat des ersten sukzessiven Mini-
mums, das Quadrat der Länge des kürzesten Gittervektors im Gitter der Jacobi-Varietät einer
Riemannschen Fläche vom Geschlecht g nach oben durch log(4g) beschränkt ist. Hingegen kann
diese Invariante in der Menge der PPAVs der Dimension g von der Ordnung g sein.
Das Hauptziel dieser Arbeit war es, dieses Resultat zu verbessern und den Zusammenhang zwi-
schen der Geometrie einer kompakten Riemannschen Fläche, gegeben als hyperbolische Man-
nigfaltigkeit, und der Geometrie seiner Jacobi-Varietät besser zu verstehen. Hierbei konnten wir
folgende generelle Aussagen beweisen :

1. Das erste sukzessive Minimum einer hypereliptischen Fläche ist immer kleiner als eine feste
Konstante.

2. Das Quadrat des zweiten sukzessiven Minimums der Jacobi-Varietät einer Riemannschen
Fläche vom Geschlecht g ist ebenfalls von der Ordnung log(g).

3. Wir erhalten weitere obere Schranken für eine gewisse Anzahl sukzessiver Minima, falls
die Fläche mehrere disjunkte kurze einfach geschlossene Geodäten enthält. Wir erhalten
untere Schranken für die Länge bestimmter Gittervektoren, falls die Fläche mehrere kurze
nicht-trennende einfach geschlossene Geodäten enthält.

Ist die konkrete Geometrie der Riemannschen Fläche bekannt, so können genauere Aussagen
getro�en werden. In diesem Fall erhalten wir theoretische und praktische Abschätzungen für
alle Einträge der Perioden-Gram-Matrix. Diese Schranken können mit Hilfe der Geometrie des
Schnittorts einfach geschlossener Geodäten oder der Geometrie von Q-Stücken erhalten werden.

Wir zeigen weiterhin die zwei folgenden Resultate :
Wir erhalten erstens eine verbesserte untere Schranke für das Maximum der Länge des kürzesten
Gittervektors über der Menge der PPAVs. Dieses Ergebnis folgt aus einer Mittelwertmethode aus
der Geometrie der Zahlen angewandt auf eine Familie symmetrischer PPAVs.

Zweitens geben wir einen neuen Beweis für eine untere Schranke für die Anzahl von geodätischen
Schleifen in unterschiedlichen Homotopieklassen, deren Länge kleiner als eine feste Konstante
ist. Diese untere Schranke kann nicht nur auf Riemannsche Flächen sondern auch generell auf
Mannigfaltigkeiten nicht-positiver Krümmung angewandt werden.

Schlüsselbegri�e : Riemannsche Flächen, Jacobi-Varietäten, Schottky Problem, prinzipal pola-
risierte abelsche Varietäten, harmonische Funktionen, hyperbolische Geometrie, einfach geschlos-
sene Geodäten, Kragen.
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Introduction

The �eld of research of this thesis lies within di�erential and conformal geometry. The main
goal is to contribute to the Schottky problem which is to characterize those principally polarized
abelian varieties (PPAVs) that arise as Jacobians of compact Riemann surfaces (R.S.). Here we
assume that all Riemann surfaces considered are endowed with the hyperbolic metric of constant
curvature −1 and all compact surfaces are of genus g ≥ 2.

The problem goes back to Schottky, who gave such a characterization in 1888 for the case
of a compact Riemann surface of genus 4. Many authors have worked on this problem (see [De]
for an overview). A full solution, however, has not been found until today. In 1994, Buser and
Sarnak approached the Schottky problem by means of inequalities. In [BS] they describe a large
region in the moduli or parameter space of all principally polarized abelian varieties of complex
dimension g, of which it is shown that none occurs as a Jacobian.

The aim of this thesis is to improve this result and to get insight into the connection between
the geometry of a compact Riemann surface that is given in hyperbolic geometric terms and the
geometry of its Jacobian. To this end techniques from hyperbolic geometry, systolic geometry
and harmonic functions are being used. The principal idea of this thesis is to �nd lower or upper
bounds for the length of vectors of the Jacobian of a Riemann surface based on the geometry of
the surface.

This dissertation is structured as follows :
In Chapter 1 we will introduce the basic de�nitions related to the geometry of Riemann sur-
faces, especially its decomposition into pants, as described in [B]. Then we will present the basic
facts about di�erential forms on Riemann surfaces. In this context we will introduce the homol-
ogy basis and its relationship with harmonic di�erential forms. These relationships will enable
us to de�ne the Jacobian of a Riemann surface. Then we will introduce the principally polarized
abelian varieties and their geometric invariants and show that the Jacobian of a Riemann surface
is a PPAV.
Finally we will discuss the energy minimizing properties of harmonic functions and forms and
in this context present some results from the calculus of variations (see [Ge]). These will later
serve as tools to estimate the energy of certain harmonic forms.

In Chapter 2 we will present the main results concerning the general relationship of the coarse
geometry of a Riemann surface and the geometry of its Jacobian. First we will proof the fol-
lowing result about the �rst and second successive minimum of the Jacobian J(S) of a R.S. S,
m1(J(S)) and m2(J(S)), respectively :

1



INTRODUCTION

Theorem 1 Let S be a compact R.S. of genus g and let J(S) be its Jacobian, then

m1(J(S))2 ≤ log(4g − 2) and m2(J(S))2 ≤ 3.1 log(8g − 7).

We show that in the case of a hyperelliptic surface we have :

Theorem 2 If S is a hyperelliptic R.S. of genus g and J(S) its Jacobian, then

m1(J(S))2 ≤ 3 log(3 + 2
√

3 + 2
√

5 + 3
√

3)
π

= 2.4382... .

If a Riemann surface contains small disjoint simple closed geodesics, we obtain :

Theorem 3 Let S be a compact R.S. of genus g that contains n disjoint simple closed geodesics
(ηj)j=1,..,n of length smaller than t. If we cut open S along these geodesics, then the decomposition
contains m R.S. Si of signature (gi, ni), with gi > 0. There exist m linear independent vectors
(vi)i=1,..,m in the lattice of the Jacobian J(S), such that

‖vi‖2 ≤ (ni + 1)max{4 log(4gi + 2ni − 3), t}
π − 2 arcsin(M)

for i ∈ {1, ..., m},

where M = min{ sinh( t
2
)√

sinh( t
2
)2+1

, 1
2}.

The following related theorem will be shown in chapter 3. It provides estimates for the norm of
two linear independent, primitive vectors v1 and v2 in the lattice of the Jacobian of a Riemann
surface S, if S contains a small non-separating simple closed geodesic (scg) :

Theorem 4 Let S be a R.S. of genus g that contains a small non-separating scg α2 of length
l(α2) that has a collar C(α2) of width w2. Then there exists another scg α1 that intersects α2 in
exactly one point and a canonical homology basis A with α1, α2 ∈ A. Let (σi)i=1,..,2g be the dual
basis of harmonic forms for A. Then for the energy E(σ1) and E(σ2) we have :

‖v2‖2 = E(σ2) ≥
π − 2 arcsin( 1

cosh(w2))

l(α2)
and ‖v1‖2 = E(σ1) ≤ l(α2)

π − 2 arcsin( 1
cosh(w2))

.

Here the upper bound on ‖v1‖2 was shown in [BS]. The last two theorems are related to a result
of Fay. In [Fa], chap. III two sequence of Riemann surfaces St are constructed, where t denotes
the length of a simple closed geodesic η.
In the �rst case η is a separating geodesic. It divides St into two surfaces Si of signature
(gi, 1), i ∈ {1, 2}. If t → 0 then the period Gram matrix for a suitable canonical homology basis
converges to a block matrix, where each block is in M2gi(R). Theorem 3 shows that indeed the
�rst two successive minima of the Jacobian of the surfaces Si can only be of order log(gi) and
gives explicit bounds depending on the length of t.
In the second case a sequence of surfaces is constructed, where η is a non-separating simple close
geodesic. If t → 0, the length of one vector in the lattice of the Jacobian converges to zero.
Theorem 4 gives an explicit upper bound for the length of this lattice vector depending on t.

2



INTRODUCTION

It shows furthermore that the length of a second vector in the lattice of the Jacobian goes to
in�nity and gives an explicit lower bound depending on t.

In Chapter 3 we will give estimates for all entries of the period Gram matrix. Here we �rst give
a theoretical upper bound of the entries based on test functions, which can be de�ned on the
whole area of the surface via the cut locus of simple closed geodesics. A theoretical lower bound
can be obtained by estimating the projection of the derivative of certain harmonic functions.
Using the same approach we will then establish lower and upper bounds for the entries of the
period Gram matrix based on the geometry of Q-pieces.
Finally we will apply the methods developed in this chapter to surfaces that contain small non-
separating geodesics and show Theorem 4.

While the previous chapters dealt with geometric invariants of the Jacobian of Riemann sur-
faces, Chapter 4 deals with Hermite's invariant for PPAVs. We denote by Ag the moduli or
parameter space of PPAVs of dimension g. Then Hermite's invariant for PPAVs, δ2g is the max-
imal value of the shortest non-zero lattice vector or systole among the PPAVs in Ag.
Inspired by the symmetry of known maximal PPAVs, the question that arose here was, whether
symmetric PPAVs tend to have a larger systole in general than the average PPAV and if this can
be used to improve the lower bound of δ2g. This idea was pursued to improve the lower bound
for δ2g for PPAVs in even dimensions by applying a mean-value argument from the geometry
of numbers to a subset of highly symmetric PPAVs. Following this proof we will present newly
discovered families of highly symmetric PPAVs.

The result of Chapter 5 arose from the search for a certain number of short simple closed
geodesics on a Riemann surface. Such upper bounds were needed for the proofs in the second
chapter. This part was inspired by a theorem of Blichfeldt [Bli] about lattices. We generalize
this theorem in the following way :

Theorem 5 Let M be a manifold of non-positive curvature with vol(M) < ∞. Let K be its
universal covering and p : K → M a covering map. If C ⊂ K is a convex set, such that for a
m ∈ N

vol(C) > m vol(M),

then there exist pairwise distinct points x1, ..., xm ∈ C that map to the same point y in M . The
geodesic arcs (γxi,x1) ⊂ C map to m−1 homotopically distinct loops p(γxi,x1) with base point y.

Setting C = Br(x), where Br(x) is a geodesic ball of radius r and center x in K, we obtain
a lower bound on the number of homotopically distinct geodesic loops, whose length is smaller
than a �xed constant.

The results of chapter 2 have been submitted in [Mu].

3





Chapter 1

Preliminaries

In this chapter we will �rst introduce the basic de�nitions related to the geometry of Riemann
surfaces. Then we will gather the basic facts about di�erential forms on Riemann surfaces. In
this context we will introduce the homology basis and its relationship with harmonic di�erential
forms. These relationships will enable us to de�ne the Jacobian of a Riemann surface. Afterwards
we will introduce the principally polarized abelian varieties (PPAVs) and their main geometric
invariants and prove that the Jacobian of a Riemann surface is a PPAV.
Finally, we will discuss some energy-minimizing properties of harmonic functions and forms and
present some results from the calculus of variations. These will later serve as tools to estimate
the energy of harmonic forms dual to a homology basis.
We will assume in the following chapters that a surface is always a connected two-dimensional
di�erentiable manifold.

1.1 Hyperbolic geometry and Riemann surfaces
In this section we �rst collect the basic facts about the hyperbolic plane and hyperbolic geometry
and introduce the Fermi coordinates. Then we give a suitable de�nition of Riemann surfaces
and introduce the Fenchel Nielsen coordinates. A basic reference for this section is [B].

Hyperbolic plane

The Poincare model of the hyperbolic plane is the following subset of the complex plane C
:

H = {z = x + iy ∈ C | y > 0}
with the hyperbolic metric

ds2 =
1
y2

(dx2 + dy2).

The group

PSL(2,R) =
{(

a b
c d

)
| a, b, c, d ∈ R; ad− bc = 1

}
mod {±1}

acts biholomorphically on H via the mappings

z 7→ az + b

cz + d
.

5



Hyperbolic geometry and Riemann surfaces PRELIMINARIES

It is the whole group of orientation preserving isometries of H, Isom+(H) ' PSL(2,R).
The set of geodesics, Geod(H), in H are straight lines parallel to the y-axis and half-circles with
center on the x-axis.
The distance between two points p = p1 + ip2 and q = q1 + iq2 in this model is given by the
following formula :

cosh(dist(p, q)) = 1 +
‖p− q‖2

2p2q2
.

Fermi coordinates and cylinders

Fermi coordinates ψγ with base line γ and base point p are de�ned in the following way. The
Fermi coordinates are a bijective parametrization of H

ψγ : R2 → H, ψγ : (t, s) 7→ ψγ(t, s),

where ψγ(0, 0) = p. Each point q = ψγ(t, s) ∈ H can be reached in the following way. Starting
from the base point p we �rst move along γ the directed distance t to ψγ(t, 0). There is a unique
geodesic, ν, intersecting γ perpendicularly in ψγ(t, 0). From ψγ(t, 0) we now move along ν the
directed distance s to ψγ(t, s).
The parametrization ψ : R2 → H

ψ(t, s) :=
exp(t)
cosh(s)

(sinh(s) + i)

are the Fermi coordinates with base line {iy | y ∈ R+} and base point i. Fermi coordinates for
any geodesic in H can be obtained by conjugation of ψ(t, s) with the suitable isometries.
A hyperbolic cylinder or shortly cylinder is a set that is isometric to the set

{ψ(t, s) | (t, s) ∈ [0, a]× [b1, b2]} mod {ψ(0, s) = ψ(a, s) | s ∈ [b1, b2]},

with the induced metric from H.

Horocyclic coordinates and cusps

Consider the parametrization η : R2 → H

η(t, s) := exp(−t)(− sign(s)
√

2(cosh(s)− 1) + i),

where η(0, 0) = i. Each point q = η(t, s) ∈ H can be reached in the following way. Starting from
the base point i we �rst we move along the geodesic γ = {iy | y ∈ R+} the directed distance t
to η(t, 0). There is a unique Euclidean straight line, ν, intersecting γ perpendicularly in η(t, 0).
From η(t, 0), we now move along ν to the point q = η(t, s), situated at the directed distance s
from η(t, 0). These are the horocyclic coordinates with base line {iy | y ∈ R+}, starting point i
and "base point ∞i". The horocyclic coordinates for any base line γ in H can be obtained by
conjugation of η(·) with the suitable isometries.
A cusp is a set that is isometric to the set

{x + iy ∈ H | (x, y) ∈ [−a, a]× [b,∞[} mod {−a + it = a + it | t ∈ [b,∞[},

6



PRELIMINARIES Hyperbolic geometry and Riemann surfaces

with the induced metric from H. Though it is never reached, we call the limit∞i or its equivalent
a cusp point or also cusp.

Hyperbolic trigonometry

Hyperbolic trigonometry is a basic tool in almost all chapters of this thesis. We will give here
the formulas for the geometry of the most important polygons used in the following :

a c

α
b

a

β
ϕ

α

b

Figure 1.1: Right-angled triangle and trirectangle

1.) Right-angled triangles

cosh(c) = cosh(a) cosh(b) and sinh(a) = sin(α) sinh(c)

2.) Trirectangles

cosh(a) = tanh(β) coth(b) and cosh(a) = cosh(α) sin(ϕ)
sinh(α) = sinh(a) cosh(β) and sinh(a) = coth(b) cot(ϕ)

a

β c

α

b

a

β

c

α
b

γ

Figure 1.2: Right-angled pentagon and hexagon

3.) Right-angled pentagons

cosh(c) = sinh(a) sinh(b) and cosh(c) = coth(α) coth(β)

4.) Right-angled hexagons

cosh(c) = sinh(a) sinh(b) cosh(γ)− cosh(a) cosh(b)
coth(α) sinh(γ) = cosh(γ) cosh(b)− coth(a) sinh(b)

7



Hyperbolic geometry and Riemann surfaces PRELIMINARIES

We will also allow the limit case of a degenerated right-angled hexagon, where one boundary arc
has length zero and the limit case, where two boundary arcs, which are connected by exactly one
other arc have length zero.

Riemann surfaces

Depending on the approach towards Riemann surfaces, there are many di�erent possibilities
for a de�nition. We will choose a de�nition that allows us to treat all surfaces, which will occur
in the following chapters. We will use the de�nition of a Riemann surface as hyperbolic surface.
We will also allow local charts that are isometric to a cusp. This subsection is based on the
de�nitions in [B], but also introduces some additional notation.

A hyperbolic surface with a cusp can be seen as a limit case of a hyperbolic surface with bound-
ary. Here the length of one boundary goes to zero in the limit case. Therefore we will also call
a cusp point of a surface a boundary of the surface, though we are aware that this is incorrect.
We de�ne :

De�nition 1.1.1 A Riemann surface S is a complete orientable hyperbolic surface of �nite
volume. If it has a boundary, then each boundary component is either a smooth simple closed
geodesic or a cusp point.

It follows from the topological classi�cation of compact oriented surfaces that a Riemann surface
without boundary is topologically a Pretzel surface with g holes, where g denotes the genus. We
further de�ne the signature of a surface in the following way :

De�nition 1.1.2 A Riemann surface S has signature (g, n), if its genus is g and the boundary
consists of n disjoint boundary geodesics. We say S has signature (g, n, m), if its genus is g and
the boundary consists of n disjoint boundary geodesics and m cusps. If a boundary is a cusp, we
say that the boundary is degenerated.

Y-pieces and Fenchel-Nielsen coordinates

An important type of Riemann surfaces are Y-pieces. Any Riemann surface can be decomposed
into or built from these basic building blocks.

De�nition 1.1.3 A R.S. Y of signature (0, 3), (0, 1, 2) or (0, 2, 1) is called a Y-piece. If Y is of
signature (0, 1, 2) or (0, 2, 1) then we say that the Y-piece is degenerated.

Every Y-piece can be obtained by pasting two isometric hexagons. If we paste together two
degenerated hexagons, we obtain a Y-piece with one or two cusps.
If Y is a Y-piece with boundary geodesics γ1, γ2, γ3, then we can introduce a marking on Y . The
marking consists in labeling the boundary components to obtain themarked Y-piece Y [γ1, γ2, γ3].
For a marked Y-piece Y [γ1, γ2, γ3] we introduce a standard parametrization of the boundaries in
the following way.
Let cij be the geodesic arc going from γi to γj that meets these boundaries perpendicularly. We
set S1 = R mod (t 7→ t + 1) and parametrize all boundary geodesics

γi : S1 → H, γi : t 7→ γi(t),

8



PRELIMINARIES Hyperbolic geometry and Riemann surfaces

such that each geodesic is traversed once and with the same orientation. We furthermore
parametrize the geodesics, such that γ1(0) is the endpoint of c31, γ2(0) is the endpoint of c12 and
γ3(0) is the endpoint of c23 (see Fig. 1.3).

γ1

γ2 γ3

c12

c23

c31

Figure 1.3: A marked Y-piece Y [γ1, γ2, γ3]

Two marked Y-pieces Y and Y ′ that have a boundary geodesic of the same length can be pasted
together. If γ1 ⊂ Y and γ′1 ⊂ Y ′ are the geodesics of equal length, then we can glue Y and Y ′

using the identi�cation
γ1(t) = γ′1(−t + τ), t ∈ S1,

where τ ∈ R is an additional constant, called the twist parameter . We obtain the surface
Y + Y ′ mod (γ1(t) = γ′1(−t + τ), t ∈ S1).

Here the gluing is restricted to boundaries of non-zero length.
It can be shown that any Riemann surface S can be obtained by gluing together marked Y-pieces.
The pasting scheme can be encoded in a graph in the following way. We assign to each Y-piece
a vertex and to each of its boundary geodesics a half-edge emanating from this vertex. Pasting
along a boundary geodesic corresponds to connecting two half-edges of two di�erent vertices or
the same vertex. The pasting scheme is thus encoded in the combinatorial skeleton of a graph
G(S). This construction is shown in Figure 1.4.
Every Riemann surface S of signature (g, n, m) can be built from 2g − 2 + n + m Y-pieces. The
pasting scheme is provided by a graph G(S). The triple

((si)i=1,..,2g−2+n+m, (bj)j=1,..,3g−3+n+m, (b′j)j=1,..,n+m)

lists the 2g−2+n+m vertices, 3g−3+n+m edges and n+m half-edges, where the half-edges
(b′j)j=n+1,..,n+m correspond to boundaries that are cusp points. Let

L(S) = (l1, ..., l3g−3+n+m)× (l′1, ..., l
′
n) ∈ R3g−3+n+m

+ × Rn
+

such that each li is the length of a geodesic corresponding to the edge bi and each l′i the length
of a boundary geodesic corresponding to a half-edge b′i of non-zero length. Let

A(S) = (a1, ..., a3g−3+n+m) ∈ R3g−3+n+m

be such that ai is twist parameter from the gluing of the geodesics corresponding to an edge bi.
Then any Riemann surface S can be constructed from the information privided in the triplet
(G(S), L(S), A(S)).

9
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G(S) S

Figure 1.4: Construction of a R.S. S of signature (2, 0, 2) from a graph G(S) and marked Y-pieces

De�nition 1.1.4 (L(S),A(S)) is the sequence of Fenchel-Nielsen coordinates of the Riemann
surface S.

1.2 Di�erential forms on Riemann surfaces
Di�erential forms allow us to de�ne integration, such that the result is independent of the choice
of the coordinates. We use 1-forms to integrate over curves and 2-forms to integrate over do-
mains.
A Riemann surface in the classical sense is a complex one-dimensional manifold. We will in-
troduce di�erential forms based on this de�nition. The connection with hyperbolic surfaces as
de�ned in the previous section is the following.
A classical Riemann surface is a surface with a complex structure, such that the coordinate
changes are biholomorphic. As the coordinate changes are holomorphic functions, the surface
is orientable. It follows from the general classi�cation of orientable surfaces that any compact
Riemann surface is a genus g surface.
It follows furthermore from the Klein-Koebe-Poincare uniformization theorem (see [Po]) that for
every compact Riemann surface S of genus g ≥ 2 we have :

S ' H mod Γ, where Γ ⊂ PSL(2,R)

is a �xed point free, discrete subgroup that acts properly and discontinuously onH. As PSL(2,R)
is also the group of orientation preserving isometries of H, Isom+(H), we can endow S with the
hyperbolic metric in a natural way to obtain a hyperbolic surface. As the metric is conformal,
the de�nition of harmonic and holomorphic functions in the hyperbolic plane H is the usual one.

Finally, as the coordinate changes of a hyperbolic surface of genus g are in PSL(2,R), which
is a subgroup of the holomorphic functions on H, any compact orientable hyperbolic surface
is a Riemann surface in the classical sense and our de�nitions coincide in the case of compact
Riemann surfaces of genus g.
As we only use di�erential forms in this setup, we will use the classical de�nition of a Riemann

10
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surface in the following two sections. Basic references for these sections are [FK] and [Fo].

1-forms

If U ⊂ C is open, we can identify C ' R2 and consider

E(U) = {f : U → C | f in�nitely real di�erentiable}.

For any z ∈ U , such that z = x + iy ' (x, y) and a f ∈ E(U) , such that f(z) = u(z) + iv(z) '
u(x, y) + iv(x, y), set

∂f

∂x
=

∂u(x, y)
∂x

+ i
∂v(x, y)

∂x
and ∂f

∂y
=

∂u(x, y)
∂y

+ i
∂v(x, y)

∂y
.

Then ∂
∂x and ∂

∂y are di�erential operators on E(U). We further consider the operators

∂

∂z
:=

1
2

(
∂

∂x
− i

∂

∂y

)
and ∂

∂z̄
:=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

It follows from the Cauchy-Riemann di�erential equations for all f ∈ E(U) that f ∈ O(U) ⇔
f ∈ Ker

(
∂f
∂z̄

)
.

If S is a Riemann surface, then

E(S) = {f : S → C | f ◦ ϕ−1 ∈ E(ϕ(U)) for all local charts (U,ϕ)}.

We de�ne 1-forms in the following way.

De�nition 1.2.1 Let S be a Riemann surface. A 1-form ω on S is an ordered assignment of
two functions f1, f2 ∈ E(U), to each local chart (U,ϕ), ϕ = u1 + iu2, such that

ω = f1du1 + f2du2

is invariant under coordinate changes. We denote by E1(S) the vector space of 1-forms.

That means that if (U,ϕ) and (V, ψ) with ψ = v1 + iv2 are local charts that intersect, such that
on the intersection U ∩ V

ω = f1du1 + f2du2 = h1dv1 + h2dv2,

then we have

(
h1

h2

)
=




∂u1◦ψ−1

∂x

∣∣∣
ψ(·)

∂u1◦ψ−1

∂y

∣∣∣
ψ(·)

∂u2◦ψ−1

∂x

∣∣∣
ψ(·)

∂u2◦ψ−1

∂y

∣∣∣
ψ(·)




T (
f1

f2

)
=

(
D(ϕ ◦ ψ−1)

∣∣
ψ(·)

)T
(

f1

f2

)
,

where D(ϕ ◦ ψ−1) is the real Jacobian matrix of the function ϕ ◦ ψ−1 : R2 → R2 (with R2 ' C).
Using complex notation for forms on a chart (U,ϕ), with ϕ = u1 + iu2, we can write

dϕ = du1 + idu2 and dϕ̄ = du1 − idu2.

11
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We may also di�erentiate functions in E(S) to obtain forms. To this end we de�ne the operator
d locally on a chart (U,ϕ) :

d : E(U) → E1(U), d : f 7→ df, such that

df :=
∂f ◦ ϕ−1

∂x

∣∣∣∣
ϕ(·)

du1 +
∂f ◦ ϕ−1

∂y

∣∣∣∣
ϕ(·)

du2 =
df

dx
du1 +

df

dy
du2.

Here we use the symbols d
dx and d

dx to distinguish these expressions from the operators ∂
∂x and

∂
∂x . The operator d can be extended naturally to an operator d : E(S) → E1(S).

A 1-form can be integrated over paths. If c : [a, b] → S is a path and ω ∈ E1(S), then
we can de�ne integration locally on a chart (U,ϕ = u1 + iu2), with ω = f1du1 + f2du2 and
c|U : [a1, b1] → U, c : t 7→ c(t):

∫

c|U

ω =

b1∫

a1

(
f1(c(t))

∂u1 ◦ c(t)
∂t

+ f2(c(t))
∂u2 ◦ c(t)

∂t

)
dt.

As there always exists a partition of the interval [a, b], such that each subinterval is contained in
a single chart, the integration can be easily extended to S.

2-forms

A 2-form can be de�ned in the following way.

De�nition 1.2.2 Let S be a Riemann surface. A 2-form ω on S is an assignment of a function
f ∈ E(U), to each local chart (U,ϕ), ϕ = u1 + iu2, such that

ω = fdu1 ∧ du2

is invariant under coordinate changes. We denote by E2(S) the vector space of 2-forms.

That means that if (U,ϕ) and (V, ψ) with ψ = v1 + iv2 are local charts that intersect, such that
on the intersection U ∩ V

ω = f du1 ∧ du2 = h du1 ∧ du2,

then we have
h = f · det(D(ϕ ◦ ψ−1)

∣∣
ψ(·)) = f ·

∥∥∥(ϕ ◦ ψ−1)′
∣∣
ψ(·)

∥∥∥
2
,

where ′ denotes the complex di�erentiation.
The exterior multiplication of forms ∧ : E1(U)×E1(U) → E2(S) satis�es the following rules. For
ω1, ω2, ω3 ∈ E1(U) and λ ∈ C, we have

(ω1 + ω2) ∧ ω3 = ω1 ∧ ω3 + ω2 ∧ ω3

(λω1) ∧ ω2 = λ(ω1 ∧ ω2)
ω1 ∧ ω2 = −ω2 ∧ ω1.

Hence, using complex notation for forms on a chart (U,ϕ), with ϕ = u1 + iu2, we can write

dϕ ∧ dϕ̄ = −2i du1 ∧ idu2.

12
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We can derive 1-forms in E1(S) to obtain 2-forms. Therefore we de�ne the operator d locally on
a chart (U,ϕ), ϕ = u1 + iu2 :

d : E1(U) → E2(U), d : ω 7→ dω, such that
dω = d(f1du1 + f2du2) := df1 ∧ du1 + df2 ∧ du2.

It follows from the rules for the exterior multiplication that

dω =
(

df2

dx
− df1

dy

)
du1 ∧ du2.

As in the case of di�erentiation of functions, the operator d then can be extended naturally to
an operator d : E1(S) → E2(S).
A 2-form can be integrated over domains D ⊂ S. If ω ∈ E2(S), then we can de�ne integration
locally over a chart (U,ϕ = u1 + iu2), ω = fdu1 ∧ du2 :

∫

U

ω =
∫

ϕ(U)

f ◦ ϕ−1(x, y) dx dy,

where (x, y) ∈ R2 ' x + iy ∈ C. The integration can be extended over any domain D, using
partitions of unity. The most important theorem concerning integration and forms is the theorem
of Stokes (see [Fo], p. 78), which states :

Theorem 1.2.3 (Stokes) If S is a Riemann surface and D ⊂ S is a domain with piecewise
di�erentiable boundary ∂D, then for every 1-form ω ∈ E1(S), we have

∫

∂D

ω =
∫

D

dω.

We mention also the version for functions :
If c : [a, b] → U ⊂ S is a curve and ω = df , with f ∈ E(U), then

∫

c

ω =
∫

c

df = f(c(b))− f(c(a)).

Operators on forms

The complex conjugation operator ¯ : E1(S) → E1(S) is de�ned locally in the following way.
On a chart (U,ϕ), ϕ = u1 + iu2 and ω ∈ E1(S), with ω = f1du1 + f2du2 we de�ne the operator
¯ by

ω̄ := f̄1du1 + f̄2du2.

The real and imaginary part of ω, Re(ω) and Im(ω) are

Re(ω) =
1
2
(ω + ω̄) and Im(ω) =

1
2i

(ω − ω̄).

A 1-form is called real, if ω = Re(ω) ⇔ ω = ω̄.

13
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We introduce furthermore the star operator ∗ : E1(S) → E1(S) for 1-forms as follows. We de�ne
the operator ∗ locally on a chart (U,ϕ), ϕ = u1 + iu2 and ω ∈ E1(S), with ω = f1du1 + f2du2 by

∗ω := −f2du1 + f1du2.

Both operators can be extended naturally to operators on E1(S). We will use a de�nition of
harmonic functions based on the star operator.

De�nition 1.2.4 Let S be a Riemann surface and f ∈ E(S), then f is called harmonic, if

d ∗df = 0.

The operator d ∗d = ∆ : E(S) → E2(S) is called the Laplace-operator .
A 1-form σ ∈ E1(S) is called harmonic, if locally

σ = df, such that f is a harmonic function.

A 1-form ω ∈ E1(S) is called holomorphic, if

ω = σ + i∗σ, such that σ is a harmonic 1-form.

We denote by Harm(S) the vector space of harmonic functions and by Harm1(S) the vector space
of harmonic 1-forms and by O1(S) the space of holomorphic 1-forms.
E1(S) can be decomposed into di�erent parts, using the following de�nitions :

De�nition 1.2.5 Let S be a Riemann surface and ω ∈ E1(S), then ω is called exact, if

ω = df for some f ∈ E(S).

It is called co-exact, if ∗ω is exact.
ω is called closed, if dω = 0. It is called co-closed, if ∗ω is closed.

If a domain D is simply connected, we have the following useful theorem :

Theorem 1.2.6 Let S be a Riemann surface and D ⊂ S be a simply connected domain and
ω ∈ E1(D), such that dω = 0 then there exists a function f ∈ E(D), such that

df = ω.

Furthermore the function is unique up to a constant c.

For a proof see [Fo], p. 72. From Theorem 1.2.6 and the de�nitions it is easy to deduce that
a 1-form is harmonic if and only if it is closed and co-closed.

With the help of these two operators, we can de�ne a scalar product

〈 , 〉 : E1(S)× E1(S) → C, 〈 , 〉 : (ω1, ω2) 7→ 〈ω1, ω2〉 , such that

〈ω1, ω2〉 :=
∫

S

ω1 ∧∗ ω̄2.

14
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(E1(S), 〈 , 〉) is a unitary vector space, but not a Hilbert space. For a given 1-form ω ∈ E1(U),
we denote by

EU (ω) =
∫

U

ω ∧∗ ω̄

the energy of ω over U . If U = S, then we call ES(ω) = E(ω) simply the energy of ω. If
f : S → C is a di�erentiable function, we denote by EU (f) = EU (df) the energy of f over
U . Later we will show that harmonic functions and di�erentials have certain energy-minimizing
properties.
We can de�ne orthogonality with the help of the scalar product. As shown in [Fo], p. 157, we
have :

Theorem 1.2.7 On any Riemann surface S, there is an orthogonal decomposition, such that

E1(S) = dE(S)⊕ ∗dE(S)⊕Harm1(S)

Furthermore, if d : E1(S) → E2(S) denotes the di�erential operator on 1-forms, then

Ker(d) = dE(S)⊕Harm1(S).

1.3 Homology and harmonic 1-forms
In this section, we will �rst introduce the �rst homology group H1(S). There are di�erent, equiv-
alent ways to de�ne H1(S). For our purposes it is useful to de�ne this group via integration over
closed 1-forms. Another approach, using triangulations of surfaces, is given in [FK]. Then we will
present the relationship between harmonic 1-forms and the homology group. These relationships
will then enable us to de�ne the Jacobian of a Riemann surface.

Chains, cycles and homology

Let S be a Riemann surface. A divisor on S is a mapping

D : S → Z,

such that for each compact subset K ⊂ S, there are only �nitely many points x ∈ K, such that
D(x) 6= 0. The group of divisors on S is denoted by Div(S).
If S is a compact Riemann surface, then we can de�ne a map, called degree, by

deg : Div(S) → Z,deg : D 7→
∑

{x∈S|D(x)6=0}
D(x).

We denote by Div0(S) = Ker(deg) the kernel of the mapping.

A 1-chain c on a compact Riemann surface S is a formal �nite linear combination of curves
(cj)j=1,...k, where cj : [0, 1] → S:

c =
k∑

j=1

njcj ,where nj ∈ Z.

15



Homology and harmonic 1-forms PRELIMINARIES

We denote by C1(S) the set of all 1-chains on S. It is easy to see that C1(S) is an abelian group.
If ω ∈ E1(S) is a closed 1-form (dω = 0), then we de�ne the integration over c by

∫

c

ω :=
k∑

j=1

nj

∫

cj

ω.

The boundary operator ∂ : C1(S) → Div(S) is de�ned in the following way. If cj : [0, 1] → S,
then set

∂cj = 0 if cj(0) = cj(1) and ∂cj(x) =





1
−1
0

if
x = cj(1)
x = cj(0)

x ∈ S\{cj(0), cj(1)}
.

For a 1-chain c =
k∑

j=1
njcj , set ∂c :=

k∑
j=1

nj∂cj .

We have deg(∂c) = 0 for all c ∈ C1(S), hence ∂(C1(S)) ⊂ Div0(S). Conversely, if D ∈ Div0(S),
then we can �nd a �nite set of curves (cj)j=1,...k with start and endpoints in the set {x ∈ S |

D(x) 6= 0}, such that ∂

(
k∑

j=1
cj

)
= D. Hence the mapping is surjective. It follows from the �rst

isomorphism theorem for groups that

Div0(S) ' C1(S) mod Ker(∂)

Denote by Z1(S) the kernel of the mapping ∂ :

Z1(S) := Ker(∂).

Z1(S) is called the group of 1-cycles or group of cycles of S. An element of Z1(S) is called a
cycle. In particular every closed curve is a cycle.
We de�ne an equivalence relation hom∼ on two cycles c, c′ ∈ Z1(S) in the following way :

c
hom∼ c′ ⇔

∫

c

ω =
∫

c′

ω for all ω, such that dω = 0

If c
hom∼ c′, then we say that c and c′ are homologous. The set of all homology classes of cycles is

the additive group H1(S), the (�rst) homology group of S.

H1(S) := Z1(S) mod
hom∼ .

The integration along elements of H1(S) over closed forms is well-de�ned. It is easy to see that
there is a surjective group homomorphism F from the fundamental group of S, π1(S) into the
�rst homology group of S :

F : π1(S) → H1(S).

In fact H1(S) is the abelianization of π1(S), which is in general not abelian. Due to this rela-
tionship, we will assume in the following that an element in the homology group is given as a
closed curve. If S is a Riemann surface of genus g, then

H1(S) ' Z2g.
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Homology and harmonic 1-forms

The connection between harmonic forms and homology classes is given in the following theo-
rem, which is proven on p. 163 in [Fo].
Theorem 1.3.1 Let S be a Riemann surface and a ∈ H1(S) be a cycle, then there exists a
unique harmonic form σa ∈ Harm1(S), such that for any closed 1-form ω ∈ Ker(d)

∫

a

ω =
∫

S

σa ∧ ω

To establish the duality between the homology group and (real) harmonic forms, we will use
canonical homology bases.

De�nition 1.3.2 Let S be a Riemann surface of genus g. (αi)i=1...2g ⊂ H1(S) is a canonical
homology basis (chb), if each αi is a simple closed curve and the curves are paired, such that for
each αi there exists exactly one ατ(i) ∈ (αj)j=1...2g that intersects αi in exactly one point and
there are no other intersection points.

We denote by the standard form of a canonical homology basis (αi)i=1...2g ⊂ H1(S) the ordering
(α1, ..., αg, ατ(1), ..., ατ(g)), such that the matrix of oriented intersections or intersection matrix
has the form

(
0 Idg

−Idg 0

)
:= I. (1.1)

α1 α2 α3

α4 = ατ(1) α5 α6

Figure 1.5: A canonical homology basis in standard form for a Riemann surface S of genus 3

An example of a chb in standard form is shown in Figure 1.5. We may assume in the following
that a canonical homology basis is always in standard form. We have :

Theorem 1.3.3 Let S be a Riemann surface of genus g and (ai)i=1...2g ⊂ H1(S) be a (canonical)
homology basis. There exists an unique dual basis of harmonic forms for Harm1(S), (σk)k=1...2g,
such that ∫

ai

σk = δik.

Furthermore these harmonic forms are real.
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proof This is usually stated and shown for a canonical homology basis (see for example [FK],
p. 58). However that the basis is canonical is not essential. We will show that the result is true
for any homology basis.
Let (αi)i=1...2g ⊂ H1(S) be a canonical homology basis and (ai)i=1...2g ⊂ H1(S) be any homology
basis. As both are bases of the homology, there exists a unique

M ∈ M2g(Z), det(M) ∈ {±1}, such that (a1, ..., a2g)T = M(α1, ..., α2g)T .

Let (uk)k=1...2g be the dual basis for (αi)i=1...2g ⊂ H1(S) and set

(s1, ..., s2g) = (σ1, ..., σ2g)M−1.

Then it follows, from the linearity of the integral that for

P = (pi,k)i,k=1,..2g ∈ M2g(C), such that pi,k =
∫

ai

sk

we have P = M ·M−1 = Id2g. Hence the (sk)k=1...2g ful�ll the conditions of the theorem. The
basis is unique, due to the uniqueness of the (σk)k=1...2g. ¤

It follows from this theorem that if S is a Riemann surface of genus g, the vector space of
real harmonic 1-forms, Harm1

R(S) has real dimension 2g.

Harm1
R(S) ' R2g.

Jacobian varieties

Given a homology basis of a compact Riemann surface, we de�ne :

De�nition 1.3.4 Let S be a R.S. of genus g and (ai)i=1...2g ⊂ H1(S) a homology basis. Let
(σk)i=1...2g ⊂ Harm1(S) be the dual basis of harmonic 1-forms. A period Gram matrix QS of S
is the real Gram matrix

QS = (〈σi, σj〉)i,j=1...2g =




∫

S

σi ∧ ∗σj




i,j=1...2g

.

We can easily deduce from the de�nition of the star operator that QS is a real symmetric matrix.
Changing the homology basis changes the period Gram matrix in the following way.

Lemma 1.3.5 Let
(
a1

i

)
i=1...2g

⊂ H1(S) and
(
a2

i

)
i=1...2g

⊂ H1(S) be two homology bases of S

and Q1
S and Q1

S be the respective period Gram matrices. There exists a M ∈ M2g(Z), with
det(M) ∈ {±1} such that (a1

1, ..., a
1
2g)

T = M−1(a2
1, ..., a

2
2g)

T . Then

Q1
S = MT Q2

SM.

18



PRELIMINARIES Homology and harmonic 1-forms

proof It is shown in the proof of Theorem 1.3.3 how to change the basis for the dual harmonic
1-forms for the two di�erent homology bases. The result follows from this observation and from
the fact that the ∗ operator is R linear. ¤

If the canonical homology basis (αi)i=1...2g is given in standard form, then for

QS =
(

A B
C D

)
, with A,B, C, D ∈ Mg(R)

we have, due to the fact that QS is real and symmetric :
A = AT , D = DT and B = CT

It is shown in [FK], p. 61 that additionally, A and D are positive de�nite matrices and
B2 −AD = −Idg, BA = ABT and DB = BT D (1.2)

Furthermore we have
Lemma 1.3.6 Let S be a Riemann surface of genus g and (αj)j=1...2g ⊂ H1(S) be a chb in
standard form and (σj)j=1...2g a dual basis of real harmonic forms, then for

ωj = σj + i∗σj for j = 1, ..., g

the (ωj)j=1...g and the (iωj)j=1...g form a basis of the vector space of holomorphic 1-forms O1(S).

For a proof, see [FK] p. 62.
With a basis of holomorphic 1-forms we can �nal de�ne the period lattice and the Jacobian
variety of S.

De�nition 1.3.7 S be a Riemann surface of genus g and (aj)j=1...2g ⊂ H1(S) be a homology
basis and (wj)j=1...g ⊂ O1(S) be a basis of holomorphic 1-forms, then

Per · Z2g, such that Perj,i =
∫

ai

wj for i ∈ {1, ..., 2g}, j ∈ {1, ..., g}

is the period lattice Per(w1, ..., wg) with basis (wj)j=1...g and the torus Cg mod Per(w1, ..., wg)
is the Jacobian torus or Jacobian variety of S.

The Jacobian variety is a complex torus or abelian variety. A complex torus is a polarized abelian
variety, if it has a polarization, where the polarization is a certain positive de�nite hermitian
form. A Jacobian variety carries a polarization in a natural way. To see this, we introduce a
standard basis that provides the hermitian form.
With the conditions as in Lemma 1.3.6, we have
Theorem 1.3.8 (iωj)j=1...g form a basis of the vector space of holomorphic 1-forms O(S). Let
Ξ = ξ1, ...ξg be the basis of O(S) de�ned by (ξ1, ...ξg)T = D−1(iω1, ..., iωg)T , then the period
lattice is given by Per(Ξ) is of the form

Per(Ξ) = (Idg, Z)Z2g, such that Z = −D−1BT + iD−1,

with Z = ZT and Im(Z) > 0.

We call this form of the period lattice the standard form.
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This follows from the de�nitions and equation (1.2). For a detailed proof see [FK], p. 63. The
standard form of the period lattice provides the hermitian form H of the Jacobian variety. It is
H = Im(Z)−1 = D, the inverse matrix of the imaginary part of Z. We will clarify the relationship
with the polarized abelian varieties in the following section.

1.4 Principally polarized abelian varieties
A polarized abelian variety (PAV) of dimension g may be de�ned as a pair (A,H), where A is
a complex torus of dimension g and H, the polarization, is a certain positive de�nite hermitian
form. PAVs play an important role in many areas of mathematics. They occur as a class of
manifolds in complex analysis, as a class of varieties in algebraic geometry and play a signi�cant
role in the theory of �elds in number theory. We will give a full de�nition in the following. Then
we will show that the Jacobian of a Riemann surface of genus g is a PAV. Finally, we will present
some important geometric invariants of PAVs, the successive minima. A basic reference for this
section is [BL].

Polarized abelian varieties

A complex lattice L in Cg is a subgroup of the form

L = ⊕2g
i=1Z · ui

such that the u1, u2, ..., u2g ∈ Cg are linearly independent over R.
If the (ui)i=1,...,2g ∈ Cg are given with respect to the standard basis of Cg then the matrix
(u1, u2, ..., u2g) = Π ∈ Mg×2g(C) is called the period matrix of the lattice L. A complex torus

A = Cg mod L

is the quotient of Cg with a complex lattice L. A real lattice L can be de�ned analogously. We
have :

De�nition 1.4.1 Let A = Cg mod L be a complex torus. Then a positive de�nite hermitian
form

H : Cg × Cg → C, H : (η, ν) 7→ H(η, ν)

is called a polarization, if the imaginary part Im(H) of H is integral on L × L. The torus A is
an abelian variety, if and only if a polarization exists for A. In this case the pair (A, H) is a
polarized abelian variety.

If (A = Cg mod L,H) is a PAV, then Im(H) is an alternating bilinear form. By a theorem of
Frobenius, there exists a so called symplectic basis for the lattice L, such that Im(H) = E has
the following form with respect to this basis :

E =
(

0 D
−D 0

)
with D = diag(d1, d2, ..., dg) such that

di ∈ N, for all i ∈ {1, ..., g} and d1 | d2 | ... | dg.
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The numbers d1, d2, ..., dg are chosen to be minimal and are uniquely de�ned by E. These are
the elementary divisors of E. A PAV is principal , if and only if D = Idg. In this case, it is a
principally polarized abelian variety (PPAV).
A moduli or parameter space for PPAVs that contains representatives of all isomorphy classes
of PPAVs is Ag. Ag is de�ned as Hg modulo the group Sp2g(Z). Hereby a model of Hg is the
Siegel upper half space

Hg = {Z ∈ Mg(C), Z = ZT and Im(Z) > 0}

and Sp2g(Z) is Siegel's modular group or the symplectic group of degree 2g over Z

Sp2g(Z) = {R ∈ M2g(Z) | RT

(
0 Idg

−Idg 0

)
R =

(
0 Idg

−Idg 0

)
}.

It acts on Hg by the g-dimensional Moebius transformation

Z 7→ R · Z = (aZ + b)(cZ + d)−1

for R =
(

a b
c d

)
∈ Sp2g(Z).

Let Z ∈ Hg be such that Z = X + iY with real-valued symmetric matrices X and Y such that
Y is positive de�nite. By [BL], chapter 8, Z corresponds to the PPAV (AZ ,HZ), where

AZ = Cg mod (Z, Idg)Z2g,

HZ = Y −1.

The period length of a lattice vector x = (Z, Idg)y, such that y ∈ Z2g is de�ned as

Re(xT HZ x̄) = yT Re(QZ + iI)y = yT QZy. ( see (1.1))

Hereby QZ is the positive de�nite real symmetric matrix

QZ =
(

XY −1X + Y XY −1

Y −1X Y −1

)
=

(
Idg X
0 Idg

) (
Y 0
0 Y −1

)(
Idg 0
X Idg

)
(1.3)

It follows from this equation that det(QZ) = 1.
Furthermore Sp2g(Z) acts on the matrices {QZ ∈ M2g(R) | Z ∈ Hg} in the following way :

QZ = Q′
Z mod Sp2g(Z) ⇔ Q′

Z = RQZRT with R ∈ Sp2g(Z)

It can be easily shown that the association Z ↔ QZ is one-to-one and

Z ′ = Z mod Sp2g(Z) ⇔ QZ = QZ′ mod Sp2g(Z).

This relation follows from the equations in [BL], p. 212.
QZ can be decomposed into the matrices P T

Z PZ , such that

PZ = PX,Y =
( √

Y 0
0

√
Y −1

)(
Idg 0
X Idg

)
∈ M2g(R). (1.4)
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Hence QZ is the Gram-matrix of the real 2g dimensional lattice PZZ2g.

Jacobian varieties as PPAVs

If S is a compact Riemann surface of genus g, let J(S) be its Jacobian torus in standard form Cg

mod (Idg, Z)Z2g, as given in Theorem 1.3.8. To conform the de�nition with the de�niton of a
PPAV, we may assume that the lattice of the Jacobian is given in the form (Z, Idg)Z2g. It de�nes
the principally polarized abelian variety (Cg mod (Z, Idg)Z2g, Y −1), with Z = X + iY ∈ Hg.
We obtain by equation (1.2), with

X = D−1BT and Y = D−1,

that for a lattice vector x = (Z, Idg)y (with y ∈ Z2g)

xT HZ x̄ = yT (QZ + iI)y = yT

(
A −B
−C D

)
yT + iyT

(
0 Idg

−Idg 0

)
y.

Hence
QS =

( −Idg 0
0 Idg

)
QZ

( −Idg 0
0 Idg

)

Hence QS and Q′
Z are equivalent Gram matrices, whose real lattices PSZ2g and PZZ2g are equal.

Hermite's constant and Minkowski's �rst and second theorem

A geometric invariant of the lattice of a PPAVs is the �rst successive minimum or shortest
non-zero lattice vector, whose square is the minimal period length of the PPAV. Here the k-th
successive minimum of a complex lattice L of dimension g is de�ned by

mk(L) = min
{
r ∈ R+ |∃ {l1, ..., lk} ⊂ L, lin. independent over R, ‖li‖ 6 r∀i}

The k-th successive minimum of a PPAV (A = Cg/L, H), mk(A,H), is de�ned as the k-th
successive minimum of its lattice L. Here the norm ‖·‖ = ‖·‖H is the norm induced by the
hermitian form H. If (li)i∈{1..2g} is a lattice basis of L, then the corresponding Gram matrix is

QH =
(〈li, lj〉H

)
i,j=1...2g

Hence if (A, H) is a PPAV of dimension g,

mk(A,H) = min
{
r ∈ R+

∣∣∃ {x1, ..., xk} ⊂ Z2g, lin. independent, xT
i QHxi 6 r ∀i} (1.5)

For every PPAV (A, H) there exists a Z ∈ Hg, such that (A, H) ' Z. In this standard form,
we have QH = QZ and QZ is the Gram-matrix of the associated real lattice PZZ2g. If S is a
Riemann surface of genus g and J(S) its Jacobian, then we can replace QH by the period Gram
matrix QS in equation (1.5).
This follows from the previous paragraph and Lemma 1.3.5. QH has determinant 1, due to
the fact that the PAV is principal (see (1.3)). As the determinant is �xed, we can apply the
general upper bounds on the successive minima from Minkowski's theorems (see [GL]) to the case
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of a PPAV (A,H) of dimension g, whereas the lower bound for Hermite's constant over the PPAVs

δ2g = max
(A,H)∈Ag

m1(A, H)2

was proven in [BS]. We have :

g

πe
≈ 1

π
g
√

2g! 6 δ2g 6 4
π

g
√

g! ≈ 4g

πe
.

The approximation applies to large g. Hence the maximum of the square of the �rst successive
minimum of PPAV of dimension g is of order g. By Minkowski's second theorem we have

2g∏

k = 1
mk(A,H)2 6

(
4
π

)g

g!2.

1.5 Energy, capacity and harmonic forms
In this section we will discuss the energy-minimizing properties of harmonic functions and 1-
forms. We will �rst recall that the elements of a dual harmonic basis minimize the energy in
certain classes of 1-forms. To obtain an approximation of the energy of certain functions and
forms in chapter 3, we will use some results from the calculus of variations. These results will be
presented here. Finally, we will use these methods to calculate explicitly the capacities of certain
annular regions. These examples will also occur in the following chapters.

Energy-minimizing property of a dual harmonic basis

In the vector space of closed di�erential 1-forms Ker(d) on a compact Riemann surface S, we
have :

Theorem 1.5.1 Let S be a Riemann surface of genus g and (ai)i=1,...,2g ⊂ H1(S), be a basis
of the homology, represented as closed curves. Let (σk)k=1,...,2g ⊂ Harm1(S) be a dual basis of
harmonic forms, then for all k ∈ {1, ...2g} :

E(σk) ≤ E(ω) for all ω ∈ E1(S) closed, with
∫

ai

ω = δik.

proof Fix k ∈ {1, ...2g} and let ω ∈ Ker(d) be a 1-form that satis�es the conditions of the
theorem. By Theorem 1.2.7, we have that

ω = df + σ, with df ∈ dE(S) and σ ∈ Harm1(S).

By Stokes theorem ( Theorem 1.2.3) we have for any ai : [0, 1] → S :
∫

ai

df = f(1)− f(0), as ai(0) = ai(1) ⇒
∫

ai

df + σ =
∫

ai

σ
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By Theorem 1.3.3 σ = σk, as the harmonic form satisfying
∫
ai

σk = δik is unique. Due to the

orthogonality of the decomposition of ω, we have furthermore :

E(ω) = E(df) + E(σk) ≥ E(σk).

which concludes the proof. ¤

Euler-Lagrange equations

If f : R → R is a di�erentiable function, then the derivative of f in an extremum is equal
to zero. This idea is further pursued in the calculus of variations that deals with functionals
instead of functions. Hereby a functional is usually a mapping from a set of functions to the real
numbers. We will consider functionals involving one and two-dimensional integration.

In the one-dimensional case we consider the functional O, de�ned in the following way. Let
[a, b] ∈ R , f ∈ C2([a, b]) and L : R3 → R, L : (x1, x2, x3) 7→ L(x1, x2, x3) , such that L ∈ C1(R3).
We have :

Theorem 1.5.2 If O is the functional de�ned by

O : C2([a, b]) → R, O : f 7→ O(f) :=

b∫

a

L(t, f(t), f ′(t)) dt

then an extremum f of O, satis�es the Euler-Lagrange equation

∂L(x1, x2, x3)
∂x2

∣∣
(t,f(t),f ′(t)) −

∂

∂t

(
∂L(x1, x2, x3)

∂x3

∣∣
(t,f(t),f ′(t))

)
= 0

For a proof see [Ge], p. 14-16.

In the two-dimensional case, we consider the following situation Let D ∈ R2 be a domain,
f ∈ C2(D) and L : R5 → R, L : (x1, ..., x5) 7→ L(x1, ..., x5), such that L ∈ C1(R5). We have :

Theorem 1.5.3 If O is the functional de�ned by

O : C2(D) → R, O : f 7→ O(f) :=
∫∫

D

L(t, s, f(t, s),
∂f(t, s)

∂t
,
∂f(t, s)

∂s
) dt ds

then an extremum f of O, satis�es the Euler-Lagrange equation

∂L(x1, ..., x5)
∂x3

|p − ∂

∂t

(
∂L(x1, ..., x5)

∂x4
|p

)
− ∂

∂s

(
∂L(x1, ..., x5)

∂x5
|p

)
= 0,

for p = (t, s, f(t, s), ∂f(t,s)
∂t , ∂f(t,s)

∂s ).
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For a proof see [Ge]. p. 152-154.

If the primitive of a harmonic 1-form ω exists on a certain domain A, then it is a harmonic
function. In chapter 3 we will estimate the energy of harmonic functions on annuli. To this
end, we will construct test functions, whose energy provides an upper bound for the energy of
harmonic forms. We will now gather the necessary facts about harmonic functions on annular
regions. As our test functions are not di�erentiable everywhere, we will also introduce a suitable
space of functions that contains these test functions.
Let

Ar2
r1

= {x ∈ R2 | r1 < ‖x‖2 < r2}, for r1 < r2

be the open annulus around (0, 0) with inner radius r1 and outer radius r2.
We de�ne an annulus A as a set in R2 ' C, such that Ar2

r1
can be mapped biholomorphically by a

function f̃ onto A. We denote by ∂1A and ∂2A the two disjoint connected boundary components
that constitute ∂A.

Let B be a set in a metric space (X, dist). We denote by a Lipschitz function f : B → R a
function that satis�es

|f(x)− f(y)| ≤ M dist(x, y) for all x, y ∈ B,

where M ∈ R+ is a constant. We denote by Lip(B) the set of Lipschitz functions on B. We
have :

Theorem 1.5.4 Let A be an annulus and fi : ∂iA → R, i ∈ {1, 2} be two continuous functions
de�ned on the boundary of A. There exists exactly one harmonic function in C(Ā), such that

∆f = 0 on A and f |∂iA = fi for i ∈ {1, 2} (1.6)

Furthermore the function f is minimizing the energy EA(f) among all functions in Lip(Ā) ( or
in C2(A) ∩ C(Ā)) that satisfy these boundary conditions.

proof We prove the theorem only for the functions in C2(A)∩C(Ā). The uniqueness follows by
contradiction. If f and h are two functions that satisfy equation (1.6), then

∆(f − h) = ∆f −∆h = 0 and f − h|∂iA = 0 for i ∈ {1, 2}
but the only possible solution for this equation is the function that vanishes on all A, hence
f − h = 0 ⇔ f = h. That f is minimizing the energy can be deduced from the Euler-Lagrange
equations. If we apply the Euler-Lagrange equations to the energy integral, we obtain that these
imply ∆f = 0. The most di�cult part is the existence. A proof for the existence of the function
follows from [Fo], p. 184. ¤

Remark : It would be more natural to work in a Sobolev space or Royden algebra rather
than in the set of Lipschitz functions. However these functions are dense in these spaces and the
energy of the minimizing function is the same.

De�nition 1.5.5 Let A be an annulus. Then the capacity of A, cap(A) is de�ned as the energy
EA(f) of the function f ∈ C2(A) ∩ C(Ā) that satis�es

∆f = 0 on A and f |∂1A = 0 an f |∂2A = 1.
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We remark that this de�nition is independent of the choice of ∂1A and ∂2A. If f satis�es the
above de�nition, then 1− f is the unique harmonic function that satis�es the inverse boundary
conditions. Clearly EA(1− f) = EA(f).

Example 1.5.6 Consider the hyperbolic cylinder C1 (see chapter 1.1), such that

C1 = {ψ(t, s) | (t, s) ∈ [0, a]× [b1, b2]} mod {ψ(0, s) = ψ(a, s) | s ∈ [b1, b2]} with
∂1C1 = {ψ(t, b1) | t ∈ [0, a]} and ∂2C1 = {ψ(t, b2) | t ∈ [0, a]}.

To determine the capacity cap(C1), we are looking for the harmonic function h that satis�es
the boundary conditions of the capacity problem. We then have to evaluate the hyperbolic or
Euclidean energy EC1(h). We will use the Fermi coordinates and Theorem 1.5.3. Using the
two dimensional chain rule we have

Dh̃ = D(h ◦ ψ) = Dh|ψ ·Dψ ⇔ Dh̃ ·Dψ−1 = Dh|ψ.

Applying the two-dimensional integration by substitution and the equation above we obtain

EC1(h) =
∫∫

C1

‖Dh‖2
2 =

a∫

0

b2∫

b1

‖Dh|ψ‖2
2 · |det(Dψ)| =

a∫

t=0

b2∫

s=b1

1
cosh(s)

∂h̃(t, s)
∂t

2

+ cosh(s)
∂h̃(t, s)

∂s

2

dt ds. (1.7)

We now apply Theorem 1.5.3 to minimize the value of the integral in (1.7). If h̃ is the
minimizing function, we have :

1
cosh(s)

∂2h̃(t, s)
∂t2

+ sinh(s)
∂h̃(t, s)

∂s
+ cosh(s)

∂2h̃(t, s)
∂s2

= 0. (1.8)

For H(s) := 2 arctan(exp(s)) the function

h̃(t, s) := c1H(s) + c2, such that

c1 =
1

H(b2)−H(b1)
and c2 =

−H(b1)
H(b2)−H(b1)

satis�es equation (1.8). Hence h = h̃ ◦ ψ−1 is a harmonic function that satis�es the boundary
conditions of the capacity problem. Evaluating EC1(h) with the help of equation (1.7), we obtain
:

cap(C1) = EC1(h) =
a

2(arctan(exp(b2))− arctan(exp(b1)))
. (1.9)

Example 1.5.7 Let f : Ar2
r1

= A → R be the function de�ned by

f(x, y) := c1 log(x2 + y2) + c2, such that

c1 =
1

log(r2
2)− log(r1

2)
and c2 =

− log(r1
2)

log(r2
2)− log(r1

2)
.
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Then we have for all (x, y) ∈ A

Df(x, y) = 2c1(
x

x2 + y2
,

y

x2 + y2
) and ∆f(x, y) = 0.

It satis�es the boundary conditions f |∂1A = 0 and f |∂2A = 1 and hence EA(f) = cap(A). Using
polar coordinates, we obtain :

cap(Ar2
r1

) =
∫∫

A

‖Df(x, y)‖2
2 dx dy = 4c2

1

∫∫

A

1
x2 + y2

dx dy =
2π

log(r2)− log(r1)
.

Lemma 1.5.8 Consider C ' R2 and let A1, A2 ⊂ C be two annuli and H : A2 → A1 be a
biholomorphic function, such that H(A2) = A1, then

cap(A1) = cap(A2).

proof Let f be the function such that EA1(f) = cap(A1). Set h = f ◦H. Using the Cauchy-
Riemann (C-R) di�erential equations for H, and the fact that Re(H), Im(H) and f are harmonic
functions a straightforward calculation shows that h is harmonic and satis�es the boundary
conditions of the capacity problem. Hence

EA2(h) = cap(A2).

Using the chain rule of di�erentiation and the C-R di�erential equations we have that

‖Dh‖2
2 = ‖Df |H ·DH‖2

2 = ‖Df |H‖2
2 · |det(DH)|.

Using integration by substitution we obtain :

cap(A2) =
∫∫

A2

‖Dh‖2
2 =

∫∫

H−1(A1)

‖Df |H‖2
2 · |det(DH)| = EA1(f) = cap(A1). ¤

Example 1.5.9 Consider the �at cylinder C2, such that

C2 = [0, a]× [0, b] mod {(0, y) = (a, y) | y ∈ [0, b]}, with
∂1C2 = [0, a]× {0} and ∂2C2 = [0, a]× {b}.

We identify R2 ' C and consider the holomorphic map H : C2 7→ C,H : z 7→ exp(−2πi
a z). We

have that
H(C1) = Ar2

r1
, such that r1 = 1 and r2 = exp(2π

b

a
).

As H satis�es the conditions from Lemma 1.5.8, we have by Example 1.5.7 that

cap(C2) =
a

b
.
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Chapter 2

Global geometry of a Riemann surface
and its Jacobian

The main goal of this thesis is to get insight into the relationship between the geometry of a
hyperbolic compact Riemann surface and the geometry of its Jacobian. This goal will be pursued
in the following two chapters. The principal idea is to �nd lower and upper bounds for the length
of vectors of the Jacobian of a Riemann surface based on the geometry of the surface. Here the
upper bounds described in this chapter are more general, whereas the estimates in the following
chapter rely on the concrete geometry of the surface.

In this chapter, we will �rst describe the connection with the Schottky problem. Then we
will show, how to relate the length of lattice vectors of the Jacobian to geometric data of the
surface. Afterwards we will gather some information about short simple closed geodesics on
Riemann surfaces and their collars, topological tubes around these geodesics. This information
will be used to prove the following results.
Expanding the result in [BS], we will show that the square of the �rst two successive minima
of a Jacobian of a Riemann surface of genus g is maximally of order log(g), whereas it can be
of order g for the lattice of a PPAV of dimension g. We obtain improved bounds for the k-th
successive minima of the Jacobian, if the surface contains small simple closed geodesics. Finally
we will show that the square of the �rst successive minimum of the Jacobian of a hyperelliptic
surface is bounded from above by a constant, independent of the genus.
For simpli�cation the following expressions will be abbreviated. A simple closed geodesic will be
denoted scg and a non-separating simple closed geodesic nsscg and a separating simple closed
geodesic sscg. By abuse of notation we will denote the length of a geodesic arc by the same letter
as the arc itself, if it is clear from the context.

2.1 The Schottky problem
The Schottky problem is to characterize those principally polarized abelian varieties that arise
as Jacobians of compact Riemann surfaces. The problem goes back to Schottky, who gave such
a characterization in 1888 for the case of a compact Riemann surface of genus 4. Many authors
have worked on this problem. A full solution, however, has not been found up today. An overview
of the problem can be found in [De].
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As we have seen in chapter 1.4, the Jacobian of a Riemann surface of genus g is a PPAV of
dimension g. The moduli or parameter space Ag for PPAVs of dimension g has (complex) di-
mension 1

2g(g + 1), whereas the moduli space of compact Riemann surfaces of genus g, Mg, has
dimension 3g − 3. The assignment of the Jacobian J(S) to the R.S. S provides a mapping

t : Mg → Ag.

By Torelli's theorem, this mapping is injective. In general, it is not known, if a given PPAV is
the image of a Jacobian under t. The Schottky problem is to describe the sublocus t(Mg) in Ag.
The closure of the sublocus of Jacobian varieties t(Mg) in the parameter space Ag is only equal
to Ag for g = 2 and 3. For g ≥ 4 it is a proper closed subset. Several analytic approaches
have been used to further characterize t(Mg). Notably van Gemen proved in [vG] that t(Mg) is
an irreducible component of the locus Sg de�ned by the Schottky-Jung polynomials. However,
an exact description of the locus t(Mg), given in terms of polynomials of theta constants that
vanish on t(Mg) but not on Ag, is only known for g = 4 ([Sc]). Shiota [Sh] showed that an
indecomposable PPAV is the Jacobian of a Riemann surface, if the corresponding theta function
ful�lls the K-P di�erential equation. However, a solution to this equation can not as yet be
determined explicitly.
In [BS], it was shown that the Jacobians can be characterized among the PPAVs with the help
of a geometric invariant of the lattice of the PPAVs, the �rst successive minimum or shortest
non-zero lattice vector, whose square is also called the minimal period length of the PPAV. Buser
and Sarnak showed in [BS] that the shortest non-zero lattice vector of the Jacobian of a compact
Riemann surface of genus g can be maximally of order log(g) :

Theorem 2.1.1 If η2g = max
(A,H)∈t(Mg)

m1(A,H)2 , then

c log g ≤ η2g ≤ 3
π

log(4g − 2),

where c is a constant.

Among the PPAVs (A, H) of dimension g, however, the maximum of m1(A,H)2 is of order g (see
chapter 1.4.). Hence this inequality describes a large region in the moduli space of all principally
polarized abelian varieties of complex dimension g, of which it is shown that none occurs as a
Jacobian. We will extend this theorem in the following sections.

2.2 Relating geometric data of the surface to the Jacobian
In [BS] an upper bound for the norm of a certain lattice vector of a Jacobian of a surface S
is obtained by linking the norm of the vector to the length of a non-separating simple closed
geodesic on S and the width of its collar, a topological tube around this geodesic. This approach
can be further expanded.
Let S be a compact R.S. and (αi)i=1...2g a canonical homology basis on S. The collar of a scg γ,
C(γ), is de�ned by

C(γ) = {x ∈ S | dist(x, γ) < w} .
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Here w is the supremum of all ω, such that the geodesic arcs of length ω emanating perpendic-
ularly from γ are pairwise disjoint. For a given αi, let ατ(i) be the unique scg in the canonical
homology basis that intersects αi. The closure of the collar C(γ) is a hyperbolic cylinder centered
around γ of width ω on both sides. We de�ne test forms σ′i on the collar of an αi that satisfy

∫

αj

σ′i =
{

1 if j = τ(i)
0 if j 6= τ(i).

(2.1)

in the following way. Let Fi be the harmonic function that solves the capacity problem for a
hyperbolic cylinder C ⊂ C(αi) (see Example 1.5.6). Fi satis�es the boundary conditions

Fi|∂1C = 0 and Fi|∂2C = 1

Consider dFi. By Stokes theorem, Theorem 1.2.3, we have that dFi satis�es equation (2.1).
We can smoothen dFi in an ε-environment U ⊂ C of the boundary of C. This way we can
construct a closed 1-form σ′i ∈ E1(S), such that σ′i satis�es equally equation (2.1). U can be
chosen arbitrarily small, such that WLOG E(σ′i) = EC(Fi) = cap(C). By Example 1.5.6, we
have that

l(αi)

π − 2 arcsin
(

1
cosh(wi)

) = cap(C(αi)) ≤ cap(C), (2.2)

, as 2(arctan(ewi)− arctan(e−wi)) = π − 2 arcsin
(

1
cosh(wi)

)
. Here l(αi) denotes the length of αi

and wi the width of the collar.
By Theorem 1.5.1, we have that among all closed di�erential forms on S that satisfy equation
(2.1), the corresponding harmonic form στ(i) in the dual basis for the homology basis (αi)i=1...2g

has minimal energy E(·). For C = C(αi), we have
∫

S

στ(i) ∧ ∗στ(i) = E(στ(i)) < E(σ′i) = cap(C(αi)) for all i ∈ {1...2g} . (2.3)

The same approach works, if we de�ne a suitable test function on a topological tube A in S,
which is a continuous deformation of C(αi). More precisely A must satisfy the condition that
there exists an isotopy

H : C × [0, 1] ← C, such that H(·, 0) = id and H(C, 1) = A.

This approach will be pursued in chapter 3.
If (A,H) is a Jacobian, where A = Cg mod L is the Jacobian torus J(S) of the surface S, then
with the appropriate base change (see chapter 1.5.), we have for a basis (li)i=1...2g :

(〈li, lj〉H
)
i,j=1...2g

= QH = QS =




∫

S

σi ∧ ∗σj




i,j=1...2g

Therefore we have for all i

〈li, li〉H =
∫

S

σi ∧ ∗σi = E(σi).
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The (li)i=1...2g are linear independent vectors of the lattice L and if we can obtain an upper
bound for the test forms (σ′i)i=1...k, we obtain an upper bound on mk(A,H)2 by equation (2.3),

mk(A,H)2 ≤ max
i∈{1,...,k}

E(σ′i) = max
i∈{1,...,k}

cap(C(αi)) (2.4)

cap(C(αi)) is a strictly increasing function with respect to wi. The following values W and W ′

for the width of a collar occur frequently in our proof :

W = arccosh(2) = 1.3169... and W ′ = arctanh(2/3) = 0.8047...

If wi = W , we have that
cap(C(αi)) =

3l(αi)
2π

≤ l(αi)
2

.

If wi = W ′, we obtain that

cap(C(αi)) =
l(αi)

π − 2 arcsin(
√

5
3 )

≤ 7l(αi)
10

.

The upper bound in Theorem 2.1.1 follows from the fact that a canonical homology basis
(αi)i=1...2g can always be constructed, such that α1 is the shortest nsscg on a Riemann surface
S. It was shown in [BS] that the length of the shortest nsscg α1 is smaller than 2 log(4g− 2) for
any R.S. of genus g and that its collar width w1 is bounded from below by W ′. It follows from
the above equations that m1(J(S))2 is bounded from above. A more re�ned analysis shows that
m1(J(S))2 ≤ 3

π log(4g − 2).
We will extend this result to m2(J(S)) by showing that there exist two short nsscg, α1 and
α2, whose collar widths are bounded from below and which can be incorporated together into a
canonical homology basis.
In principle this approach would provide further bounds for the consecutive mk(J(S)), but �nding
bounds for both collar width and length of the nsscgs has already proven to be very technical
for k = 2.
From the fact that the non-separating systole of a hyperelliptic surface is bounded from above
by a constant, independent of the genus, we will obtain a re�ned result for the minimal period
length of hyperelliptic surfaces.

2.3 Upper bounds for the length of scgs on a Riemann surface
To prove the main theorems we will have to consider on many occasions the con�guration in
which the closure of the collar of a scg self-intersects. The closure of the collar of a scg γ, C(γ)
self-intersects in a �nite number of points. Let p be such an intersection point. There exist two
geodesic arcs of length w emanating from γ and perpendicular to γ having the endpoint p in
common. These two arcs, δ′ and δ′′, form a smooth geodesic arc δ. Two cases are possible -
either δ arrives at γ on opposite sites of γ or it arrives on the same side (see Fig. 2.1.).

De�nition 2.3.1 The closure of the collar of a scg γ, C(γ) self-intersects in a point p. We say
that C(γ) is in con�guration 1 if the shortest geodesic arcs δ′ and δ′′ emanating from the
intersection point p and meeting γ perpendicularly arrive at γ on opposite sides. We say that
C(γ) is in con�guration 2, if they arrive on the same side of γ.
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C(γ) in con�guration 1 C(γ) in con�guration 2

Q1[γ, ν]

Y 2[γ, ν1, ν2]

ν

η

ν1 ν2

p

p

δ′ δ′

δ′′
δ′′

γ
γ

γ′
γ′ γ′′

Figure 2.1: C(γ) in con�guration 1 and 2

For both con�gurations we have a corresponding Y-piece, a topological three-holed sphere, whose
interior is isometrically embedded in S. If C(γ) is in con�guration 1, we cut open S along γ. We
call S′ the surface obtained in this way from S. Let γ1 and γ2 the two scg in S′ corresponding
to γ in S. Let ν be the shortest scg in the free homotopy class of γ1δγ2δ−1. Then γ1,γ2 and ν
bound a three-holed sphere Y 1, whose interior lies in S′. As this decomposition occurs frequently,
we will refer to it as Y 1[γ, ν], the Y-piece for γ from con�guration 1. If we close Y 1[γ, ν] again
at γ, we obtain a R.S. of signature (1, 1), Q1[γ, ν] ⊂ S (see Fig. 2.1.). Note that in this case we
obtain

ν < 2γ + 2δ = 2γ + 4w, (2.5)

as ν is in the free homotopy class of γ1δγ2δ−1. However, we can also calculate the exact value of
ν by decomposing Y 1[γ, ν] into two isometric hexagons, H1 and H2. Here we cut open Y 1[γ, ν]
along the shortest geodesic arcs connecting the boundary curves. In H1 δ is the shortest geodesic
arc connecting γ1

2 and γ2

2 and ν
2 is the side opposite of δ. From the geometry of right-angled

hexagons (see [B], p. 454) we obtain

cosh(
ν

2
) = sinh(

γ

2
)2 cosh(δ)− cosh(

γ

2
)2

As cosh(x)2 = sinh(x)2 + 1 this is equal to

ν = 2arccosh(sinh(
γ

2
)2(cosh(2w)− 1)− 1). (2.6)

We note furthermore that there exists a geodesic arc γ′ in γ connecting the two endpoints of δ
on γ, whose length is restricted by γ′ ≤ γ

2 . The shortest scg η in the free homotopy class of γ′δ
has length smaller than

η <
γ

2
+ δ =

γ

2
+ 2w. (2.7)

If C(γ) is in con�guration 2, δ divides γ in two parts, γ′ and γ′′. Let ν1 and ν2 be the scg in
the free homotopy class of γ′δ and γ′′δ. The three scg γ, ν1 and ν2 then bound a Y-piece, we
will refer to it as Y 2[γ, ν1, ν2], the Y-piece for γ from con�guration 2 (see Fig. 2.1.). Note that
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ν1 < γ′ + δ and ν2 < γ′′ + δ. Let WLOG γ′ ≤ γ′′. As γ = γ′ ∪ γ′′, we have

ν1 < γ′ + δ ≤ γ

2
+ δ =

γ

2
+ 2w and ν2 < γ′′ + δ < γ + 2w. (2.8)

For small values of γ, we obtain a better bound for ν by decomposing Y 2[γ, ν1, ν2] into two
isometric hexagons, H1 and H2, by cutting it open along the shortest geodesic arcs connecting
the boundary curves. Here δ

2 is the unique geodesic arc in H1 perpendicular to γ
2 and the geodesic

arc between ν1
2 and ν2

2 and with endpoints on both arcs. δ
2 divides H1 into two pentagons, P1

and P2. Let P1 be the pentagon that contains γ′
2 as a boundary arc. From the geometry of

right-angled pentagons (see [B], p. 454), we get

cosh(
ν1

2
) = sinh(

γ′

2
) sinh(

δ

2
) and ν1 ≤ 2 arccosh(sinh(

γ

4
) sinh(w)), (2.9)

as sinh and arccosh are strictly increasing functions on R+.
With the help of this decomposition, the following lemma is proven in [BS], p. 40-42 :

Lemma 2.3.2 Let S be a compact R.S. of genus g and γ a scg in S. Let C(γ) be the collar of
γ of width w. If C(γ) is in con�guration 1, let δ be the geodesic arc emanating from both sides
of γ and perpendicular to γ. δ divides γ into two arcs. Let γ′ be the shorter of the two. Let
furthermore η be the scg in the free homotopy class of γ′δ. If η ≥ γ, then

w ≥ max
{

arcsinh
(

1
sinh(γ

2 )

)
, arccosh

(
cosh(γ

2 )
cosh(γ

4 )

)}
≥ W ′

If C(γ) is in con�guration 2, let Y 2[γ, ν1, ν2] be the Y-piece for γ from con�guration 2. If either
ν1 or ν2 is bigger than γ, then

w ≥ arccosh(2) = W

The lower bound for the width of the geodesic γ depends on the constant K, where

K = 3.326.

As a consequence of this lemma we have that if C(γ) is in con�guration 1 and γ < 3.326 = K
then its width w is bigger than arctanh(2/3) = W ′. If C(γ) is in con�guration 1 and γ > K
than its width w is bigger than arccosh(2) = W . If C(γ) is in con�guration 2 its width w is
always bigger than W .

For the proof of Theorem 2.4.1 we also need the following lemma from [BS], p. 38 :

Lemma 2.3.3 Let F be a compact Riemann surface of signature (h, 1), such that 1 ≤ h and
assume that the boundary η of F has length η < 2 log(8h − 2) Then F contains a nsscg α of
length smaller than 2 log(8h− 2) in its interior.

A consequence of this lemma is that every compact R.S. of genus g contains a nsscg of length
smaller than 2 log(4g− 2) in its interior (see [BS], p. 38). With the help of this lemma, we prove
the following :
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Lemma 2.3.4 Let F be a compact Riemann surface of signature (h, 1) and assume that the
boundary η of F has length η. Then F contains a nsscg α of length smaller than
L = max

{η
2 + log(8h− 2), 2 log(8h− 2)

}
in its interior.

proof of Lemma 2.3.4 The collar of η, C(η) of width w in F is in con�guration 2. Let
Y 2[η, ν1, ν2] be the Y-piece for η from con�guration 2 and ν1 ≤ ν2. We have by (2.8)

ν1 <
η

2
+ 2w

We now show that either F contains a nsscg α of length 2 log(8h − 2) in its interior or that
2w < log(8h− 2), from which follows that ν1 < L. If ν1 is non-separating, then we are done. If
not, we cut open F along ν1 into two parts. The part F 1 that does not contain η has signature
(h1, 1), where h1 ≤ h− 1 and its boundary is ν1 ≤ L. In this case we argue as before and divide
F 1 again into two parts. As long as the shorter scg in the Y-piece for the boundary geodesic from
con�guration 2 is separating, we can successively cut o� pieces F k from F . Let (hk, 1) be the
signature of F k, where hk ≤ h− k. Repeating the argument for ν1 we obtain that the boundary
geodesic of a F k has length smaller than L. This procedure ends at least, when F k is a Q-piece,
a Riemann surface of signature (1,1). Then the decomposition of F k yields a nsscg α of length
smaller than L in the interior of F k ⊂ F .
To conclude the proof, we have to show that 2w < log(8h−2). Consider the surface F ′ = F +F/η,
which is obtained by attaching the mirror image of F along the boundary η. It has genus 2h.
As a consequence of Lemma 2.3.3 there exists a nsscg α of length smaller than 2 log(8h − 2)
in the interior of F ′. Note that α 6= η, as η is separating in F ′. If α∩ η = ∅, then α is contained
in F and we are done. If α ∩ η 6= ∅, then it has to traverse the collar of η, C(η) in F ′ at least
twice and therefore 2 log(8h− 2) > α > 4w, from which follows that 2w < log(8h− 2). ¤

With the help of the previous lemmata we establish an upper bound for the second shortest scg
on a compact R.S. in the following lemma. Other methods were applied in [B], p. 123 to obtain
such an upper bound, however the one obtained here is lower.

Lemma 2.3.5 Let S be a compact Riemann surface of genus g ≥ 2 and let γ1 be the systole of
S and γ2 be the second shortest scg on S. Then γ1 ≤ 2 log(4g − 2) and γ2 ≤ 3 log(8g − 7).

proof of Lemma 2.3.5 By an area argument (see [B], p. 124) the length of the shortest scg,
γ1 of a compact Riemann surface S of genus g is bounded from above by 2 log(4g − 2). If γ1 is
separating, we cut open S along γ1 into two parts S1 and S2. Let WLOG S1 be the part, such
that S1 is of signature (h, 1), such that h ≤ g

2 . By Lemma 2.3.4 there exists a nsscg α of length
smaller or equal to 2 log(4g − 2) in the interior of S1. In this case we have γ2 ≤ 2 log(4g − 2).
If γ1 is non-separating, we have to take another approach. The collar of γ1, C(γ1) intersects in
the point p1 and has width w1. We furthermore know that the interior of C(γ1) is isometrically
embedded into S and therefore its area can not exceed the area of S. Therefore

2γ1 · sinh(w1) = areaC(γ1) < areaS = 4π(g − 1)

Hence
w1 ≤ arcsinh

(
2π(g − 1)

γ1

)
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If π
2 ≤ γ1 ≤ 2 log(4g− 2), we obtain an upper bound for w1, using that arcsinh(x) ≤ log(2x+1).

w1 ≤ log(8(g − 1) + 1) < log(8g − 7)

In this case, we can conclude that there is a scg γ2 6= γ1 in S of length smaller than

γ2 <
γ1

2
+ 2w1 < 3 log(8g − 7).

To see this, we apply either equation (2.7) or equation (2.8), depending on, whether the collar
of γ1 is in con�guration 1 or 2, respectively.
If γ1 < π

2 , we have to consider again both possible con�gurations. If γ1 is in con�guration 1, we
obtain by equation (2.6), using the decomposition of the Y-piece from con�guration 1, Y 1[γ1, ν]
into hexagons and as w1 ≤ arcsinh(2π(g−1)

γ1
) that

ν ≤ 2 arccosh((sinh(
γ1

2
)2(cosh(2 arcsinh(

2π(g − 1)
γ1

))− 1))− 1) ≤ 4 log(8g − 7). (2.10)

Here the upper bound of 4 log(8g − 7) was determined using MAPLE (see appendix A). If we
cut open S along ν, we obtain two pieces, one corresponding to Y 1[γ1, ν] and a second piece S′

of signature (g − 1, 1). Applying Lemma 2.3.4 to S′, we conclude that there exists a scg γ2 in
S′ ⊂ S, whose length is bounded from above by ν

2 + log(8(g − 1)− 2) ≤ 3 log(8g − 7).
If γ1 is in con�guration 2, we obtain from the decomposition of the Y-piece from con�guration
2, Y 2[γ1, ν1, ν2] into pentagons (equation (2.9)) and as w1 ≤ arcsinh(2π(g−1)

γ1
) that

ν1 ≤ 2 arccosh
(

sinh(
γ

4
)
2π(g − 1)

γ1

)
≤ 3 log(8g − 7). (2.11)

Again the upper bound of 3 log(8g − 7) was determined using MAPLE (see appendix A). ¤

A useful result for Riemann surfaces with boundary was obtained in [Gen] :

Lemma 2.3.6 Let S be a Riemann surface of signature (g, n). Let γ1 be the systole of S and
l(∂S) be the length of the boundary of S. Then γ1 ≤ 4 log(4g + 2n + 3) + l(∂S).

For a Q-piece, a R.S. of signature (1, 1) we have the following inequalities for a short canonical
homology basis (α1, α2) by [Pa1], p. 59-62 :

Lemma 2.3.7 Let Q be a Riemann surface of signature (1, 1) and γ be the boundary geodesic
of Q. There exists a canonical homology basis (α1, α2) , α1 ≤ α2 of Q satisfying the following
inequalities :

cosh(
α1

2
) ≤ cosh(

γ

6
) +

1
2

and

cosh(
α2

2
) ≤

√
cosh2(γ

4 ) + cosh2(α1
2 )− 1

2(cosh(α1
2 )− 1)

.
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The result is stated di�erently in [Pa1]. In [Pa1] α1 is the shortest scg in the interior of Q and
α2 the shortest scg in Q that intersects α1. But due to this construction, both α1 and α2 are
non-separating. Furthermore α2 intersects α1 only once due to its minimality. Hence α1 and α2

have the required properties for a canonical homology basis.
Another lemma needed for the proof of the main theorem concerns comparison surfaces and can
be found in [Pa2], p. 234 :

Lemma 2.3.8 Let S be a Riemann surface of signature (g, n) with n > 0. Let β1, ..., βn be
the boundary geodesics of S. For (ε1, ..., εn) ∈ (R+)n with at least one εi > 0, there exists a
comparison surface Sc with boundary geodesics of length β1 + ε1, ..., βn + εn such that for each
simple closed geodesic γc in the interior of the comparison surface Sc, there exists a geodesic γ
in the interior of S, such that γ < γc.

We �nally state a consequence of the collar lemma stated in [BS], p. 106 :

Lemma 2.3.9 Let S be a Riemann surface of genus g with g ≥ 2. Let γ be a simple closed
geodesic in S. If η is another scg that does not intersect γ, then

arcsinh
(

1
sinh(γ

2 )

)
< dist(η, γ)

and if w is the width of the collar of γ, C(γ), then w > arcsinh
(

1
sinh( γ

2
)

)
.

2.4 The second successive minimum of the Jacobian
To extend Theorem 2.1.1, we are going to prove the following :

Theorem 2.4.1 Let S be a compact R.S. of genus g and let J(S) be its Jacobian. Then

m1(J(S))2 ≤ log(4g − 2) and m2(J(S))2 ≤ 3.1 log(8g − 7)

For the second successive minimum of a PPAV (A,H) of dimension g we obtain by Minkowski's
second theorem :

m2(A,H)2 6 1
g
√

m1(A,H)

(
4 g
√

g!
π

)2g/(2g−1)

≈ 4g
g
√

m1(A, H)πe
,

where the approximation applies for large g. Furthermore there exist examples of PPAVs where
m2(A,H)2 is of order g. This follows from the fact that PPAVs, whose shortest lattice vector is
maximal, have a basis of minimal non-zero vectors (see [Ber]). In this case all mk(A,H)2 are of
order g. In contrast, we have for the Jacobian of a Riemann surface, J(S) that m1(J(S))2 and
m2(J(S))2 are both of order log(g), independent of the length of the shortest non-zero lattice
vector.

proof of Theorem 2.4.1 It is well known that two nsscg α1 and α2 can be incorporated to-
gether into a canonical homology basis, if α1 ∪α2 does not separate S into two parts and if α1
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and α2 have either exactly one or no intersection point. To prove Theorem 2.4.1 we have to
show that there exist two short nsscg, α1 and α2, with these properties and whose collar width
is bounded from below. Then we can obtain Theorem 2.4.1 from equation (2.4). The proof
of Theorem 2.4.1 depends on whether the shortest scg γ1 in S, the systole, is separating or
non-separating. We will distinguish several cases. These cases are depicted in Fig. 2.2.

Case 1. γ1 6= α1
γ1

α1
α2

Case 2. γ1 = α1

Case 2.a.1.)
γ2 α1α2

Case 2.a.2.)
γ2

α1 α2

Case 2.b.1.) γ2 = α2

α1

α2

Case 2.b.2.) γ2 6= α2

α1 α2

γ2

Case 2.c.1.)

γ2

α1

α2β1 β2

Case 2.c.2.)

γ2

α1

α2β1 β2

Figure 2.2: Relative positions of α1 and α2 in the di�erent cases of the proof of Theorem 2.4.1

Case 1. : The systole γ1 of S is a separating scg

By Lemma 2.3.5, γ1 has length smaller than 2 log(4g−2). We cut open S along γ1, which yields
two R.S., S1 and S2 of signature (h1, 1) and (h2, 1), respectively, such that h1 ≤ h2. In both
surfaces the half-collar of γ1 is in con�guration 2. By Lemma 2.3.2 the width of a half-collar
of γ1 is bigger than W . Let α1 and α2 be the shortest nsscg in S1 and S2, respectively. We
will show that both have a collar in S, whose width is at least W ′. As α1 ∪α2 cannot divide S
into two parts and as α1 and α2 do not intersect, they can be both together incorporated into a
canonical homology basis of S. By Lemma 2.3.3 and Lemma 2.3.4, we have that

α1 < 2 log(4g − 2) and α2 < 2 log(8(g − 1)− 2) = 2 log(8g − 10).
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We now show that each αi, i ∈ {1, 2} has a collar, whose width wi is bounded from below.
Namely, if αi < K then wi > W ′ and if αi > K, then wi > W .

δ∗
s1

s2

p′

γ′1

Figure 2.3: Lift of C(γ1) in the universal covering

Consider WLOG the collar of α1 in S1. Its closure self-intersects in a point p ∈ S1 or a geodesic
arc δ of length smaller than w1, emanating perpendicularly from α1 meets the boundary of S1

�rst.
In the �rst case, we apply Lemma 2.3.2. We obtain that if α1 < K then w1 > W ′ and
if α1 > K, then w2 > W . In the second case, we show that C(α1) can not self-intersect in
C(γ1) ∩ S2. Therefore it self-intersects a point p ∈ S2\C(γ1). In this case every geodesic arc δ′

emanating perpendicularly from α1 with endpoint p has to traverse C(γ1) ∩ S2 and hence has
length bigger than W in S.
To prove that C(α1) ⊂ S can not self-intersect in S1 ∪ C(γ1), we lift C(γ1) into the universal
covering. Here γ1 lifts to γ′1 and δ ∩ C(γ1) to δ∗ (see Fig. 2.3.). The lift δ∗ is a geodesic. Let
s1 and s2 be the �rst intersection points of δ∗ and γ′1, the lift of γ1 on opposite sides of p′, the
lift of p. There exists an unique geodesic arc connecting s1 and s2, which is an arc in γ′1, as γ′1
is a geodesic. But s1 and s2 also lie on δ∗, which implies that δ∗ is contained in γ′1, a contradiction.

Summary of Case 1: If the systole γ1 of S is a separating scg, then we can always �nd two
short nsscg α1 < 2 log(4g − 2) and α2 < 2 log(8g − 10) for a homology basis of S. Let w1 and
w2 be the collar width of α1 and α2, respectively. If αi < K then wi > W ′ and if αi > K, then
wi > W , for i ∈ {1, 2}. It follows from equation (2.2) and (2.4) and the subsequent remark that
m1(J(S))2 and m2(J(S))2 satisfy the inequalities from Theorem 2.4.1.

Case 2. : The systole γ1 of S is a non-separating scg

In this case we can �nd a homology basis of S, such that γ1 = α1. As α1 is the shortest nsscg,
it follows from equation (2.2) and (2.4) that m1(J(S))2 satis�es the inequalities from Theo-
rem 2.4.1.
To �nd a second short scg that does not separate S together with α1, we have to consider several
subcases. Let γ2 be the second shortest scg on S. By Lemma 2.3.5 its length smaller than
3 log(8g − 7). We will have to examine di�erent cases, depending on whether γ2 is separating,
non-separating and non-separating with α1 or non-separating but separating together with α1.
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Case 2.a) γ2 is separating

Note that γ1 and γ2 can not intersect. It is easy to see that otherwise we could �nd a scg in S
that is smaller than γ2. We separate S into two parts, S1 and S2 along γ2. Let S1 be the part,
which contains α1 and S2 be the remaining part of signature (h2, 1), such that h2 ≤ g−1. In this
case γ2 is smaller than 2 log(8g − 10), due to the minimality of γ2. Otherwise we would arrive
again at a contradiction, if we apply Lemma 2.3.4 to S2. The collar of γ2 is in con�guration 2.
Let Y 2[γ2, ν1, ν2] be the Y-piece for γ2 from con�guration 2. We have to distinguish two cases
for the choice of α2, where the choice depends on Y 2[γ2, ν1, ν2].

Case 2.a.1.) Y 2[γ2, ν1, ν2] 6= Y 2[γ2, α1, α1]

In this case let α2 be the shortest nsscg in S2. As γ2 < 2 log(8g−10) it follows from Lemma 2.3.4
that α2 < 2 log(8g − 10). α1 and α2 can be incorporated together into a canonical homology
basis. As α1 does not occur twice in the boundary curves of Y 2[γ2, ν1, ν2] and as γ2 is the second
shortest scg in S, we conclude by Lemma 2.3.2 that the collar of γ2 has width w′ ≥ W . We
now determine a lower bound for the width of C(α2), w2. α2 is the shortest nsscg in the interior
of S2. Hence we can argue as in the case of the collar of α2 in Case 1 to obtain a lower bound
for the width of C(α2), w2. If α2 < K then w2 > W ′ and if α2 > K, then w2 > W .

Case 2.a.2.) Y 2[γ2, ν1, ν2] = Y 2[γ2, α1, α1]

If ν1 = ν2 = α1, then the interior of Y 2[γ2, ν1, ν2] is embedded in the Q-piece Q1 = S1, a R.S. of
signature (1, 1). This case can not occur, if

2.1 ≤ α1 = γ1 ≤ γ2 (see appendix A) (2.12)

, because otherwise there would exist a scg α2
′ 6= α1 in Q1 that is smaller than γ2 by Lemma 2.3.7.

In this case let β be the shortest nsscg in S2. As γ2 < 2 log(8g−10) it follows from Lemma 2.3.4
that β < 2 log(8g − 10). Let α2 be the shortest nsscg in S that does not intersect α1. We have
α2 ≤ β < 2 log(8g − 10).
α2 has a collar C(α2), whose width w2 is bounded from below. To see this, we cut open S along
α1 to obtain S′. Consider the collar of α2 in S′. Its closure self-intersects in a point p ∈ S′ or a
geodesic arc δ of length smaller than w2, emanating perpendicularly from α2 meets the boundary
of S′ �rst.
By Lemma 2.3.9 dist(α1, α2) > arcsinh( 1

sinh(
α1
2

)
), as α1 ≤ 2.1. It follows from the same argu-

ments as in Case 1. that w2 has the lower bound

w2 > min

{
arcsinh(

1
sinh(2.1

2 )
),W ′

}
> 0.73.

Summary of Case 2.a.) : We can always �nd two short nsscg α1 and α2 for a homology
basis of S, whose lengths satisfy the same upper bounds as in as in Case 1. and whose collar
width is bounded from below, such that m1(J(S))2 and m2(J(S))2 satisfy the inequalities from
Theorem 2.4.1.
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Case 2.b) γ2 is non-separating and non-separating with γ1 = α1

In this case we have to distinguish two cases, α2 = γ2 and α2 6= γ2.

Case 2.b.1.) α2 = γ2

We have α2 = γ2 < 3 log(8g−7). Note that α2 can not intersect α1 more than once, as otherwise
there would exist a scg, which is shorter than α2. We now determine a lower bound for the width
of the collar of α2, C(α2).
If C(α2) is in con�guration 2, let Y 2[α2, ν1, ν2] be the Y-piece for α2 from con�guration 2. If ν1

and ν2 are both smaller than α2, then both must be α1. If Y 2[α2, ν1, ν2] = Y 2[α2, α1, α1], then
Y 2[α2, α1, α1] is embedded in S as a Q-piece with boundary α2 and α2 would be separating, a
contradiction. Hence we conclude by Lemma 2.3.2 the width of C(α2) is bigger than W .

If C(α2) is in con�guration 1, C(α2) self-intersects in a point p. There exist two geodesic arcs of
length w2 emanating from α2 and perpendicular to α2 having the endpoint p in common. These
two arcs form a smooth geodesic arc δ2. We lift α2 and δ2 in the universal covering. Here α2

lifts to α2
′ and α2

∗ and δ2 to δ′2. In the covering there exist two points, s′ ∈ α2
′ and s∗ ∈ α2

∗, on
opposite sites of δ′2 and at the same distance r2 ≤ α2

4 from δ′2, such that s′ and s∗ are mapped to
the same point s ∈ α2 by the covering map. By drawing the geodesic λ′ from s′ to s∗, we obtain
two isometric right-angled geodesic triangles. (see Fig. 2.4.)

α2
′ α2

∗

s′

θ
r2 δ′2

λ′

s∗

Figure 2.4: Two lifts of α2 in the universal covering

We have to consider two subcases, λ′ 6= α1 and (λ′ = α1)∧ (α1 > 1.1). In the case λ′ = α1 ≤ 1.1,
we will switch to Case 2.b.2.)

λ′ 6= α1

If λ′ 6= α1, then we can again argue as in Case 1. We obtain that if α2 < K then w2 > W ′ and
if α2 > K, then w2 > W .

λ′ = α1 and α1 > 1.1
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To intersect α1, α2 has to traverse the collar of α1. We can use this fact to derive a lower bound
for the width of the collar of α2, C(α2).

α1
′

q2 u2

α2
′′

s′′
θ r1

u1 q1

Figure 2.5: Lift of C(α1) in the universal covering

Lift C(α1) in the universal covering and let C ′(α1) be the lift of C(α1) (see Fig. 2.5). α2 traverses
the collar C(α1) of width w1. It lifts to α2

′′ and in the lift it enters C ′(α1) at a point u1 and
leaves at a point u2. Consider the geodesic arcs emanating from u1 and u2 respectively and
meeting the lift of α1, α1

′ perpendicularly. Their length is w1. Let q1 and q2 be the endpoints of
these geodesic arcs on α1

′. α2
′′ intersects α1

′ in the midpoint s′′ of the geodesic arc between q1

and q2 under angle θ. Here s′′ is a lift of s ∈ Q1. Set r1 = dist(q1, s
′′) = dist(q2, s

′′). Then r1 is
smaller or equal to α1

4 , as α2 is the third shortest scg in Q1 and otherwise there exists another
point u′2, such that u2 and u′2 map to the same point on Q1 under the universal covering map,
such that dist(u1, u

′
2) < dist(u1, u2), a contradiction to the fact that α2 is minimal. Consider

the right-angled triangle with vertices u1, q1 and s′′. From the geometry of hyperbolic triangles
(see [B], p. 454) we have for θ :

sin(θ) =
sinh(w1)

sinh(dist(u1, s′′))
and cosh(dist(u1, s

′′)) = cosh(w1) · cosh(r1)

from which follows, as sinh2(x) = cosh2(x)− 1 that

sin(θ) =
sinh(w1)√

cosh2(r1) · cosh2(w1)− 1

The point s′′ corresponds to s′ in the other lift of α2 (see Fig. 2.4.) and the angle θ to the
interior angle of the right-angled geodesic triangle at the vertex s′. From the geometry of this
triangle we get :

sin(θ) =
sinh(w2)
sinh(α1

2 )
and therefore, as sinh(w2) is decreasing with increasing r1 ≤ α1

4

sinh(w2) ≥
sinh(w1) · sinh(α1

2 )√
cosh2(α1

4 ) · cosh2(w1)− 1
(2.13)
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Note that the left hand side in (2.13) is increasing with increasing w1 and increasing α1. As the
width of C(α1), w1 is bigger than W ′, we get a lower bound for w2, if we set w1 = W ′. In this
case we obtain from equation (2.13)

w2 ≥ w2
Q = arcsinh




2
√

5
5 · sinh(α1

2 )√
9
5 cosh2(α1

4 )− 1


 (2.14)

In this case we obtain, with α1 > 1.1 :

m2(J(S))2 <
3 log(8g − 7)

π − 2 · arcsin( 1
cosh(w2

Q)
)
≤ 3.1 log(8g − 7) (see appendix A). (2.15)

Summary of Case 2.b.1.) : We can always �nd two short nsscg α1 = γ1 < 2 log(4g − 2) and
α2 = γ2 < 3 log(8g − 7) for a homology basis of S. Their collar width is bounded from below,
such that m1(J(S))2 and m2(J(S))2 satisfy the inequalities from Theorem 2.4.1.

Case 2.b.2.) α2 6= γ2

This case treats the remaining case for C(γ2) in con�guration 1, and the geodesic λ′ (see Fig. 2.4.)
is α1, with α1 ≤ 1.1.
In this case we cut open S along α1 to obtain the surface S′ of signature (g − 1, 2). Let α1

′ and
α1
′′ be the boundary. In this case we let α2 be the shortest nsscg in S′ that does not intersect

α1. We �rst show the following claim.

Claim 2.4.2 The shortest nsscg α2 ⊂ S′ has length smaller than 2 log(24g − 23) + 2.2 .

proof of Claim 2.4.2 We �rst show that there exists a scg of length smaller than 2 log(24g −
23) + 2.2 in the interior of S′. It is su�cient to proof this statement for the case α1 = 1.1. It
follows from Lemma 2.3.8 that this is also true for α1 < 1.1. If there exists a scg of length
smaller than 2 log(24g − 23) + 2.2 in S′ and this geodesic is non-separating, we are done. If it is
separating, we apply Lemma 2.3.4 and conclude that there exists a nsscg in S′ that is smaller
than log(24g − 23) + 1.1 + log(8g − 10) < 2 log(24g − 23) + 2.2, which proves the claim.
Let α1

′ = 1.1. The closure of the half-collar C(α1
′) ⊂ S′ self-intersects in a point in S′ or a

geodesic arc emanating perpendicularly from α1
′ meets α1

′′ perpendicularly in a point p1 before
C(α1

′) self-intersects in S′. We have to examine these two cases.

i) The closure of the half-collar of α1
′ intersects α1

′′ in p1 before self-intersecting in S′

A geodesic arc σ ⊂ S′ meets α1
′ and α1

′′ perpendicularly on both endpoints where p1 is the
endpoint on α1

′′. We now de�ne for a scg γ in S and an r > 0, the distance set of distance r of
γ, Zr(γ) by

Zr(γ) = {x ∈ S | dist(x, γ) < r}.
As long as r is small enough, such that Zr(γ) ⊂ C(γ), we have from hyperbolic geometry that
area(Zr(γ)) = 2γ · sinh(r). Consider Zσ(α1

′) ∩ S′. It is embedded into S′ and therefore its area
can not exceed the area of S′ = S, which is smaller than 4π(g − 1). Therefore

α1
′ · sinh(σ) = area(Zσ(α1

′) ∩ S′) < area(S) = 4π(g − 1)
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As α1
′ = 1.1 and as arcsinh(x) ≤ log(2x + 1), we obtain an upper bound for σ.

sinh(σ) ≤ 4π(g − 1)
1.1

⇒ σ ≤ log(24g − 23)

Hence we conclude that the shortest scg β1 ⊂ S′ in the free homotopy class of α1
′ σ α1

′′ σ−1 has
length smaller than 2 log(24g − 23) + 2.2.

ii) The closure of the collar of α1
′ self-intersects in p1 ∈ S′

A geodesic arc σ passes through p1 and meets α1
′ perpendicularly on both endpoints. Let

Y 2[α1
′, ν1, ν2] ⊂ S′ be the Y-piece for α1

′ from con�guration 2.
As α1

′ = 1.1, we conclude by the same area argument as in case i) that σ < 2 log(24g − 23).
From equation (2.8) it follows that both ν1 and ν2 are smaller than

α1
′+σ ≤ 2 log(24g − 23) + 1.1.

At least one of these geodesics is not α1
′′. Hence there exists a scg of length smaller than

2 log(24g − 23) + 2.2 in S′. Hence we have proven the claim. ¤

Let w2 be the width of the collar of α2. In this case we conclude from Lemma 2.3.9 that
dist(α1, α2) > arcsinh( 1

sinh(
α1
2

)
) > arcsinh( 1

sinh( 1.1
2

)
), as α1 ≤ 1.1. It follows from the same

arguments as in Case 2.a.2.) that w2 has the lower bound

w2 > min

{
arcsinh(

1
sinh(1.1

2 )
), W ′

}
> W ′.

Summary of Case 2.b.2.) : We have that α2 < 2 log(24g−23)+2.2 and w2 > W ′. We obtain
that

m2(J(S))2 <
2 log(24g − 23) + 2.2
π − 2 arcsin( 1

cosh(W ′))
≤ 3.1 log(8g − 7)

Case 2.c) γ2 is non-separating, but separating with γ1 = α1

By Lemma 2.3.5 we know that the length of γ2 is bounded by 3 log(8g − 7). It is easy to see
that γ2 can not intersect α1. It can not intersect α1 more than once, due to the minimality of
the two geodesics and it can not intersect α1 once due to the fact that it is separating with α1.
As γ2 is separating with α1, we conclude by Lemma 2.3.2 that its collar width is bounded from
below. If γ2 < K then the width of its collar is bigger than W ′ and if γ2 > K, then the width
of its collar is bigger than W .
We cut open S along γ2 and α1. The two geodesics divide S into S1 and S2. We �rst show, the
following claim :

Claim 2.4.3 The shortest nsscg α2
i ⊂ Si has length smaller than 4.5 log(8g− 7) for i ∈ {1, 2}.

The proof is similar to the proof of Claim 2.4.2.
proof of Claim 2.4.3 Consider WLOG S1. We proof the claim for the cases α1 < π and α1 ≥ π :
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a) α1 ≥ π

C(α1) self-intersects in a point in S1 or a geodesic arc emanating perpendicularly from α1, of
length smaller than w1 meets γ2 perpendicularly in a point p1. We examine two cases, which
depend on how C(α1) intersects itself.

i) The closure of the collar of α1 intersects γ2 in p1 before self-intersecting in S1

A geodesic arc σ ⊂ S1 meets α1 and γ2 perpendicularly on both endpoints where p1 is the
endpoint on γ2. Consider Zσ(α1) ∩ S1. It is embedded into S1 and therefore its area can not
exceed the area of S1, which is smaller than 4π((g − 2)− 1). Therefore

α1 · sinh(σ) = areaZσ(α1) ∩ S1 < areaS1 = 4π(g − 3).

As π ≤ α1 and as arcsinh(x) ≤ log(2x + 1), we obtain an upper bound for σ.

sinh(σ) ≤ 4π(g − 3)
π

⇒ σ ≤ log(8(g − 3) + 1) < log(8g − 7)

Hence we conclude that the shortest scg β1 in the free homotopy class of α1 σγ2σ
−1 has length

smaller than 7 log(8g − 7). It is a separating scg. Applying Lemma 2.3.4 we conclude that
there exists a nsscg of length smaller than 4.5 log(8g − 7) in S1. Note that, using the hexagon
decomposition (see [BS], p. 454) of the Y-piece Y ′ with boundary geodesics β1, α1 and γ2, we
can obtain the exact value of the length of β1, which will be useful later for small values of α1.
It is

cosh(
β1

2
) = sinh(

α1

2
) sinh(

γ2

2
) cosh(σ)− cosh(

α1

2
) cosh(

γ2

2
). (2.16)

ii) The closure of the collar of α1 self-intersects in p1 ∈ S1

A geodesic arc σ passes through p1 and meets α1 perpendicularly on both endpoints. Let
Y 2[α1, ν1, ν2] be the Y-piece for α1 from con�guration 2.
if α1 ≥ π, we conclude by the same area argument as in case i) that σ < log(8g − 7). From
equation (2.8) it follows that both ν1 and ν2 are smaller than

α1 +σ ≤ 3 log(8g − 7).

At least one of them is not γ2. Therefore, if this scg is non-separating, we are done. If it is
separating, we cut o� the part of S1 that contains α1 and conclude by Lemma 2.3.4 that this
part contains a nsscg of length smaller than 3 log(8g−7) < 4.5 log(8g−7). This settles the claim
in the case α1 ≥ π.

b) α1 < π

If α1 < π, we use the fact that there exists a comparison surface Sc
1 for S1, as described in

Lemma 2.3.8, such that one boundary geodesic has length π and the other has length γ2 and
conclude that it contains a scg of length smaller than 4.5 log(8g − 7) in its interior. Therefore
there exists a scg of length smaller than 4.5 log(8g− 7) in S1, by Lemma 2.3.8. If this geodesic
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is separating, we apply again Lemma 2.3.4 and conclude that there exists a nsscg in S1 that is
smaller than 4.5 log(8g − 7). ¤

In total, we obtain that the shortest nsscg α2
1 in S1 and the shortest nsscg α2

2 in S2 are both
smaller than 4.5 log(8g− 7). Both can be incorporated with α1 into a canonical homology basis.
Consider the sets ZW ′(α1) and ZW ′(γ2), with W ′ = arctanh(2/3). We now choose a nsscg α2

that is non-separating with α1. The choice depends on how ZW ′(α1) and ZW ′(γ2) intersect. We
distinguish two cases.

Case 2.c.1.) ZW ′(α1) ∩ ZW ′(γ2) ∩ S1 = ∅ or ZW ′(α1) ∩ ZW ′(γ2) ∩ S2 = ∅

If ZW ′(α1)∩ZW ′(γ2)∩S1 = ∅, then we choose α2 = α2
2 ⊂ S2 and if ZW ′(α1)∩ZW ′(γ2)∩S2 = ∅

we choose α2 = α2
1 ⊂ S1. Consider WLOG the �rst case. We show that the collar of α2

2 has
width bigger than W ′. If the closure of the collar of α2

2 self-intersects in S1, it has to traverse
either S1 ∩ ZW ′(α1) or S1 ∩ ZW ′(γ2) and hence its width is bigger than W ′. This follows from
the same arguments as in Case 1. If C(α2

2) self-intersects in S2, we conclude by Lemma 2.3.2
that α2

2 has a collar of with bigger than W ′.

Summary of Case 2.c.1.) : α2 is the shortest nsscg in either S1 or S2, its length is restricted
by α2 < 4.5 log(8g − 7), the width of its collar is bigger than W ′. It follows from equation (2.2)
and (2.4) that

m2(J(S))2 < 3.1 log(8g − 7).

Case 2.c.2.) ZW ′(α1) and ZW ′(γ2) intersect both in S1 and S2

If ZW ′(α1) and ZW ′(γ2) intersect both in S1 and S2 we have to argue in a di�erent way. We
choose another small nsscg to be α2. We may assume that

α1 ≥ 1.5 and γ2 ≥ 2.1 (see appendix A). (2.17)

Otherwise we arrive at a contradiction to the fact that ZW ′(α1) and ZW ′(γ2) do not intersect.
This contradiction follows from equation (2.16) , as σ < 2W ′.
We now choose α2. Let δ′ and δ′′ be the shortest geodesic arcs in S1 and S2, respectively,
connecting α1 and γ2. Their length is bounded from above by 2W ′ as ZW ′(α1) and ZW ′(γ2)
intersect. The endpoints of δ′ and δ′′ divide each α1 and γ2 into two geodesic arcs. Let α1

∗ and
γ∗2 be the shorter of these arcs. We de�ne α2 to be the shortest scg in the free homotopy class
of δ′ α1

∗ δ′′γ∗2 . It intersects α1 only once. The length of α2 is restricted by

α2 <
α1

2
+

γ2

2
+ 4W ′ < 2.5 log(8g − 7) + 4W ′.

However, if the length of γ2 is small, the upper bound for α2 given above is not su�cient to
establish an appropriate lower bound for the collar of α2. Therefore we will establish a better
upper bound for the length of α2.
Let Y ′ ⊂ S1 be the Y-piece with boundaries α1, γ2 and the shortest scg β1 in the free homotopy
class of α1 δ′γ2δ

′−1. Let Y ′′ ⊂ S2 be the Y-piece constructed in the same way in S2, having as
third boundary β2. The union Y ′ ∪ Y ′′ in S is embedded as a Riemann surface F of signature
(1,2) (see Fig. 2.6.).
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Y ′ Y ′′α1

β1 δ′ α2 δ′′ β2

γ2

F

Figure 2.6: The Riemann surface F of signature (1,2)

Lift α1 to α1
′ and equally δ′ and δ′′ into the universal covering (see Fig. 2.7.). By abuse of

notation we will denote the lift of these two arcs by the same letter. To δ′ and δ′′ attach the
adjacent lifts of γ2, γ′2 and γ′′2 on opposite sides of α1

′. Let q′ be the endpoint of δ′ on α1
′ and q′′

be the endpoint of δ′′ on α1
′, such that dist(q′, q′′) ≤ α1

2 . Let furthermore be s′ be the endpoint
of δ′ on γ′2 and s′′ be the endpoint of δ′′ on γ′′2 . Let s∗ be the point on γ′′2 that maps to the
same point on γ2 under the covering map as s′, such that dist(s′′, s∗) ≤ γ2

2 . Let equally be s∗∗

be the point on γ′2 that maps to the same point on γ2 under the covering map as s′′, such that
dist(s∗∗, s′) = dist(s′′, s∗). Let η′ be the geodesic arc connecting the midpoint of s′ and s∗∗ on
γ′2 and midpoint of s′′ and s∗ on γ′′2 .

γ′2
s∗∗

s′

δ′ η′ q′′
α′1q′

δ′′

s′′
s∗

γ′′2

Figure 2.7: Lifts of α2 and γ2 in the universal covering

The image of η′ under the covering map, η forms a closed geodesic arc on S. As η is in the
same free homotopy class as α2, its length provides an upper bound for the length of α2. In
Fig. 2.7., the points s∗∗ and s∗ lie on opposite sides of δ′ and δ′′. We will derive an upper bound
for this case. In any other case the length of η′ is either shorter or the situation is a mirror
image of the depicted one. It is clear that η′ is maximal, if dist(s∗∗, s′) = dist(s′′, s∗) = γ2

2 and
dist(q′, q′′) = α1

2 = γ2

2 . Therefore it is su�cient to discuss this case.
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In this case we obtain from the geometry of hyperbolic triangles :

cosh(
α2

4
) < cosh(

η′

4
) = cosh(

γ2

4
) · cosh(

δ′

2
) ≤ cosh(

γ2

4
) cosh(W ′) (2.18)

as δ′ ≤ 2W ′. We now determine a lower bound for the width of the collar of α2. We have to
distinguish several subcases :

Case 2.c.2.a) The collar of α2 is in con�guration 1

C(α2) has width w2. It self-intersects in a point p. Lift α2 into the hyperbolic plane as described
Case 2.b.1.) (see Fig. 2.4.) We have to discuss two cases, λ′ = α1 and λ′ 6= α1.

λ′ = α1

This case was discussed in Case 2.b.1.). We may assume that α1 ≥ 1.5 from equation (2.16).
Hence we can apply equation (2.13) with α1 = 1.5 and w1 = W ′ and obtain

w2 > 0.66

λ′ 6= α1

If λ′ ≥ α2 we can apply Lemma 2.3.2 and conclude that w2 ≥ W ′. If λ′ < α2, we conclude
from equation(2.18) and as γ2 is the second shortest scg in S that

γ2 ≤ λ′ < α2 < 4 arccosh(cosh(
γ2

4
) cosh(W ′)). (2.19)

From the geometry of right-angled hyperbolic triangles (see [B], p. 454), we obtain from Fig. 2.4.
that

cosh(
α2

4
) cosh(w2) ≥ cosh(r2) cosh(w2) = cosh(

λ′

2
).

Using the upper bound for α2 and the lower bound for λ′ from equation (2.19) in this inequality
we obtain :

cosh(w2) ≥
cosh(γ2

2 )
cosh(γ2

4 ) cosh(W ′)
. (2.20)

Case 2.c.2.b) The collar of α2 is in con�guration 2

Let Y 2[α2, ν1, ν2] be the Y-piece for α2 in con�guration 2. C(α2) self-intersects in the point
p2, such that dist(p2, α2) = w2 = δ2

2 . The geodesic arc δ2 emanating perpendicularly from α2

passes through this point and its endpoints divide α2 into two parts, α2
′ and α2

′′. The common
perpendiculars of the boundary geodesics of Y 2[α2, ν1, ν2] separate the Y-piece into two isometric
hexagons and δ2 decomposes these hexagons into pentagons. By the pentagon formula (see [B],
p. 454) we have

sinh(
δ2

2
) sinh(

α2
′

2
) = cosh(

ν1

2
) and sinh(

δ2

2
) sinh(

α2
′′

2
) = cosh(

ν2

2
)

None of these boundary geodesics can be α1, as α1 intersects α2. If either ν1 or ν2 is bigger,
than α2, we obtain from Lemma 2.3.2 that w2 > W . If not, then both must be bigger than γ2.

48



GLOBAL GEOMETRY Surfaces with small simple closed geodesics

Additionally α2
′

2 + α2
′′

2 = α2
2 . Therefore either α2

′
2 or α2

′′
2 is bigger than α2

′
4 . Let WLOG α2

′ be
the bigger one. We obtain from equation (2.18) :

sinh(w2) sinh(arccosh(cosh(
γ2

4
) cosh(W ′))) ≥ sinh(

δ2

2
) sinh(

α2
′

2
) = cosh(

ν1

2
) ≥ cosh(

γ2

2
).

or equally , as sinh(x) =
√

cosh2(x)− 1 for x ≥ 0 :

sinh(w2) ≥
cosh(γ2

2 )√
cosh2(γ2

4 ) cosh2(W ′)− 1
.

It follows from this equation that in Case 2.c.2.b)

w2 > 0.96.

Summary of Case 2.c.2.) : α2 to be the shortest scg in the free homotopy class of δ′ α1
∗ δ′′γ∗2

(see Fig.2.6). Its length is restricted by

α2 < 4 arccosh(cosh(
γ2

4
) cosh(W ′)).

From the discussion of the subcases Case 2.c.2.a) we conclude that the width of the collar w2

is bounded from below by

w2 ≥ min
{

0.66, arccosh
(

cosh(γ2

2 )
cosh(γ2

4 ) cosh(W ′)

)}

As a consequence of equation (2.16),we have that 2.1 ≤ γ2. With the help of this lower bound it
follows from the above equation that w2 is bounded from below. As α2 is bounded from above, it
follows from equation (2.4) and (2.2) that m2(J(S))2 is bounded from above. A re�ned analysis
shows that

m2(J(S))2 < 3.1 log(8g − 7) see appendix A. (2.21)

This proves that Theorem 2.4.1 is valid. ¤

2.5 The Jacobian of a surface with small simple closed geodesics
If a R.S. contains a certain number of mutually disjoint small simple closed geodesics, we obtain
the following corollary of Theorem 2.4.1 :

Corollary 2.5.1 Let S be a compact R.S. of genus g that contains n disjoint simple closed
geodesics (ηj)j=1,..,n of length smaller than t. If we cut open S along these geodesics, then
the decomposition contains m R.S. Si of signature (gi, ni), with gi > 0. There exist m linear
independent vectors (li)i=1,..,m in the lattice of the Jacobian J(S), such that

‖li‖H
2 ≤ (ni + 1)max{4 log(4gi + 2ni − 3), t}

π − 2 arcsin(M)
for i ∈ {1, ...,m},

where M = min{ sinh( t
2
)√

sinh( t
2
)2+1

, 1
2}
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As the vectors li are linearly independent, the corollary implies improved bounds for a certain
number of mk(J(S)). This corollary is related to a Theorem of Fay. In [Fa], chap. III a sequence
of Riemann surfaces St is constructed, where t denotes the length of a separating simple closed
geodesic η. η divides St into two surfaces Si of signature (gi, 1), i ∈ {1, 2}. If t → 0 then the
period Gram matrix for a suitable canonical homology basis converges to a block matrix, where
each block is in M2gi(R).
If η is any separating geodesic that separates a R.S. S into two surfaces Si of signature (gi, 1), i ∈
{1, 2}.is small enough. Applying Lemma 2.3.4, we obtain a slightly better bound than in the
corollary :

mi(J(S))2 ≤ log(8gi − 2) for i ∈ {1, 2}.
The corollary shows that indeed the �rst two successive minima of the Jacobian of the surfaces
Si can only be of order log(gi) and gives explicit bounds depending on the length of t.
It shows that m1(J(S))2 and m2(J(S))2 of a R.S. with a su�ciently small separating scg, is at
most of the order of the �rst successive minimum of a R.S. of genus g1 and g2, respectively.

proof of Corollary 2.5.1 The proof is very similar to the discussion of Case 1. of The-
orem 2.4.1.
Let ηi ≤ t be one of the simple closed geodesics that divide S. By Lemma 2.3.9 the width
of a half-collar of ηi is bigger than arcsinh( 1

sinh( t
2
)
) on both sides of ηi. It follows also from

the collar theorem that any other scg in S has a distance greater than arcsinh( 1
sinh( t

2
)
) from ηi.

Let Si be a surface of genus (gi, ni), gi > 0 from the decomposition of S. Let WLOG η1, ...ηni

be its boundary geodesics. We �rst prove that the shortest nsscg, αi in Si is smaller than
(ni+1) max{4 log(4gi+2ni+3), t}. Then we show that it has a collar in S whose width is bounded
from below. By Lemma 2.3.6, there exists a scg γ1

i in Si of length γ1
i ≤ 4 log(4gi+2ni+3)+nit.

We have that

4 log(4gi + 2ni + 3) + nit ≤ (ni + 1) max{4 log(4gi + 2ni + 3), t}.
Hence, if γ1

i is non separating, we are done. If γ1
i is separating, we cut open Si along γ1

i . Si

decomposes into two surfaces, such that one of these two, S2
i has signature (g′i, n

′
i), with g′i > 0

and n′i ≤ ni − 1. The length of its boundary is smaller than 4 log(4gi + 2ni + 3) + (ni − 1)t. We
can again apply Lemma 2.3.6 to this surface to obtain an upper bound for the length of a scg
in Si. Repeating this process iteratively we obtain that there exists a nsscg in Si, whose length
is smaller than (ni + 1)max{4 log(4gi + 2ni + 3), t}.
Each αi, i ∈ {1, ...,m} has a collar, whose width wi is bounded from below. Namely, if αi < K

then wi > min
{

arcsinh( 1
sinh( t

2
)
), W ′

}
and if αi > K, then wi > min

{
arcsinh( 1

sinh( t
2
)
),W

}
. This

follows from the same line of argumentation as in Case 1. of Theorem 2.4.1. The (αi)i=1,...,m

can be together incorporated into a canonical homology basis of S. From the bounds on the
length and the width of the collars of the geodesics follows the bound on the norm of the lattice
vectors of the Jacobian of S. In total we obtain Corollary 2.5.1. ¤

2.6 The Jacobian of hyperelliptic surfaces
Using the same methods as in [BS], we will show that
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Theorem 2.6.1 If S is a hyperelliptic R.S. of genus g and J(S) its Jacobian, then

m1(J(S))2 ≤ 3 log(3 + 2
√

3 + 2
√

5 + 3
√

3)
π

= 2.4382...

It is worth mentioning that this result follows from a simple re�nement of the proof that the
systole of hyperelliptic surfaces is bounded from above by a constant, which was shown in [Ba1]
and [Je].

proof of Theorem 2.6.1 For the proof of Theorem 2.6.1 we �rst give a suitable de�nition of
a hyperelliptic surface.
De�nition 2.6.2 Let S be a compact Riemann surface of genus g. An involution is an isometry
φ : S → S, φ 6= id, such that φ2 = id. The surface S is hyperelliptic, if it has an involution that
has exactly 2g + 2 �xed points. These �xed points are called the Weierstrass points (WPs).
It is well known that the above de�nition is equivalent to the usual one. Let S be a hyperelliptic
surface of genus g with involution φ. We will show that the shortest nsscg α1 of S is bounded
by a constant, independent of the genus. It was shown in [BS] that the width of the collar of the
shortest nsscg on a R.S. S is bounded from below. It then follows from equation (2.4) and (2.2)
that Theorem 2.6.1 holds.
Consider the quotient surface S\φ. This surface is a topological sphere with 2g+2 cones of angle
π, whose vertices {pi}i=1..2g+2 are the images of the WPs {p∗i }i=1..2g+2 under the projection (see
Fig. 2.8.).

p1

p∗1 p∗2

p2 p3 p4p5 p6 p7 p8

α1

α2

γ

γ′

γ′1

γ′2

S

S\φ

Figure 2.8: A hyperelliptic surface S and the quotient surface S\φ

Let Br(pi) be a disk of radius r around a vertex of a cone. As long as these disks are small enough,
they are embedded in S\φ. In this case the area of a disk of radius r around a vertex of a cone pi,
Br(pi) is half the area of a disk of radius r in the hyperbolic plane, area(Br(pi)) = π(cosh(r)−1).
Now expand all disks around the cone points until either a disk self-intersects or two di�erent
disks intersect for the �rst time at radius R. In this limit case we still obtain :

(2g + 2)π(cosh(R)− 1) = area

(
2g+2⋃

i=1

BR(pi)

)
< area(S\φ) = 2π(g − 1).
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As g−1
g+1 < 1 we conclude that R < arccosh(2).

When the radii of the disks reach R and two di�erent disks intersect the geodesic arc that forms
lifts to a simple closed geodesic in S. When a disk self-intersects at radius R, the geodesic arc
that forms lifts to a �gure 8 geodesic in S. This �gure 8 geodesic consists of two loops. The scg in
the free homotopy class of such a loop is smaller than the loop itself. Hence there exists a scg of
length smaller than 4R in S. It follows, for the systole γ1 in S that γ1 < 4 arccosh(2) = 5.2678....
By a re�nement of this area estimate Bavard obtains a better upper bound in [Ba1], which is

γ1 < 4 arccosh
((

2 sin
(

π(g+1)
12g

))−1
)

< 2 log(3 + 2
√

3 + 2
√

5 + 3
√

3) = 5.1067... (2.22)

We now show that this upper bound is equally valid for the shortest non-separating scg in S.
Consider the case, where two di�erent disks intersect at radius R. In this case a geodesic arc of
length smaller than 2R connects WLOG p1 and p2. It is easy to see that it lifts to a scg α1 of
length 4R in the double covering S (see Fig. 2.8.). α1 is non-separating, which we will prove by
contradiction. Assume that α1 is separating. There exists a third WP p∗3. If it would lie on α1,
it would follow that φ(p∗1) 6= p∗1, as φ acts by a rotation of angle π around p∗3 and thus φ(p∗1) must
lie on α1 and must have distance α1

2 from p∗3. But this is already the only possible location for
p∗2 and we arrive at a contradiction. We know furthermore that α1 separates S into two parts,
S1 and S2. If p∗3 does not lie on α1, then it lies WLOG on S1. But then, as φ acts by a rotation
of angle π around p∗1, φ(p∗3) lies in S2, which is impossible.
Consider now the case, where WLOG BR(p1) self-intersects. The geodesic arc γ that passes p1

and the intersection point, lifts to a �gure 8 geodesic γ′ in S (see Fig. 2.8.). Let γ′1 and γ′2 be
the two di�erent lifts of γ in S with intersection point p∗1. Both lifts are not null-homotopic.
Let α1 and α2 be the scg in the free homotopy class of γ′1 and γ′2, respectively. The length of
both is bounded from above by 2R. We will show that either α1 or α2 are non-separating. We
prove this by contradiction. Suppose both are separating and consider the curve that we obtain
by splitting γ′ at p∗1 in a way that we obtain a non-self intersecting curve. Let β be the scg in
the free homotopy class of this curve. It follows from surfaces topology that β, α1 and α2 are
the boundary curves of a Y-piece Y ′, with γ′ in its interior and whose interior is embedded in
S. As φ acts by a half-turn around p∗1, it follows from the geometry of hyperbolic Y-pieces that
φ(Y ′) = Y ′ and φ(α1) = α2.
If α1 = α2 in S, then the geodesic can not be separating, hence we may assume that α1 6= α2.
As both are separating and S is compact, α1 and α2 separate the surfaces S1 and S2 of signature
(k1, 1) and (k2, 1), k1, k2 ≥ 1 respectively on the side opposite of γ′. Every geodesic arc ν with
starting point on in S1 and endpoint p∗1 passes α1. Consider φ(ν). As the hyperbolic involution
acts by a half-turn around p∗1, φ(ν) passes α2 and extends into S2. As φ2 = id, we must have
φ(S1) = S2. Now if S1 contains another WP p∗2, then φ(p∗2) 6= p∗2, a contradiction. If S1 contains
no WP, then S\φ would be at least of genus k1 ≥ 1, a contradiction to the fact that it is
a topological sphere. Therefore one of the two geodesics α1, α2 must be non-separating. Let
WLOG α1 be non-separating. As α2 is the image of α1 under φ, we conclude that in fact both
are non-separating.
In any case there exists a nsscg α1 in S, whose length is smaller than the constant from equation
( 2.22). In any case there exists a nsscg α1 in S, whose length is smaller than the constant from
equation (2.22). Hence we obtain the upper bound for m1(J(S))2 in Theorem 2.6.1 :

m1(J(S))2 <
3 log(3 + 2

√
3 + 2

√
5 + 3

√
3)

π
≤ 2.4382... ¤
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Chapter 3

Estimates for the period Gram matrix
based on geometric data

In the previous chapter, we obtained upper bounds on a certain number of lattice vectors of the
Jacobian. The upper bounds on the �rst and second shortest lattice vector apply universally
to all Riemann surfaces of genus g. We obtain improved bounds, if there is supplementary in-
formation available about the surface, i.e. the existence of a hyperelliptic involution or of short
separating geodesics.
In this chapter we will �rst present a theoretical approach how to estimate all entries of the
period Gram matrix of a Riemann surface, if the concrete geometry of the surface is known.
Then we will give more practical estimates based on the geometry of the Q-pieces that contain
a canonical homology basis.
Finally we will apply these methods to surfaces that contain small non-separating geodesics.

In this chapter we will make use of inequalities for the capacity of annuli on hyperbolic cylinders.
This topic will be treated in more depth in appendix B.

3.1 Theoretical estimates for the period Gram matrix
Let S be a Riemann surface of genus g and A a canonical homology basis, which we assume to
be given in the form

A = (α1, ατ(1), ..., αg, ατ(g)) (see Def. 1.3.2) .

If (σi)i=1,..,2g is a dual basis of real harmonic forms for A, then the period Gram matrix QS is
the matrix

QS = (qij)i,j=1...2g =




∫

S

σi ∧ ∗σj




i,j=1...2g

.

We have seen in chapter 2.2 how to obtain an upper bound on the diagonal entries of QS by
evaluating the capacity of a cylinder around the elements of the canonical homology basis. This
approach can be expanded to obtain better estimates of these entries and �nally of all entries of
QS . The approach relies on the premise that the cut locus of a given simple closed geodesic on
a Riemann surface can be (partially) calculated.
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Estimates for the diagonal entries of QS

We �rst show how to obtain upper and lower bounds on the diagonal entries of QS . Con-
sider WLOG E(σ1) = q11. It is clear that the capacity of a topological tube in S, which is
obtained by a continuous deformation of the collar C(α2) in S gives an upper bound for the
energy of σ1, E(σ1) � see chapter 2.2 for details. We obtain such a tube by cutting open S along
the cut locus CL(α2) of α2. The cut locus of a subset X ⊂ S, CL(X) is de�ned in the following
way, where γa,b denotes a geodesic arc connecting the points a and b :

CL(X) := {y ∈ S | ∃γx,y, γx′,y, γx,y 6= γx′,y, with x, x′ ∈ X and dist(x, y) = l(γx,y) = l(γx′,y)}.

For more information about the cut locus, see [Ba2]. We denote by SX the surface, which we
obtain by cutting open S along CL(X). For a set X ⊂ S, set

Zr(X) = {x ∈ S | dist(x,X) ≤ r}.

Let U be a set of disjoint simple closed geodesics (γi)i=1,...,n then for su�ciently small r, Zr(U)
consists of disjoint cylinders around these geodesics. We obtain CL(U) by letting r grow con-
tinuously until Zr(U) self-intersects. We stop the expansion in the points of intersection, but
continue expanding the rest of the set, until the process halts. The points of intersection then
form CL(U). It follows from this process that the surface SU , which we obtain by cutting open
S along CL(U) can be retracted onto the union of small cylinders around the (γi)i=1,...,n. If
U = γ, then SU can be embedded into an su�ciently large cylinder C around γ.
Consider an embedding of Sα2 = S2 in a cylinder C, which, by abuse of notation, we also call
S2. This is shown in Figure 3.1. We have that the boundary ∂S of S2 ⊂ C consists of the
two connected components ∂1S and ∂2S. Fixing a base point x ∈ S2 ⊂ C, we can construct a

S2
α2

α1

α3
α4

C

α2

α1

α3

α3

α4

Figure 3.1: Embedding of S2 = Sα2 in a cylinder around α2 .

54



THE PERIOD GRAM MATRIX Theoretical estimates

primitive F1 of σ1 by integrating σ1 along paths starting from the base point x. As
∫
α2

σ1 = 0, the

value of the integral is independent of the chosen path in S2. Therefore there exists a primitive
F1 of σ1 on S2 ⊂ C. Furthermore F1 is a real harmonic function, as σ1 is a real harmonic 1-form.
We remind here that the value of the integral of a σ1 over a closed curve depends only on the
homology class of the curve. Especially the value of the integral is the same for two curves in
the same free homotopy class.
The conditions on the homology basis A imply the following boundary conditions for F1. For
each point p1 on the boundary ∂S2 ⊂ C, there exists a point p2 that maps to the same point p
on S as p1, such that

F1(p2)− F1(p1) = 0 or F1(p2)− F1(p1) = 1.

We color p1 and p2 blue in the �rst case and red in the second case and call such a decomposition
a red-blue decomposition. Such a decomposition is shown in Figure 3.1.
For the red-blue decomposition that is obtained via the cut locus CL(α2), the following holds.
If p1 and p2 are blue, then p1 and p2 lie on the same side of the boundary ∂S2. If p1 and p2 are
red then they lie on di�erent sides of ∂S2. There are points on ∂S2 that are both red and blue.
However the number of those points is �nite.

Upper bound

The capacity of S2 ⊂ C, cap(S2) provides an upper bound on the energy of σ1. We obtain
an upper bound on cap(S2) by evaluating the energy of any test function F1t, which is a Lip-
schitz function on S2 and satis�es the boundary conditions of the capacity problem (see chapter
1.5 or [Go]) :

E(F1t) ≥ cap(S2) ≥ E(σ1) = q11.

In Theorem B.4.1 we obtain general upper and lower bounds on the capacity of annuli A on a
cylinder of constant curvature. Here an annulus is a region that is homeomorphic to the cylinder
itself. The idea for the upper bound is to construct a test function in the following way. We
adapt the harmonic function that solves the capacity problem for cylinders of constant width (see
Example 1.5.6) to the boundary using the parametrization of a cylinder in Fermi coordinates.
If the annulus A ⊂ C is given in Fermi coordinates by

A = ψ{(t, s) | s ∈ [a1(t), a2(t)], t ∈ [0, l(α2)]},

where a1(·) and a2(·) are piecewise di�erentiable functions with respect to t, then it follows :

Theorem 3.1.1 There exists a Lipschitz function F̃ ∈ Lip(A), such that for H(s) = 2 arctan(exp(s))
and qi(t) = ∂H(s0)

∂s |s0=ai(t) · a′i(t) for i ∈ {1, 2}, we have :

l(α2)∫

0

1 + q1(t)2+q1(t)q2(t)+q2(t)2

3

H(a2(t))−H(a1(t))
dt = E(F̃ ) ≥ cap(A) ≥

l(α2)∫

0

1
H(a2(t))−H(a1(t))

dt

55



Theoretical estimates THE PERIOD GRAM MATRIX

As S2 ⊂ C is an annulus that satis�es the conditions of Theorem 3.1.1, we can apply this
theorem to obtain an estimate of the capacity cap(S2).

Lower bound

We obtain a lower bound on q11 = E(F1) in the following way. Connect the endpoints of
two corresponding opposite red boundary segments in the red-blue composition of S2 ⊂ C with
di�erentiable curves, such that these curves do not mutually intersect. Then the curves, together
with the boundary segments of S2, enclose a subset of S2. We denote the union of all enclosed
areas that can be obtained in this way by Sred

2 . We have :

E(σ1) = E(F1) ≥
∫

Sred
2

‖DF1‖2
2.

Let I be a disjoint union of intervals in R and

ϕ : I × [a1, a2] → Sred
2 , ϕ : (t, s) 7→ ϕ(t, s)

a bijective function that parametrizes Sred
2 in the following way :

ϕ(I × {a1}) = Sred
2 ∩ ∂1S2 and ϕ(I × {a2}) = Sred

2 ∩ ∂2S2

and for a �xed c ∈ I, ϕ({c} × [a1, a2]) is a di�erentiable curve in Sred
2 , such that

F1(ϕ(c, a2))− F1(ϕ(c, a1)) = 1.

For a x = ϕ(c, a) ∈ Sred
2 denote by pϕ : Tx(Sred

2 ) → {λ · ∂ϕ(c,a)
∂s | λ ∈ R} the orthogonal projection

of a tangent vector in x onto the subspace spanned by ∂ϕ(c,a)
∂s . Then we have :

E(F1) ≥
∫

Sred
2

‖DF1‖2
2 ≥

∫

Sred
2

‖pϕ(DF1)‖2
2.

Denote by F1 the set of functions :

F1 = {f : Sred
2 → R | f ∈ Lip(Sred

2 ) and f(ϕ(c, a2))− f(ϕ(c, a1)) = 1 ∀ c ∈ I}.

We obtain a lower bound on q11 = E(σ1) = E(F1) if we can �nd a function f1, such that
∫

Sred
2

‖pϕ(Df1)‖2
2 = inf

f∈F1

∫

Sred
2

‖pϕ(Df)‖2
2. (3.1)

Then q11 = E(F1) ≥
∫

Sred
2

‖pϕ(Df1)‖2
2.

Note that the problem of �nding the function f1 is in general easier than �nding the function
F1. We will apply these ideas in the following section using Fermi coordinates and results from
the calculus of variations.
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Estimates for the non-diagonal entries of QS

We now show, how we can estimate the remaining entries of the period Gram matrix QS . For
i 6= j, we have, as

∫
S

· ∧ ∗· is a scalar product :

qij =
∫

S

σi ∧ ∗σj =
1
2

(E(σi + σj)−E(σi)− E(σj)) and (3.2)

qij =
1
2

(E(σi) + E(σj)− E(σi − σj)) . (3.3)

We have shown how to �nd upper and lower bounds on E(σi) and E(σj). Hence we obtain an
estimate for qij , if we can �nd upper and lower bounds on either E(σi + σj) or E(σi − σj).
Consider the harmonic 1-forms ω1 and ω2 that satisfy the following equations on the cycles :

∫

αk

ω1 = δik + δjk for all k ∈ {1, .., 2g}. (3.4)

∫

αk

ω2 = δik − δjk for all k ∈ {1, .., 2g}. (3.5)

It follows easily from Theorem 1.5.1 that σi+σj is the unique 1-form that minimizes the energy
among all closed 1-forms that satisfy equation (3.4) and that σi − σj is the unique 1-form that
minimizes the energy among all closed 1-forms that satisfy equation (3.5).
In the homotopy class of either ατ(i) + ατ(j) or ατ(i) − ατ(j) there is a simple closed curve α.
There is a primitive of either σi + σj or σi − σj on Sα. Therefore we can proceed as in the
previous subsection to obtain estimates on σi + σj or σi − σj and hence for qij .
We will present this approach in the case, where αj = ατ(i). We present these estimates in Case
1. If αj 6= ατ(i), we will present an alternative approach in Case 2. We will make use of these
two methods in section 4.2.

Case 1 : Estimates for qiτ(i)

Consider WLOG q12. Consider the simple closed geodesic α12 in the free homotopy class of
α1 α2

−1. Due to the relationships in equation (3.4), σ1 + σ2 has a primitive on Sα12 = S12. We
embed S12 into a cylinder C. We also denote the embedded surface by S12.
As in the previous subsection, the capacity cap(S12) provides an upper bound for E(σ1 + σ2) :

cap(S12) ≥ E(σ1 + σ2).

We obtain a lower bound for E(σ1 + σ2) by applying the same methods used for a lower bound
on E(σ1) presented in the previous subsection.
With the estimates for E(σ1 + σ2), E(σ1) and E(σ2) applied to equation (3.2), we obtain an
upper and lower bound on q12.

Case 2 : Estimates for qij , j 6= τ(i)

In this case αi and αj do not intersect. Consider WLOG q13. For ατ(1) = α2 and ατ(3) = α4
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consider Sα2∪α4 = S24. S24 consists out of two connected parts. Let S1
24 be the part that contains

α2 and let S3
24 be the part that contains α4. We embed S1

24 into a cylinder C1 around α2 and
S3

24 into a cylinder C3 around α4 and denote the embedded surfaces by the same name. Due to
the relationships in equation (3.4), σ1 + σ3 has a primitive on both S1

24 ⊂ C1 and S3
24 ⊂ C3.

Such a decomposition is shown in Figure 3.2.

S1
24 α2

α1

S3
24

α3

α4

C1

α2

α1

C3

α3

α4

Figure 3.2: Embedding of Si
24 in a cylinder Ci around ατ(i) for i ∈ {1, 3}.

For i ∈ {1, 3}, let Fi on Si
24 be a function that satis�es boundary conditions for the capacity

problem on Si
24. Then these functions together de�ne naturally a function F̃13 on S24. By

smoothing F̃13 in an inner environment of the boundary of S24, we obtain a function F13 on
S, whose derivative dF13 is a closed di�erential form that satis�es the same integral conditions
on the cycles as σ1 + σ3. Due to the energy-minimizing property of σ1 + σ3 we have that
E(F13) ≥ E(σ1 + σ3). Hence the sum of the capacities of S1

24 and S3
24 provides an upper bound

for E(σ1 + σ3) :

cap(S1
24) + cap(S3

24) ≥ E(σ1 + σ3).

We obtain a lower bound for E(σ1 + σ3) by applying the methods used to obtain a lower bound
on E(σ1) presented in the previous subsection. We can apply these methods to S1

24 in C1 and
S3

24 in C3. The only di�erence here is that we have some segments of the boundary, where the
red-blue decomposition does not apply. Here we disregard these pieces in the construction of
S1red

24 and S1red
24 .

With the estimates for E(σ1 + σ3), E(σ1) and E(σ3) applied to equation (3.2), we obtain an
upper and lower bound on q13.

In the following section, we will apply these methods to a decomposition of the Riemann surface,
where the elements of the canonical homology basis are contained in Q-pieces.
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3.2 Estimates for the period Gram matrix based on Q-pieces
Let S is a Riemann surface of genus g > 2 and A a canonical homology basis. Then the pairs
((αi, ατ(i)))i=1,3,..2g−1 are contained in disjoint surfaces of signature (1, 1) or Q-pieces. If g = 2,
then the Q-pieces intersect at the boundary, but this will not concern us here. Let (Qi)i=1,3,..,2g−1

be the set of Q-pieces, such that

(αi, ατ(i)) ⊂ Qi for i ∈ {1, 3, .., 2g − 1}

We will present estimates on the entries of the period Gram matrix QS using a partition of S
that contains these pieces. To establish these estimates, the following information about the
geometry of the Q-pieces (Qi)i=1,3,..,2g−1 must be known.
Let βi be the boundary geodesic of Qi and let αiτ(i) ⊂ Qi be the simple closed geodesic in the
free homotopy class of αi(ατ(i))−1. If we cut open Qi along one of these three geodesics, Qi

decomposes into a Y-piece. Let tj be the twist parameter for the decomposition with αj , where
j ∈ {i, τ(i), iτ(i)}. To obtain practical estimates on all entries of the matrix QS , we assume that
the following parameters are known for each Qi:

- the length of βi

- the length of αi, ατ(i) and αi,τ(i)

- the twist parameters tj for j ∈ {i, τ(i), iτ(i)}

For practical reasons, we will �rst give a parametrization of trirectangles. The formulas de-
veloped here, will be used in the following subsection.

Upper bounds based on trirectangles

Let C be a hyperbolic cylinder with base line γ. Let T ⊂ C be a trirectangle, which has
one side d on γ ⊂ C and such that the two adjacent sides meet d perpendicularly. We assume
that T is given in Fermi coordinates by

T = ψ({(t, s) | s ∈ [0, a2(t)], t ∈ [0, d]}),
where, by abuse of notation, d denotes the length of d. We assume furthermore that the shortest
side of T , which is perpendicular to d has length w and intersects d in ψ(0, 0). For t ∈ [0, d], we
have

a2(t) = arctanh
(

cosh(t)
coth(w)

)
, where d < arcsinh

(
1

sinh(w)

)
. (3.6)

This follows from the geometry of trirectangles (see chapter 1.1.). We remind the notation
of Theorem 3.1.1, where H(s) = 2 arctan(exp(s)) and qi(t) = ∂H(s0)

∂s |s0=ai(t) · a′i(t). For
the boundary line of T , we obtain with equation (3.6), as 1

cosh(arctanh(x)) =
√

1− x2 and as
exp(arctanh(x)) =

√
1+x
1−x :

H(a2(t)) = 2 arctan

(√
coth(w) + cosh(t)
coth(w)− cosh(t)

)
and q2(t)2 =

sinh(t)2

coth(w)2 − cosh(t)2
. (3.7)
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Let D be a topological tube around γ, whose boundary segments consist of either boundary arcs
of trirectangles or curves contained in a distance set ∂Zr(γ) for some r. Then we obtain an upper
bound for the capacity cap(D) of such a tube D using Theorem 3.1.1 and equation (3.7).
Finally, if γ = ατ(i) for some ατ(i) ∈ A and D is contained in Sατ(i)

⊂ C, then the capacity of D
provides an upper bound for the entry qii of the period Gram matrix QS (see chapter 2.2).

cap(D) > qii.

Upper bounds for the entries of QS based on the geometry of Q-pieces

We will establish estimates for all entries of the period Gram matrix based on the geometry
of the Q-pieces (Qi)i=1,3,..,2g−1. Following the approach given in section 3.1, it is su�cient to
construct suitable functions on

Sγ ∩Qi, where γ ∈ {αi, ατ(i), αiτ(i)}, for i ∈ {1, 3, .., 2g − 1}.

We will exemplify this for the entry q11. Here Q1 is the Q-piece that contains (α1, α2). Let β = β1

be the boundary geodesic of Q1. We embed Sα2 ∩ Q1 into a hyperbolic cylinder C and denote
this embedding by the same name. To obtain an estimate on q11 we will give a parametrization
of

Sα2 ∩Q1 ⊂ C

based on a decomposition into trirectangles. We will give a description of Sα2 ∩Q1 that depends
only on the length of α2 and β and the twist parameter t2.

To obtain this parametrization, we �rst cut open Q1 along α2 to obtain the Y-piece Y1 with
boundary geodesics β, α2

′ and α2
′′. α2

′ and α2
′′ have length α2 (see Fig. 3.3). Denote by b the

shortest geodesic arc connecting α2
′ and α2

′′. Now we cut open Y1 along the shortest geodesic
arcs connecting β and the other two boundary geodesics. We call Y ′

1 the surface, which we obtain
by cutting open Y1 along these lines. By abuse of notation, we denote the geodesic arcs in Y ′

1 by
the same letter as in Y1. The geodesic arc b divides Y ′

1 into two isometric hexagons H1 and H2.
This decomposition is also shown in Figure 3.3.
In H1 b is the boundary geodesic connecting α2

′
2 and α2

′′
2 . Denote by δ′ the shortest geodesic arc

in H1 connecting b and the side opposite of b of length β
2 . By abuse of notation we denote this

side by β
2 . We denote by δ′′ the arc in H2 corresponding to δ′ in H1. Let δ be the geodesic arc

in Y ′
1 , such that δ = δ′ ∪ δ′′. It is easy to see that the geodesic arc in Q1 that maps to δ in Y ′

1

constitutes the intersection of the cut locus of α2 with Q1. We denote this geodesic arc in Q1

equally by δ :
δ = CL(α2) ∩Q1.

We denote furthermore by a′ the geodesic arcs connecting α2
′

2 and β
2 in H1 and by a′′ the corre-

sponding arc in H2. Let a be the length of such an arc.
δ′ divides H1 into two isometric right-angled pentagons P1 and P2. Let P1 be the pentagon that
has α2

′
2 as a boundary. To establish the parametrization for Sα2 ∩ Q1, we divide P1 into two

trirectangles.
Let c be the geodesic arc in P1 that emanates from the vertex, where β

2 and δ intersect and that
meets α2

′
2 perpendicularly. It divides α2

′
2 into two parts, α′ and α′′ (see Fig. 3.3). c divides P1

into two trirectangles, T1, which has the boundary α′ and T2, which has the boundary α′′.
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Y1

β

α2
′′

α2
′

b

Y ′
1

H1 H2

β
2

δ′ δ′′

α2
′

b

a′ a′′

c

P1

β
4

b
2

a′

α′ α′′

c

δ′

T1

T2

Figure 3.3: Decomposition of Y1 into isometric hexagons H1 and H2.

To obtain an upper bound for q11, we have to know the geometry of T1 and T2. To apply the
results from the previous subsection, we have to know the lengths a and α′ and b

2 and α′′.
As we obtain this result along the way, we will express the lengths of all boundary geodesics of
T1 and T2 in terms of α2 and β. To obtain this description, we will use the geometry of H1, P1,
T1 and T2. The following formulas can be found in chapter 1.1.

From the geometry of the hyperbolic hexagon H1 and as sinh(b) = 2 sinh( b
2) cosh( b

2) and cosh(b) =
2 cosh( b

2)2 − 1, we obtain :

coth(a) =
sinh(b) sinh(α2

2 )
1 + cosh(b)

= tanh(
b

2
) cosh(

α2

2
). (3.8)

From the geometry of the hyperbolic pentagon P1 we have :

cosh(
β

4
) = sinh(

α2

2
) sinh(

b

2
). (3.9)

cosh(δ′) = sinh(
α2

2
) sinh(a). (3.10)

From equation (3.10) and (3.8) and as sinh(arccoth(x)) = 1√
x2−1

we obtain :

cosh(δ′) =
sinh(α2

2 )√
tanh( b

2)2 cosh(α2
2 )2 − 1

. (3.11)

Finally from the geometry of hyperbolic trirectangles T1 and T2 we obtain :

coth(α′) =
cosh(a)

tanh(β
4 )

and coth(α′′) =
cosh( b

2)
tanh(δ′)

. (3.12)

sinh(c) = sinh(δ′) cosh(
b

2
). (3.13)
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Then we obtain for c from equation (3.13) and (3.11) and as sinh(x)2 = cosh(x)2 − 1 :

sinh(c) = cosh(
b

2
)

√
sinh(α2

2 )2

tanh( b
2)2 cosh(α2

2 )2 − 1
− 1. (3.14)

We now express also α′′ and α′ in terms of α2 and b. From equation (3.12) and (3.11) we obtain
with 1

tanh(arccosh(x)) = x√
x2−1

that

coth(α′′) =
cosh( b

2)2 sinh(α2
2 )√

cosh( b
2)2 sinh(α2

2 )2 − (sinh( b
2)2 cosh(α2

2 )2 − cosh( b
2)2)

.

As sinh(x)2 = cosh(x)2 − 1, this simpli�es to

coth(α′′) = cosh(
b

2
)2 tanh(

α2

2
). (3.15)

For α′ we obtain from equation (3.12) and (3.8) we obtain with 1
tanh(arccosh(x)) = x√

x2−1
that with

cosh(arccoth(x)) = 1
tanh(arccosh(x)) = x√

x2−1
:

coth(α′) =
sinh( b

2)2 sinh(α2
2 ) cosh(α2

2 )√
(sinh( b

2)2 cosh(α2
2 )2 − cosh( b

2)2) · (sinh(α2
2 )2 sinh( b

2)2 − 1)
.

As sinh(x)2 = cosh(x)2 − 1, this simpli�es to

coth(α′) =
sinh( b

2)2 sinh(α2
2 ) cosh(α2

2 )

sinh(α2
2 )2 sinh( b

2)2 − 1
. (3.16)

α′ =
α2

2
− α′′. (3.17)

Finally it follows for b
2 from equation (3.9) that

sinh(
b

2
) =

cosh(β
4 )

sinh(α2
2 )

. (3.18)

Using equation (3.18) we can express the length of all boundary geodesics in T1 and T2 in terms
of α2 and β. For our purposes it is su�cient to know the length of a, α′, b

2 and α′′ - see equation
(3.8),(3.17),(3.18) and (3.15), respectively.

With these formulas we are now able to obtain a description of the boundary of Sα2 ∩Q1 ⊂ C.
Consider now δ ⊂ Y ′

1 . δ divides Y ′
1 into two isometric hexagons. Let H ′

1 be the hexagon that
contains α2

′ as a boundary geodesic and H ′
2 be the hexagon that contains α2

′′ as a boundary
geodesic.
δ forms CL(α2) ∩Q1 in Q1. Denote by Q′

1 the surface that we obtain if we cut open Q1 along
δ. Q′

1 is a topological cylinder around α2. A lift of Q′
1 in the universal covering is depicted in

Fig. 3.4.
By abuse of notation we denote by H ′

1 and H ′
2 two hexagons in this lift, which are isometric to

the hexagons with the same name in Y ′
1 and that are adjacent along the lift of α2. We keep the
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H ′
1

H ′
2

δ1

δ2

α′ α′′

β
2

b
2c

a′ a′′

Figure 3.4: Lift of Q′
1 into the universal covering.

notation from Y ′
1 , but denote by δi ⊂ H ′

i , for i ∈ {1, 2}, the two sides corresponding to δ in
Y ′

1 . In the lift of Q′
1 the two hexagons H ′

1 and H ′
2 are shifted against each other according to

the twist parameter t2 at α2. It is easy to see from Fig. 3.4, how to parametrize Sα2 ∩ Q1 in a
cylinder C around α2. Here all boundaries are boundaries of trirectangles, which are isometric
to either T1 or T2. Using the above formulas, we can express all parameters that occur in terms
of t2, α2 and β = β1. With equation (3.6), (3.7) and Theorem 3.1.1, we obtain :

cap(Sα2 ∩Q1) ≥ q11.

Remark : From numerical simulations we get the following impression. If the length of α′ or α′′

is near the maximal possible value arcsinh( 1
sinh(a)) or arcsinh( 1

sinh( b
2
)
), respectively, then our test

function is not well suited for the capacity problem and overestimates the capacity of Sα2 ∩Q1

and therefore also E(σ1).
We also obtain an upper bound for E(σ1) in chapter 2.2. In chapter 2.2 we get an upper bound
from the capacity of a collar around α2, cap(C(α2)). In this chapter we get an upper bound
from the capacity cap(Sα2 ∩Q1) of Sα2 ∩Q1. This upper bound seems to be strongly improving
the estimate from chapter 2.2 if min{a, b

2} is small. For min{a, b
2} > 4 hardly any improvement

can be obtained.

Lower bounds on the entries of QS based on Q-pieces

Consider the primitive F1 of σ1 in Q′
1 = Sα2 ∩ Q1 ⊂ C. The two geodesic arcs correspond-

ing to δ ⊂ Q1 constitute Sred
2 ∩ ∂Q′

1.
We now lift Q′

1 into the universal covering as in the previous subsection (see Fig. 3.4). We use
the same notation for the geodesic arcs that occur. Let α̃2 be the lift of α2 in the lift of Q′

1. This
is depicted in Fig. 3.5.
Let λ be the geodesic arc connecting the midpoints of δ1 and δ2. The midpoint m of λ and the
endpoints of b

2 are the vertices of a right-angled triangle D (see also Fig. 3.6). It follows from
the geometry of right-angled triangles (see chapter 1.1) that

cosh(
λ

2
) = cosh(

b

2
) cosh(

α2t2
2

), (3.19)
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H ′
1

B

δ1

β
2

α′′
m

α̃2

b
2

H ′
2

δ2

c λ

Figure 3.5: A lift of Q′
1 in the universal covering.

where we assume WLOG that the twist parameter t2 is in the interval [0, 1
2 ]. Ohterwise the

situation is symmetric to the depicted one. Let ν be the angle of D at the midpoint m of λ. We
have :

sinh(
λ

2
) =

sinh( b
2)

sin(ν)
.

The equations for D imply with sinh(x)2 = cosh(x)2 − 1 :

sin(ν) =
sinh( b

2)√
cosh( b

2)2 cosh(α2
α2t2

2 )2 − 1
. (3.20)

We will use equation (3.20) to obtain a parametrization of the hatched subset B in the lift of Q′
1

in Fig. 3.5. We will describe B in the following.
The boundary of B contains the lines δ1 and δ2. For each point p1 ∈ δ1 there exists a point
p2 ∈ δ2, such that p1 and p2 map to the same point p on δ ⊂ Q1. We may assume WLOG that

F1(p2)− F1(p1) = 1 for all p1 ∈ δ1

We will describe B as a set of lines, where each line lp connects p1 and p2. lp can be described
in the following way. From p1 we go along the geodesic that meets α̃2 perpendicularly until we
meet ∂Z b

2
(α̃2). We call this intersection point p′1 and the geodesic arc that forms γ1

p . Let p′2 be
the point on ∂Z b

2
(α̃2) on the other side of α̃2 that can be reached analogously, starting from p2.

We now go along the geodesic arc that connects p′1 and p′2. We call this arc γp. Then from p′2,
we move along the geodesic arc connecting p′2 and p2. We call this arc γ2

p . We de�ne lp as the
line traversed in this way. Let B be the disjoint union of these lines :

B =
⊎

p∈δ

{lp}

We will use a bijective parametrization ϕ of B. We want a ϕ : (t, s) 7→ ϕ(t, s) such that for a
�xed t0 ∈ [−α′′, α′′], ϕ(t0, ·) parametrizes the line lp that traverses α̃2 in a point with directed
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distance t0 from m. We parametrize the sets
⋃
p∈δ

{γ1
p} and

⋃
p∈δ

{γ2
p} in Fermi coordinates with base

line α̃2. The proper parametrization can be deduced from the geometry of the trirectangle T2.

We will parametrize Z b
2
(α̃2) ∩ B =

⋃
p∈δ

{γp} using skewed Fermi coordinates ψν with angle ν

and base line α̃2. These are de�ned in the same way as the usual Fermi coordinates ψ, but
instead of moving along geodesics emanating perpendicularly from the base line, we move along
geodesics that meet the base line under the angle ν. We will not give these coordinates explicitly,
but will derive the essential information from the usual Fermi coordinates ψ (see chapter 1.1).
Consider the following geodesic arcs in Z b

2
(α̃2)∩B. For a n ∈ N let λ′ be a geodesic arc of length

2α′′
n on α̃2 with midpoint m. λ intersects λ′ in m under the angle ν. This is depicted in Fig.

3.6. Let η′ be a geodesic intersecting λ perpendicularly in m. Let furthermore µ1 and µ2 be two

µ1

µ2η
ν

m

λ

λ′

b
2

Figure 3.6: Construction of skewed Fermi coordinates ψν .

geodesic arcs with endpoints on Z b
2
(α̃2) that intersect η′ perpendicularly, such that each of the

arcs passes through an endpoint of λ′ on each side of λ. Let furthermore η be the geodesic arc
on η′ with endpoints on µ1 and µ2. For �xed n ∈ N, we denote by ηn the length of η and by µn

the length of µ1 and µ2 :
ηn = l(η) and µn = l(µ1) = l(µ2).

By choosing usual Fermi coordinates with baseline η, we can parametrize the strip, whose bound-
ary lines are µ1 and µ2 and two segments of ∂Z b

2
(α̃2) (see Fig. 3.6).

n such strips can be aligned next to each other to obtain a parametrization of Z b
2
(α̃2) ∩B. For

n →∞ we obtain a parametrization ψν of Z b
2
(α̃2) ∩B. We have :

lim
n→∞n · ηn = sin(ν)2α′′ and lim

n→∞µn = λ.

Combining the parametrizations for the several pieces of B, we may assume that we have a
parametrization ϕ that satis�es our conditions. For practical purposes, we extend the parametriza-
tion ϕ to the geodesics meeting ∂Z b

2
∩B perpendicularly in the direction opposite of α̃2.

Consider a point p1 = ϕ(t0,−x) ∈ δ1 and p2 = ϕ(t0, x) ∈ δ2 . The function F1 satis�es the
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boundary conditions F1(p2) = 1 + c̃ and F1(p2) = c̃, where c̃ is a constant. As we will see in the
following, the constant c̃ is not important for our estimate and we assume that c̃ = 0.
We consider the strip V , where

V = ϕ([t0 − ε, t0]× [−x, x]), where ε > 0 if t0 < 0 and ε < 0 if t0 > 0.

We will show, how to obtain a lower bound for the energy of F1|V , EV (F1) for su�ciently small
ε. We can align these strips to obtain a lower bound for EB(F1) ≤ E(F1). We derive a lower
bound for the energy of F1|V , assuming that

F1|ϕ([t0−ε,t0]×{−x}) = F1(p1) = 0 and F1|ϕ([t0−ε,t0]×{x}) = F1(p2) = 1 and
F1|ϕ([t0−ε,t0]×{−λ

2
}) = F1(p′1) = a′1 and F1|ϕ([t0−ε,t0]×{λ

2
}) = F1(p′2) = a′2

Consider the set ϕ([t0 − ε, t0] × [−λ
2 , λ

2 ]) = V ′ ⊂ V . Let Ft0 = ft0 ◦ ψν be a function de�ned on
V ′ that realizes the minimum

min{
∫

V ′

‖pϕ(Df)‖2
2 | f ∈ Lip(V ′), f |ϕ([t0−ε,t0]×{−λ

2
} = a1 and f |ϕ([t0−ε,t0]×{λ

2
} = a2} (see eq. (3.1)).

It follows from Theorem 1.5.3 or by considering skewed Fermi coordinates as a limit case that
ft0 is given by

ft0(t, s) =
a2 − a1

H(λ
2 )−H(−λ

2 )
H(s) +

a1H(λ
2 )− a2H(−λ

2 )

H(λ
2 )−H(−λ

2 )
.

The energy EV ′(pϕ(DFt0)) is

EV ′(pϕ(DFt0)) =
(a2 − a1)2 sin(ν)|ε|

2(arctan(exp(λ
2 ))− arctan(exp(−λ

2 )))
= k1(a2 − a1)2|ε|. (3.21)

We can extend Ft0 to a function on V that satis�es the boundary conditions

Ft0 |ϕ([t0−ε,t0]×{±x}) = F1|ϕ([t0−ε,t0]×{±x}).

Again we choose Ft0 , such that it minimizes EV \V ′(pϕ(D(·))) with the given boundary conditions.
We have with EV \V ′(pϕ(DFt0)) = EV \V ′(Ft0) :

EV \V ′(Ft0) =
(a2

1 + (1− a2)2)|ε|
2(arctan(exp(x))− arctan(exp( b

2)))
= k2(a2

1 + (1− a2)2)|ε|. (3.22)

For a1 = a′1 and a2 = a′2, we have by construction EV (F1) ≥ EV (pϕ(DFt0)).
Though we do not know the values a′1 and a′2, we obtain a lower bound of the energy of F1 on
V , if we determine the values Ft0(p

′
1) = c1 = c1(t0) and Ft0(p

′
2) = c2 = c2(t0), respectively, such

that these values are minimizing the energy EV (pϕ(Ft0)). As the two arcs γ1
p and γ2

p have the
same length, we have to solve the following problem :
Find c1, c2, such that 1− c2 = c1 ⇔ (c2 − c1) = 1− 2c1 , such that

EV (pϕ(DFt0)) = EV ′(pϕ(DFt0)) + EV \V ′(Ft0)
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is minimal. We obtain from equation (3.21) and (3.22) that c1 = k1
k2+2k1

and

EV (F1) ≥ EV (pϕ(DFt0)) =
|ε|k1k2

k2 + 2k1
. (3.23)

We can cover B with a set of such strips Vt0 = V , such that these intersect only on the boundary
and combine the Ft0 |Vt0

to a function f1 on B. We have EV (F1) ≥ EV (pϕ(Df1)).
As we consider only the energy EB(pϕ(Df1)) of the projection, the approximation is true in the
limit case, where ε → 0. Hence

q11 = E(F1) ≥ EB(pϕ(Df1)). (3.24)

EV \V ′(pϕ(DFt0)) is monotonously decreasing if the length is x− b
2 increasing. Hence we �nd a

simpler approximation for E(F1), setting x = c in equation (3.22). In this case, we call ki = ki(c),
for i ∈ {1, 2}. We obtain a simpli�ed upper bound, if we de�ne our test function only on Zw′(α2),
where w′ = min{a, b

2} We obtain :

2α′′k1(c)k2(c)
k2(c) + 2k1(c)

≤ E(F1) = q11 ≤ α2

2(arctan(exp(w′)− arctan(exp(−w′))
.

The lower bound that depends only on α2, t2 and β1 can be obtained by expressing b
2 and λ and

ν in terms of these variables (see equation (3.18),(3.19) and (3.20)). Using the parametrization
of T2 in equation (3.22) we can express the lower bound in terms of these variables α2, t2 and β1

using (3.23). This way we obtain explicit values in equation (3.24).

Remark : From numerical simulations we get the impression that the lower bound for E(F1)
is only usable, if the twist parameter t2 is small. The reason for this seems to be that using
the projection strongly underestimates the energy. The result gets worse with increasing t2 and
increasing length of α2.

Using these methods, we obtain upper and lower bounds on all entries of the period Gram
matrix QS (see section 3.1).

3.3 Surfaces with small non-separating simple closed geodesics
Consider a surface S containing a small non separating scg α2. α2 can be extended to a canonical
homology basis A = (α1, ατ(1), ..., αg, ατ(g)). We have by the collar lemma (Theorem 2.3.9)
that the width w2 of a collar C(α2) around α2 in S has the lower bound

w2 ≥ arcsinh
(

1
sinh(α2

2 )

)
. (3.25)

For |w| < w2, consider the set of points aw with constant directed distance w from α2

aw = {x ∈ C(α2) | dist(x, α2) = w}.
The set aw forms a simple closed curve freely homotopic to α2. This implies that

∫

aw

σ2 =
∫

α2

σ2 =1 (3.26)
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We can �nd a curve system A′ = (α′1, α
′
τ(1), ..., α

′
g, α

′
τ(g)) that satis�es the following conditions :

α2 = α2
′ and given a parametrization ψ of the closure C(α2) in Fermi coordinates with base line

α2, α1 contains a segment α′ that is given by

α′ = ψ({0} × [−w2, w2]), α′ ⊂ α1

and α1 \α′ does not intersect Zw2−ε(α2) for all ε > 0. Furthermore for each i ∈ {3, ..., 2g}, α′i
is a curve that represents the same homology class as αi, but such that α′i does not intersect
C(α2). We further demand that we obtain a simply connected surface So by cutting open S
along A′\α2. It is easy to see that this is indeed possible.
On So σ2 has a primitive F2. For two boundary points p1 and p2 on So ∩C(α2) that map to the
same point p in S, the integral conditions in equation (3.26) on the aw imply WLOG

F2(p2)− F2(p1) = 1.

We obtain a lower bound of the energy E(σ) = E(F2) in the following way. Let F2 = f2 ◦ ψ be
given in Fermi coordinates of α2. We have by equation (1.7) :

E(F2) ≥ EC(α2)(F2) =

α2∫

0

w2∫

−w2

∂f2(t, s)
∂t

2

· 1
cosh(s)

+
∂f2(t, s)

∂s

2

· cosh(s) dt ds

≥
α2∫

0

w2∫

−w2

∂f2(t, s)
∂t

2

· 1
cosh(s)

dt ds.

Let D = [0, α2]× [−w2, w2]. Using Theorem 1.5.2 or Theorem 1.5.3 we can �nd the function
f̃ that realizes the minimum

min{
α2∫

0

w2∫

−w2

∂f(t, s)
∂t

2

· 1
cosh(s)

dt ds | f ∈ Lip(D), f(α2, s)− f(0, s) = 1 ∀s ∈ [−w2, w2]}.

f is the function given by f(s, t) = t
α2

+ b(s).
Set H(s) = 2 arctan(exp(s)). As H(s)′ = 1

cosh(s) and H(s) −H(−s) = π − 2 arcsin( 1
cosh(s)), we

have :

E(σ2) = E(F2) ≥
π − 2 arcsin( 1

cosh(w2))

l(α2)
.

We have proven the following theorem, where the upper bound on E(σ1) was shown in [BS].

Theorem 3.3.1 Let S be a Riemann surface that contains a small non-separating scg α2 of
length l(α2) that has a collar C(α2) of width w2. Then there exists a canonical homology basis
A, such that α1 = ατ(2) and a dual basis of real harmonic forms (σi)i=1,..,2g, such that :

E(σ2) ≥
π − 2 arcsin( 1

cosh(w2))

l(α2)
and E(σ1) ≤ l(α2)

π − 2 arcsin( 1
cosh(w2))

.
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For small α2, we can also apply equation (3.25), to obtain inequalities that depend only on the
length of α2.

Remark : That the upper bound is the inverse of the lower bound can be explained in the
following way. The area ψ([0, α2] × [−w, w]) can be mapped biholomorphically onto a real �at
cylinder. It is easy to see that, translating the boundary conditions to the �at cylinder, we obtain
this relationship (see Example 1.5.9).

For i ∈ {1, 2}, E(σi) is the squared norm of a vector vi in the lattice of the Jacobian J(S).
Therefore Theorem 3.3.1 provides estimates for the squared norm of the two primitive, linear
independent vectors v1 and v2.
This way the theorem is related to a result of Fay. In [Fa], chap. III a sequence of Riemann
surfaces St are constructed, where t denotes the length of a simple closed geodesic η. Here η is
a non-separating simple close geodesic. If t → 0, the length of one vector in the lattice of the
Jacobian converges to zero. Theorem 3.3.1 gives an explicit upper bound for the length of this
lattice vector depending on t. It shows furthermore that the length of a second vector in the
lattice of the Jacobian goes to in�nity and gives an explicit lower bound depending on t.
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Chapter 4

A lower bound for Hermite's constant
among PPAVs

It was shown in [BS], p. 53-54 that the corresponding 2g dimensional real lattices of PPAVs
of dimension g (see chapter 1.4 ) are exactly the symplectic lattices. Based on this �nding, a
number of symplectic lattices are presented, whose shortest non-zero lattice vector - or systole
- is large. These lattices all share in common that they exhibit a high degree of symmetry, i.e.
have a large automorphism group. This was the incentive to investigate, whether symmetric
PPAVs tend to have a larger systole in general than the average PPAV, and if this can be used
to improve the lower bound of Hermite's constant δ2g.

This idea will be pursued in the �rst section of this chapter. Here we could improve the lower
bound for δ2g in even dimensions (g = 2n) by applying a mean-value argument from the geom-
etry of numbers to a subset of symmetric PPAVs. Here we obtain only a slight improvement.
However, we believe that the method applied has further potential.
In the course of research for a proof, we also discovered families of highly symmetric PPAVs
in dimensions of power of two. Here a family in dimension 2n is constructed with the help of
a multiplicative matrix group isomorphic to (Z2

n, +). These families will be presented in the
second section of this chapter. We conjecture that we can use these or similar families to improve
the lower bound for δ2g further.

4.1 An improved lower bound for Hermite's constant among the
PPAVs

We have seen in chapter 1.4 that any PPAV of dimension g can be represented as (AZ ,HZ), such
that Z = X + iY ∈ Hg. The corresponding real Gram matrix with respect to the polarization is

QZ =
(

XY −1X + Y XY −1

Y −1X Y −1

)
=

(
Idg X
0 Idg

) (
Y 0
0 Y −1

)(
Idg 0
X Idg

)
(4.1)

which is the Gram matrix of the real 2g dimensional symplectic lattice PZ · Z2g, such that

PZ = PX,Y =
( √

Y 0
0

√
Y −1

)(
Idg 0
X Idg

)
∈ M2g(R). (4.2)
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We recall that Hermite's invariant δ2g among PPAVs of dimension g, is given by

δ2g = max
(A,H)∈Ag

m1(A,H)2 = max
Z∈Hg

min
l∈Z2g\{0}

‖PZ · l‖2
2.

We call a real g dimensional lattice L symmetric, if there is an O ∈ Og(R)\{±Idg}, such that

OL = L.

We call a PPAV (AZ ,HZ) symmetric, if its corresponding real 2g lattice PZ · Z2g is symmetric.
The motivation to investigate symmetric PPAVs is the following result by Voronoï :
Among all lattices of �xed determinant, a lattice is called extreme, if the length of its shortest non-
zero lattice vector is a local maximum. Voronoï showed in [Vo] that this de�nition is equivalent
to the lattice being perfect and eutactic. Especially, for a lattice to be extreme it has to have
many systoles of the same length and often these lattices exhibit a high degree of symmetry.
Explicit examples of PPAVs or symplectic lattices, where the lengths of the systoles of the
corresponding lattices are a local maxima are given in [Ber] and [BS]. Buser and Sarnak show
in [BS] :

Theorem 4.1.1 Among the PPAVs of dimension g one has for Hermite's invariant δ2g :

1
π

g
√

2g! ≤ δ2g.

We now give a slightly improved bound in the case, where the moduli space Ag has an even
dimension.

Theorem 4.1.2 If g = 2n, where n ∈ N one has for Hermite's invariant for PPAVs of dimension
g :

1
π

g
√

4g! ≤ δ2g.

The following proof is similar to the proof of Theorem 4.1.1, given in [BS].

proof Be Z = X + iY ∈ Hg. To simplify the following calculations we will work with an-
other version of the lattice PZZ2g. It is the lattice, where the basis P ′

Z is given in matrix form
by

P ′
Z = P ′

X,Y =
( √

Y −1
√

Y −1X

0
√

Y

)
=

(
0 Idg

Idg 0

)
PZ

(
0 Idg

Idg 0

)
. (4.3)

For a positive real number r and a PPAV (A, H) we de�ne nr(A,H) as the number of non-zero
lattice vectors of the lattice L whose squared length is smaller than or equal to r2. One has

nr(A,H) = #(l ∈ L\{0} | H(l, l) ≤ r2}. (4.4)

For a representant Z ∈ Hg, representing the isomorphy class of PPAVs (AZ ,HZ) we obtain

nr(AZ ,HZ) =
∑

l∈Z2g\{0}
χr2(lT Q′

Z l),
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where Q′
Z = P ′

Z
T P ′

Z and χr2 is the characteristic function of the interval [0, r2]. We now consider
the following subset of matrices in Hg = H2n, n ∈ N of the form

Z = X + i
1
y2

Idg,

such that y > 0, X = XT and KXK = X, where K is the orthonormal matrix

K =




0 ... 0 1
... −1 0
0 1 ...
−1 0 ... 0


 ∈ Mg(R).

The matrix KXK = X = (Xi,j)i,j=1,..,g has the following shape:

Xi,j = Xj,i

Xi,j =
{ −Xg+1−i,g+1−j if i + j is even

Xg+1−i,g+1−j if i + j is odd

This is equivalent to that the matrix |X| is symmetric with respect to the �rst and second main
diagonal and the diagonals below the second main diagonal of X are alternatively the positive
and negative image of the corresponding diagonals above the second main diagonal with respect
to the re�ection along this diagonal. The matrix X is completely determined by the g

4(g + 2)
entries (Xi,j)(i≤j)∧(i≤g+1−j).
Under these conditions the matrix P ′

Z = P ′
X, 1

y2 Idg
has the following property :

K ′ · P ′
Z = P ′

Z ·K ′, where K ′ =
(

K 0
0 KT

)
.

This means that the corresponding lattice P ′
Z · Z2g is closed under the symmetry induced by

the orthonormal matrix K ′, whose only �xed point is zero. It follows that the lattice vectors
P ′

Z · l and P ′
Z ·K ′l of the lattice P ′

Z · Z2g have the same length and K ′l = l if and only if l = 0.
Therefore there exist always 4 distinct non-zero lattice vectors in P ′

Z · Z2g of the same length.

We now consider the set Vg for g = 2n, n ∈ N :

Vg = {X ∈ Mg(R) | X = XT ,KXK = X,Xij ∈ [0, 1]} and (4.5)

dim(Vg) = vg =
g(g + 2)

4
.

Hereby vol(Vg) = 1 as we integrate over the interval [0, 1] in each variable. For a �xed y we
obtain the mean value I(y) of nr2(AZ ,HZ) over the compact set Vg :

I(y) =
1

vol(Vg)

∫

Vg

∑

l∈Z2g\{0}
f(P ′

X, 1
y2 Idg

· l) dX

Hereby f : R2g → R is the function f(x) = χr2(xT · x) and dX =
∏

(i≤j)∧(i≤g+1−j)

dXij . With the

help of the following Lemma 4.1.3 and the volume formula for unit balls in dimension 2g we
obtain
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lim
y→+∞ I(y) =

∫

R2g

f(x) dx = σ2g · r2g =
πg · r2g

g!
.

For r2 < 1
π

g
√

4g! = c one has

lim
y→+∞ I(y) < 4.

As I(y) is the mean number of non-zero lattice vectors with squared length smaller than or equal
to r2 in Vg and as I(y) is decreasing for increasing values of y, there exists for a r2 < c a y′,
such that the mean value I(y′) is smaller than 4. As in our case the number of non-zero lattice
vectors of �xed length is always a multiple of four, there exists an X ′ in Vg, such that the PPAV
with period matrix (X ′, 1

y′2 Idg) for r2 < c has no non-zero lattice vector with squared length
smaller than r2. Therefore we have found a lower bound for δ2g and we obtain :

δ2g ≥ 1
π

g
√

4g!. ¤

Lemma 4.1.3 Let g = 2n, n ∈ N and f : R2g → R an integrable function of compact support.
Consider the function If : R+ → R which is de�ned by

If (y) =
∫

Vg

∑

l∈Z2g\{0}
f(P ′

X, 1
y2 Idg

· l) dX,

such that P ′
Z and Vg as in equation (4.3) and (4.5) respectively and dX =

∏
(i≤j),(i≤g+1−j)

dXij.

One has :
lim

y→+∞ If (y) =
∫

R2g

f(x) dx.

proof Let l = (m, n)T ∈ Zg × Zg. We now evaluate the integral If (y) :

If (y) =
∫

Vg

∑

m,n∈Zg

(m,n)6=(0,0)

f

(
y(m + Xn)

1
yn

)
dX

Hereby the sum and the integral are interchangeable. We split the sum over n into the part
where n = 0 and the part where n 6= 0. This way we obtain for If (y) :

If (y) =
∫

Vg

∑

n=0

∑

m∈Zg\{0}
f

(
y(m + Xn)

1
yn

)
dX +

∑

n∈Zg\{0}
cn(X)

For the �rst summand we obtain:
∫

Vg

∑

n=0

∑

m∈Zg\{0}
f

(
y ·m

0

)
dX =

∑

m∈Zg\{0}
f

(
y ·m

0

)
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In the second summand we sum over n ∈ Zg\{0}. To structure this part of the proof, we �rst
have to �x some notations concerning the matrix X.
Let M be the set of index-pairs

M = {(i′, j′) | (i′ ≤ j′) ∧ (i′ ≤ g + 1− j′)}.

For (i, j) ∈ M we have

Xi,j = Xj,i = σ(i, j)Xi,g+1−j = σ(i, j)Xg+1−j,i, where (4.6)

σ(i, j) =
{ −1

1
if i + j even

i + j odd

For the proof we will have to consider pairs of rows and columns of the matrix X of P ′
Z simul-

taneously. We call X1, ..., Xg the rows of the matrix X and use the same notation for P ′
Z . For

the proof, we will have to consider the pairs Xi and Xg+1−i, respectively. To abbreviate the
notations we denote

h(i) = g + 1− i, for all i ∈ {1, ..., g}.
Considering the terms of n1 and nh(1) = ng in the sum

∑
n∈Zg\{0} cn(X) above, one has :

∑

n∈Zg\{0}
cn(X) =

∑

(n
√
1 ,n2,..,n

√
g )\{0}

(
∑

n1=0∧ng=0

∫

Vg

∑

m∈Zg

f

(
y(m + Xn)

1
yn

)
dX) +

∑

(n
√
1 ,n2...,n

√
g )

(
∑

n1 6=0∨ng 6=0

∫

[0,1]vg−2

∑

(m
√
1 ,m2,...,m

√
g )

F1,1(m,n, X) dX\(X1,1, X1,g))

Hereby F1,1(m,n, X) is de�ned as :

F1,1(m,n, X) =
∑

m1,mg

∫

[0,1]2

f

(
y(m + Xn)

1
yn

)
dX1,1dX1,g

Analogously we de�ne {Fi,j(m,n, X)}(i,j)∈M by

Fi,j(m,n, X) =
∑

mi,mh(i)

∫

[0,1]2

f

(
y(m + Xn)

1
yn

)
dXi,jdXi,h(i).

We now evaluate F1,1(m,n, X). We consider only the �rst and g-th entry of P ′
Z ·

(
m
n

)
and

note that X1,1 and X1,g only occur in these two entries. F1,1(m,n, X) can now be written as

F1,1(m,n, X) =
∑

m1,mg

∫

[0,1]2

f




y · (m1 +
∑

j 6=1,j 6=g

X1,jnj + X1,1n1 + X1,gng)

...
y · (mg +

∑
j 6=1,j 6=g

Xg,jnj −X1,1ng + X1,gn1)


 dX1,1dX1,g,

due to the relations in (4.6).
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These two rows can be written as

y

(
A1g

(
X1,1

X1,g

)
+

(
m1

mg

)
+

(
λ11

λ1g

))
(4.7)

where A1g is the matrix
(

n1 ng

−ng n1

)
. As n1 6= 0 or ng 6= 0 , det(A1g) = n2

1 + n2
g 6= 0 and we

apply the two dimensional formula for integration by substitution to these two rows.
Note that A1g · [0, 1]2 is a parallelogram. Furthermore the translates of the parallelogram A1g ·
[0, 1]2 by (m1,mg) ∈ Z2 cover disjointly det(A1g) copies of R2. By integration by substitution
we therefore obtain for F1,1(m,n, X) :

F1,1(m,n, X) =
det(A1g)
det(A1g)

∫

R2

f




y ·X1,1

...
y ·X1,g


 dX1,1dX1,g.

We proceed the same way with X1,2 = X2,1, ..., X1, g
2

= X g
2
,1 by successively integrating over

F1i(m,n, X). In each step the variables X1,i and X1,h(i) occur only twice and we use again inte-
gration by substitution. Hereby the determinants of the corresponding transformation matrices
A1i are strictly positive, due to the shape of the matrix X.
Therefore we obtain by successive integration :

∑

(n
√
1 ,n2...,n

√
g )

∑

n1 6=0∨ng 6=0

∫

[0,1]vg−2

∑

(m
√
1 ,m2...,m

√
g )

F11(m,n,X) dX\(X1,1, X1,g)

=
∑

(n
√
1 ,n2...,n

√
g )

(
∑

n1 6=0∨ng 6=0

∫

[0,1]vg−g

(
1
yg

∫

Rg

f

(
X1
1
yn

)
dX1) dX\X1)

=
1
yg

∑

(n
√
1 ,n2...,n

√
g )

(
∑

n1 6=0∨ng 6=0

∫

Rg

f

(
X1
1
yn

)
dX1) (4.8)

Hereby X1 = (X11, ..., X1g)T . For the set Zg\{0} we obtain :

Zg\{0} =
g/2⋃

i=1

{n ∈ Zg | (ni 6= 0) ∨ (nh(i) 6= 0) and nj = 0 ∀j, such that (j < i) ∨ (j > h(i))}

We now divide the set Zg\{0} successively into disjoint unions of these subsets and sum up these
subsets after integration over the {Fi,j(m,n,X)}(i,j)∈M . As in equation (4.8) we obtain that

∑

n∈Zg\{0}
cn(X) =

∑

n∈Zg\{0}
y−g

∫

Rg

f

(
t
n
y

)
dt.

76



HERMITE'S CONSTANT AMONG PPAVS Families of highly symmetric PPAVs

As f is continuous of compact support we obtain in total :

lim
y→+∞ If (y) = lim

y→+∞(
∑

n∈Zg\{0}
cn(X) +

∑

m∈Zg\{0}
f

(
y ·m

0

)
)

= lim
y→+∞(

∑

n∈Zg\{0}
y−g

∫

Rg

f

(
t
n
y

)
dt)

+ lim
y→+∞

∑

m∈Zg\{0}
f

(
y ·m

0

)

=
∫

R2g

f(x) dx + 0 =
∫

R2g

f(x) dx,

as for a continuous function h : Rg → R of compact support one has

lim
y→+∞

∑

n∈Zg\{0}
y−g · h

(
n

y

)
=

∫

Rg

h (t) dt,

by integration over Riemann sums. ¤

Remark : The lower bound given for δ4n, n ∈ N could be further improved, if we could �nd
PPAVs, which have additional symmetries. Though this idea was pursued in section 4.2, we could
not evaluate the corresponding integral. This problem occurs in the case, where the determinant
of the transformation matrices used in (4.7) is zero. If we could �nd a way to evaluate this
integral it might be possible to improve the result (see Conjecture 4.2.2).

4.2 Families of highly symmetric PPAVs
In the following section we will construct PPAVs, represented by Z ∈ Hg of dimension g = 2n, n ∈
N, whose corresponding real lattices PZ · Z2g (see equation (4.2)) have at least 2n − 1 pairwise
distinct symmetries. We will then show that these lie in the stabilizer of a certain subgroup
G′

g ' Z2
n of Sp2g(Z).

We remind that we call a real lattice L of dimension g symmetric, if it is closed under a non-
trivial element of the orthonormal group. This means that there exists an orthogonal matrix
O ∈ Og(R)\{±Idg} such that :

OL = L

If L = A · Zg, where A is a matrix, whose columns form a basis of L, then this means that the
matrix O induces a change of basis. Therefore the above equality is equal to :

O ·A = A ·R, such that R ∈ Mg(Z), det(M) ∈ {±1}. (4.9)

In the previous section we have constructed lattices that have always at least four vectors of the
same length. In general, we have the following result, if the lattice is symmetric.
Let l ∈ L, l = Az, z ∈ Zg. If the lattice L is symmetric , the vector Ol, has the same length as l
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and not only 2 but 4 vectors of the same length exist, except if Ol = l. By equation (4.9), this
is equal to the �xed point equality :

O · l = l ⇔ O ·Az = Az ⇔ Rz = z (4.10)

We will construct our families of symmetric PPAVs with the help of the following matrices.
Consider Jg ∈ Og(R), such that

Jg =




0 ... 0 1
... 1 0
0 1 ...
1 0 ... 0


 , we have Jg = JT

g = J−1
g , (4.11)

Be A ∈ Mg(R). We denote by AT , the matrix that we obtain by re�ecting A along its second
main diagonal. We have

JT
g AJg = A ⇔ A = AT = AT .

It is easy to see that the set of matrices

Rg = {A ∈ Mg(R) | JT
g AJg = A}

is closed under addition, multiplication and contains the matrix Idg and therefore forms a ring.
If A is invertible, A−1 ∈ Rg. We also have that Jg ∈ Rg.
We now construct matrices A of dimension g = 2n, whose corresponding lattices A · Zg have at
least 2n − 1 pairwise distinct symmetries. Let A2 be the set of matrices.

A2 = {A2 ∈ M2(R) | A2 =
(

a b
b a

)
, such that a, b ∈ R}.

We de�ne inductively A2n to be the set of matrices

A2n = {A2n ∈ M2n(R) | A2n =
(

A2n−1 B2n−1

B2n−1 A2n−1

)
, such that A2n−1 , B2n−1 ∈ A2n−1}. (4.12)

For n ∈ N, set

Jn
2n = J2n , Jn−1

2n =
(

J2n−1 0
0 J2n−1

)
, ..., J1

2n =




J2 0 ... 0
0 J2 0 0
0 0 ... 0
0 ... 0 J2


 .

It is easy to prove by induction that

A ∈ A2n ⇔ Jk
2nAJk

2n = A for all k ∈ {1, .., n}. (4.13)

The symmetries among the matrix entries of Ak, for k = 2, 4 and 8 are depicted in Figure 4.1.
Here each box represents a matrix entry and each diagonal line an axis of symmetry. That the
matrices exhibit these symmetries follows from equation (4.12). These symmetries equally de�ne
A2n .
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k = 2 k = 4 k = 8

Figure 4.1: Symmetries of the matrices in Ak for k = 2, 4 and 8.

We denote by G2n the multiplicative subgroup of O2n(R) generated by the matrices
(
Jk

2n

)
k=1,..n

.

G2n = {B ∈ O2n(R) | B ∈
〈(

Jk
2n

)
k=1,..n

〉
}.

It is a commutative group. This follows from the observation that
(
Jk

2n

)
k=1,..n

⊂ A2n . The
commutativity follows then from equation (4.13). As every element in G2n has order 2, it follows
from the classi�cation of �nite commutative groups that G2n ' Z2

n.
B = B−1 = BT = BT for all B ∈ G2n ,

as the generators of the group G2n satisfy these equalities and as the group is commutative. G2n

has exactly 2n elements. This can be easily seen, as G2n can be embedded in G2n+1 and the
multiplication with J2n+1 doubles the number of elements. We think that G2n ' Z2

n, but there
was no time to verify this claim. Clearly

BAB = A for all A ∈ Ag, B ∈ G2n .

The matrices in A2n have 2n−1 pairwise distinct symmetries, which can be easily seen by setting
O = R−1 = B, for a B ∈ G2n in equation (4.9).
We now apply this construction to the matrices in the moduli spaces for PPAVs of dimension
2n. Remember that for Z = X + i · Y ∈ Hg we have

PZ = PX,Y =
( √

Y 0
0

√
Y −1

)(
Idg 0
X Idg

)
∈ M2g(R).

We now consider the following set of PPAVs de�ned by Z = X + i · Y ∈ H2n :

K2n = {Z = X + i · Y ∈ H2n |
√

Y , X ∈ A2n}
We de�ne G′

2n to be the group of matrices

G′
2n =

(
G2n 0
0 G2n

)
.

We have that G2n ' G′
2n . As the generators of G′

2n are contained in Sp2n+1(Z) - see chapter 1.4
for a de�nition of Sp2n+1(Z) - we have that G′

2n is a subgroup of Sp2n+1(Z). For the elements of
K2n ⊂ H2n , we have
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Theorem 4.2.1 For g = 2n, we have :
1.) Kg is contained in the stabilizer of the subgroup G′

g of Sp2g(Z).
2.) If Z ∈ Kg, then the corresponding real lattice PZ · Z2g has g − 1 symmetries.

proof 1.) We have seen that G′
g is a subgroup of Sp2g(Z). We remind that Sp2g(Z) acts on

Hg by the g-dimensional Moebius transformation (see chapter 1.4 ). As
√

Y ∈ Ag, we have that√
Y =

√
Y

T and

BY B = B
√

Y
T√

Y B = B
√

Y
T
BB

√
Y B =

√
Y

T√
Y = Y for all B ∈ Gg,

by the properties of the group Gg. As X ∈ Ag, we have for all B = B−1 ∈ Gg :

BZB = Z ⇔ (BZ + 0) · (0 · Z + B)−1, for all Z ∈ K2n .

This means that the elements of Kg are �xed points of the action of the group G′
g ⊂ Sp2g(Z).

In other words, Kg is contained in the stabilizer of the subgroup G′
g of Sp2g(Z).

2.) To prove that PZ has g − 1 symmetries, we note that for the generators
(
Jk

2n

)
k=1,..n

of Gg,
we have

(
Jk

g 0
0 Jk

g

) ( √
Y 0
0

√
Y −1

)(
Jk

g 0
0 Jk

g

)
=

( √
Y 0
0

√
Y −1

)
, for all k ∈ {1, .., n}

and
(

Jk
g 0
0 Jk

g

)(
Idg 0
X Idg

)(
Jk

g 0
0 Jk

g

)
=

(
Idg 0
X Idg

)
, for all k ∈ {1, .., n}

it follows that
(

Jk
g 0
0 Jk

g

)
· PZ ·

(
Jk

g 0
0 Jk

g

)
= PZ , for all k ∈ {1, .., n}

, as (
Jk

g 0
0 Jk

g

)
·
(

Jk
g 0
0 Jk

g

)
= Idg, for all k ∈ {1, .., n}.

As this is true for the generators of Gg ' G′
g, these equalities are true for all B ∈ Gg. Therefore

PZ has the demanded symmetries. (Set PZ = A,O = R−1 =
(

B 0
0 B

)
in equation (4.9). ¤

Conjecture 4.2.2 If g is a power of 2 we obtain for Hermite's invariant for PPAVs of dimension
g :

1
π

g
√

2g · g! ≤ δ2g.
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The idea is to use a subset of the symmetric lattices represented by K2n presented in Theorem
4.2.1 in Theorem 4.1.2. Due to the symmetry of these lattices the number of lattice vectors
of a certain length is always a multiple of 2n+1 for a lattice of dimension 2n. The problem is
to evaluate the integral in the case, where a linear transformation as in equation (4.7) is not
possible.
For real lattices of dimension n, a better lower bound for Hermite's constant γn than in Theo-
rem 4.1.2 was given by Rogers in [Ro]. It might be possible to combine this approach with the
results presented in [Ro]. In this case, we might be able to use the set of lattices A2n .
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Chapter 5

A generalization of a theorem of
Blichfeldt

The result of this chapter arose from the search for a certain number of short simple closed
geodesics on Riemann surfaces. These were needed for the proofs in the second chapter. The
following part was inspired by a Theorem of Blichfeldt [Bli] about real tori, which can be easily
transferred to Riemann surfaces.
As a consequence of his theorem Blichfeldt gives a lower bound for the number of lattice vectors
of length smaller than a �xed constant. This lower bound depends only on the volume of the
corresponding torus of the lattice. As the proof relies only on the pigeonhole principle, the
theorem can be easily generalized.
In this chapter we �rst give a further generalization of this theorem to manifolds of non-positive
curvature. Then we compare the result with known results about the asymptotic growth rate of
closed geodesics. Finally we will apply the theorem to Riemann surface of signature (g, 0, n).

5.1 A theorem of Blichfeldt
In [Bli] Blichfeldt states the following theorem :

Theorem 5.1.1 Let L ⊂ Rn be a n dimensional lattice and T = Rn mod L be the corresponding
torus. Let m ∈ N and C ⊂ Rn be a measurable set, such that

vol(C) > m vol(T )

Then there exist x1, ..., xm ⊂ C, such that li = xi − x1 ∈ L\{0}, i ∈ {2, ...,m}. Furthermore the
(li)i∈{2,...,m} are pairwise distinct.

The situation is exempli�ed for a two dimensional lattice in Fig. 5.1. We note that if C is convex,
then the straight line between x1 and xi of length ‖li‖2 is always contained in C, which is not
true in general.
Setting C = Br(0) ⊂ Rn, a ball of radius r around 0 in Theorem 5.1.1, we obtain :

Corollary 5.1.2 Let Br(0) ⊂ Rn such that for a m ∈ N, vol(Br(0)) > m vol(T ) then there exist
disjoint l2, ..., lm ∈ L\{0}, such that

‖li‖2 ≤ 2r for all i ∈ {2, ..,m}

83



A theorem of Blichfeldt GENERALIZATION BLICHFELDT

x

y

x̃

x1

x2

x3

v1

v2

v3 C

P (T )

Figure 5.1: A measurable set C in a two dimensional lattice L

proof Let T = Rn mod L be a torus and Br(0) be the ball of volume bigger than m vol(T ).
It follows from Theorem 5.1.1 and the subsequent remark that it contains the points x1, ...xm,
such that li = xi − x1 ∈ L\{0} and ‖li‖2 ≤ 2r for all i ∈ {2, ..,m}. ¤

We now give a proof of Theorem 5.1.1.

proof of Theorem 5.1.1 Lift T into the universal covering Rn and let P (T ) be a fundamental
parallelepiped of T . For l ∈ L de�ne

Cl = C ∩ (l + P (T )).

We have that C is the disjoint union of the (Cl)l∈L and Cl − l ⊂ P (T ).
To prove the theorem, we have to show that there exists a point x̃ ∈ P (T ) and pairwise distinct

(vi)i∈{1,..,m} ⊂ L, such that xi = x̃ + vi ∈ Cvi .

It follows then, as L is a lattice that li = (x̃ + vi)− (x̃ + v1) = vi − v1 ∈ L.

We show that there exists a x̃ ∈ P (T ) that is covered at least m times by disjoint (Cvi −
vi)i∈{1,..,m}. We prove the result by contradiction. If every point in P (T ) was covered only m
times by the disjoint (Cl − l)l∈L, then we would obtain :

vol(C) =
∑

l∈L

vol(Cl) =
∑

l∈L

vol(Cl − l) ≤
∫

P (T )

mdµ ≤ m vol(T ).

But vol(C) > m vol(T ), hence this is a contradiction. ¤

The proof of the theorem depends only on the pigeonhole principle. We will generalize the
theorem and the corollary in the following section.
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5.2 Generalization to manifolds of non-positive curvature
We assume in the following two sections that a manifold M is a connected complete Riemannian
manifold of non-positive (sectional) curvature. By covering theory, the universal covering space
of M , K is a simply connected space of non-positive curvature. There exists a group G of Deck
transformations with the following properties :

M ' K mod G, G ⊂ Isom(K) and G ' π1(M).

A geodesic loop δ ⊂ M with base point q de�nes a homotopy class [δ] ∈ π1(M, q). We denote
by l([δ]), the length of [δ], which we de�ne as the length of the shortest geodesic loop in the
homotopy class of δ :

l([δ]) = min
δ′∈[δ]

l(δ′).

It is a well known fact that - as the curvature of M is non-positive - there exists a unique shortest
loop in each homotopy class. We call a non-trivial geodesic loop δ primitive, if

[δ] 6= [α]n, for [α] ∈ π1(M, q), with n ∈ N\{1}.

We say that a geodesic loop η is not primitive, if it is a multiple of another geodesic loop. We
de�ne primitive and multiple analogously for closed geodesics and their free homotopy classes.

Theorem 5.2.1 Let M be a manifold of non-positive curvature with vol(M) < ∞. Let K be its
universal covering. If C ⊂ K is a convex set, such that for a m ∈ N

vol(C) > m vol(M),

then there exist pairwise distinct x1, ..., xm ⊂ C, and geodesic arcs (γxi,x1) ⊂ C connecting xi and
x1. The universal covering map p maps these geodesic arcs to homotopically pairwise distinct
geodesic loops δi = p(γxi,x1) with base point p(x1).

Let Br(x) ⊂ K be a ball of radius r with center x. As K has non-positive curvature, the ball is
convex. In this more general setting we obtain the following corollary.

Corollary 5.2.2 Let Br(x) be a ball in the universal covering K of M , such that for a m ∈
N, vol(Br(x)) > m vol(M). Then there exist a point q ∈ M and non-trivial geodesic loops
δ2, ..., δm ⊂ M , with common base point q such that

l(δi) ≤ 2r for all i ∈ {2, ..,m}.

Furthermore these geodesic loops are all in di�erent homotopy classes.

In the free homotopy class of each geodesic loop δi of the corollary, there is a unique closed
geodesic γi. We note that we can not conclude from the theorem that the (γi)i=2,...,m are pair-
wise distinct. We can also not exclude that such a geodesic γi is the multiple of another geodesic.

proof of Theorem 5.2.1 Lift M into the simply connected universal covering K and let
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G ⊂ Isom(K) be the group of Deck transformations. Let F (M) be a fundamental domain
of the group action of G. For g ∈ G de�ne

Cg = C ∩ g(F (M)).

We have that C is the disjoint union of the (Cg)g∈G and g−1(Cg) ⊂ F (M).
To prove the theorem, we have to show that there exists a point x ∈ F (M) and pairwise distinct

(gi)i∈{1,..,m} ⊂ G, such that xi = gi(x) ∈ Cgi .

It follows then from the convexity of C that the geodesic arc γxi,x1 connecting xi and x1 is in C.
As the (xi)i=2,..m are pairwise distinct, the (γxi,x1)i=2,..m map to homotopically pairwise distinct
geodesic loops (δi)i=2,..m under the covering map p. Their common base point is p(x1).

We show that there exists a x ∈ F (M) that is covered at least m times by pairwise distinct
g−1
i (Cgi)i∈{1,..,m}. We prove the result by contradiction. If every point in F (M) was covered
only m times by the disjoint (g−1(Cg))g∈G, then we would obtain :

vol(C) =
∑

g∈G

vol(Cg) =
∑

g∈G

vol(g−1(Cg)) ≤
∫

F (M)

mdµ ≤ m vol(M).

But vol(C) > m vol(M), hence we obtain a contradiction. ¤

We will compare this result with known results about the length spectrum of closed geodesics
and geodesic loops in the following section.

5.3 Asymptotic growth rate of closed geodesics and loops
Let M be a manifold of non-positive curvature and K its universal covering. Let p : K → M be
the universal covering map. For q ∈ M , we chose a x ∈ p−1(q) ⊂ K. The volume entropy of M
is de�ned as

hvol(M) = lim
t→∞

log(vol(Bt(x)))
t

If M is compact, the limit exists and does not depend on the point q ∈ M (see [Ma]). If M is
a n dimensional manifold, such that the curvature of M is bounded between −K1

2 and −K2
2,

where 0 ≤ K1 ≤ K2, then

(n− 1) ·K1 ≤ hvol(M) ≤ (n− 1) ·K2

We denote by v(t) the number of primitive (closed) geodesics in M of length smaller or equal to
t :

v(t) = #{γ ⊂ M | γ primitive geodesic, such that l(γ) ≤ t}.
For q ∈ M , we denote furthermore

Pq(t) = #{δ ⊂ M | δ geodesic loop with base point q, such that l([δ]) ≤ t}.

It follows immediately from Corollary 5.2.2 :

86



GENERALIZATION BLICHFELDT Asymptotic growth rate of closed geodesics and loops

Corollary 5.3.1 Let M be a manifold of non-positive curvature, such that M has �nite volume
vol(M). Then there exists a x ∈ K and a q = p(x) ∈ M , such that

Pq(t) ≥
vol(B t

2
(x))

vol(M)
− 2

This corollary is related to the following result stated in [Kn].

Theorem 5.3.2 Let M be a compact manifold of non-positive curvature, such that M contains
a geodesic, which is not the boundary of a �at half-plane. Then we have for all q ∈ M that

lim
t→∞

log(v(t))
t

= lim
t→∞

log(Pq(t))
t

= hvol(M).

In comparison, Corollary 5.3.1 implies the following. If M is a compact manifold then it follows
that

lim
t→∞

log(Pq(t))
t

≥ 1
2
hvol(M).

Therefore we underestimate lim
t→∞

log(Pq(t))
t , if we use the corollary.

Theorem 5.3.2 is additionally stronger in as far, as it makes also a statement about the number
of prime geodesics and not only about geodesic loops emanating from a �xed base point. However
it treats the asymptotic limit and applies only to compact manifolds, whereas Corollary 5.2.2
gives a lower bound for the number of homotopically di�erent geodesic loops of length smaller
than a certain constant and does not rely on the compactness of M .
Theorem 5.3.2 has been generalized to Hadamard manifolds without the neccessity of the as-
sumption of compactness or even �nite volume of the manifold in [Li].

The limit case for geodesic loops on compact manifolds is not stated as a theorem in [Kn], but
can be deduced from the proof. As this part is easy to prove, we will give a proof here :

proof of Theorem 5.3.2 ( lim
t→∞

log(Pq(t))
t = hvol(M)).

Let p : K → M be the universal covering map. For a q ∈ M , we choose a x ∈ K, such that
p(x) = q. We denote by D = diam(M) the diameter of M . We �rst show that vol(Bt+D(x)) ≥
Pq(t) vol(M) and then that vol(Bt−D(x)) ≤ Pq(t) vol(M). Then the proof follows by applying
the logarithm.

1.) vol(Bt+D(x)) ≥ Pq(t) vol(M)

Let K be the universal covering of M and G be the group of Deck transformations. Let F (M)
be a fundamental domain of K mod G. Let H be the set

H = {g ∈ G | dist(x, g(x)) ≤ t}
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Consider the geodesic arcs (γx,h(x))h∈H . Their images under the universal covering map p are in
one to one correspondence with the elements of Pq(t), hence Pq(t) = #H. We will show that

⋃

h∈H

h(F (M)) ⊂ Bt+D(x).

For any y ∈ h(F (M)), we have by the triangle inequality
dist(y, x) ≤ dist(y, h(x)) + dist(h(x), x) ≤ D + t,

hence h(F (M)) ⊂ Bt+D(x). It follows that vol(Bt+D(x)) ≥ Pq(t) vol(M).
With log((Pq(t) · vol(M)) = log((Pq(t)) + log(vol(M)), we obtain

lim
t→∞

log(vol(Bt(x)))
t

= lim
t→∞

log(vol(Bt+D(x)))
t

≥

lim
t→∞

log(Pq(t) · vol(M))
t

= lim
t→∞

log(Pq(t))
t

.

2.) vol(Bt−D(x)) ≤ Pq(t) vol(M)

We will show that
Bt−D(x) ⊂

⋃

h∈H

h(F (M)).

For any y ∈ Bt−D(x), we have that y ∈ h′(F (M)), for some h′ ∈ G and dist(y, h′(x)) ≤ D. It
follows that

dist(h′(x), x) ≤ dist(h′(x), y) + dist(y, x) ≤ D + (t−D) = t.

Hence h′ ∈ H and y ∈ ⋃
h∈H

h(F (M)) and therefore Bt−D(x) ⊂ ⋃
h∈H

h(F (M)). It follows that

lim
t→∞

log(Pq(t))
t

≥ lim
t→∞

log(vol(Bt(x)))
t

,

which proves the theorem. ¤

In the case of Riemann surfaces, we obtain from Corollary 5.3.1 :
Corollary 5.3.3 Let S be a Riemann surface of signature (g, 0, n). We have that vol(S) =
4π(g − 1) + 2πn. There exists a point q ∈ S, such that

Pq(t) ≥
cosh( t

2)− 1
2(g − 1) + n

− 2 ≥ exp
(

t
2

)− 1
4(g − 1) + 2n

− 2.

If S contains cusps, however, this corollary is trivial. In this case, we can always choose a point
q ∈ S su�ciently close to a cusp point. Then the geodesic loops with base point q, which wind
around the cusp satisfy the conditions of the corollary. If S is a compact Riemann surface the
prime number theorem for compact Riemann surfaces (see [B], p. 246) asserts that

v(t) ∼ exp(t)
t

for t →∞ ⇔ lim
t→∞

tv(t)
exp(t)

= 1.

The prime number theorem implies Theorem 5.3.2 in the case of Riemann surfaces. The proof
however requires more advanced methods from harmonic analysis.

The aim of future research will be to generalize Blichfeldt's theorem to groups acting on mea-
surable spaces and explore its various implications.
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Appendix A

Numerical estimates for Chapter 2

Proof of Lemma 2.3.5 : In this proof we �rst have to verify equation (2.10). We have that

ν ≤ 2 arccosh((sinh(
γ1

2
)2(cosh(2 arcsinh(

2π(g − 1)
γ1

))− 1))− 1) = f1
ν (γ1, g).

We have to show that for γ1 < π
2 , f1

ν (γ1, g) ≤ 4 log(8g − 7).

Figure A.1 shows a plot of f1
ν (γ1, g) and 4 log(8g − 7) over D1 = [0.005, π

2 ] × [2, 20]. The �gure
shows that the inequality is true on D1.
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Figure A.1: Plot of f1
ν (γ1, g) (blue) and 4 log(8g − 7) (red) over D1

We have also calculated the limit lim
γ1→0

f1
ν (γ1, g) = f1

ν (0, g) using MAPLE. However this function
is too complicated to be displayed here. Again a plot of f1

ν (0, g) and 4 log(8g− 7) in the interval
[2, 40] shows that the inequality is valid in the limit case (see Fig. A.1).
Then we have to show inequality (2.11). We have that

ν ≤ 2 arccosh
(

sinh(
γ

4
)
2π(g − 1)

γ1

)
= f2

ν (γ1, g).

We have to show that for γ1 < π
2 , f2

ν (γ1, g) ≤ 3 log(8g − 7).
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Figure A.2: Plot of f1
ν (0, g) (blue) and 4 log(8g − 7) (red) in the interval [2, 40]

Figure A.3 shows a plot of f2
ν (γ1, g) and 3 log(8g − 7) over D2 = [0.005, π

2 ]× [2, 20].
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Figure A.3: Plot of f2
ν (γ1, g) (blue) and 3 log(8g − 7) (red) over D2

We have also calculated the limit lim
γ1→0

f2
ν (γ2, g) = f2

ν (0, g) using MAPLE. Here we obtain that

f2
ν (0, g) = 2 log(

√
(πg − π)2 − 1 + πg − π) < 3 log(8g − 7).

Statement in Case 2.a.2.) : We have to verify the statement concerning equation (2.12). By
Lemma 2.3.7, we have that there is a scg α2

′ in the Q-piece Q1, such that

α2
′ ≤ 2 arccosh




√
cosh2(γ2

4 ) + cosh2(α1
2 )− 1

2(cosh(α1
2 )− 1)


 = f(α1, γ2).
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Here α1 = γ1 is the shortest and γ2 the second shortest simple closed geodesic S. We have to
show that α2

′ < γ2, if 2.1 < α1.

Figure A.4 shows a plot of f(α1, γ2) and γ2 in D3 = {(α1, γ2) ∈ R2 | γ2 ∈ [α1, 8], α1 ∈ [0.05, 4]}.
It can be seen in the �gure that α2

′ < γ2, if 2.1 < α1.
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Figure A.4: Plot of f( α1, γ2) (blue) and γ2 (red) over D3

Statement in Case 2.b.1.) We have to verify inequality (2.15). For

w2
Q = arcsinh




2
√

5
5 · sinh(α1

2 )√
9
5 cosh2(α1

4 )− 1




we have to show that

f(α1, g) =
3 log(8g − 7)

π − 2 · arcsin( 1
cosh(w2

Q)
)
≤ 3.1 log(8g − 7),

if 1.1 < α1.

Figure A.5 shows a plot of f(α1, g) and 3.1 log(8g − 7) over D4 = [1.1, 5] × [2, 40]. It can
be deduced from this �gure that the statement is true for all (α1, g) ∈ D4.

Statement in Case 2.c.2.) We have to verify inequality (2.17). We have to show that

α1 ≥ 1.5 and γ2 ≥ 2.1.

This is true, because otherwise we arrive at a contradiction to the fact that ZW ′(α1) and ZW ′(γ2)
intersect. Consider the Y-piece Y ′ ⊂ S1 with boundary geodesics β1, α1 and γ2 (see Fig. 2.6). By
construction σ is the shortest geodesic arc connecting α1 and γ2 in S1. It follows that σ ≤ 2W ′.
It follows from the collar lemma that α1 has to be bigger than 0.8. Otherwise we have in S1 that
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Figure A.5: Plot of f(α1, g) (blue) and 3.1 log(8g − 7) (red) over D4

dist(α1, γ2) > 2W ′, a contradiction.
It follows from equation (2.16), as σ < 2W ′ :

β1 ≤ 2 arccosh
(
sinh(

α1

2
) sinh(

γ2

2
) cosh(2W ′)− cosh(

α1

2
) cosh(

γ2

2
)
)

= fσ(α1, γ2).

We have to show that β1 < γ2, if ¬(α1 ≥ 1.5 and γ2 ≥ 2.1).
Figure A.6 shows a plot of fσ(α1, γ2) and γ2 over D5 = {(α1, γ2) ∈ R2 | γ2 ∈ [α1, 5], α1 ∈
[0.8, 2.1]}. It can be deduced from this �gure that the statement is true for all (α1, γ2) ∈ D5.
The plot does not show some values of fσ(α1, γ2), as for some small values of (α1, γ2), no hyper-
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Figure A.6: Plot of fσ(α1, γ2) (blue) and γ2 (red) over D5

bolic hexagon exists.

Discussion of the summary of Case 2.c.2.) We have to show inequality (2.21). We have
that

m2(J(S))2 ≤ α2

π − 2 arcsin( 1
cosh(w2))

,
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where α2 < 4 arccosh(cosh(γ2

4 ) cosh(W ′)) = α2(γ2) and

w2 ≥ w(γ2) = min
{

0.66, arccosh
(

cosh(γ2

2 )
cosh(γ2

4 ) cosh(W ′)

)}
.

We have to show that for 3 log(8g − 7) ≥ γ2 > 2.1, we have that

f(γ2) =
α2(γ2)

π − 2 arcsin( 1
cosh(w(γ2)))

≤ 3.1 log(8g − 7).

Figure A.7 shows a plot of f(γ2) and 3.1 log(8g−7) over D6 = {(g, γ2) ∈ R2 | γ2 ∈ [2.1, 3 log(8g−
7)], g ∈ [2, 40]}. It can be deduced from this �gure that the statement is true for all (g, γ2) ∈ D6.
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Figure A.7: Plot of f(γ2) (blue) and 3.1 log(8g − 7) (red) over D6
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Appendix B

Inequalities for capacities on cylinders
of constant curvature

The content of this section is not directly related to Riemann surfaces. However, we have made
use of the inequalities presented here in Theorem 3.1.1 of chapter 3. This part was meant as
an independent publication and is written in this style. We hope to extend the presented results
to cylinders of variable non-positive curvature.

The initial impulse to study this topic came from a paper of F.W. Gehring :
In [G], Gehring provides elementary estimates for the capacities of rings in Rn, taken with respect
to an arbitrary metric. The lower bound, however does not apply to certain annuli on cylinders.
Using di�erent methods, we give elementary estimates for the capacity of these annular regions
on cylinders of constant curvature and give examples, where these inequalities are sharp.

B.1 Introduction
We will �rst give the de�nition of a cylinder of constant curvature.
Let EK be a two dimensional simply connected complete space of constant (sectional) curvature
K. A model of EK is the hyperbolic plane, if K < 0, the Euclidean plane , if K = 0 and the
sphere, if K > 0.
Let γ ⊂ EK be a geodesic. γ divides EK into two parts, E+

K and E−
K . Let γ′ ⊂ γ be a geodesic

arc of length l(γ′) < diam(EK) with endpoints p1 and p2. There exists a unique isometry
M ∈ Isom+(EK) that preserves γ and such that M(p1) = p2.
For each point p ∈ γ′ there exists an unique geodesic δp that is perpendicular to γ and that
passes p. The Fermi coordinates with base point p1 and base line γ′ in EK are an injective
parametrization

ψ : D = [0, l(γ′)]×]b, a[→ EK , ψ : (t, s) 7→ ψ(t, s)

with b < a and |a| ≤ |b| ≤ diam(EK)
2 , such that the parametrization satis�es the following

conditions :
Each point q = ψ(t, s) ∈ ψ(D) can be reached in the following way. Starting from the base point
p1 we �rst we move along γ′ the directed distance t to ψ(t, 0) = p and then from ψ(t, 0) = p, we
now move along δp the directed distance s to ψ(t, s) = q.
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We call an image ψ(D) = S a strip of constant length. A cylinder of constant curvature K with
baseline γ′ or shortly cylinder , C, is

C = S mod M,

such that the side of S containing p1 is identi�ed by M with the side of the strip S containing p2.
An annulus A ⊂ C on a cylinder C is a set that can be obtained by a continuous deformation of
C. More precisely there exists an isotopy

J : C × [0, 1] ← C, such that J(·, 0) = id and J(C, 1) = A.

We denote by ∂1A and ∂2A its two connected boundary components that constitute the boundary
∂A.
Let

φ : [0, c1]×]c2, c3[ mod {(0, t) ∼ (c1, t) | t ∈]c2, c3[} → C

be a bijective parametrization of C and G the corresponding metric tensor. Let F ∈ Lip(Ā) a
Lipschitz function on the closure of A (see chapter 1.5). Then the energy of F on A, EA(F ) is
given by

EA(F ) =
∫∫

φ−1(A)

‖D(F ◦ φ)‖2
G−1

√
det(G)

The capacity of an annulus A, cap(A) is given by

cap(A) = inf{EA(F ) | {F ∈ Lip(Ā) | F |∂1(A) = 0, F |∂2(A) = 1}}.

For further information about the de�nition of the capacity in metric spaces, see [Go]. With the
help of an approximation for the energy using Fermi coordinates and a symmetrization process,
we obtain the following theorem :

Theorem B.1.1 Let EK be a two dimensional space of constant curvature K = −k2 and C ⊂
EK a cylinder with base line γ′ of length l(γ′) = l. Let A ⊂ C be an annulus of �nite area
area(A). Then for W = arcsinh(k area(A)

2·l ) and h1(x) = 2 arctan(exp(x)), we have

cap(A) ≥ k · l
h1(W )− h1(−W )

.

In the limit case k → 0, we obtain cap(A) ≥ l2

A ( see Example 1.5.9).
The theorem says that among all annuli of �xed area on a cylinder of constant non-positive
curvature with base line γ′, the annulus with constant width, centered around γ′ has minimal
capacity. We think that this is also the annulus, whose boundary line has minimal length among
all annuli of �xed area. This means that for this annulus the isoperimetric inequality for annuli
on cylinders is sharp. On the contrary, there is no such lower bound depending on the area for
annular regions contained in R2.
In the case of constant positive curvature, we obtain
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Theorem B.1.2 Let EK be a two dimensional space of constant curvature K = k2 and C ⊂ EK

a cylinder with base line γ′ of length l(γ′) = l. Let A ⊂ C be an annulus of �nite area area(A).
Then for W = arcsin(k area(A)−l sin(kb)

l ) and h2(x) = log
(

1+sin(x)
cos(x)

)
, we have

cap(A) ≥ k · l
h2(W )− h2(b)

.

The theorem says that among all annuli of �xed area on a cylinder of constant positive curvature
with base line γ′, the annulus with constant width, where one boundary is the shorter boundary
of the cylinder itself, has minimal capacity.
We will prove these theorems in section 3. Using the same methods, we will derive lower and
upper bounds of the capacities of annuli on cylinders of constant curvature in section 4.

B.2 Preliminaries
We will use the following models for the two dimensional spaces of constant negative curvature
and positive curvature :
For K < 0, set EK = E−k2 = H, where H is the Poincare model of the hyperbolic plane. It is
the following subset of the complex plane C :

H = {z = x + iy ∈ C | y > 0}

with the hyperbolic metric
ds2 =

1
(ky)2

(dx2 + dy2).

As the metric is conformal, the hyperbolic energy of a function F on a set L, F : L ⊂ H→ R is
equal to the Euclidean energy of F .
The parametrization ψ : [0, l]× R mod {(0, t) ∼ (l, t) | t ∈ R} → H

ψ(t, s) :=
exp(kt)
cosh(ks)

(sinh(ks) + i)

parametrizes a cylinder C ⊂ H with base line γ′ = {iy | y ∈ [1, exp(kl)]}. Choosing the correct
parameters, any cylinder of constant curvature K in H is isometric to a cylinder C.

For K > 0, set EK = Ek2 = S2
k, where S2

k is the sphere ∂B 1
k
(0) ⊂ R3, the boundary of the

ball of radius 1
k . The parametrization ψ : [0, l]× [b, a] mod {(0, t) ∼ (l, t) | t ∈ [b, a]} → S2

k

ψ(t, s) :=
1
k
(cos(kt) cos(ks), sin(kt) cos(ks), sin(ks))

parametrizes a cylinder C ⊂ S2
k with base line γ′ = {( 1

k cos(ky), 0, 0) | y ∈ [0, l]}. Choosing the
correct parameters, any cylinder of constant curvature K in S2

k is isometric to a cylinder C.
Using these models, we obtain the metric tensor G with respect to the Fermi coordinates :

G(t, s) =
(

h(s)2 0
0 1

)
,
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where h(s) = cosh(ks), if K = −k2 and h(s) = cos(ks), if K = k2.
Using the formulas for the metric tensor G, the area of an annulus A, area(A) is given by

area(A) =
∫∫

ψ−1(A)

√
det(G(t, s) ds dt =

∫∫

ψ−1(A)

h(s) ds dt. (B.1)

Now let A ⊂ C be an annulus of constant curvature K 6= 0 and F : A → R be an Lip(Ā)
function. For a x = ψ(t0, s0) ∈ C denote by

pψ : Tx(C) → {λ · ∂ψ(t0, s0)
∂s

| λ ∈ R}

the orthogonal projection of a tangent vector in x onto the subspace spanned by ∂ψ(t0,s0)
∂s . We

denote by EA(∂2F ) = EA(pψ(DF )) the energy of this orthogonal projection of DF . Let L ⊂ C
be a set. For technical purposes, we also de�ne the capacity of L in direction ∂2, cap∂2(L) by

cap∂2(L) = inf{EL(∂2F ) | {F ∈ Lip(L̄) | F |∂1(L) = 0, F |∂2(L) = 1}.}
Using Fermi coordinates, we obtain for the energy of F on A, EA(F ), with F ◦ ψ = f :

EA(F ) =
∫∫

ψ−1(A)

1
h(s)

∂f(t, s)
∂t

2

+ h(s)
∂f(t, s)

∂s

2

ds dt ≥
∫∫

ψ−1(A)

h(s)
(

∂f(t, s)
∂s

)2

ds dt = EA(∂2F ).

(B.2)
Using equation (B.2), we obtain the following lemma. For a de�nition of h1 and h2 see Theo-
rem B.1.1 and B.1.2:
Lemma B.2.1 For K 6= 0, let S ⊂ EK be a strip in EK and C = S mod M be a cylinder with
baseline γ′ of length l(γ′) = l. Then we have

cap(C) = cap∂2(S) = ES(P ) =
l

H(a)−H(b)
, where H(s) =

{
h1(ks)

k
h2(ks)

k

if K = −k2

K = k2 .

Here P ∈ Lip(C̄) is the harmonic function that satis�es the boundary conditions for the capacity
of the cylinder C and that satis�es ∂P◦ψ

∂t = 0. Furthermore H(s) =
∫

1
h(s)

.

proof of Lemma B.2.1 For any function F ∈ Lip(C̄), F |∂1C = 0, F |∂2C = 1, with F ◦ ψ = f ,
we obtain by inequality (B.2) that

EC(F ) ≥
∫∫

ψ−1(C)

h(s)
(

∂f(t, s)
∂s

)2

ds dt.

Using the calculus of variations (see Theorem 1.5.3), we can determine the function P =
p ◦ ψ−1 ∈ Lip(C̄) that satis�es the boundary conditions on C and such that p minimizes second
integral in the above inequality (B.2). Hence for all F ∈ Lip(C̄), F |∂1C = 0, F |∂2C = 1 :

EC(F ) ≥
∫∫

ψ−1(C)

h(s)
(

∂f(t, s)
∂s

)2

ds dt ≥
l∫

t=0

a∫

s=b

h(s)
(

∂p(t, s)
∂s

)2

ds dt.
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Additionally, p satis�es ∂p
∂t = 0, hence ES(∂2P ) = ES(P ) = cap(C).

We have ES(P ) = l
a∫
b

1
h(s)

ds
, from which follows the lemma ¤.

We note that the energy ES(P ) = cap∂2(S) is decreasing, if the length of the strip S is increased.

B.3 Lower bounds on the capacity depending on the area
We will prove Theorem B.1.1 and B.1.2 in the case, where an annulus A consists of a set of
strips of uniform width ε. It will be clear from the proof that the proof applies to any annulus
that satis�es the de�nition. The proof consists in replacing in three steps the set of strips of the
initial annulus A = A0, with a set of strips Ai such that

cap∂2(Ai) ≥ cap∂2(Ai+1) and area(Ai) = area(A).

In the �nal step, we obtain an annulus A3 of constant width that satis�es cap∂2(A3) = cap(A3).

Step 1 : Reduction of the number of strips

We �rst consider the case, where a section of a A in Fermi coordinates is given by ψ([0, ε] ×
(]a1, a2[∪]a3, a4[) = S1 ∪ S2, where a2 < a3. It is su�cient to consider the two con�gurations of
type I and II depicted in Fig. B.1. Here a section of type I or II consists of two disjoint strips.
The two types di�er by the boundary values for these strips given by the capacity problem. If
the section is of type I, then the boundary conditions on the �rst strip imply that the boundary
values on both sides of the strip are equal. The boundary conditions on the second strip imply
that the values are di�erent. If the strip is of type II, then the boundary conditions on both
strips imply that the boundary values on the two sides are di�erent. If the section is of type I,

type I type II

S1

S2

S1

S2

0

1

0

1

Figure B.1: Con�guration of a section of A of type I and type II

we replace S1 ∪ S2 it with a strip S of the same area, which we obtain by elongating S1 in the
direction of S2. We have cap∂2(S2) = 0. As S is longer than S1, it follows from Lemma B.2.1
that cap∂2(S1) > cap∂2(S).
If the section is of type II, we replace S1 ∪ S2 it with one strip S of the same area. If K > 0, we
replace it with a strip S = ψ([0, ε]×]b,W [) of the same area, situated near the shorter boundary
of C.
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If K < 0, we replace it with a strip S = ψ([0, ε]×] −W,W [) of the same area, centered around
γ′. We obtain :

cap∂2(S1) + cap∂2(S2) ≥ cap∂2(S). (B.3)

We obtain this inequality in the following way. By equation (B.1), we have to solve the equations

area(S1 ∪ S2) = ε ·
a2∫

a1

h(s) ds + ε ·
a4∫

a3

h(s) ds = ε ·
W∫

−W

h(s) ds = area(S) if K < 0,

area(S1 ∪ S2) = ε ·
a2∫

a1

h(s) ds + ε ·
a4∫

a3

h(s) ds = ε ·
W∫

b

h(s) ds = area(S) if K > 0 (B.4)

with respect to W to obtain the length coordinates of the strip S. Then the inequality (B.3)
follows from Lemma B.2.1.
If the section consists of more than two strips, we can argue in a similar fashion and reduce the
number of strips in a section to one. The resulting set of strips A1 might not be an annulus, but
this is not important for our proof, as cap∂2(·) is well de�ned on A1.

Step 2 : Positioning the strips

A section of A1 in Fermi coordinates is WLOG given by ψ([jε, (j + 1)ε]×]a1, a2[) = S1. We
replace S1 with one strip S of the same area. If K > 0, we replace it with a strip S =
ψ([jε, (j + 1)ε]×]b, W [) situated near the shorter boundary of C.
If K < 0, we replace it with a strip S = ψ([jε, (j + 1)ε]×]−W,W [) centered around γ′. We set
area(S2) = 0 and solve the corresponding equation in (B.4), to obtain the length coordinates of
the strip S. Then the inequality (B.3) follows from Lemma B.2.1. The resulting set of strips
A2 is now an annulus.

Step 3 : Adjusting the length of the strips

A section of A2 in Fermi coordinates is WLOG given by ψ([jε, (j + 1)ε]×]a1, a2[), where a1 = b,
if K > 0 and −a1 = a2 = W , if K < 0. Let S1 and S2 be two di�erent sections of A2, which
share a common boundary. If these sections have di�erent length, we replace S1 and S2 by two
strips, S′1 and S′2 of equal length and equal area area(S1∪S2)

2 . We position these strips as in Step
2. It follows from Lemma B.2.1, with S = S′1 ∪ S′2 that cap∂2(S1) + cap∂2(S2) > cap∂2(S).
If A2 consists of more than two strips of di�erent length, we can argue in a similar fashion to
obtain an annulus A3 of constant width that satis�es

cap(A) ≥ cap∂2(A) ≥ cap∂2(A3) = cap(A3).

We obtain always the same annulus A3, independent of the starting annulus A.
If ε → 0 in each of these steps, the area of the comparison strips and cap∂2(·) of the comparison
strips depend linearly on the width ε. Hence we can apply the comparison arguments to any
annulus A in C. This argument completes the proof of Theorem B.1.1 and B.1.2 ¤
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B.4 Inequalities for the capacity of an annulus on a cylinder
The upper and lower bound for the capacity of an annulus A of constant curvature can be
obtained in the following way. To obtain an upper bound, we can evaluate the energy of any test
function FT ∈ Lip(Ā) that satis�es the boundary conditions for the capacity problem for A. We
can easily construct a test function by adjusting the minimizing function P from Lemma B.2.1
to the boundary, such that P is the minimizing function for cap∂2(A). We can evaluate our
choice by evaluating cap∂2(A), which provides the lower bound for cap(A). This approach works
immediately for an annulus A that can be parametrized in Fermi coordinates in the following
way :

A = ψ{(t, s) | s ∈ [a1(t), a2(t)], t ∈ [0, l]},
where a1(·) and a2(·) are piecewise derivable functions with respect to t.
In this case, we say that our annulus is of type A. As a1(·) and a2(·) are functions sections of
type I or II (see Fig. B.1) can not occur.
We say an annulus is of type B if it is not of type A and if its boundary is a piecewise di�eren-
tiable curve. In this case the approach can be adapted to obtain an upper or lower bound. Here
the lower bound can be constructed by the same method, which we present in the following.
Though the method can also be adapted to obtain an upper bound for any annulus of type B,
we think that this upper bound deviates too much from the real value of the capacity and we
will not present this approach here.
It is noteworthy that in [G] di�erent test functions are used to obtain an upper bound for the
capacity of annuli. These bounds also apply here. However, the upper bound presented here is
more practical and explicit. It is also noteworthy that the lower bound from [G] does not apply
in our case.

Annuli of type A

The following theorem can be concluded from the discussion above. For a de�nition of H see
Lemma B.2.1 :

Theorem B.4.1 For K 6= 0, let C ⊂ EK be a cylinder with base line γ′ of length l(γ′) = l. Let
A ⊂ C be an annulus of type A and P ∈ Lip(Ā) be the function that minimizes cap∂2(A), then

EA(P ) ≥ cap(A) ≥ cap∂2(A) = EA(∂2P ).

For qi(t) = ∂H(s0)
∂s |s0=ai(t) · a′i(t) for i ∈ {1, 2}, we have :

l∫

t=0

1 + q1(t)2+q1(t)q2(t)+q2(t)2

3

H(a2(t))−H(a1(t))
dt ≥ cap(A) ≥

l∫

t=0

1
H(a2(t))−H(a1(t))

dt.

proof of Theorem B.4.1 The �rst inequality follows from the previous paragraph. It remains
to prove the second inequality. The lower bound follows from the representation of the optimal
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function P for cap∂2(A) in Fermi coordinates. For the upper bound, we will calculate p = P ◦ψ−1

explicitly. For �xed t ∈ [0, l], the boundary conditions imply

p(t, s) = c1(t)H(s)− c2(t), where

c1(t) =
1

H(a2(t))−H(a1(t))
and c2(t) =

H(a1(t))
H(a2(t))−H(a1(t))

.

We now calculate the energy of P on A, EA(P ). It follows with H(s)′ = 1
h(s) :

∂p(t, s)
∂s

=
c1(t)
h(s)

and ∂p(t, s)
∂t

= c′1(t) ·H(s)− c′2(t).

Hence we obtain :

EA(P ) =

l∫

t=0

a2(t)∫

s=a1(t)

(c′1(t) ·H(s)− c′2(t))
2 · ∂H(s)

∂s
+ c1(t)

2 · ∂H(s)
∂s

dt ds.

Evaluating the integral with respect to s, we have

EA(P ) =

l∫

t=0

(c′1(t)u− c′2(t))
3

3c′1(t)
+ c1(t)2u

∣∣∣∣
H(a2(t))

u=H(a1(t))

dt.

We have for c′1(t) and c′2(t), as qi(t) = ∂H(s0)
∂s |s0=ai(t) · a′i(t) for i ∈ {1, 2}:

c′1(t) =
q1(t)− q2(t)

(H(a2(t))−H(a1(t)))2
and c′2(t) =

q1(t)H(a2(t))− q2(t)H(a1(t))
(H(a2(t))−H(a1(t)))2

.

With these equations EB(p) = EA(P ) simpli�es to
l∫

t=0

1 + q1(t)2+q1(t)g2(t)+q2(t)2

3

H(a2(t))−H(a1(t))
dt.

This is the upper bound in Theorem B.4.1. ¤

It is clear that the upper and lower bound are nearly optimal, if
l∫

t=0

|a′1(t)|2 + |a′2(t)|2 dt is small.

If the integral has a high value, it might be possible to choose an annulus A′′ in the interior of
A, whose boundary line varies less. Then a test function can be constructed on this annulus as
above. We can then evaluate the energy of this test function, to obtain a better upper bound.
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