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Abstract

Wireless mesh networks were designed as a mean to rapidly deliver large-scale
communication capabilities without the support of any prior infrastructure. Among
the different properties of mesh networks, the self-organizing featureis particularly
interesting for developing countries or for emergency situations. However, these
benefits also bring new challenges. For example, the scheduling decision needs
to be performed in a distributed manner at each node of the network. Toward this
goal, most of the current mesh deployments are based on the IEEE 802.11 protocol,
even if it was not designed for multi-hop communications.

The main goals of this thesis are (i) to understand and model the behavior
of IEEE 802.11-based mesh networks and more specifically the root causes that
lead to congestion and network instability; (ii) to develop an experimental infras-
tructure in order to validate with measurements both the problems and the solu-
tions discussed in this thesis; (iii) to build efficient hop-by-hop scheduling schemes
that provide congestion control and inter-flow fairness in a practical way and that
are backward-compatible with the current protocol; and (iv) to explain thenon-
monotonic relation between the end-to-end throughput and the source rateand to
introduce a model to derive the rationale behind this artifact.

First, we propose a Markovian model and we introduce the notion ofstealing
effectto explain the root causes behind the3-hop stability boundary, where linear
networks up to3 hops are stable, and larger topologies are intrinsically unstable.
We validate our analytical results both through simulations and through measure-
ments on a small testbed deployment.

Second, to support the experimental research presented in this thesis, we design
and deploy a large-scale mesh network testbed on the EPFL campus. We planour
architecture to be as flexible as possible in order to support a wide range of other
research areas such as IEEE 802.11 indoor localization and opportunistic routing.

Third, we introduceEZ-flow, a novel hop-by-hop congestion-control mecha-
nism that operates at the Medium Access Control layer. EZ-flow is fully backward-
compatible with the existing IEEE 802.11 deployments and it works without any
form of message passing. To perform its task EZ-flow takes advantage of the broad-
cast nature of the wireless medium in order to passively derive the queuesize at
the next-hop node. This information is then used by each node to adapt accord-
ingly its channel access probability, through the contention window parameter of
IEEE 802.11. After detailing the different components of EZ-flow, we analyze its
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performance analytically, through simulations and real measurements.
Fourth, we show that hop-by-hop congestion-control can be efficiently per-

formed at the network layer in order to not abuse the contention mechanism of
IEEE 802.11. Additionally, we introduce a complete framework that jointly achieves
congestion-control and fairness without requiring a prior knowledge of the network
capacity region. To achieve the fairness part, we propose theExplore & Enhance
algorithm that finds a fair and achievable rate allocation vector that maximizes a
desired function of utility. We show experimentally that this algorithm reaches
its objective by alternating between exploration phases (to discover the capacity
region) and enhancement phases (to improve the utility through a gradient ascent).

Finally, we note that, as opposed to wired networks, the multi-hop wireless
capacity is usually unknown and time-varying. Therefore, we study how the end-
to-end throughput evolves as a function of the source rate when operating both
belowandabovethe network capacity. We note that this evolution follows a non-
monotonic curve and we explain, through an analytical model and simulations,the
rationale behind the different transition points of this curve. Following our anal-
ysis, we show that no end-to-end congestion control can be throughput-optimal if
it operates directly over IEEE 802.11. Hence, this supports the methodology of
performing congestion control in a hop-by-hop manner. After validating experi-
mentally the non-monotonicity, we compare through simulations different state-
of-the-art scheduling schemes and we highlight the important tradeoff thatexists
in congestion-control schemes betweenefficiency(i.e., throughput-optimality) and
robustness(i.e., no throughput collapse when the sources attempt to operate at a
rate above the network capacity).

Keywords

Wireless mesh networks, multi-hop networks, IEEE 802.11, scheduling, medium
access control, congestion control, network stability, modeling, implementation,
experimental measurements, testbed deployment.
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Résuḿe

Les ŕeseaux mailĺes sans fil ont́et́e conçus afin de permettre le déploiement rapide
d’un moyen de communication, et cela sans nécessiter le soutien d’une infrastruc-
ture pŕeexistante. Parmi les avantages offerts par ces réseaux, l’auto-organisation
semble particulìerement int́eressante dans le cas de déploiements dans des pays
émergents ou en situation de catastrophes naturelles. Cependant, ces avantages ne
viennent pas sans nouveaux défis. Par exemple, la planification d’accès au canal
doit être effectúee de manìere distribúee. La plupart des déploiements de réseaux
maillés sans fil actuels réalisent cela en utilisant le standard IEEE 802.11, même si
ce protocole n’a paśet́e conçu pour des communicationsà sauts multiples.

Les principaux objectifs de cette thèse sont (i) de comprendre et de modéliser
le comportement des réseaux mailĺes sans fil baśes sur IEEE 802.11, en se concen-
trant sur les facteurs clés qui conduisent̀a l’instabilité et la congestion du réseau;
(ii) de développer un ŕeseau sans fil expérimental afin de valider avec des mesures
réelles les problèmes et les solutions présent́es dans cette thèse; (iii) de proposer des
méthodes de planification d’accès au canal qui offrent simultanément un contr̂ole
de congestion efficace et une forme d’équit́e entre les diff́erents flux pŕesents dans
le réseau; et (iv) de souligner la non-monotonicité de la relation entre le débit de
bout-en-bout et le d́ebit reçuà la source, puis de proposer un modèle analytique
pour en expliquer les raisons.

Dans un premier temps, nous proposons un modèle Markovien et nous intro-
duisons la notion d’effet de ‘d́etournement’pour expliquer les causes menantà la
limite de stabilit́e de3 sauts. Cette limite se manifeste par la stabilité des ŕeseaux
linéaires jusqu’̀a 3 sauts, en oppositioǹa l’instabilité intrins̀eque de plus grandes
topologies. Nous validons nos résultats analytiques aussi bien par des simulations
que par des mesures sur un réseau mailĺe à petiteéchelle.

Dans un deuxìeme temps, nous concevons et déployons un ŕeseau mailĺe sans
fil à grandéechelle au sein du campus de l’EPFL. Nous planifions l’architecture du
réseau afin qu’elle soit la plus flexible possible et qu’elle puisse soutenir unlarge
éventail de th̀emes de recherche tels que la localisation basée sur IEEE 802.11 et
le routage opportuniste.

Dans un troisìeme temps, nous proposonsEZ-flow, un nouveau ḿecanisme de
contr̂ole de congestion lien-par-lien qui fonctionne au niveau de la couche MAC.
EZ-flow est entìerement ŕetro-compatible avec les protocoles existants basés sur
IEEE 802.11 et il fonctionne sanséchange de messages de contrôle entre les nœuds.

iii



Ce ḿecanisme tire parti de la nature diffusive du support sans fil: il calcule ainsi
passivement la taille de la file du nœud suivant. Chaque nœud utilise ensuite cette
information pour adapter sa probabilité d’acc̀es au canal, en modifiant la taille de
la fen̂etre de contention de IEEE 802.11. Pour finir, nous analysons les perfor-
mances du ḿecanisme EZ-flow en nous appuyant sur des résultats analytique, des
simulations, et de mesures réelles.

Dans un quatrìeme temps, nous montrons que le contrôle de congestion lien-
par-lien peut̂etre effectúe de manìere tout aussi efficace au niveau de la couche
réseau, afin de ne pas dénaturer le ḿecanisme se chargeant du contrôle de con-
tention dans le protocole IEEE 802.11. En outre, nous développons une solu-
tion qui offre conjointement un contrôle de congestion et une forme d’équit́e en-
tre les flux. Tout ceci est réaliśe sans ńecessiter la connaissance préalable de la
région de capacité du ŕeseau. Afin de fournir une forme d’équit́e, nous proposons
l’algorithme Explore & Enhance. Cet algorithme trouve un vecteur d’allocation
des d́ebits ŕealisable maximisant une fonction d’utilité donńee. Nous montrons
exṕerimentalement que ce mécanisme atteint cet objectif en alternant entre (i)
des phases d’exploration afin découvrir la ŕegion de capacité et (ii) des phases
d’amélioration qui font croitre l’utilit́e gr̂aceà une mont́ee de gradient.

Finalement, nous notons que, contrairement aux réseaux ĉabĺes, la capacité des
réseaux sans fil̀a sauts multiples est géńeralement non seulement inconnue, mais
aussi variable dans le temps. Il est donc primordial d’étudier l’́evolution du d́ebit
de bout-en-bout du réseau lorsque l’on fait varier le débit reçu par les sources (aussi
bienen dessouset qu’au dessusde la capacit́e du ŕeseau). Nous remarquons que
cetteévolution est non monotone et expliquons les raisons de ce comportement
en nous appuyant sur un modèle analytique et des simulations. Suiteà la valida-
tion exṕerimentale de ce phénom̀ene, nous montrons qu’il est impossible pour un
mécanisme de contrôle de congestion fonctionnant de bout-en-bout d’atteindre le
débit optimal si le protocole IEEE 802.11 est utilisé au niveau MAC. Cela soutient
l’id ée qu’un contr̂ole de congestion efficace doit s’effectuer lien-par-lien. Nous
nous concentrons donc sur les différents ḿecanismes lien-par-lien et comparons
leur performance, ce qui met enévidence l’importance du compromis qui existe
entreefficacit́e (optimalit́e du d́ebit) etrobustesse(pas de chute du débit lorsque la
quantit́e de trafic reçu par les sources est supérieureà la capacit́e du ŕeseau).

Mots clés

Réseaux mailĺes sans fil, ŕeseauxà sauts multiples, IEEE 802.11, protocole de
gestion d’acc̀es au canal, protocole de contrôle de congestion, stabilité des ŕeseaux,
mod́elisation, impĺementation, mesures expérimentales, d́eploiement de ŕeseaux.
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Chapter 1

Introduction

1.1 Motivation

Wireless Mesh Networks (WMNs) have received increasing attention since their
introduction in 1994 under the name ofmassive array cellular systems[Pie94].
Initially, they were intended to be a cost-effective alternative to replace thelast-
mile infrastructure of large metropolitan cities. Examples of such deployments
took place in cities such as San Francisco, where Meraki deployed a city-wide
wireless mesh network in 2008. To realize this project, Meraki used around 10,000-
15,000 indoor nodes and a few hundred solar-powered outdoor nodes [Fle08]. This
type of successful commercial deployment shows that WMNs have the potential to
deliver large-scale broadband connectivity to metropolitan areas. Nevertheless, due
to widely available wired broadband connectivity, the utility of mesh networks has
proved to be superfluous in developed countries. Consequently, mesh networks are
now seen as an efficient way to quickly provide connectivity in uncovered areas,
such as in developing countries or in emergency situations after a natural disaster,
for example.

An example for the case of developing countries is theOne Laptop per Child
project launched in 2005 [OLP]. The goal of this project is to provide educational
opportunities to the world’s poorest children by giving them a low-cost and low-
powered laptop with dedicated software. To reach this objective, a laptop named
XO was designed. As this laptop is likely to be used in regions where little com-
munication infrastructure exists, it relies on the wireless mesh network technology
in order to provide a form of connectivity between the different machines.

Emergency situations can arise both in developing and developed countries.
Indeed, different external factors could disrupt the smooth operationof the net-
work. In the case of natural disasters, such as earthquakes or tsunamis, the wired
infrastructure could be physically damaged thus preventing traditional communi-
cations from taking place. This lack of connectivity does not allow the rescue
teams to efficiently synchronize, which leads to dramatic consequences in emer-
gency situations, where every minute counts to save human lives. WMNs provide
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2 CHAPTER 1. INTRODUCTION

a serious solution to these situations as they allow for the rapid deployment of
an operational network without relying on any pre-existing infrastructure. More-
over, recent events in Egypt have shown that connectivity can be shut down, even
in the presence of a fully operational infrastructure. Indeed, during the Egyptian
revolution of January 2011, the government reacted by disconnecting the whole
country from Internet and switching off cellular communications. This communi-
cation blackout is an attack against freedom that could lead to chaos in the streets.
The striking fact in this specific situation is that this country-wide blackout was
relatively easy to perform for the government. This perfectly illustrates thevulner-
ability of the centralized communication technologies that we currently rely on. As
mentioned in the New York Times [TOF11], wireless mesh networks technology
could be deployed in smartphones and this might be a solution to prevent this type
of connectivity blackout from happening in the future.

In order to not suffer from a single point of failure and to provide a reasonable
level of robustness to hardware breakdown, mesh networks need to bedecentral-
ized. This requirement forces the scheduling decisions to be performed ina dis-
tributed manner with the transmission decision made locally at each node. Most of
current WMN deployments rely directly on the IEEE 802.11 protocol to take the
scheduling decision at the Medium Access Control (MAC) layer. But IEEE 802.11
was designed for single-hop networks and was not envisioned for multi-hop com-
munications that significantly differ in nature and lead to new challenges.

In single-hop communications, IEEE 802.11 is widely used and it is the well-
accepted standard for wireless local area networks (WLAN) that are largely de-
ployed both in homes and offices. The particularity of these networks is thatall the
nodes are within the same collision set. This means that at most only one node can
successfully transmit at each point in time, and each node can sense whether the
channel is idle or if there is a communication taking place. This single-hop setting
of IEEE 802.11 is modeled by Bianchi and he finds that the protocol performs rea-
sonably well by delivering good throughput performance together with long-term
fairness (short-term fairness is not achieved due to the exponential backoff policy
of IEEE 802.11) [Bia00].

Nevertheless, the multi-hop environment is significantly different by nature.
Our understanding of the exact behavior of multi-hop IEEE 802.11 networks is
still in its infancy and the existence of relay nodes brings the additional challenge of
congestion-control. Moreover, measurements from real deployments reflect poor
performance [GSK04] and they lead some researchers to make surprising conclu-
sions, such as ”with current commodity wireless technology it does not make sense
to handle more than three hops” 1 (we call this finding the3-hop boundaryhere-
after). Due to the lack of analytical models capturing the exact dynamics of IEEE
802.11 in multi-hop networks, we are still unable to explain the rationale behind
such a3-hop boundary result and this remains an open issue. Once the causes of
this problem are understood, the next step would be to design appropriatepractical

1Lunar project: http://cn.cs.unibas.ch/projects/lunar/
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mechanisms that can overcome this challenge and that remain decentralized and
backward-compatible with existing mesh network deployments.

Finally, we note that as opposed to wired networks, the wireless capacity is
usually both unknown and time-varying. Therefore, without being too conserva-
tive, it is impossible to guarantee that the source rate is always within the network
capacity. Yet, most of the recent works on distributed scheduling [SSR09, JWa,
PYC08, TE92] focus on the notion of throughput-optimality that ensures that the
network is stable for any source ratewithin the capacity region, which is therefore
assumed to be known. This throughput-optimality criterion is useful (it givesa
measure ofefficiency), but it does not say anything about the network performance
once the source rate is above the capacity (it remains clueless aboutrobustness).
Therefore, we stress that we really need to clearly understand how the network
performance (i.e., the throughput) evolves for different source rates, either within
or outside the capacity region. Indeed, an optimal scheduling scheme needs to be
bothefficientandrobust.

1.2 Dissertation Outline

We begin by describing the IEEE 802.11 protocol and introducing the notionof
wireless mesh networks in Chapter 2. After discussing the fundamental differ-
ences between a single-hop and a multi-hop environment, we describe some de-
sirable properties of mesh networks, which need to be kept in consideration when
designing new scheduling schemes.

In order to make it possible to formally study the root causes behind the3-
hop boundary (i.e., why is a3-hop network stable, but not a4-hop network), we
propose a Markovian model in Chapter 3. We introduce the notion ofstealing
effect, a consequence of the hidden node problem and of non-zero transmission
delays, and we discuss its impact on the network stability. After proposing a static
stabilization strategy, we use six off-the-shelf wireless routers in order tovalidate
experimentally both the instability result and the efficiency of our solution.

Because of the importance of experimental validation in the field of mesh net-
works and the lack of an experimental platform at our disposal, we decided to build
from scratch an experimental multi-hop testbed on the EPFL campus. Our testbed
is composed of around60 wireless routers and it spans over the six buildings of the
I&C department. In Chapter 4, we review some of the challenges and the practical
lessons we learned while building our indoor testbed that was used for ourown
research work and is still used for various other projects today.

After pointing out the serious stability problem that occurs in wireless multi-
hop networks, in Chapter 5 we introduce a practical hop-by-hop congestion-control
scheme calledEZ-flow. EZ-flow is designed to take advantage of the broadcast na-
ture of the wireless medium in order for a nodei to passively derive the queue occu-
pancy at the next-hopqi+1 without any form of message passing or piggy-backing.
Nodei adapts its transmission rate in order to maintain the queueqi+1 stable. We
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validate the efficiency of EZ-flow in stabilizing the network (i.e., maintaining the
end-to-end delay small) both through ns-2 simulations and through measurements
from a practical implementation deployed on our indoor testbed.

After tackling the problem of congestion control within a flow at the MAC
layer, in Chapter 6 we propose a more complete scheme that runs at the network
layer and that delivers both intra-flow congestion-control and inter-flow fairness.
Our distributed solution requires almost no message passing and is completely
transparent to both the MAC (i.e., it does not interact with any parameter of the
MAC layer) and the upper layers. First, our network-layer hop-by-hop congestion-
control mechanism uses a rate limiter attached to each queue. It adaptively and
automatically adjusts each rate limiter by passively computing the queue size at the
next-hop relay, without any form of message passing. Second, at the mesh gateway,
our inter-flow fairness algorithm finds a fair and achievable rate allocationvector
that maximizes utility without prior knowledge of the capacity region. It runs (i)
exploration phases to discover the capacity region and (ii) enhancement phases to
improve the utility by a gradient ascent. Third, both mechanisms smoothly inter-
act together to form a complete solution. The fair inter-flow allocation propagates
into the network using the hop-by-hop intra-flow mechanism and we validate the
efficiency of our solution on12 wireless routers of our testbed.

Throughout this thesis, we focus on distributed scheduling schemes that can
perform their task without the prior knowledge of the capacity region. As men-
tioned earlier, another approach taken by some researchers is to designthroughput-
optimal schemes that explicitly require the knowledge of the capacity region in or-
der to perform their task. Nevertheless, as opposed to wired networks,the wireless
capacity is usually unknown and thus it is important to have a clear understand-
ing of how the network behaves when the sources are operating eitherbelowor
abovethe network capacity. In Chapter 7, we formally study the case of an IEEE
802.11 multi-hop network in detail and we explain why the end-to-end through-
put is a non-monotonic function of the source rate. Following our simulations and
our mathematical study, we prove that it is impossible for an end-to-end conges-
tion control scheme to be throughput-optimal if it runs over IEEE 802.11. This
result supports the idea of performing congestion-control in a hop-by-hop manner
instead of end-to-end. Therefore we compare in our simulator differentstate-of-
the-art methodologies of performing hop-by-hop congestion control and we show
the important tradeoff between optimality (throughput-optimality) and robustness
(no throughput collapse beyond capacity) that should be taken into consideration
when designing new hop-by-hop scheduling algorithms.

Finally, we conclude this thesis in Chapter 8 with a summary of the main find-
ings and a discussion of possible directions for future work.
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1.3 Contributions

Although wireless mesh networks are intrinsically unstable with the standard pa-
rameters, we show that it is possible to overcome this limitation through the use of
new mechanisms that are both practical and backward-compatible. To support this
statement, we provide the following main contributions in this thesis.

• We verify experimentally the3-hop boundary in the stability of multi-hop
networks and we propose a Markovian model that allows us to formally ex-
plain the root causes behind this artifact.

• We observe that in the case of multi-hop networks, packets collisions can
help stabilize the network. Indeed, in the case of thestealing effect, the
collisions help to favor downstream links toward upstream links. Moreover,
if the probability of collisions (i.e., the probability of the stealing effect) is
zero, then even a3-hop network is unstable. In practice, this probability is
never zero due to the non-zero transmission times.

• We show that simple modifications at the source node of some parameters
of the IEEE 802.11 protocol (i.e.. the contention windowCWmin) can effi-
ciently be applied to stabilize a multi-hop network.

• We design and deploy the first large-scale IEEE 802.11 multi-hop testbed on
the EPFL campus, which spans over the six building of the I&C department
and is composed of around60 off-the-shelf wireless routers.

• We design and implement a new hop-by-hop congestion control mechanism
at the MAC layer calledEZ-flow. EZ-flow takes advantage from the broad-
cast nature of the wireless medium in order to passively derive the queuesize
at the next-hop. Then each nodes automatically adapts its channel access
probability (i.e., its contention windowCWmin) in order to keep the queue
at the next hop stable. Moreover, we show experimentally, analytically, and
through simulations that EZ-flow succeeds in dynamically stabilizing the
queues of a multi-hop networks.

• We show through an experimental deployment that it is possible to perform
the hop-by-hop congestion control at the network layer. This design choice
has the advantage of (i) being independent/transparent of the MAC protocol
used (e.g., IEEE 802.11) and (ii) decoupling the task of congestion control
from the task of contention control.

• We introduce and implemented a novel fairness algorithm calledExplore &
Enhance. It runs at the gateway and finds a fair and achievable allocation
vector that maximizes a given notion of utility without any prior knowledge
of the capacity region.
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• We show how the congestion-control scheme, at the relay nodes, and thefair-
ness algorithm, at the gateway, can be jointly combined in order to form a
complete solution that works without requiring network-wide message pass-
ing (i.e., a broadcast message is only needed between the gateway and its
direct neighbors).

• We observe the non-monotonic relation between the end-to-end throughput
and the source rate in IEEE 802.11 multi-hop networks both through simu-
lations and experimental measurements. We propose a mathematical model
to capture this evolution and we analytically derive some results concerning
the transition points of this non-monotonic curve.

• We show, both through simulations and with a formal analytical proof, that
no end-to-end congestion control scheme can be throughput-optimal if it
runs above an unmodified IEEE 802.11 MAC layer. This result supports the
approach of performing congestion control in a hop-by-hop manner instead
of end-to-end for wireless multi-hop networks.

• We compare different state-of-the-art methodology of performing hop-by-
hop congestion control and we illustrate the important tradeoff that exists be-
tween efficiency (i.e., throughput-optimality) and robustness (i.e., no through-
put collapse when the sources operate beyond the network capacity).



Chapter 2

Background

2.1 Wireless Mesh Networks

Wireless Mesh Networks (WMNs) are multi-hop communication networks that
consist of wireless nodes organized in a mesh topology as depicted in Figure 2.1.
Their purpose is to provide ubiquitous high-speed Internet access to theend-users
and to remove the need for an expensive wired infrastructure in the last-mileof the
network. In addition to cost-reduction, another key feature of WMNs is their self-
organizing property that allows for a rapid deployment of mesh nodes in order to
provide communication capabilities in difficult environments such as in emergency
situations.

In order to provide a large-scale connectivity, the infrastructure of mesh net-
works is divided into two different parts: (i) anaccesspart that ensures the direct
connectivity between a Transit Access Point of the mesh (TAP) and the final user
(the TAP may or may not be connected to the wired infrastructure); and (ii) aback-
haul part that is in charge of transporting the data packets from the TAP serving
the user to the Wired Access Point (WAP) that is the mesh gateway connectedto
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Figure 2.1:A wireless mesh network consists of a backhaul and an access part.
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the wired infrastructure. We note that the connectivity problems existing in both
the access and backhaul part can be seen as two separate sub-problems by consid-
ering that (i) the access points are equipped with two wireless interfaces dedicated
to either the access or the backhaul, and (ii) each interface is configuredto run in
an independent channel. The access part of WMNs will not be the focus of this
thesis, as it is similar to the scheduling problem of single-hop WiFi networks that
has been heavily studied in the literature [Bia00].

Instead, the backhaul part brings multiple new and interesting challenges due
to its multi-hop nature that requires the system to be decentralized and adaptive.
Indeed, in order for a self-organizing system to optimally transport data packets in
a hop-by-hop manner from a mesh node (TAP) to the mesh gateway (WAP),many
technical challenges need to be solved such as spectrum management, scheduling,
congestion-control, routing and security.

In this thesis, we focus more specifically on the problems of scheduling and
congestion-control. To better understand the nature of these two problems, a use-
ful analogy is found in the vehicular traffic problem, where (i) data packets are
seen as cars, (ii) single-hop links are seen as streets, and (iii) intermediatenodes
are seen as road intersections controlled by a traffic light.
The scheduling is then similar to a traffic-light problem:”When should the traffic
light at an intersection turn red or green in order to avoid/minimize collisions and
to maximize the number of cars going through?”The challenge in WMNs comes
from the shared nature of the wireless medium, which implies that two neighboring
nodes cannot transmit (i.e., turn green) simultaneously without creating a collision.
Therefore, nodes cannot take the scheduling decision independently from each oth-
ers, but the lack of central authority (as in traffic-light management) requires the
design of efficient distributed stochastic scheme to perform the schedulingdecision
at each node.
The congestion-control problem takes into account the relation between the dif-
ferent links (i.e., streets) of an end-to-end path and it answers the question, ”How
should the traffic light been controlled at the intersections in order to avoid the cre-
ation of a traffic jam in any street of the path?”In WMNs, traffic jams correspond
to data packets being queued at intermediate nodes. This is an important problem,
because not only does it increase the end-to-end delay of each packet but it can
also lead to packet being dropped (i.e., lost) due to the limited hardware size ofthe
buffer at the intermediate nodes. Moreover, in WMNs few or no informationis ex-
plicitly available concerning the status of the other links of the path that may vary
over time. Thus, there is a need to propose some smart and adaptive schemes that
can cope with the time-variability of both the links quality, and the traffic demand.

Real deployments of mesh networks already exist in academia [ROO, KZP06],
in residential communities [FRE, NAN] and as industrial products [EAR, THE].
These deployments use a free standard technology (i.e., IEEE 802.11) that was not
designed for multi-hop communications: this resulted in some interesting experi-
mental findings, such as”with current commodity wireless technology it does not
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make sense to handle more than three hops”1. In this thesis we do not focus on
top-down approaches resulting in clean-slate design, because we wantto propose
solutions that work on existing deployments with off-the-shelf hardware. Instead,
we study analytically the root causes behind the3-hop boundary of IEEE 802.11
mesh networks and then we follow a bottom-up approach to propose solutionsthat
improve performance and are backward-compatible with existing designs.

2.2 The Layer Model

The challenges in communication networks are usually tackled by dividing the
system into different layers, where each layer is responsible for transparently pro-
viding some features to the layer above. The first model traditionally proposed is
the Open Systems Interconnection model (OSI model), which divides the network-
ing stack into seven independent layers. Most of the current protocolsare based on
the TCP/IP model that we will use hereafter.

Transport

Data Link

Network

Application

Presentation

Session

Physical

Transport

Network

Application

MAC

TCP/IP model OSI model

Figure 2.2:The two layer models used in communication systems and their mapping.

In this model, the four layers are:

• Medium Access Control (MAC) layer: It is responsible for transmitting the
data to the physical medium. To do so, it decides when to transmit a packet
to the next-hop and it verifies its successful reception without collision (e.g.,
through the use of an acknowledgment scheme). We note that it is not re-
sponsible for ensuring that the packet is not dropped at the next-hop after a
successful reception (e.g., due to buffer overflow).

• Network layer: Based on the end-to-end destination, it is responsible for
making the routing decision and for informing the MAC layer of the iden-
tity of the next-hop node. The most commonly used network layer we will
consider hereafter is the Internet Protocol (IP).

1Lunar project: http://cn.cs.unibas.ch/projects/lunar/
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• Transport layer: It is responsible for ensuring the end-to-end connectivity
between two hosts. The two standard protocols are: (i) the User Datagram
Protocol (UDP), which is connectionless (i.e., best-effort) and is commonly
used for voice or video traffic; (ii) the Transmission Control Protocol (TCP),
which is connection-oriented and provides reliable in-order packet delivery
to the upper-layer by performing end-to-end congestion control.

• Application layer: It is the highest networking layer responsible for receiving
and delivering the data to the final application.

In this work, we propose to tackle both the scheduling and congestion-control
problem by focusing on the MAC and network layers. Moreover, performing the
congestion control at the transport layer provides good performance inthe wired
Internet, where packet losses are mostly due to buffer overflows and can be seen
as a sign of congestion in the network. Wireless multi-hop networks are funda-
mentally different, because of the variability of the wireless channel that leads to
packet losses and high delays. Indeed, TCP communications running on multi-hop
wireless links show relatively poor performance with low throughput [GSK04].

Performing congestion control in a hop-by-hop manner instead of end-to-end
has been shown to have the potential to improve the performance in a wireless
multi-hop network [YS07]. Therefore, an interesting alternative for the backhaul
of wireless mesh networks is to move the congestion-control feature from the trans-
port to the network layer. An additional advantage of such a change is that it also
covers the cases of voice and video traffic that are typical in emergencysituations
and that run over the UDP protocol. For the case of data communication requir-
ing to keep the in-order reliable delivery of TCP without congestion-control, new
transport or application protocols can be designed. Therefore, as thein-order re-
liable delivery of the transport layer is out-of scope of this thesis, we mostlybase
our study on UDP traffic that requires us to provide congestion control at a lower
layer.

2.3 The IEEE 802.11 Protocol

The set of standards in the IEEE 802.11 family includes different modulationtech-
niques that operate in the 2.4 GHz and 5 GHz frequency bands and that use the
same basic protocol [IEE99]. The first release includes the IEEE 802.11b and the
IEEE 802.11a protocols. The IEEE 802.11b protocol runs on the 2.4 GHzband by
using Direct-Sequence Spread Spectrum modulation (DSSS) and it provides data
rates up to 11 Mb/s. This protocol divides the frequency into 13 channelsof 22
MHz, which are spaced 5 MHz apart, thus making only up to three orthogonal
channels. The IEEE 802.11a protocol runs on the 5 GHz band by using Orthog-
onal Frequency-Division Multiplexing (OFDM) and it provides data ratesup to
54 Mb/s. After that, new flavors of the IEEE 802.11 protocol appeared;they run
on one of these two frequency bands and increase the achievable data rate by using
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Multiple Input Multiple Output (MIMO) techniques. The common point among all
the variations of the IEEE 802.11 family is the main scheduling protocol based on
Carrier Sense Multiple Access (CSMA) to decide when to transmit a packet. In the
subsequent section we describe the key components of the IEEE 802.11 protocol
and we point to [IEE99] for the technical details.

2.3.1 Description in Single-Hop Environments

The IEEE 802.11 protocol was originally designed for single-hop communications,
where the only existing problem is contention (i.e., how to efficiently avoid colli-
sions) and not congestion (i.e., how to avoid buffer overflow).
In order to solve the contention problem, a nodei that has a packet to send starts
the procedure by uniformly selecting a backoff valueβi in the interval[0; cwi− 1],
where the contention windowcwi starts with the minimal valueCWmin (CWmin =
25 for 802.11b and24 for 802.11a/g). Then, nodei monitors the medium to assess
whether communications take place or not. For each idle time slot (consisting of
20µs for 802.11b and9µs for 802.11a/g), the backoffβi is decremented by one,
otherwise it remains frozen if the medium is busy. Eventually, when the backoff
reaches zero, nodei sends its packet over the wireless medium and it verifies the
successful transmission of the packet to the destination through an acknowledg-
ment scheme in which the destination sends an ACK packet after the error-free
reception of a data packet.
In the case of a successful transmission, the exactly same procedure is repeated for
the next packet in the queue of nodei. However, if an ACK is not received at node
i, the data packet is considered as lost due to contention (i.e., collisions) andthus
the contention windowcwi is doubled before uniformly pickingβi. An unsuccess-
ful transmission is repeated at most seven times and at each time,cwi is doubled
until it reaches the maximal valueCWmax = 210. If the packet is not successfully
received after the7th trial, this packet is dropped and the system starts the process
again withcwi = CWmin for the next packet in the queue of nodei. Due to the
exponential backoff of IEEE 802.11, this contention-avoidance schemehas been
shown to deliver long-term fairness between the nodes, but not short-term fairness.

Nevertheless, the assumption behind the above process is that all the nodes
can correctly detect when the medium is idle or busy (i.e., all nodes are within the
same collision domain) and therefore collisions only occur when at least two nodes
randomly pick the same backoffβ. Even in single-hop communications, this as-
sumption can be violated if two clients are in the transmission range of the gateway
but not in the sensing range of each other (e.g., due to walls). This situation, known
as thehidden-node terminal, leads to a serious performance degradation in CSMA
schemes due to repeated collisions between the clients that cannot detect transmis-
sions from each other. The cause of this problem is that the channel condition seen
at the receiver is not known by the sender, and the solution in single-hopscenarios
is to add a collision avoidance scheme. In IEEE 802.11, it is implemented through
the optional use of Request-To-Send (RTS) and Clear-To-Send (CTS) messages.
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WAP Node1 Node4
Node3Node2

transmission/sensing range of Node 

Data flow

2

Figure 2.3:Simple4-hop linear scenario leading to problems with IEEE 802.11.

These messages inform all the nodes in the neighborhood of the source and the
destination of the duration of the data exchange. With RTS/CTS, a node startsby
sending a RTS message when its backoff expires and it waits to receive a CTS from
the destination before sending the data packet. In the meanwhile, all the nodes that
hear the RTS or CTS set their Network Allocation Vector (NAV), which ensures
that they remain silent for the entire duration of the transmission. Despite its colli-
sion avoidance property, the RTS/CTS mechanism also leads to message overhead
and performance losses therefore it is rarely used in practice (i.e., RTS/CTS is
turned off by default).

2.3.2 Challenges in Multi-Hop Environments

The IEEE 802.11 protocol was designed for single-hop communications, even
though it is currently heavily used in multi-hop scenarios such as in mesh net-
works. Unfortunately, there are fundamental differences between a single-hop and
multi-hop environment, which make the protocol behave poorly in the latter case.
Below, we discuss two features of the protocol that lead to poor performance in
a simple linear4-hop scenario as the one depicted in Figure 2.3. This problem
takes the form of network instability where the queue of the first relay builds-up
indefinitely.

Exponential Backoff and Collision Avoidance

In [AKT08], we show that the CSMA/CA mechanism as it is implemented in IEEE
802.11 leads to poor performance, because nodes may be silent upon thereception
of an RTS, even though no complete data exchange takes actually place.

To better understand this problem, we illustrate it through an example that
builds upon four phases. Figure 2.4(a) depicts the transmissions as a function of
the time, whereas Figure 2.4(b) shows the corresponding queues (b1, b2, b3) and the
values of the contention window (cw0, cw1, cw2, cw3) for the topology depicted in
Figure 2.3. We assume that the WAP always has traffic to send, so that its buffer
is full (b0 = ∞), and we start with node1 having already4 packets buffered. The
4-phase scenario leading to the build-up of node1 is then:
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Figure 2.4: Illustration of the perturbation creation due to the exponential backoff of the MAC
IEEE 802.11.

1. Phase 1:Packets are sent from node1 to node2 and node3. At the end of
this phase, each queue contains at least one packet.

2. Phase 2:Node3 transmits a packet to node4. Node1 is out of the sensing
range of node3: it is therefore unaware of this transmission, and sends un-
successful RTS. These RTS messages make theWAP set its NAV properly,
and increase the contention windowcw1 up to its maximal valueCWmax =
210.

3. Phase 3:Node2 transmits a packet to node3. As the WAP is unaware of
this transmission, its backoff counter is not frozen and will eventually reach
zero. But, the NAV of node1 is set by the RTS, which prevents it from
decrementing its contention window. Therefore, the contention window of
node1 remains at a high value (aroundCWmax).

4. Phase 4: The transmission of node2 terminates. Node1 and theWAP
still have packets to send and thus compete for the channel. However their
competition is not fair, because the contention window of node1 is much
larger than that of the WAP (∼ 210 compared to25 for 802.11b (or24 for
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802.11a) in our example, a ratio factor of32 (or even64)!). This unfair
advantage implies that theWAP will win the competition for the channel
many times in a row. As a result, the queue of node1 builds up.

This example shows that the exponential backoff with RTS/CTS as implemented in
IEEE 802.11 exacerbates the instability problem in multi-hop networks. However,
we stress that these mechanisms are not the root cause of instability. Indeed, in
Chapter 3 we analytically prove that the instability problem already occurs in more
fundamental schemes such as CSMA.

2.3.3 IEEE 802.11s

In July 2004, a Task Group was created to develop a new amendment to the IEEE
802.11 standard (called IEEE 802.11s) in order to address the challenges relative
to the multi-hop environment of mesh networks. The goal of the IEEE 802.11s
protocol is to perform routing at the MAC layer and also to bring security and
congestion control to mesh networks.

In order to deal with congestion control, the task group proposes to use an
explicit congestion notification message that is sent by a node to its neighbors
so that they can adapt their sending rate. In Chapter 5, we will show that itis
possible to eliminate these explicit notification messages by taking advantage of
the broadcast nature of the wireless medium.

2.4 Desired Properties of Mesh Networks

Having described the goals, the architecture, and the challenges of IEEE802.11
wireless mesh networks, we now clearly state the system properties that arere-
quired for the large-scale adoption of WMNs.

• High Throughput: Mesh networks need to be efficient and thus they should
be able to deliver an end-to-end throughput that is as close as possible tothe
theoretical network capacity. To achieve this, WMNs need to avoid suffering
from the typical sources of throughput degradation such as packet collisions
and buffer overflows.

• Low Delays: Another important metric is the end-to-end delay that has to
be maintained as low as possible in order to support real-time services such
as voice traffic and video on demand. To reach this objective, the network
needs to be stable with small queues at each of the relay nodes.

• Fairness:The two previous criterion focus on the performance within a sin-
gle flow. In a real mesh deployment, there are typically multiple flows con-
currently present in the network. Therefore it is important that the network
delivers a certain level of fairness in order to avoid the complete starvation
of certain flows.
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• Adaptability: Wireless mesh networks have to cope with two sources of
variability. The first source comes from the variability of the traffic matrix
with the dynamic arrival or departure of new sources in the network. The
second is due to the intrinsic variability of the shared wireless medium that
is vulnerable to a large number of environmental changes (such as people
passing by, electronic devices turned on and doors being opened/closed).

• Robustness:As already discussed in Chapter 1, the capacity of a wireless
network significantly differs from a wired network, because it is usually un-
known and difficult to measure due to the time-variability. Therefore it is
important that the network automatically adapts and that the performance
does not degrade (or even collapse) when the sources receive packets at a
rate above the network capacity.
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Chapter 3

Modeling the Instability of Mesh
Networks

3.1 Background

3.1.1 Problem Statement

We consider a linear topology such as the one in the backbone of mesh networks,
where each node hears only its direct neighbors (cf. Figure 3.1). A common sce-
nario in these networks occurs when the gateway, the WAP, needs to sendpackets
to an end-user that is beyond its direct coverage range. To achieve thisgoal, the
packets transit through the wireless backbone, forwarded by multiple TAPs. As the
backbone part is a key element of any WMN, we are interested in optimizing its
performance as far as throughput and delay are concerned.

WAP TAP1 TAP4
TAP3TAP2

transmission/sensing range of 

Data flow

TAP2

...
(node0) (node4)(node3)(node2)(node1)

z0 z3z2z1

Figure 3.1:Linear topology of a WMN backbone.

In this setting we show through measurements on a testbed, an unexpected be-
havior of IEEE 802.11 multi-hop networks, which is the striking difference insta-
bility between3-hop and4-hop networks. Our testbed is composed of two laptops
that act as the source and sink of the traffic and five wireless routers that act as the
WAP (node0) andTAPi (nodei with 1 ≤ i ≤ 4). Each laptop runs on Linux with

17
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Figure 3.2:Experimental results for the queue evolution of each relay node in3-hop and4-hop

topologies. A time slot corresponds to an event when the queue size is recorded, that is every time a

packet arrives at a node.

the softwareIperf1 used to generate saturated UDP traffic with a payload size of
1470 bytes. Each laptop is then connected through a wired cable to either theWAP
or the last TAP (i.e., node4). The wireless routers are Asus WL-500gP running
the versionKamikaze 7.07of the OpenWRT firmware2. We change the mini-PCI
WiFi cards to Atheros cards in order to benefit from the flexibility of the MadWifi
driver [MAD]. This allows the modifications of the driver source code to perform
both queue monitoring and the modification of the contention window. We then
set the routers to run in ad-hoc mode on channel13 of IEEE 802.11b at the data
rate of 1Mb/s and without RTS/CTS. To avoid interference from neighboring net-
works, we perform our measurements in the basement of the BC building at EPFL,
where no other wireless networks can be sensed. Finally, we set our topology to
match our theoretical study: direct neighbors can communicate together, but nodes
separated by two hops or more cannot hear each other.

The major finding is the drastically different stability behavior of3-hop and
4-hop topologies, which appears to be counter-intuitive. Figure 3.2 showsthat the
3-hop topology is stable, but the4-hop network is unstable. Furthermore, the4-
hop instability is due to node1, whose queue length exhibits a transient behavior,
i.e., which grows indefinitely until it reaches the hardware limit (50 packets for our
routers).

In this chapter we seek to better understand the root causes behind this exper-
imental stability result. Toward this goal, we introduce an analytical model that
is inspired from the behavior of CSMA/CA protocols (e.g., 802.11-like protocols)
with some necessary simplifications for the sake of tractability. We emphasize that,
given the mathematical assumptions, our analysis is exact.

1Iperf - The TCP/UDP bandwidth measurement tool: http://dast.nlanr.net/Projects/Iperf/
2OpenWRT firmware: http://openwrt.org/
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3.1.2 Related Work

The unarguable success of the IEEE 802.11 [IEE99] protocol in WiFi communi-
cations has lead to the current development of a new draft focusing on multi-hop
networks such as WMNs, 802.11s [CK, DBvdVH08]. However, until therelease
of 802.11s, 802.11b/g remains the standard and it is therefore essential tounder-
stand its behavior. Towards this goal, previous works [AKT08, NL07, DBvdVH08]
present drawbacks of the current protocol in a multi-hop environment. In [GSK08],
Garetto et al. present a model to derive the throughput of flows in a multi-hop net-
work. Furthermore, Ng et al. identify the existence of an optimal offered load
and propose source-rate limiting at the application layer as a solution [NL07]. Our
approach differs in the sense that we introduce an analytical model that focuses
on queue stability and therefore gives insight into the existence of a maximal fea-
sible load. Furthermore our stabilization strategy uses solely the MAC layer and
therefore does not impose any limiting requirements on the client side.

Tackling the congestion problem at the transport layer, e.g. TCP, is studied
in [SGM+08, RJJP08]. Shi et al. focus on inter-flow competition by studying the
starvation occurring when a one-hop flow competes with a two-hop flow andpro-
pose a counter-starvation technique that solves the problem. Similarly Rangwala
et al. propose another rate-control protocol that achieves better fairness and effi-
ciency than TCP. Our work differs as we focus on the link competition that takes
place within a single flow and study the factors leading to the transition from sta-
bility to instability. Thus, rather than relying on the transport layer, we throttle
congestion at the MAC (link) layer (in the OSI model, this functionality of the
link layer is referred to as flow control [GK80]). Analytical and simulation re-
sults showing that a hop-by-hop congestion algorithm outperforms an end-to-end
version are presented in [YS07] by Yi et al. Their findings reinforce the need to
implement congestion control at the MAC layer.

In [LE99] Luo et al. study the system stability of random access protocolsin
single-hop settings. Our work goes further by analyzing the multi-hop scenario
where the queue states of successive nodes are dependent.

The distributed scheduling problem, which aims at ensuring stability and max-
imal throughput, has witnessed growing interest in the research community. The
seminal work of Tassiulas [TE92] introduces a back-pressure algorithm that uses
global network queue information to derive an optimal routing/scheduling policy
and achieve stability and maximal throughput. Several extensions of this work
have been conducted, e.g., Ying et al. reduce the number of queues maintained at
each node to enhance scalability [YST08]. Further work on throughputand fairness
guarantee can be found in [CKLS08], where Chapokar et al. introduce a distributed
scheduling strategy that attains a guaranteed ratio of the maximal throughput.A
more complete review of the stability problem in scheduling is presented by Yi et
al. in [YPC08], where the tradeoff between complexity, utility and delay is dis-
cussed in depth. Finally a scheduling policy based on the queue length is presented
and studied analytically by Gupta et al. in [GLS07]. These works proposecon-
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ceptual scheduling solutions that keep the network stable, but depart from IEEE
802.11 protocols to various extents, and for which no practical implementationex-
ists to date. Our work differs from this previous body of work, as we focus on the
stability of existingCSMA protocols, e.g. IEEE 802.11. To the best of our knowl-
edge, we are the first to identify the key factors (network size and stealingeffect)
that affect the network stability. Furthermore, following our analytical study, we
develop a practical stabilization strategy and validate experimentally our results
with off-the-shelf hardware.

3.2 Analytical Model

3.2.1 MAC Layer Description

The first common assumption [CKLS08, ES05, LE99, TE92, YST08] is thatof a
slotted discrete-time axis, in other words, each transmission takes one time slot
and all the transmissions occurring during a given slot start and finish atthe same
time. We consider a greedy source model, i.e., the WAP (gateway) always has
new packets ready for transmission. Assuming aK-hop system, the packets flow
from the WAP toTAPK , via TAP1, TAP2, . . ., TAPK−1. TAPs do not generate
packets of their own. Each TAP is equipped with an infinite buffer.

We assume that the system evolves according to a two-phase mechanism: alink
competition phaseand atransmission phase. The link competition phase, whose
length is assumed to be negligible, occurs at the beginning of each slot. During
this phase, all the nodes with a non-empty queue compete for the channel and a
pattern of successful transmissions emerges, referred to astransmission pattern
in this chapter. Given the current state of queues, the link competition process is
assumed to be independent of competitions that happened in previous slots.This
assumption is similar to the commonly used assumption of exponentially (memo-
ryless) distributed backoffs. During this phase, non-empty nodes are sequentially
chosen at random and added to the transmission pattern if and only if they donot
interfere with already selected communications (with the notable exception of the
stealing effectdescribed in Section 3.2.3). The final pattern is obtained when no
more nodes can be added without interfering with the others.

The second phase of the model is fairly straightforward as it consists in apply-
ing the transmission pattern from the previous phase in order to update the queue
status of the system. This queue status information is of utmost importance for
our analysis because it is the parameter that indicates whether the network remains
stable (no queue explodes) or suffers congestion (one or more queues build up).

3.2.2 Discrete Markov Chain Model

We now formalize the model previously described mathematically. All packets are
generated by the WAP (node 0), and are forwarded to the last TAP (node K) by
successive transmissions via the intermediate nodes (TAPs) 1 toK−1. A time step
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n ∈ N corresponds to the successful transmission of a packet from some node i to
its neighbori + 1, or if K is large enough, of a set of packets from different non-
interfering nodesi, j, . . . to nodesi + 1, j + 1, . . ., provided these transmissions
overlap in time (the transmitters and receivers must therefore not interferewith
each other). We assume that node0 always has packets to transmit (infinite queue),
and that nodeK consumes immediately the packets, as it is the exit point of the
backbone (its queue is always0). We are interested in the evolution of the queue
sizesbi of relaying nodes1 ≤ i ≤ K − 1 over time, and therefore we adopt, as a
state variable of the system at timen, the vector

~b(n) = [b1(n) b2(n) . . . bK−1(n)]
T ,

with T denoting transposition. We also introduce a set ofK auxiliary binary vari-
ableszi, 0 ≤ i ≤ K − 1, representing theith link activity at time slotn: zi(n) = 1
if a packet was successfully transmitted from nodei to nodei + 1 during thenth

time slot, andzi(n) = 0 otherwise. Observing that

bi(n+ 1) = bi(n) + zi−1(n)− zi(n),

we can recast the dynamics of the system as

~b(n+ 1) = ~b(n) +A ∗ ~z(n) (3.1)

where

~z(n) = [z0(n) z1(n) z2(n) . . . zK−1(n)]
T

A =













1 −1 0 . . . 0

0 1 −1 0
...

...
.. . . . . . .. 0

0 . . . 0 1 −1













.

Finally, the activity of a linkzi depends on the queue sizes of all the nodes, which
we cast aszi = gi(~b) for some random functiongi(·) of the queue size vector, or
in vector form as

~z(n) = g(~b(n)). (3.2)

The specification ofg = [g0, . . . , gK−1]
T is the less straightforward part of the

model, as it requires entering in some additional details of the CSMA/CA protocol,
which we defer to the next sections. We will first expose it in Section 3.3 fora
K = 3 hops network, and then move to the larger networks withK = 4 and
K ≥ 5 in the subsequent section, as the specification ofg comes with some level
of complexity asK gets larger. Nevertheless, we can already mention here two
simple constraints thatg must verify:

1. Nodei cannot transmit if its queue is empty, and therefore we havezi =
gi(~b) = 0 if bi = 0;
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2. Nodes that successfully transmit in the same time slot must be at least 2 hops
apart, as otherwise the packet from nodei would collide at nodei + 1 with
the packet from nodei+ 2. Hence

zizi+k = 0 for k ∈ {−2,−1, 1, 2}. (3.3)

We observe that (3.1) and (3.2) make the model a discrete-time, irreducible
Markov chain. The (in)stability of the network coincides with its (non-)ergodicity.

3.2.3 Stealing Effect Phenomenon

The stealing effect phenomenon is a result of the well-known hidden nodeproblem
that occurs in multi-hop topologies. Indeed, the existence of directional multi-hop
flows in the backbone of mesh networks, from node0 to nodeK may induce un-
fairness in a way that does not arise in single-hop scenarios. Figure 3.3illustrates
an example where the stealing effect occurs. When nodei first enters the link com-
petition phase, nodei + 2 may be unaware of this transmission attempt. Because
it senses the medium to be idle, nodei + 2 may therefore start a concurrent trans-
mission to nodei + 3 even though it lost the competition phase (i.e. nodei + 2
selected a larger backoff than nodei). As a collision occurs at nodei + 1 (due
to the broadcast nature of the wireless medium), nodei will experience an unsuc-
cessful transmission, whereas the transmission from nodei + 2 will succeed. We
refer to this unfairness artifact as the stealing effect, which differs from the classi-
cal capture effect. The latter pertains to packets transmitted to the same destination.

Definition 3.1 (Stealing Effect) The stealing effect occurs when a nodei+2 suc-
cessfully captures the channel from an upstream nodei, even though it accesses
the medium later. We definep to be the probability of the occurrence of the stealing
effect.

Collision

competition phase

transmission phase

zi zi+2

Figure 3.3:Stealing effect scenario.
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In IEEE 802.11, the stealing effect corresponds to the event where node i + 2
captures the channel, even though it has a larger backoff value than node i. The
probability of this event occurring depends on the specific protocol implementa-
tion. If the optional RTS/CTS handshake is disabled, thenp → 1. If RTS/CTS
is enabled, thenp is typically much smaller, but still non-zero because RTS mes-
sages may collide [SGM+08]. Indeed, the transmission time of a control message
(e.g., the RTS transmission time at the 1Mb/s basic rate is352µs) is non-negligible
compared to the duration of a backoff slot (20µs).

In our model, the stealing effect is captured by having the functiong(·) in
(3.2) depend onp. As revealed by our analysis, a positive and somewhat counter-
intuitive consequence of the stealing effect is the promotion of a laminar packet
flow, specifically, a smooth propagation of packets. Indeed, by favoring down-
stream links over upstream ones, this creates a form of virtual back-pressure that
prevents packets from being pushed too quickly into the network.

3.2.4 Stability Definition

A queue is stable when its occupancy does not tend to increase indefinitely.More
formally, we adopt the usual definitions of stability (see e.g. Section 2.2 of [BJL08]).

Definition 3.2 (Stability) A queue is stable when its evolution is ergodic (it goes
back to zero almost surely in a finite time). A network is stable when the queues of
all forwarding nodes (i.e., all TAPs) are stable.

3.3 Stability of 3-Hop Networks

Let us first analyze the3-hop topology, which remains relatively simple because
only one link can be active at a given time slot. Indeed, the only three possible
transmission patterns are

~z ∈ {[1 0 0]T , [0 1 0]T , [0 0 1]T }.

We can now complete the description of the functiong(·), before analyzing the
ergodicity of the Markov chain.

3.3.1 System Evolution

The role of the stochastic functiong(·) is to map a queue status~b to a transmission
pattern~z with a certain probability.

First, in the case of an idealized CSMA/CA model without the stealing effect
(p = 0), all non-empty nodes have exactly the same probability of being scheduled.
That is, if only node0 and node1 (or, respectively, node2) have a packet to send,
both patterns[1 0 0]T and [0 1 0]T (resp.,[0 0 1]T ) happen with a probability
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Figure 3.4:Random walk inN2 modeling the3-hop network. where the 4 regions are: (A){0; 0},

(B) {b1 > 0; 0}, (C) {0; b2 > 0} and (D){b1 > 0; b2 > 0}.

of 1/2. Similarly, when all three nodes have a packet to send, each of the three
possible transmission patterns happens with a probability of1/3.

More generally, when we include the stealing effect, we capture the bias to-
wards downstream links that are two hops away. When only node0 and node
1 compete for the channel, nothing is changed and the probability of successre-
mains1/2 as they are only separated by one single hop. However, when node0
and node2 compete together, there is a probabilityp that node2 steals the channel.

This leads us to define functiong(·) differently for each region ofN2 as shown
in Figure 3.4. First, in regionA = {b1(n) = 0, b2(n) = 0},

g([b1(n) b2(n)]
T ) = [1 0 0]T .

In regionB = {b1(n) > 0, b2(n) = 0} we have that

g([b1(n) b2(n)]
T ) =

{

[1 0 0]T with probability1/2
[0 1 0]T with probability1/2.

In regionC = {b1(n) = 0, b2(n) > 0},

g([b1(n) b2(n)]
T ) =

{

[1 0 0]T with probability(1− p)/2

[0 0 1]T with probability(1 + p)/2.

Finally, in regionD = {b1(n) > 0, b2(n) > 0}, all three nodes compete, and node
2 can still steal the channel from node0, hence

g([b1(n) b2(n)]
T ) =











[1 0 0]T with probability(1− p)/3

[0 1 0]T with probability1/3
[0 0 1]T with probability(1 + p)/3.
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3.3.2 Stability Analysis

The queue evolution from (3.1) is a random walk inN
2, as depicted in Figure 3.4.

Theorem 3.1 shows the stabilizing influence of the stealing effect.

Theorem 3.1 A 3-hop network is unstable for the casep = 0 and it is stable for
all 0 < p ≤ 1.

Proof: The instability of the casep = 0 is readily proved with the non-ergodicity
theorem (see Appendix A) using the Lyapunov function

h(b1, b2) = b1, (3.4)

and setting the constants
c = d = 1.

Indeed, it is easy to note that in this case

E

[

h(~b(n+ 1)) | h(~b(n))
]

− h(~b(n)) ≥ 0,

is verified for all the three regions of the space satisfyingh(~b(n) > 1 (i.e., the
regionsB, C andD).

Next we prove the stability of the cases0 < p ≤ 1 by using Foster’s theorem
(see Appendix) with the Lyapunov function

h(b1, b2) = b21 + b22 − b1b2,

the finite set
F = {0 ≤ b1, b2 < 5/p} ,

the functionk = 1 and the notations

µb1,b2(n) = E

[

h(~b(n+ 1)) | h(~b(n)) = h(b1, b2)
]

ǫb1,b2(n) = µb1,b2(n)− h(b1, b2),

whereǫb1,b2(n) can be interpreted as the drift of the random walk at timen. Then
we verify Foster’s theorem for all the three regions ofN

2 \ F .
After some computations, we find that for RegionB \ F ,

ǫb1,0(n) =
1

2
(b1 + 1)2 +

1

2
((b1 − 1)2 + 1− (b1 − 1))− b21

= 2− b1(n)/2 < 0.

Likewise, for regionC \ F , we get

ǫ0,b2(n) =
1 + p

2
(b2 − 1)2 +

1− p

2
(1 + b22 − b2)− b22

= 1− (3 + p)b2(n)/2 < 0.
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Figure 3.5:Queue evolution for3-hop with differentp values.

Finally, for regionD \ F , we have

ǫb1,b2(n) =
1− p

3
((b1 + 1)2 + b22 − (b1 + 1)b2) +

1

3
((b1 − 1)2 + (b2 + 1)2 − (b1 − 1)(b2 + 1)) +

1 + p

3
(b21 + (b2 − 1)2 − b1(b2 − 1)) +

b1b2 − b21 − b22

=
1− p

3
(1 + 2b1 − b2) +

1

3
(3− 3b1 + 3b2) +

1 + p

3
(1 + b1 − 2b2)

= 5/3− p(b1(n) + b2(n))/3 < 0.

Consequently, the two conditions of the theorem are satisfied and stability is proved.
�

Finally, we simulate our Markov chain model in MATLAB and in Figure 3.5
we present the effect ofp on the queue evolution. We also mention, that our the-
oretical results give insight into monitoring the queue of node 1 in order to assess
the stability of the system (i.e., the Lyapunov function of (3.4) only considersb1 to
prove instability).
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Figure 3.6:Decision treeto obtain~z = g(~b) for the4-hop model.

3.4 Instability of 4-Hop Networks

The 4-hop system is relatively similar to the3-hop, except that the functiong(·)
becomes more complex to derive. Indeed the five possible patterns become

~z ∈ {[1 0 0 0]T , [0 1 0 0]T , [0 0 1 0]T , [0 0 0 1]T , [1 0 0 1]T }.

3.4.1 System Evolution

The drastic difference when moving to4-hop topologies is that nodes that can
transmit concurrently (i.e., node0 and node3) will reinforceeach other and will
increase their transmission probability [DT06, Dou07].

This interdependence makes the determination ofg(·) less straightforward than
in the3-hop case. We capture this complexity by adecision tree, depicted in Fig-
ure 3.6, which maps all the sequential events that can occur for the selection of the
transmission pattern (one of the states in bold in Figure 3.6).

Before describing the exact mechanisms behind our decision tree, we introduce
some necessary notations. First, we define the iteration stepm that represents the
step between two sequential events (an event corresponds to either the inclusion of
a node in the transmission pattern or the removal of a node from the competition).
As shown in Figure 3.6, the decision-tree process ends in two iterations (m ∈
{0, 1, 2}) and this is due to the fact that at most two links can be active concurrently
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in the transmission pattern of a4-hop network.
Secondly, we introduce the two indicator vectors~δ(n) and~Sm. The four entries

δi(n) = 11{bi(n)>0}

indicate which queues are occupied (δi(n) = 1) or empty (δi(n) = 0). The vector

~Sm = [Sm
0 . . . Sm

3 ]T ,

obtained through an iterative process, indicates the set of nodes that are still in
competition for the channel at iteration stepm. Initially, all the nodes with a non-
empty queue compete for the channel at step0 and therefore

~S0 = ~δ(n).

Then the indicator vector at stepm, ~Sm, is obtained by removing from~Sm−1 the
node that was selected at iteration stepm and its direct neighbors.
For example, if we start from the fully-occupied case

~S0 = [1 1 1 1]T

and follow the path where node1 is selected (z1 is set to 1), the nodes0, 1 and2
are removed from the competition and the new indicator vector becomes

~S1 = [0 0 0 1]T

for this path.
The exact probabilities of each link of the decision tree are denoted in Fig-

ure 3.6. The intuition behind these probabilities is that at stepm all nodesi that are
still competing for the channel (i.e.,Sm

i = 1) have an equal probability of being
selected for transmission. Furthermore, ifzi−2 is already set to 1 at stepm, the
selected nodei has a probabilityp of successfully stealing the channel, in which
casezi−2 is set to0 andzi is set to1 instead. Otherwise,zi is set to0.

The computation of the different transmission pattern probabilities (i.e., the
determination of the functiong(·)) is obtained by summing up thepath probability
of each of the paths leading to one of the five possible transmission patterns (state
circled in bold in Figure 3.6).
In other words, the probability of the pattern

[1 0 0 0]T

is the probability of havingz0 set to 1 at step0, multiplied by the probability of
keeping this selection at step1 (i.e., no additional active link or stealing effect).
Similarly, the probability of the pattern

[0 1 0 0]T
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is the probability of havingz1 set to 1 at step0, multiplied by the probability of
keeping this selection at step1.
Then, the probability of the pattern

[0 0 1 0]T

is obtained by adding: (i) the probability of havingz2 set to 1 at step0, multiplied
by the probability of having this selection maintained at step1 and (ii) the prob-
ability of havingz0 set to1 at step0, multiplied by the probability of having the
stealing effect at step1.
Likewise, the probability of the pattern

[0 0 0 1]T

is obtained by adding: (i) the probability of havingz3 set to 1 at step0, multiplied
by the probability of having this selection maintained at step1 and (ii) the prob-
ability of havingz1 set to1 at step0, multiplied by the probability of having the
stealing effect at step1.
Finally, the probability of the pattern

[1 0 0 1]T

is obtained by adding: (i) the probability of havingz0 set to1 at step0, multiplied
by the probability of havingz3 set to1 at step1 and (ii) the probability of having
z3 set to1 at step0 multiplied by the probability of havingz0 set to1 at step1.

As in Figure 3.4, Figure 3.7 summarizes the probabilities of the transmission
patterns (i.e.,g(·)) for each of the8 regions ofN3:

A = {0, 0, 0}

B = {b1(n) > 0, 0, 0}

C = {0, b2(n) > 0, 0}

D = {b1(n) > 0, b2(n) > 0, 0}

E = {0, 0, b3(n) > 0}

F = {b1(n) > 0, 0, b3(n) > 0}

G = {0, b2(n) > 0, b3(n) > 0}

H = {b1(n) > 0, b2(n) > 0, b3(n) > 0}.
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Figure 3.7:Random walk inN3 for a4-hop network.

3.4.2 Stability Analysis

Similarly to the3-hop network, we model the queue evolution by the random walk
in N

3 depicted in Figure 3.7. However, contrary to the3-hop case, the4-hop case
presents a structural factor that makes the system unstable either with or without
the stealing effect as stated in Theorem 3.2.

Theorem 3.2 A 4-hop network is unstable for all0 ≤ p ≤ 1.

Proof: Starting withp 6= 1, we introduce the Lyapunov function

h(b1, b2, b3) = b1 +
p

1 + p
b3, (3.5)

the constantsc = 3, d = 1, ǫ = (1− p)/36 and the function

k(i) =







3 if i ∈ regionB
2 if i ∈ regionD
1 otherwise

, (3.6)

Furthermore we introduce the notation

µk,b1,b2,b3(n) = E[h(~b(n+ k))|h(~b(n) = h(b1, b2, b3))]

ǫk,b1,b2,b3(n) = µk,b1,b2,b3(n)− h(b1, b2, b3),
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whereǫk,b1,b2,b3(n) is the drift of thek-step random walk. Having

Sc = {~i : h(~i) > c},

we verify condition2 of the transience theorem (see Appendix A) in all regions of
Sc, starting with the regions havingk(i) = 1.
For regionA ∩ Sc, we obtain

ǫ1,0,0,0 = 1 ≥ ǫ.

For regionC ∩ Sc, we obtain

ǫ1,0,b2,0 =
1− p

2
+

1 + p

2

p

1 + p
=

1

2
≥ ǫ.

For regionE ∩ Sc, we obtain

ǫ1,0,0,b3 = 1−
p

1 + p
=

1

1 + p
≥ ǫ

For regionF ∩ Sc, we obtain

ǫ1,b1,0,b3 = −
1− p

3
−

1 + 2p

6

p

1 + p
+

1

2
(1−

p

1 + p
)

=
1− p

6(1 + p)
≥ ǫ.

For regionG ∩ Sc, we obtain

ǫ1,0,b2,b3 =
2 + p

6

p

1 + p
+

4− p

6
(1−

p

1 + p
)

=
4 + p+ p2

6(1 + p)
≥ ǫ.

For regionH ∩ Sc, we obtain

ǫ1,b1,b2,b3 = −
1− p

4
+

2 + p

8

p

1 + p
−

1 + 2p

8

p

1 + p
+

3− p

8
(1−

p

1 + p
)

=
p2 + 1

8(1 + p)
≥ ǫ.

Following the same methodology, we obtain after some computations the2-step
drift (i.e., k(i) = 2) for regionD ∩ Sc

ǫ2,b1,b2,0 =

{

1−p
18 ≥ ǫ for b2 = 1
1−p
24 + p2

12 ≥ ǫ otherwise
,

And the3-step drift (i.e.,k(i) = 3) for regionB ∩ Sc

ǫ3,b1,0,0 =
1− p

36
≥ ǫ.
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Figure 3.8:Queue evolution for4-hop with differentp values.

Consequently, as conditions1 and3 are trivially satisfied, the system is unstable
for p 6= 1.

In the casep = 1, we prove the instability of the network by using the non-
ergodicity theorem (see Appendix A) with the Lyapunov function

h(b1, b2, b3) = 2b1 + b3, (3.7)

and setting the constantsc = d = 2 in that theorem. Indeed, by computing the
drift ǫ(~b(n)) = ǫ1,b1,b2,b3(n), we obtain

ǫ(~b(n)) =











0 if ~b(n) ∈ regionB,D, F

1 if ~b(n) ∈ regionC,E,G

2/8 if ~b(n) ∈ regionH.

(3.8)

Therefore, as we have non-negative values for all the regions of thespace such that
h(~b(n)) > c and as the drift is upper-bounded byd, we end our proof forp = 1 by
applying the non-ergodicity theorem.
�

Finally, we present in Figure 3.8 the simulation results showing instability in-
dependently of thep value. These results are fundamental for real networks as they
reveal the tendency of CSMA to naturally produce instability for4-hop topologies.

3.4.3 Extension to LargerK-Hop Topologies

In the case without the stealing effect (p = 0), we can easily prove the network
instability for K = 2, as we did in the previous sections forK = 3, 4. When
p = 0, the instability of aK-hop topology for anyK > 4 follows then from the
following lemma.
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Lemma 3.1 (K-hop Instability) If p = 0, a sufficient condition for a linearK-
hop network to satisfy the conditions of the non-ergodicity theorem and thus tobe
unstable is that both the(K − 1) and(K − 3) hop networks satisfy the conditions
of the non-ergodicity theorem.

Proof: Let us denote the next step expectation of aK-hop network by

µK
i (n) = E[h(~b(n+ 1)) | h(~b(n)) = h(~i)].

Hereh(~b) = b1 and therefore we can write

µK(n) = αµK
0 (n) + (1− α)µK

1 (n) (3.9)

where
α = P(zK−1(n) = 0)

and

µK
0 (n) = E [b1(n+ 1) | b1(n) = b1, zK−1(n) = 0]

= µK−1(n)

µK
1 (n) = E [b1(n+ 1) | b1(n) = b1, zK−1(n) = 1]

= E [b1(n+ 1) | b1(n) = b1, zK−3(n) = zK−2(n) = 0]

= µK−3(n)

where we have used (3.3) and the independence ofbi(n+1)−bi(n), 1 ≤ i ≤ K−3,
from bK−2(n) andbK−1(n), conditionally tozK−3(n) = zK−2(n) = 0. Therefore
(3.9) becomes

µK(n) = αµK−1(n) + (1− α)µK−3(n),

which implies thatµK(n) verifies the inequalities of the non-ergodicity theorem if
µK−1(n) andµK−3(n) do.
�

This structural instability of the MAC layer for linear topologies is of utmost
importance for the design of future wireless mesh networks. Indeed, queue instabil-
ity means delay and packet drops. These artifacts are undesirable and amechanism
to prevent instability should be designed. Fortunately, some simplestatic stabiliza-
tion strategiesare implementable with off-the-shelf hardware, as described in the
next section.

3.5 Static Stabilization Strategy

3.5.1 Source Throttling

In the previous sections, we showed that system instability is caused by the node
next to the source (i.e., node1). The main reason for this problem is that, over the
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Figure 3.9:Queue evolution for4-hop with differentp andq values.

long run, node0 is given more chances than node1 to successfully transmit, which
results in a queue build-up at node1.

Our MAC layer solution, calledpenalty strategy, works by reducing the odds
of channel access by node0. This strategy, besides its useful stabilization prop-
erty, is easily implementable with off-the-shelf hardware. For instance, the odds
of channel access for an IEEE 802.11 node can be affected using theminimum
contention window parameter (CWmin). In particular, the higher theCWmin, the
lower the odds of channel access. Therefore our penalty strategy can be deployed
by setting node0 with a higherCWmin (i.e., cw0) than the other nodes (i.e.,cwi

for i > 0).

3.5.2 Penalty Model

We model the penalty strategy by introducing athrottling factor q ∈ [0, 1] that
shows the degree at which the input rate is throttled at the source. That is,q = 1
means the input rate is not constrained and then node0 is not penalized (similar to
our previous model). On the contrary,q = 0 means node0 is completely starved
and the input rate is null.

A useful analogy to this strategy is a water pipe with the tap aperture beingq.
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The higher the value ofq, the higher the inflow into the network, but also the more
likely the flow will be turbulent. Mapping this back to our system, we deduce that
there exists a throttling factor thresholdq∗ below which the system is stable.

The impact of the throttling factor is captured in our analytical model by choos-
ing node0 with probability

qSm
0

qSm
0 +

∑

j>0 S
m
j

,

whereas nodei 6= 0 is selected with probability

Sm
i

qSm
0 +

∑

j>0 S
m
j

.

For instance, consider aK-hop network where at a given time slot only nodes
0 and 1 have packets to transmit: then node 0 wins with probability

P(z0) = q/(1 + q)

and node 1 wins with complementary probability

P(z1) = 1/(1 + q).

3.5.3 Theoretical Analysis

Next we analyze3-hop and4-hop networks, after implementing the penalization
strategy.

Beginning with the previously unstable3-hop case (p = 0), we prove the stabi-
lization effect of the throttling factor and the existence of the thresholdq∗ = 1 by
applying a similar methodology than in Section 3.3.2. That is, using the function

h(b1, b2) = b21 + b22,

and the finite set

F =

{

0 ≤ b1 <
3 + q

2(1− q)

}

⋂

{

0 ≤ b2 <
1 + q

2

}

,

we verify Foster’s theorem (see Appendix A) and therefore prove thestability of
the3-hop case for allq < 1.

Next, we consider4-hop topologies. We observe that the stealing effect has an
important impact on stability. Indeed, as depicted on Figure 3.9, the thresholdq∗ is
highly dependent on the stealing effect probabilityp. The higherp, the higherq∗.

We derive theoretical bounds onq∗ as follows. First, we obtain a lower-bound
through a stability argument. The proof is obtained by a generalized versionof
Foster’s theorem (Theorem 2.2.2, [FMM95]) that usesk-step expectation instead
of 1-step expectation. We apply it with the Lyapunov function

h = b1 + b2 + b3,
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takingk = 18.
The upper-bound is similarly obtained by the non-ergodicity theorem (see Ap-
pendix A) with the function

h = b1 +
p

1 + p
b3

and the parameterk = 15.
Following this procedure forp = 0, we obtain

0.37 < q∗ ≤ 0.884.

Similarly, whenp = 1, we find

0.76 < q∗ ≤ 0.964.

It should be noticed that the bounds onq∗ could be made tighter by either inves-
tigating different Lyapunov functions or by increasing the valuek (i.e., increasing
the number of steps of thek-steps expectation at the expense of higher computa-
tional cost).
Nevertheless, the current bounds already validate some results of Figure 3.9. For
instance,q = 0.75 < 0.76 is stable forp = 1 andq = 0.9 > 0.884 is unstable for
p = 0.

3.5.4 Experimental Analysis

We test our stabilization strategy on our experimental testbed described in Sec-
tion 3.1. We implement the factorq in our testbed by setting a different value of
CWmin at the WAP (i.e.,cw0) than at the other nodes (i.e.,cwi>0). Thus, to imple-
mentq = 1/2, we usecw0 = 26 andcwi>0 = 25. Note that our hardware forced
us to set the contention window as a power of2. The results of Figure 3.10 confirm
experimentally the efficiency of the throttling factor in stabilizing the network. In-
deed, a value ofq = 1/2 suffices to change the network behavior from unstable to
stable.

Table 3.1 presents mean throughput statistics for different network sizesand
values ofq. The results are obtained by running experiments for400 s and measur-
ing throughput over non-overlapping 5 s intervals. Each entry in the tablethus rep-
resents an average of 80 samples. Corresponding standard deviationsare also pro-
vided. We make the following observations. First, there is a significant throughput
gap between3-hop and4-hop networks, which can be attributed to the distributed
nature of IEEE 802.11 that does not always make the best spatial reuseof the chan-
nel. Second, for the case of4-hop networks, the mean throughput decreases withq,
but only whenq becomes very small (i.e.,q = 1/16 or smaller). Up to that point,
the overhead caused by using a larger contention window for the WAP is not too
significant.
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Figure 3.10:Experimental results for the queue evolution for the4-hop topologies with different

throttling factorsq (we recallq = 1 is unstable).

Mean throughput Standard deviation

3-hop withq = 1 240.5 kb/s 15.8

4-hop withq = 1 146.0 kb/s 16.7
4-hop withq = 1/2 157.5 kb/s 16.3
4-hop withq = 1/4 141.5 kb/s 14.5
4-hop withq = 1/8 143.3 kb/s 17.4
4-hop withq = 1/16 108.7 kb/s 11.8
4-hop withq = 1/32 96.9 kb/s 11.1
4-hop withq = 1/64 81.8 kb/s 13.4

Table 3.1:Mean throughput and standard deviation for networks of different sizes and for different

throttling factorsq.

3.6 Simulations on Multi-Flow Topologies

Up to this point, we have focused on single flow linear topologies as they are the
building blocks of more general mesh topologies. However, to show that thesta-
bility problem also arises in more complex topologies, in this section we present
the simulation results obtained with the ns-2 simulator.

We analyze the two multi-flows topologies depicted in Figure 3.11, where sce-
nario 1 sees two concurrent flows and scenario2 sees three. Furthermore, we
set the simulator to use the standard parameters of IEEE 802.11 ad-hoc networks
(RTS/CTS disabled, Tx range:250 m, Cs range:550 m) and let the simulations
run for respectively1100 s and1600 s.
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Figure 3.11:Illustration of the two topologies tested by simulation.

The two performance metrics we focus on are: (i) end-to-end delay (low de-
lays means that the network is stable, whereas high delay is a symptom of saturated
queues) and (ii) throughput. Figure 3.12 ignores the first100 s of the simulation
and shows the average performance achieved by the network as a function of the
throttling factorq. We compute the throughput by measuring the average on dis-
joint 50 seconds intervals, thus obtaining20 (30) measurement points. Then we
plot the median value with the95%-confidence intervals.
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Figure 3.12:Illustration of the evolution of the delay and the median of the averaged throughput

(with confidence interval) depending on the throttling factorq for scenario1 (left) and scenario2

(right). We note that in both scenarios the valueq = 1/128 stabilizes the network (i.e. low delay),

while achieving a good throughput performance.
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We note that, for both scenarios, the standard IEEE 802.11 protocol (i.e.q = 1)
performs poorly as expected, with high variance in throughput and high end-to-end
delays. Furthermore, using an appropriate throttling factor that is larger than for
the single-flow case (hereq = 1/128), performances are significantly improved
by achieving both negligible delays and higher global throughput due to a lower
packet loss rate (as no buffer overflow in stable regime).

3.7 Instability Problem at Higher Rates

Our analytical model allows us to explain why a stable3-hop network becomes
unstable when a4th hop is added (see Figure 3.2). Nevertheless, the results from
Figure 3.2 are obtained with a fixed data rate of1 Mb/s, a buffer size limit of50
packets, and a small-scale testbed where the routers are used without theirexternal
antennas (better control on the experimental environment). In order to validate
our results on a different setting, we modify the MadWifi driver to unlock the
buffer size limit and to allow for the modification of its value at run time through a
simple command (see Appendix B for details). We then set the buffer limit to100
packets and repeat the experiment from Figure 3.2 on the real-scale deployment of
Figure 3.13, for different data rate settings.
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Figure 3.13:Illustration of the deployment used in Section 3.7.
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Figure 3.14:Validation of the experimental results from Figure 3.2 on a different setup running at

various data rate.

Figure 3.14 and 3.15 show the queue evolution of a3-hop network (node0 to
3 in Figure 3.13) and a4-hop network (node0 to 4 in Figure 3.13) at data rates of:
1 Mb/s, 2 Mb/s, 11 Mb/s and auto-rate. Additionally, Table 3.2 presents the link
throughputs and the end-to-end throughputs achieved at the differentdata rates.

throughput\rate 1 Mb 2 Mb 11 Mb auto-rate
l0 894 kb/s 1.67 Mb/s 6.71 Mb/s 5.79 Mb/s
l1 858 kb/s 1.52 Mb/s 5.82 Mb/s 2.03 Mb/s
l2 754 kb/s 1.28 Mb/s 4.23 Mb/s 1.95 Mb/s
l3 813 kb/s 1.6 Mb/s 5.98 Mb/s 5.49 Mb/s

3-hop 241 kb/s 493 kb/s 1.05 Mb/s 373 kb/s
4-hop 194 kb/s 354 kb/s 791 kb/s 260 kb/s

Table 3.2:Measurements of the links throughput and the end-to-end throughput of a 3-hop and

4-hop linear topology for different data rates.
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Figure 3.15:Validation of the experimental results from Figure 3.2 on a different setup running at

various data rate.

Our results show that even thoughl2 is the bottleneck link (i.e., the link de-
livering the smallest throughput when transmitting alone) for all the data rates, it
does not result in network instability in the3-hop case, due to the stealing effect
described in Section 3.2.3. Moreover, the simple addition of a4th hop turns the
network from stable to unstable (i.e., the queue remains close to the buffer limit).
We note that the queue size variations are larger than in Figure 3.2. This is because
the real-scale deployment is a less controlled environment more prone to chang-
ing channel conditions. Nevertheless, we stress that, despite these variations, the
change in stability between a3-hop and4-hop network is seen for all the different
data rates that we tested, as predicted by our analytical model.

Our experimental results at higher rates also provide an interesting finding that
is worth mentioning. Indeed, when observing the3-hop results, we see that the
queue variation of node1 increases at higher rates.
To understand this finding, we need to recall that the transmission duration de-
creases at higher rates. This means that the period of vulnerability to the stealing
effect decreases at higher rates and, therefore the probability of stealing effectp
decreases as a function of the data transmission rate.
Finally, once we understand the relation between the data rate and the probability
p, we note that our experimental results at higher rates confirm the simulation re-
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sults of our analytical model presented in Figure 3.5. In other words, we see that
the higher the rate (i.e., the smallerp), the closer the queue evolution gets to a null
recurrent system.

3.8 Concluding Remarks

In this chapter, we addressed the problem of network stability in CSMA-based lin-
ear wireless mesh networks and we provided three main contributions. First,we
identified two key factors impacting the stability: the network size and an artifact
that we call the stealing effect. Second, we proved analytically and showed experi-
mentally that3-hop networks are stable when we account for the stealing effect, but
4-hop networks (and presumably larger topologies) are not. Third, we devised and
proved the effectiveness of a simple static stabilization strategy that throttles the
source at the MAC layer, preventing packets from being injected too quickly into
the network. We note that this strategy penalizes only the source when othernodes
also have packets to transmit. This desirable property allows to ensure both stabil-
ity and high throughput. Our analysis and experiments have shown that selecting a
valueCWmin four to eight times larger at the source than at the relay nodes (i.e.,
q = 1/4 or q = 1/8) in the4-hop case effectively achieves these goals. We also
showed that multi-flow networks can also be stabilized by using higher valuesof
q. As the optimal parameterq is topology-dependent, in the next chapters we will
present some techniques to automatically adapt the throttling factorq according to
the network environment.



Chapter 4

Building an Indoor Wireless
Testbed

4.1 Problem Statement

Wireless mesh networks were designed to become a commercial product to deliver
high-speed Internet access to regions that were still unserved. In their beginning,
in 1994 under the name ofmassive array cellular systems, wireless mesh networks
were thought to become a cost-effective alternative to replace the last-mile infras-
tructure in large metropolitan cities [Pie94]. With the explosion of wired broadband
connectivity in developed countries, the business case has evolved to provide ac-
cess to places where the infrastructure is inexistent or unavailable, suchas in devel-
oping countries or in emergency situations. It remains that we need to demonstrate
that the theoretical solutions, indeed work well in practice.

Research in mesh networks thus requires us to complete a full cycle consisting
of analysis, simulation and experimental evaluation in order to make true progress
(cf. Figure 4.1). As a result, we decided to build a large-scale wireless mesh
network to support our research. Similar infrastructures exist, such asthe MIT

Analysis Simulation Experiment

Real deployment

(models) (code)

(measurements)

(results)

Figure 4.1: Scientific progress in WMNs requires a full cycle
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roofnet [ROO] or the Magnets [KZP06] (currently renamed to BOWL1) testbeds.
Nevertheless, as we did not have easy day-to-day access to these testbeds and none
existed at EPFL, we decided to build from scratch our own multi-hop testbed on
campus. During this deployment, we faced multiple challenges and design ques-
tions. In this chapter, we share some of the experiences and lessons we learned in
this process.

4.2 Choice of Hardware and Software

4.2.1 Requirements and Challenges

The first step when deploying our indoor mesh network was to set the require-
ments for our testbed. In our case, we were interested in matching the following
constraints.

• Adaptability: Even though our main interest lies in the scheduling problem
of IEEE 802.11 mesh networks, we were interested in building a more gen-
eral platform that would enable practical investigations of a wide range of
research scenarios such as routing, user tracking, mobility, etc.

• Programmability: Due to the research-orientation of our deployment, we
chose our hardware and software in order to provide adaptability even ifit
is at the cost of a small drop in relative performance. The first effect of this
requirement appears in our choice of the firmware (openWRT2) and of the
driver (MadWifi3) that are both open-source and thus enable us to modify
the source code in order to meet our research needs.

• Large-scale:Having already performed small-scale experiments (e.g., in the
basement of our school building), we were interested in providing a platform
that is closer to a real deployment. Toward this goal, we designed our testbed
to cover six buildings on our campus with different node densities between
the buildings.

• Price constraints: Finally, the last constraint we needed to meet was a bud-
get constraint that forced us to evaluate different alternatives, in order to find
the hardware that provides the best tradeoff between the different require-
ments. We also stress that due to budget reasons, we did not consider theuse
of Software Defined Radio (SDR) in our architecture, even though it wasthe
option offering the highest level of programmability.

1Berlin Open Wireless Lab (BOWL): http://bowl.net.t-labs.tu-berlin.de/
2OpenWRT firmware: http://openwrt.org/
3MadWifi driver: http://madwifi-project.org/
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4.2.2 Hardware Description

In order to decide on the hardware forming our wireless testbed, we screened the
different options and tested the four following routers as potential candidates (from
most expensive to cheapest):

• Mikrotik RouterBoard 532 was the first router we tested experimentally
in [AHKT08]. It was available at a price around250 $. This router is based
on a CPU of400 MHz, with 64 MB of DDR RAM. It provides two mini-PCI
connectors that allows the use of2 independent wireless interfaces.

• Asus WL-500g Premium v1is a small and efficient residential router that
cost around90$. It is based on a266 MHz CPU (that can safely be over-
clocked to300 MHz) with 32 MB of RAM and 8 MB of flash. It provides
a mini-PCI slot that initially contains a Broadcom wireless card (which can
easily be replaced by any other mini-PCI card) and two USB ports that are
very useful for extending the storage capacity with USB memory sticks.
We note that today a new version of this router (v2) replaces the original
version. Even though this second version is less expensive, it is also less
interesting for us as researchers. Indeed, the mini-PCI slot has been replaced
by a built-in wireless interface and this modification prevents us from easily
testing new protocols by changing the wireless card.

• Linksys WRT54GL is a popular home router that cost around60 $. It is
based on a200 MHz CPU with16 MB of RAM and 4 MB of flash. It has
a built-in wireless card that cannot be removed and thus does not offer the
flexibility that a mini-PCI gives.

• La Fonera is the smallest and cheapest router we tested with a price of
around20 $. It is based on a180 MHz CPU with16 MB of RAM and4 MB
of flash.

After testing the routers under different settings, we found that the AsusWL-
500g Premium offered the best price vs. performance tradeoff. The three major
points that convinced us to select the Asus instead of the Linksys or La Fonera are:

1. It provides the flexibility to change the wireless card (i.e. it uses a mini-PCI
instead of a built-in wireless interface), which is useful to easily adapt to
changes in the MAC technology.

2. It has two USB slots that can be used to extend the storage memory. This
feature is particularly useful, because it allows us to easily log arbitrarily
large trace files on the router without any restrictions.

3. It does not have the4 MB-flash limitation. Indeed,4 MB is pretty limited
when some useful softwares, such as Click [KMC+00], are included in the
OpenWRT firmware image.
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(a) (b)

Figure 4.2:The Asus WL-500g Premium that we used in our testbed and where (i) we changed the

WiFi mini-PCI card to an Atheros-based one, and (ii) we designed a technique to power our router

through a battery, which enabled us to support mobile scenarios.

When purchasing our hardware in 2007, we chose the Asus over the Routerboard
for two main reasons. First, the USB capabilities were a useful feature provided
only by the Asus. Second, the small CPU gain of the Routerboard did not justify
the price difference, which was an important factor as we were planning tobuy
around60 routers (i.e., around10, 000 $ difference in the total price). We note
that nowadays, at the end of 2010, an interesting option that we are considering
for upgrading our testbed are the Alix boards from PC Engines, which have the
advantage of (i) running over an x86 architecture instead of mipsel, and (ii) having
space for two WiFi interfaces and three antennas (that can for example be used to
perform MIMO in IEEE 802.11n).

The Asus routers were provided with a power supply and a standard Broad-
com mini-PCI WiFi card. These settings are good for a standard home user, but
we needed to operate two modifications/enhancements in order to support there-
search scenario we had in mind (i.e., modifying/monitoring the MAC parameters
and supporting mobile scenarios).

• Allow modification/monitoring of MAC parameters: In order to use the
open-source MadWifi driver, we needed to change the mini-PCI card to an
Atheros-based one as depicted in Figure 4.2.a. We used the NMP-8602
Atheros card that runs on IEEE 802.11a/b/g.

• Enable mobility: In order to eliminate the requirement to plug our router
to the electrical grid (which prevents mobility), we equipped some of our
devices with6 V batteries as shown in Figure 4.2.b. To be able to meet the
high amperage requirement to support the wireless interface of our router,
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we used A 506/10 batteries. Moreover, as the Asus routers work on an input
voltage of4.5 V, we added two inductances to the cabling connecting the
battery to the router.

In addition to these modifications, we also equipped each router with a2 GB mem-
ory stick that is automatically mounted during the boot-up of the router. After more
than one year of constant use, we note that the power supply is the main source of
failure of our routers. Indeed, we experienced almost no problems with the router
hardware itself, but we had to replace around10 power supplies that broke down.

4.2.3 OpenWRT Firmware

OpenWRT is a free open-source and Linux-based firmware. We decided to flash
our routers with this distribution, because of the facility with which we can (i)
install existing program and (ii) deploy our own C code. In Appendix B, weprovide
a detailed explanation of the methodology that needs to be followed in order to (i)
build an image that is ready to be flashed on the routers, (ii) cross-compile our own
program to run on the mipsel architecture of the Asus, and (iii) flash the newimage
to the routers and make the first boot-up configuration procedure.

A particularly interesting software to install in the OpenWRT image is the
Click modular router [KMC+00]: it allows us to completely control the process-
ing/routing of a packet since it arrives to the router until it leaves it.

4.2.4 MadWiFi Driver

MadWifi is an interesting, but challenging wireless driver. On the one hand, its
advantage comes from its open-source code that leaves room for easymodification
and enhancement of the protocol. On the other hand, it suffers from one of the
typical drawbacks of open-source software, as opposed to industrial products. For
example, we noted that some of the supposedly working commands were only
partially implemented (or even not implemented at all).

One of the key advantages that convinced us to adopt MadWifi is that it pro-
vides an easy access to multiple MAC parameters of IEEE 802.11, such as the
CWmin, CWmax, RTS mode on/off, etc.
Nevertheless, we needed to modify ourselves the source code in order toachieve
three objectives:

1. We unlocked the modification, via theiwpriv command, of the MAC layer
parameters for Best Effort traffic (BE), the standard type of traffic inthe
network.

2. We enabled the use of multiple MAC queues (up to4 or 8) as it is pro-
posed in the IEEE 802.11e standard to achieve Quality of Service. Moreover,
the possibility of using different queues is very useful in congestion-control
schemes as it allows us to use different class of service depending on the
nature of the next-hop.
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3. We coded three new functions to thewlanconfigcommand in order to access
the instantaneous queue occupancy and to access and modify the maximal
MAC buffer length (usually locked to50 packets).

As the technical details behind each modification are rather complex, we de-
fer their description to Appendix B. Furthermore, we stress that nowadays new
open-source drivers such as ath5k4 and ath9k5 have been launched as follow-ups
of MadWifi in order to support the new generations of the IEEE 802.11 family,
such as IEEE 802.11n.

4.3 Testbed Deployment

Once we finished with flashing and configuring our60 Asus routers, we had to
plan our deployment to be able to cover as many scenarios as possible. We initially
planned our deployment for a flexible design in which the routers would be rapidly
deployed and collected back directly after a round of measurements (or atthe end
of the day). But, our initial measurements appeared to suffer the same problems
as the ones reported in [PYC06] and we had to reconsider our design. Indeed,
we found that simple displacements of a mesh node by as little as a fraction of a
centimeters leads to significant changes in the connectivity, from high SNRsto ba-
sically no connection at all. This issue was a real limitation for the reproducibility
of the results as it is impossible to guarantee the exact same positioning of a router
between two rounds of deployment.

Therefore, we finally decided to have a mostly fixed mesh network testbed with
41 routers installed and we kept the others as mobile devices that can rapidly be
deployed for flexibility if needed. For the safety of the hardware, we deployed
most of the routers within private offices. Concerning the routers that needed to be
deployed in public spaces, we modified them to add a locking system in order to
attach them to the fixed infrastructure.

4.3.1 Topology

The map of the final topology that we are currently using in our indoor testbed is de-
picted in Figure 4.3. We use41 wireless routers that we spread among the6 build-
ings of the I&C Faculty. We designed our deployment to form a fully-connected
network, with a different node density among different buildings. Among the41
routers,37 are connected to the wired infrastructure by using thewpa supplicant
software for authentication with the IT infrastructure of the department. The4 re-
maining nodes could not be directly connected to the wired infrastructure due to
their location in the inter-building corridors that do not contain any wired connec-
tivity plug.

4ath5k driver: http://linuxwireless.org/en/users/Drivers/ath5k
5ath9k driver: http://linuxwireless.org/en/users/Drivers/ath9k
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Figure 4.3:Map of our wireless mesh network deployed within EPFL. It covers6 buildings over

10, 000 m2 and it contains37 Asus routers that are accessible through a wired Ethernet connection

and4 nodes that are only accessible via wireless.

Even though the node positions remained fixed, this real-scale deployment en-
abled us to derive some interesting findings about the variability of the environ-
ment. Indeed, we found that both (i) people passing by, and (ii) windows and
doors being opened/closed, led to drastic changes in the performance. These prac-
tical findings have two consequences for our work:

• It confirmed the need to perform long-term traces in order to obtain statis-
tically meaningful results that are not impacted by the natural variability of
the wireless environment.

• It supported our approach to propose dynamic solutions that automatically
adapt to the changes of the environment and that does not require the a priori
knowledge of the capacity region.

4.3.2 Network Control Tool

Although the offline processing of long-term traces is needed in the final step of a
practical evaluation, it is very useful to be able to rapidly obtain live visualization of
some performance metrics in other situations. Examples of cases where real-time
plot are useful include (i) the early implementation/evaluation phase when looking
for the sources of a problem; (ii) the final evaluation phase when finely tuning
the system; and (iii) administrative and demonstration purposes where real-time
visualization helps.
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After some investigation, we could not find a software that matches our re-
quirements of: (i) allowing the visualization of statistics such as the link through-
put and the MAC queue occupancy (obtained after hacking the driver as described
in Appendix B); (ii) allowing to control (i.e., launch commands) in all or part of
the network from a central server; and (iii) being open-source and allowing sim-
ple modification of the source code for the addition of new visualization modules
depending on the research needs.

Therefore, we developed our own program, calledNet-Controller, that can cre-
ate nice dynamic plots representing data collected on-the-fly from the network and
that allows us to send arbitrary commands to any set of nodes. We mention that
some tools, such as Jigsaw [CBB+06], have been proposed in prior work to allow
for the creation of a packet-level trace by merging the data obtained from multiple
sniffers. Net-Controller significantly differs from Jigsaw-like tools in three ways:

• it is both very user-friendly with a graphical interface and easily expandable
to monitor arbitrary metrics of interest in the network;

• it does not require dedicated monitoring nodes in the network and thus it is
also able to display internal data that cannot be sniffed on the air, such asthe
queue occupancy or the variation in contention window;

• it is not only a monitoring tool. Indeed, Net-Controller allows to modify the
parameters of any node in the network, directly from the graphical interface.
Moreover, it also enables us to generate traffic from any set of nodesin the
network to any other node with only a few mouse clicks (see video6).

Design Description of Net-Controller

We designed Net-Controller to work as two separated sub-programs that commu-
nicate together through a network socket (see Figure 4.4).

• The server part runs on a computer (desktop, laptop, or any other device
with a display). It consists of a simple graphical interface that allows for dy-
namic plots to be generated, for the commands to be launched on the nodes,
and for traffic to be started (or stopped). Requests are sent periodically to
the nodes in order to retrieve the data to plot. The commands are launched
throughssh . This program is written in Python and is multi-platform. It
simply needs to know the IP addresses of the routers to interact with them.

• The client part runs on the wireless routers. Its role is to answer the requests
sent by the server with the appropriate values. These values can be instanta-
neously obtained at any time (e.g., a queue occupancy), or aggregated (e.g.,
the number of bytes received since the last request, in order to compute a
throughput). The current version of this module is implemented in C and

6Net-Controller - network management & visualization: http://icawww1.epfl.ch/NetController/
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Net-Controller

node 1

flow 1

node 2 node 3

flow 2

Figure 4.4: Illustration of the design structure of Net-Controller. The flows1 and2 are used to

illustrate through an example the plots resulting from Net-Controller.

can answer requests for: (i) the link level throughput, for each IP flowgo-
ing through this router; (ii) the occupancy of the IP and MAC layer queues;
and (iii) the value of the IEEE 802.11CWmin parameter. We designed our
program to facilitate the addition of new parameters.

Having described the high-layer architecture of Net-Controller, we defer to
Appendix B the technical discussion about the detailed installation procedure and
use of the program.

Graphical Interface of Net-Controller

The control graphical interface of Net-Controller is depicted in Figure 4.5, where
we see two active windows.

The window entitled ”Net-Controller” is the main control window that can be
horizontally divided into three regions. In the top left, we have a space dedicated
to the nodes and parameters selection. We note that Net-Controller also allowsfor
logging in a trace file of the live statistics that are plotted. In the bottom left, there
is a text field that summarizes the last commands that have been executed by the
program.
The rightmost part of the window is a text field that is dedicated to displaying the
output of the commands that have been launched in the different nodes.
Finally, in the middle of the window, we find at the bottom a list of all the flows
that have been sensed by any of the router in the mesh network (our notionof
flows corresponds to the tuple< IPsrc; IPdst >). In the middle top, we find the
command section that allows the user to send and see the status of the command
execution at the different nodes of the mesh.

The second window labeled ”Traffic Manager” is an add-on module that we
created in order to easily launch traffic between any two pair of nodes. The way
it operates is by using the parameters provided by the user in order to launch the
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Figure 4.5: User-friendly graphical interface of Net-Controller that allows us to (i) select the

parameters and node to monitor; (ii) launch arbitrary command on any set of nodes; and (iii) launch

traffic between any set of nodes.

correspondingiperf commands at the different nodes. Its major advantages lays in
considerably speeding the experimental process by allowing us to rapidly launch
or stop any flows in the network with a simple mouse click.

Example of Result Display

In order to illustrate an example of live graphical plots returned by Net-Controller,
we consider the interesting example of Fair Queuing [DKS89].

Indeed, currently almost all off-the-shelf routers use a single queue with a FIFO
policy (First-In, First-Out), but other policies have been proposed. Infair queuing,
each node uses a separate queue for each individual flow and these queues are then
scheduled in a round-robin manner. We implement fair queuing in Click [KMC+00]
and capture its gain by having a fully backlogged UDP1-hop flow (flow1) and a
2-hop flow (flow2); both go through node2 as depicted in Figure 4.4. Figure 4.6
shows that the standard FIFO policy completely starves the2-hop flow, whereas
fair queuing fairly shares the throughput between the two flows (max-min fair-
ness). The starvation problem in FIFO occurs because the single queueof node2
is always full of packets from flow1, and thus drops most packets from flow2.
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Figure 4.6: Throughput received at the destination for the two flows. With the standard FIFO

policy (left) and with fair queuing (right). The plots are produced by Net-Controller. In the legend,

“thr〈x → y〉” denotes the throughput of the flow from the source nodex to the destination nodey.

4.4 Concluding Remarks

In this chapter we described some of the challenges we faced and some of the
experiences we gained while building from scratch our indoor wireless multi-hop
network testbed.

In addition to the work presented in this thesis, our wireless multi-hop network7

supported multiple other research work. Some examples of projects that used our
testbed for their experimental evaluation cover the fields of

• Indoor user localization and tracking using IEEE 802.11 [Epi10].

• Epidemic forwarding protocols and the effect of mobility [EFLBA10].

• Correlation of erasure between links [JSPF+10].

• Opportunistic routing protocols for multi-hop networks [Bec11].

The usage of our wireless testbed in a large range of research scenarios is an in-
dicator that we successfully reached our goal of adaptability in the designand
deployment of this infrastructure.

Furthermore, we presented the tool that we developed to manage and monitora
wireless testbed. Net-Controller was used for our demo at Infocom in 2010 [HAT].
There, we could launch experiments on our EPFL testbed and visualize the network
performance in live from San Diego, USA. We provide Net-Controller as an open-
source software in our website8.

7Aziala - a wireless multi-hop testbed for research purposes: http://icawww1.epfl.ch/aziala
8Net-Controller - network management & visualization: http://icawww1.epfl.ch/NetController/
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Chapter 5

MAC Layer Congestion-Control

5.1 Background

5.1.1 Problem Statement

We consider the case of a wireless multi-hop topology such as the one existingin
the backhaul of a mesh network. As depicted in Figure 5.1, the backhaul of a wire-
less mesh is composed of three types of nodes: (i) a Wired Access Point (WAP)
that plays the role of gateway and is connected to the Internet, (ii) Access Points
(APs) that ensure the access part of the WMN by having the end-usersconnected
to it (note that usually the backhaul and access part of a WMN run on independent
channels to avoid interferences) and (iii) Transit Access Point (TAPs)that trans-
ports the data packets through multiple hops from the WAP to the AP and back.

In this settings, we recall the results from Chapter 3, where we showed that
(i) IEEE 802.11 networks with more than3 hops are intrinsically unstable and
that (ii) a simple static stabilization strategy can solve this problem by correctly
choosing the throttling factorq ∈ [0, 1]. Nevertheless, we also recall that the throt-
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tling parameterq is topology-dependent. This is a serious limitation for wireless
mesh networks because (i) the traffic matrix is likely to vary over time and (ii) the
exact topology might even not be known in advance (e.g., in the case of anemer-
gency requiring a rapid deployment). Hence, there is still a need to developself-
adaptive algorithms that can stabilize the network independently of the topology.
In this chapter, we satisfy this requirement by introducing EZ-flow, a hop-by-hop
congestion-control mechanism that automatically adapts to the network status.

5.1.2 System Requirements

In the design of our mechanism we focus on developing a practical, stabilizing
solution that is compatible with current equipments and protocols used in IEEE
802.11 wireless mesh networks. Toward this goal, we set four main requirements:

• Network stabilization: EZ-flow is designed mainly to ensure network sta-
bility, where a network is stable if all the relay nodes have finite queues when
equipped with infinite buffers (see Definition 3.2). In practice, when buffers
are finite, this means that no queue builds up. Furthermore, as the environ-
ment changes in real networks, we require EZ-flow to automatically adapt
itself to changes in the traffic matrix.

• End-to-end delay reduction: The first implication of network stability is a
reduced end-to-end delay that should be maintained low with EZ-flow, com-
pared to IEEE 802.11 alone. Such a requirement of low delays is of utmost
importance in cases where a mesh network supports real-time, multimedia
services such as VoIP, video-on-demand or online-gaming.

• Unmodified MAC layer : We require that the IEEE 802.11 MAC layer re-
mains unmodified in order to ensure the compatibility of our solution with
the mesh networks already deployed. To meet this objective, we propose to
implement EZ-flow as a separate program that interacts with the MAC layer
solely through the contention windowCWmin parameter of IEEE 802.11.

• Backward compatibility : We ensure the backward compatibility of EZ-
flow by having each node derive the needed information without message
passing. This approach allows for the possibility of an incremental deploy-
ment of EZ-flow in an already existing mesh.

In addition to these requirements we add two properties that are not primary
goals of EZ-flow, but that are still desired properties that appeared in all our simu-
lations and experimental deployments:

• Fairness improvement: We take IEEE 802.11 as a baseline for EZ-flow and
note that fairness is improved through a higher Jain’s fairness index value

FI =
(
∑

xi)
2

(nflows ·
∑

x2i )
(5.1)
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wherenflows is the total number of flows andxi is the throughput achieved
by flow i.

• Fair throughput improvement : Low delays and high throughput are of-
ten seen erroneously as antagonist goals to be pursued. Of course, reducing
the application throughput to a very low value will always ensure low delay.
Nevertheless, we do not want our mechanism to limit itself to ensuring de-
lay at the price of throughput. For the same level of fairness, we therefore
require that EZ-flow achieves a global throughput that is higher than with
IEEE 802.11 alone.

5.1.3 Related Work

Much effort has been put into understanding how 802.11 behaves in a multi-hop
environment. Previous work show the inefficiency of the protocol in providing op-
timal performance, as far as delay, throughput and fairness are concerned [GSK04].
In [NNCA06], Nandiraju et al. propose a queue management mechanism toim-
prove fairness. However, as they mention in their conclusion, a solution to the
inherent unfairness of the IEEE 802.11 MAC layer is needed for their mechanism
to work properly. In [JP09], Jindal et al. claim that the performance ofIEEE 802.11
in multi-hop settings is not as bad as could be expected. For instance, they show
an example through simulation where IEEE 802.11 achieves a max-min allocation
that is at least64% of the max-min allocation obtained with a perfect scheduler.
Our experiments, in Section 5.3, show that the performance may actually be much
worse. We believe that the cause of the discrepancy is that [JP09] assumes that
flows are source-rate limited, whereas we do not make such an assumption.

A first analytical solution to the stability problem in multi-hop networks is
discussed in the seminal work of Tassiulas et al. [TE92], which introduces a back-
pressure algorithm. Their methodology uses a centralized scheduler that selects
for transmission the link with the greatest backlog difference, i.e. the greatest
difference in queue occupancy between the MAC destination node and theMAC
source node. Such a solution works well for a wired network, but is notadapted
to a multi-hop wireless network where decentralized schedulers are needed due to
the synchronization problem. Extensions from this work to distributed schedul-
ing strategies have been discussed in works such as [CKLS08], whereChapokar et
al. propose a scheduler that attains a guaranteed ratio of the maximal throughput.
Another effort to reduce the complexity of back-pressure is presentedin [YST08],
where Ying et al. propose to enhance scalability by reducing the number ofqueues
that need to be maintained at each node. The interaction between an end-to-end
congestion controller and a local queue-length-based scheduler is discussed by
Eryilmaz et al. in [ES05]. The tradeoff that exists in each scheduling strategy
between complexity, utility and delay is discussed in depth in [YPC08]. One of
the drawbacks of these previous methods is that they require queue information
from other nodes. The usual solution is to use message passing, which produces
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an overhead and is thus costly even if it is limited to the direct neighbors.
Some recent work propose schedulers that do not require buffer information

from other nodes. In [GLS07], Gupta et al. propose an algorithm that uses the
maximum node degree in the network. Proutiere et al. [PYC08] propose another
algorithm, where each node makes the scheduling decision based solely on itsown
buffer. Finally, most recently Shin et al. propose an algorithm that achieves stabil-
ity and where each node uses its own buffer occupancy with alog log function to
make the scheduling decision [SSR09]. Nevertheless, even though their algorithm
is efficient for the case of a perfect CSMA, it requires a very large buffer size (i.e.,
in the order of thousands of packets). Such a requirement presents twodrawbacks:
First, large buffers imply a large end-to-end delay; second, the requirement of such
large buffers does not match with current hardware, which usually have a standard
MAC buffer of only50 packets. To sum up, despite recent and significant progress
on the theoretical side, almost all the existing solutions are still far from being
compatible with the current IEEE 802.11 protocol. One exception, which wasde-
veloped in parallel with our work, is the hop-by-hop congestion control scheme
in [WJHR09]. In their paper, Warrier et al. propose and deploy DiffQ,which is
a protocol implementing a form of backpressure (i.e., prioritizing links with large
backlog differential). To achieve this implementation, DiffQ makes each node in-
form its neighbors of its queue size by piggybacking this information in the data
packet (i.e., modifying the packet structure by adding an additional header) and
then schedules the packets in one of the four MAC queues (each with different
CWmin value) depending on the backlog difference. Our approach differs intwo
ways: (i) we use the next-hop buffer information instead of the differential back-
log, which results in an implicit congestion signal being pushed back more rapidly
to the source; (ii) as opposed to DiffQ, we do not modify the packet structure in
any way as we passively derive the next-hop buffer occupancy without any form
of message passing. To the best of our knowledge, EZ-flow is the first imple-
mentation that solves the turbulence and instability problem in real 802.11-based
multi-hop testbed without modifying the packets and without any form of mes-
sage passing. Our approach differs from all the previous works in thesense that
we propose a practical solution, implemented with off-the-shelf hardware,where
we take advantage of the broadcast nature of the wireless medium to derive the
buffer information of neighboring nodes. We also highlight that the novelpassive
buffer derivation methodology of our BOE module is potentially compatible with
new algorithms such as DiffQ, and it could allow them to eliminate the need to
piggy-back the buffer information (resulting in unmodified packet structure).

Another line of work, parallel to ours, tackles congestion at the transport layer
rather than the MAC (link) layer. In [RJJP08], Rangwala et al. presentlimitations
of TCP in mesh networks and propose a new rate-control protocol namedWCP
that achieves performances that are both more fair and efficient. Similarly,Shi et
al. focus on the starvation that occurs in TCP when a one-hop flow competes with a
two-hop flow and they propose a counter-starvation policy that solves theproblem
for this scenario [SGM+08]. Garetto et al. also tackle the starvation problem at
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an upper layer [GSK08]. They propose a rate-limiting solution and evaluateit by
simulation. Their major motivation for not using MAC-based approach is to ensure
compatibility with 802.11-based mesh network currently deployed. EZ-flow is
also fully compatible with the existing protocol since it only varies the contention
window CWmin, a modification allowed by the standard. Our approach differs
from previous work in the sense that we tackle the problem at the MAC layerand
that our methodology solves the problem both for bi-directional traffic (e.gTCP)
or uni-directional traffic that cannot count on feedbacks from the final destination
to adapt its rate (e.g. UDP).

Finally, another kind of work, which is similar to ours in the idea of exploit-
ing the broadcast nature of the wireless medium, is found in cooperative diversity
and network coding. In [KRW+08], Katti et al. propose that relay nodes listen
to packets that are not necessarily targeted for them in order to code the packets
together later on (i.e. XOR them together) and thus increase the channel capac-
ity. In [BM05], Biswas et al. present a routing mechanism named ExOR that
takes advantage of the broadcast nature to achieve cooperative diversity and thus
increase the achievable throughput. Furthermore, in [HRGD05] Heusseet al. also
use the broadcast nature of IEEE 802.11 to improve the throughput and fairness
of single-hop WLANs by replacing the exponential backoff with a mechanism that
adapts itself according to the number of slots that are sensed idle. Our workfol-
lows the same philosophy of taking advantage of the “free” information given by
the broadcast nature. Apart from that, our approach is different, because we do
not use cooperation and network coding techniques at relay nodes, but instead in
a competitive context we derive and use the next-hop buffer information totackle
the traffic congestion occurring in multi-hop scenarios.

To work in combination with routing solutions such as ExOR, our approach
could be extended . Truly, the fact that the forwarded packets are notall sent to the
same successor node implies that the forwarding process may not be FIFO(First-
In, First-Out) anymore and thus the information derived by the BOE becomesmore
noisy. Nevertheless, by using a larger averaging period to smoothen the noise,
this information could still be useful for congestion control. Moreover, to perform
congestion control, a node does not always precisely need to know which successor
(i.e., which next-hop relay) gets its packets: it just needs to keep to a low value the
total number of packets that are waiting to be forwarded at all of its successors.
This could be done using a similar methodology to the one presented in this paper
for the unicast case. A similar extension of a congestion-control from unicast to
multicast is discussed by Scheuermann et al. in [STL+07].

5.2 EZ-Flow: a Scheme without Message Passing

5.2.1 EZ-Flow Description

First, we introduce the notion of flow, where a flow is a directed communication
between a source and a destination. In the multi-hop case, the intermediate nodes
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Figure 5.2:EZ-flow works as two modules implemented above the MAC layer. The Buffer Occu-

pancy Estimator (BOE) passively derives the next-hop queue occupancy and transmits this informa-

tion to the Channel Access Adaptation (CAA) module, which acts on a IEEE 802.11 parameter (i.e.,

theCWmin) to perform congestion control.

act as relays to transport the packets to the final destination. A nodei+ 1 is the suc-
cessor node of nodei along a given flow if it is the next-hop relay in the multi-hop
flow. We denote the queue occupancy of nodei by bi and its minimal contention
window (CWmin) by cwi. In order, not to starve forwarded traffic, each node that
acts both as a source and relay should maintain2 independent queues: one for its
own traffic and the other for the forwarded traffic. Furthermore, a node that has
multiple successors should maintain1 queue per successor (2 if it acts as source
and relay). Indeed, different successors may encounter different congestion levels
and thus EZ-flow performs best if it can adapt the channel access probability per
successor. Note that, this requirement is scalable as EZ-flow does not need queu-
ing per destination, but per successors and the number of successorsis typically
limited to a single digit in the case of a WMN.

Second, we describe the two modules forming EZ-flow that work as two inde-
pendent programs that collaborate to achieve congestion-control above the MAC
layer (see Figure 5.2).

• A Buffer Occupancy Estimator (BOE) that derives the queue status of the
successor node along a flow.

• A Channel Access Adaptation (CAA) that uses the information from the
BOE to adapt the channel access probability throughcwi.

5.2.2 Buffer Occupancy Estimation

One of the major novelties of EZ-flow lies in the BOE that passively derives the
queue occupancy at the successor nodebi+1 without requiring any type of mes-
sage passing. We emphasize that our BOE works differently than estimation ap-
proaches, such as [Jia07], that send probe packets to estimate the total queue size.
Instead, in our approach each nodei passively computes how many of its own pack-
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ets are queued at nodei+1. Using this information, instead of the total queue size,
EZ-flow aims to keep the number of packets at a successor’s queue small. This de-
sign choice prevents a node from starving itself due to non-cooperativeneighbors
(not performing congestion control).

To perform its task, the BOE keeps in memory a listL of the identifiers of the
last1000 packets it sent to a successor node. In our deployment we use the16-bit
checksum of the TCP or UDP packet as an identifier so as not to incur anycompu-
tational overhead due to processing the packet. We note that this identifier,present
in the packet header, could be used by any mesh network based on TCP/UDP and
IP, and this is clearly the standard in currently deployed networks. We stress, how-
ever, that this design choice is used without any loss of generality. Even if, in
the future, the standard would be to run IPsec or to use non-TCP/UDP packets,
our mechanism would instead simply need to use a lightweight hash of the packet
payload as an identifier.

Algorithm 1 EZ-flow mechanism at nodei
BOE module:
if transmission of packetp to nodei+ 1 then

Store checksum ofp in PktSent[] (overwrite oldest entry if needed)
LastPktSent = checksum ofp

else ifsniffing of packetp from i+ 1 to i+ 2 then
if checksum ofp ∈ PktSent[] then
bi+1 = number of packets inPktSent[] betweenp andLastPktSent
return bi+1 to CAA module

end if
end if

CAA module:
Require: Reception of50 bi+1 samples from BOE
bi+1 = Average of50 bi+1 samples
if (bi+1 > bmax) then

countdown ← 0; countup ← countup + 1
if (countup >= log(cwi)) then
cwi ← cwi · 2; countup ← 0

end if
else if(bi+1 < bmin) then

countup ← 0; countdown ← countdown + 1
if (countdown >= 15− log(cwi)) then
cwi ← cwi/2; countdown ← 0

end if
else

countup ← 0; countdown ← 0
end if



62 CHAPTER 5. MAC LAYER CONGESTION-CONTROL

The second information needed is the identifier of the packet that is actually
forwarded by the successor node. This piece of information can be obtained by
taking advantage of the broadcast nature of the wireless medium. Indeed, nodei is
on the range ofi+ 1 and is thus able to hear most of the packets that are sent by
nodei+ 1 to i+ 2. In the usual settings, the MAC layer at each node transmits to
the upper layer only the messages that are targeted to it and ignores the messages
targeted to other nodes. However, by setting a node in the monitoring mode, it is
possible to sniff packets that are targeted to other nodes through a raw socket (as
tcpdump does1). Using such a methodology, it is then possible for a node to track
which packets are being forwarded by its successor node without it requiring any
form of message passing.

Finally, as the standard buffering policy is ”First In, First Out” (FIFO),nodei
can accurately compute the number of its packets stored at nodei+ 1 each time it
hears a packet from nodei+ 1.
Indeed, it only needs to compare the identifier of the packet it hears with theiden-
tifiers of the sent packets it has in the listL. The number of packets between the
corresponding match (the packet that nodei+ 1 forwards) and the last packet that
nodei sent (the last entry in the listL) corresponds tobi+1.
It is important to note that, in order to perform its task, the BOE module does not
need to overhear all the packets forwarded by nodei+ 1. Instead, it is enough for
it to be able to overhear some packets. Each time nodei overhears a forwarded
packet from nodei+ 1 (which happens most of the time, experimentally), it can
precisely derive the queue occupancy and transmit it to the CAA that will react ac-
cordingly. Obviously, the more forwarded packets nodei can overhear, the faster
it can detect and react to congestion. Nevertheless, even in the hypothetical case
where nodei is unable to hear most of the forwarded packets, it will still adapt
to the congestion and eventually set its contention window to the right value. This
robustness of EZ-flow to forwarded packets that are not overheardis a crucial prop-
erty, as some packets may be missed due to the variability of the wireless channel
or hidden node situations.

5.2.3 Channel Access Adaptation

The second module of EZ-flow is the CAA that adapts the channel access proba-
bility according tobi+1, which is the50-sample average of thebi+1 derived by the
BOE. The intuition behind EZ-flow is that in the case a successor node already has
many packets to forward, it is useless to send it more packets. Even worse, sending
more packets degrades the performance. Indeed, every time nodei sends a new
packet to be forwarded, nodei+ 1 looses a chance to transmit.

Following this result, we propose a simple policy for the CAA that uses solely
two thresholds: (i)bmin and (ii) bmax. Then it adapts the channel access of each
node by changing its value of the contention windowcwi. Indeed, every time the

1The Tcpdump Manual Page: http://www.tcpdump.org/
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nodei needs to send a packet when the channel is not idle, it randomly choosesa
backoff value that is inside the interval[0, cwi − 1] and it waits for this amount of
time before retrying to transmit (see Section 2.3 for more details on IEEE 802.11).
Therefore, we note that the higher thecwi is, the lower the channel access proba-
bility is.

Our policy makes the decision based on a time average of the queue occupancy
at the successor node (bi+1). We set the time average parameter to be50 samples
and then one of three cases may occur:

• bi+1 < bmin: the average queue at nodei+ 1 is below the lower threshold.
This shows that the buffer is underutilized. Thus nodei should increase its
channel access probability by dividingcwi by a factor of two.

• bi+1 > bmax: the average queue at nodei+ 1 is above the upper threshold.
This shows that the buffer is overutilized (or is even overflowing). Thusnode
i should decrease its channel access probability, which it does by doubling
cwi.

• bmin < bi+1 < bmax: this is the desired situation as the buffer is correctly
utilized by being neither empty most of the time nor saturated. In this case,
nodei concludes that it has a correct channel access probability and thus
keepscwi unchanged.

Other policies than multiplicative-increase, multiplicative-decrease could be
used to updatecwi in order to have a higher range of possible values. Yet, we
chose this policy due to the hardware constraint that requires settingcwi at powers
of 2.

Furthermore, we provide a better inter-flow fairness in EZ-flow by using two
parameters:

• countup counts the number of successive times the condition (bi+1 > bmax)
happens (overutilization).

• countdown counts the number of successive times the condition (bi+1 <
bmin) happens (underutilization).

These two pieces of information are then used to update the contention window
parameter according to the currentcwi value, where nodes with a highcwi react
both more quickly to underutilization signals and more slowly to overutilization
signals than nodes with a lowcwi.

Finally, the selection of the parametersbmin andbmax can affect the reactivity
and the speed of convergence of EZ-flow, depending on the topology.Indeed, the
smaller the gap between these two values, the higher the reactivity of EZ-flowto
slight variations, whether due to variations of the traffic load or not. Theseparam-
eters can thus be fine tuned depending on the desired behavior, but fortunately the
general values ofbmin andbmax already significantly improve the situation com-
pared to standard IEEE 802.11. Indeed, the most important parameter to set is
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bmin, which has to be very small (i.e.,∼ 10−1) in order to avoid that the nodes too
often become too aggressive and reach unsupportable rates. The parameterbmax

can then be set with more flexibility, depending on the desired reactivity.

5.3 Experimental Evaluation

We implement EZ-flow and evaluate it on9 off-the-shelf wireless nodes of our
testbed. First, we describe the environment and hardware used in our experi-
ment and discuss the practical details for the implementation of EZ-flow. Then,
we present the measurement results that confirm the efficiency of EZ-flow in im-
proving the performance in a real WMN environment.

5.3.1 Hardware and Software Description

We use4 laptops running Linux, which act as source and sink of the traffic, and9
wireless nodes equipped with an omni-directional antenna that representthe multi-
hop backhaul of a mesh network. We recall that the wireless routers areAsus WL-
500gP, in which we change the mini-PCI WiFi card to an NMP-8602 Atheros card.
Each router runs the OpenWRT firmware [OPE] with the MadWifi driver [MAD]
modified to perform both queue monitoring and the modification of the contention
window. The wireless cards operate in 802.11b at a fixed transmission rateof
1 Mb/s and with the RTS/CTS mechanism disabled. Finally, we set the routing to
be static.

We implement the two modules of EZ-flow, the BOE and CAA, in C code as
described in Section 5.2. Two practical constraints need to be accounted for. Both
of them are not required in other implementations with different hardware.

1. Sniffer constraint: We initially intended to deploy both the BOE and CAA
module within the same wireless card (i.e., the same router), but we had to
reconsider our design. Indeed, the BOE acts mostly as a sniffer that collects
the packets sent either by a node itself or its direct forwarder. The problem is
that a WiFi card cannot transmit and receive at the same time and therefore
is unable to truly sniff its own packet on the air. Instead the best a sniffer
can do is to capture the packet before it is sent to the MAC layer to be ac-
tually transmitted on the air. The drawback of this technique, however, is
that packets can be sniffed as sent by a node, even though they are dropped
by the MAC layer (for example a buffer overflow), and thus are never re-
ally physically transmitted. To overcome this limitation, we use two WiFi
interfaces per wireless node (i.e., two routers connected through an Ether-
net cable). One interface is responsible for sending the traffic and running
the CAA. The other interface does not transmit any packets and acts only
as a sniffer that implements the BOE. We use this approach to simplify the
practical deployment. EZ-flow does not require the use of two interfaces.
Indeed, another approach could be to use only one interface and to directly
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Figure 5.3:Illustration of the testbed topology. The hardware used are Asus WL-500gP routers

with an Atheros-based wireless card.

implement EZ-flow at the kernel level of the wireless driver (and not the ap-
plication level) in order for the BOE to capture only the packets that are truly
sent at the physical layer.

2. MadWifi constraint: The second practical constraint comes from theiw-
configcommand of the Madwifi driver to increase the contention window
CWmin. Indeed, it has no effect above210 (even though the driver allows
the command to execute up to215). We noticed this flaw in the implementa-
tion of the MadWifi command by checking a single-link capacity for differ-
entCWmin values and observing that it significantly varies up to210, but it
remains unchanged between210 and215.

5.3.2 Topology Description

We deploy our testbed over4 buildings of the university campus where at most
2 flows are concurrently active. Figure 5.3 presents the exact map of ourmesh
network deployment. On the one hand, the flowF1 is a7-hop flow for which the
bottleneck link isl2 as shown in Table 5.1. On the other hand, the flowF2 is a
shorter flow of4 hops that shares the same path thanF1 and produces a typical
parking-lot scenario. For the sake of comparability, we avoid the effectof inter-
ference from other networks by running our experiments on channel12 during the
night (1 am - 5 am), but we stress that the instability problem remains also dur-
ing daytime as shown in our demo2. Finally, we use the values from Table 5.1
to obtain the theoretical optima from Table 5.2 that assume ak-hop interference

2Demo available at: http://icawww1.epfl.ch/NetController/(Video2)
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Mean throughput Standard deviation

l0 845 kb/s 23 kb/s
l1 672 kb/s 49 kb/s
l2 408 kb/s 67 kb/s
l3 748 kb/s 42 kb/s
l4 746 kb/s 28 kb/s
l5 805 kb/s 27 kb/s
l6 648 kb/s 43 kb/s

Table 5.1: Illustration of the capacity of each link of flowF1. The means are obtained through

measurements over1200 s.

effect between the links withk = 2 andk = 3 (the experimental setup is some-
where between this two ranges). To do so, we compute the capacity of all paths of
interfering links

Cj+k
j = 1/(

j+k
∑

i=j

1

Ci
) , for 0 ≤ j ≤ 6− k,

and whereCi is the capacity of linkli. The theoretical optimum is then obtained by
taking the capacityCj′+k

j′ of the bottleneck path of interfering links within a flow.

5.3.3 Measurement Results

The first scenario we consider is whenF1 is alone in the network. Figure 5.4
shows the queue evolution with standard IEEE 802.11 and with EZ-flow turned on.
We note that for IEEE 802.11 both nodesN1 andN2 saturate and overflow, due
to the bottleneck linkl2 (betweenN2 andN3), whereas the queue occupancy of
all the other nodes is negligibly small, similarly toN3. This results in an end-to-
end throughput of119 kb/s as shown in Table 5.2 (note that a similar through-
put degradation for the backlogged case has been observed throughsimulation
in [LBDC+01]). In contrast, EZ-flows detects and reacts to the bottleneck at linkl2
by increasingcw1 up to28. This action stabilizes the queue ofN2 by reducing the
channel access of linkl1. Similarly, EZ-flow detects that the queue ofN1 builds
up and forcesN0 to increasecw0 until it reaches our hardware limit of210 (see
Section4.1). This hardware limitation prevents EZ-flow from reducing the queue
occupancy ofN1 to a value as low asN2. However, we stress that despite this
hardware limitation, EZ-flow still significantly improves the performance by re-
ducing the turbulence of the flow and increasing the throughput to148 kb/s (close
to the3-hop interference range theoretical optimum and mapping to a41% reduc-
tion in the gap to the2-hop optimum). Furthermore, we show through simulation
in Section 5.4 that EZ-flow completely stabilizes the network once this limitation
is removed.
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Figure 5.4:Experimental results for the queue evolution of the relay nodes when flowF1 or F2

are active. The average number of buffered packets are: (i) without EZ-flow 41.6 (N1), 43.1 (N2)

and43.7 (N4) and (ii) with EZ-flow29.5 (N1), 5.2 (N2) and5.3 (N4). The remaining queues are

very small.

In the second scenario, we considerF2 alone. Similarly to our mathematical
analysis of Section 3.4, we note that for IEEE 802.11 the queue of the firstrelay
node ofF2 (i.e.,N4) builds up and overflows, resulting in a throughput of157 kb/s.
However, EZ-flow completely stabilizes the network for all the relay nodes (no
queue builds up) by making the source nodeN

′

0 increasecw
′

0 up to28. Thus EZ-
flow works even better in this scenario where it is not blocked by the hardware
limitation and it achieves a throughput of185 kb/s.

Finally the last scenario is a parking-lot scenario where bothF1 andF2 are
simultaneously active. Similarly to what is also reported in [SGM+08] between a
1- and2-hop flow, Table 5.2 shows that IEEE 802.11 performs very poorly: the
long flowF1 is completely starved in favor of the short flowF2, becauseN

′

0 is too
aggressive (even for its own flow) and thus prevents the packets fromthe longer
flow F1 from being relayed by the intermediate nodesN1, N2, N3. However, by
its nature, EZ-flow solves the problem by making the two source nodes,N

′

0 and
N0, become less aggressive in order to stabilize their own flow. This approach
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Mean throughput Theoretical optima Jain’s Fairness
k = 3 k = 2

F1 119 kb/s 151 kb/s 190 kb/s
F2 157 kb/s 183 kb/s 242 kb/s
F1 7 kb/s 0.55
F2 143 kb/s

FEZ
1 148 kb/s 151 kb/s 190 kb/s

FEZ
2 185 kb/s 183 kb/s 242 kb/s

FEZ
1 71 kb/s 0.96

FEZ
2 110 kb/s

Table 5.2:Measurements over1800 s with and without EZ-flow. Theoretical optima are obtained

assuming a3-hop (2-hop) interference range. The sub-division in the table shows the results for: (i)

one single flow, or (ii) two simultaneous flows.

thus solves the starvation problem and significantly increases both the aggregate
throughput ofF1 andF2 and the Jain’s fairness index.

5.3.4 Effect of Bi-Directional Traffic

EZ-flow is designed to stabilize the queues within a flow independently of the
interferences caused by other flows. In the previous sub-section, weinvestigated
the effect of having multiple flows by looking at a setting where two separate flows
share part of their path to reach the same destination (e.g., the gateway).

We now focus on a different scenario, where two flows take exactly opposite
paths (i.e., the destination of a flow is the source of the other flow). Toward this
goal we use the experimental setting depicted in Figure 5.5, where the two4-hop
flows areF0→4 (from node0 to node4) andF4→0 (from node4 to node0). The
measurements show a serious throughput asymmetry in this setting. Indeed, we set
the data rate of all nodes to2 Mb/s and when first launching each flow by itself, we

w/o, RTS, w/o EZ w/o RTS, EZ RTS, w/o EZ RTS, EZ
b1 93 37 37 2
b2 40 2 2 1
b3 0 0 0 0

F0→4 102 kb/s 140 kb/s 53 kb/s 62 kb/s

b3′ 1 1 1 1
b2′ 0 0 0 0
b1′ 0 0 0 0

F4→0 26 kb/s 68 kb/s 34 kb/s 44 kb/s

Table 5.3:Measurements of the effect of EZ-flow on: (i) the median queue occupancy at the relay

nodes and (ii) the end-to-end throughput of the4-hop flowsF0→4 andF4→0.
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Figure 5.5:Illustration of the deployment used in Section 5.3.4.

obtain a throughput of: (i)411 kb/s for flowF0→4 (379 kb/s with RTS); and (ii)
206 kb/s for flowF4→0 (172 kb/s with RTS). We then launch both flows simulta-
neously for600 s and our results are summarized in Figure 5.6 and Table 5.3.

Table 5.3 shows the following for each flow: (i) the median queue occupancy
from measurements taken each second (we set the buffer size limit to100 packets);
and (ii) the average end-to-end throughput. The results indicate that, either with or
without RTS, the use of EZ-flow reduces the queue size and increases the end-to-
end throughput for both flows. Moreover the results show that, in our setting, the
performances are better without the use of RTS, and this also corresponds to the
case where EZ-flow provides the largest performance gain. We show,in Figure 5.6,
the evolution through time of the queueb2 with and without EZ-flow. Finally, we
stress that the Madwifi constraint is the reason that the queueb1 does not reach
a lower value with EZ-flow (i.e., the contention window of node0 is set to the
maximal working value of210).

Time [s]

Q
ue

ue
si

ze
[p

ac
ke

ts
] Queueb2 without EZ-flow

0
0

20

40

60

80

100

200 400 600
Time [s]

Q
ue

ue
si

ze
[p

ac
ke

ts
] Queueb2 with EZ-flow

0
0

20

40

60

80

100

200 400 600

Figure 5.6:Effect of EZ-flow on the queue evolution through time ofb3.
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Figure 5.7:Scenario1: 2-flows topology.

5.4 Simulation Results

To confirm our statement that the EZ-flow mechanism successfully achieves net-
work stability and adapts to changing traffic matrices, in this section we present
simulation results on two different scenarios with varying traffic loads.

5.4.1 System Description

We implemented the two modules of EZ-flow, the BOE and CAA, in ns-2 sim-
ulator version 2.33 [MF]. Our implementation closely follows the description of
Section 5.2, where each node does not use any global information, but uses only
the information it can hear by sniffing the channel.

Beside the inclusion of EZ-flow, we keep the standard parameters of IEEE
802.11. Therefore we use a transmission range of250 m, a sensing range of550 m
and the RTS/CTS mechanism turned off. The reason we do not use RTS/CTS is
twofold: (i) the current implementations of the protocol disable the mechanism by
default and (ii) enabling the RTS/CTS is useless in the standard case we consider
where the area covered by the sensing range (550 m) is larger than the maximal
area covered by RTS and CTS (2 · 250 m). We also keep the default data rate
of 1 Mb/s and the propagation model to be two-ray ground. To ensure that the
systems run in a saturated mode, we generate at the source a Constant Bit Rate
(CBR) traffic at a rate of2 Mb/s. Finally we use the NOAH routing agent [J.Wb],
which is a static routing agent, in order to focus on the influence of the MAC layer
and to remove from our study the effect of route link failure and the overhead of
routing messages. The parameters of EZ-flow arebmin = 0.05, bmax = 20 and
maxcw = 215.
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Figure 5.8:Throughput results for flowF1 andF2 in scenario 1: (i) with standard 802.11 and (ii)

with EZ-flow turned on.

5.4.2 Scenario 1:2-Flow Topology

The topology we study in our first scenario is depicted in Figure 5.7 and corre-
sponds to two8-hop flows that merge together to access a gateway. This situation
corresponds to the uplink scenario happening in the backbone of WMNs,where
different flows merge together to reach the gateway that delivers access to the In-
ternet.

The flowF1 is active for the entire duration of the simulation, i.e., from5 s to
2504 s. FlowF2 is active between605 s and1804 s. The throughput and delay
results are shown respectively in Figures 5.8 and 5.9.

During the first period, the flowF1 is alone in the network (5−604 s). We note
that in the case of standard IEEE 802.11 without EZ-flow, the network already
suffers from congestion. Indeed, the end-to-end delay reaches a value of4.1 s,
which is unacceptable for delay-sensitive traffic, and the throughput reaches only
153.2 kb/s. But when EZ-flow is turned on, the network is stabilized. Indeed, the
end-to-end delays drop to a value as low as0.2 s. Interestingly, this reduction in
delay does not happen at the cost of a reduced throughput as it increases up to an av-
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Figure 5.9:Delay statistics for flowsF1 andF2 in scenario1: (i) with standard 802.11 and (ii)

with EZ-flow turned on.

erage of183.9 kb/s, which corresponds to a throughput gain of20% over standard
802.11. To understand why EZ-flow achieves this performance, Figure5.10 shows
how the contention windows are automatically adapted at the different nodes. The
stable regime is reached once the relay nodes set their contention window to the
minimal value of24 and the source node,N12, sets it tocw12 = 27. Therefore, we
highlight that for the single-flow topology, EZ-flow reaches distributivelythe static
solution that was proven to be stable (proposed in Section 3.5).

During the second period, both flowsF1 andF2 are concurrently active (605−
1804 s). Obviously, for IEEE 802.11 the congestion problem becomes worse with
average delays as high as5.8 s, an average throughput reduced to76.5 kb/s and
a high throughput variation. Enabling EZ-flow once again improves these three
metrics, and most importantly solves the problem of congestion. Indeed, the end-
to-end delay rapidly drops to negligible values, which shows no queue build-up in
the network. Furthermore, the average throughput is also increased to82.1 kb/s.
The explanation for the two peaks in delay at around600 s and1000 s is found in
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Figure 5.10:Illustration of how EZ-flow modifies theCWmin values at the different nodes of the

network.

Figure 5.10. The first peak corresponds to the transient incurred by the arrival of
flow F2. Up to605 s only flowF1 exists in the network, and EZ-flow adapted the
contention windows to stabilize the network for a single-flow topology. At605 s
the second flowF2 appears in the network and therefore the previous contention
windows are too small for this new traffic load. Thus, the queue starts to build
up at some nodes and this is reflected by the sudden increase in end-to-end delay.
Fortunately, EZ-flow rapidly adapts the contention windows to solve the problem
and converges once again to a stable state. However, we note that after this first
peak, the contention windows of the nodes inF1 andF2 are different ascw8 = 24,
whereascw7 = 25. This difference is the cause of the second peak. Indeed, due
to the smallcw8, N10 and thenN12 sense their successor node underutilized and
thus become more aggressive. Unfortunately, this increase leads to a ratethat is not
supportable at the junction nodeN4, and the queues ofN5 andN6 start to build up.
BothN7 andN8 detect this increase, but following the algorithm of the CAA,N8

is more likely to react ascw8 < cw7. ThereforeN8 increases itscw8, N10 andN12

react to it and reach a steady state. Interestingly, once the stable regime is reached,
the source nodes setcw11 andcw12 at the value of211, which is once again similar
to the optimal static solution proposed in Section 3.5 (q = 24/211 = 1/128).

During the last period, the flowF1 is again alone in the network (1805−2504 s).
As expected, IEEE 802.11 achieves performances similar to the first period. More
importantly, the results show a particularly interesting property of EZ-flow: its
adaptability to changes in the traffic load. Indeed, as soon as the flowF1 leaves the
network the buffer of some nodes becomes under-utilized. EZ-flow detects this and
becomes more aggressive by decreasing thecw12, cw10 andcw8 until it reaches the
same stable state as in the first period. Therefore improvements in throughput and
delay similar to the first period are found for this last period.
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Figure 5.11:Scenario2: 3-flows topology.

5.4.3 Scenario 2:3-Flow Topology

The second scenario we consider is a3-flow topology as depicted in Figure 5.11.
This situation corresponds to the multi-hop scenario where multiple sources reach
different destinations, but share the wireless resource with other flowson some
parts of their paths. Furthermore, this topology illustrates what happens when the
source of one flow (i.e.,N0) is a hidden node from another source (i.e.,N10).
The simulation starts with flowsF1 andF2 present in the network from5 s to
1805 s. Then flowF3 is added and the three flows share the resources from1805 s
to 3605 s. Finally, we remove flowsF2 andF3 and letF1 alone in the network
from 3605 s to4500 s, in order to check that the system stabilizes once again to a
performance similar to what we find in the single-flow topology of scenario 1.The
throughput and delay statistics are shown respectively in Figure 5.13 andTable 5.4.
Furthermore, Figure 5.12 illustrates how EZ-flow adapts the contention windows
over time.

During the first period,[5, 1805), we see that IEEE 802.11 drastically suffers
from the hidden node situation, withF2 experiencing a particularly high delay
(∼ 15 s) and low throughput. The fairness index is0.75. On the contrary, when
EZ-flow is turned on, the contention window of the source ofF2 cw10 is increased
up to a value of210 to provide a smooth flow. We note that this increase delivers
negligible delays to both flows and does not penalizeF2 as it has a throughput that
is even slightly higher thanF1. The reasonF2 achieves a higher throughput with
a larger contention window (cw10 = 210 andcw0 = 25) is thatN10 only directly
competes with two nodes (N11 andN12), whereasN0 competes with seven other
nodes.

During the second period,[1805, 3605), we see that IEEE 802.11 starves flow
F2 andF3 in favor of F1 and that all flows suffer from high delays. The reason
thatF1 shows better performances thanF3 is thatN0 has many neighbors and it
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Mean throughput Standard deviation FI (Eq. (5.1))

F1 145.6 kb/s 27.4 kb/s 0.75
F2 39.9 kb/s 36.7 kb/s
F1 129.9 kb/s 45.3 kb/s 0.64
F2 31.0 kb/s 32.5 kb/s
F3 27.3 kb/s 39.9 kb/s
F1 150.0 kb/s 13.0 kb/s

FEZ
1 89.9 kb/s 41.3 kb/s 1.00

FEZ
2 100.3 kb/s 42.6 kb/s

FEZ
1 29.5 kb/s 22.9 kb/s 0.80

FEZ
2 139.7 kb/s 23.0 kb/s

FEZ
3 135.4 kb/s 26.9 kb/s

FEZ
1 179.9 kb/s 13.5 kb/s

Table 5.4:Mean throughput, standard deviation and Jain’s fairness index (FI) withand without

EZ-flow for the three periods: (i)F1 alone, (ii)F1 andF2 active and (iii) all three flows active.

naturally reduces the source access rate and thus the queue build-up problem. IEEE
802.11 achieves a cumulative throughput of188.2 kb/s and a fairness index of0.64.
In contrast, EZ-flow increases the cumulative throughput to304.6 kb/s (a62%
throughput gain over 802.11), increases the fairness index to0.8, and drastically
reduces the end-to-end delay by an order of magnitude, at least. We notethatF1

has its throughput reduced even though the source ofF1, N0, hascw0 that is lower
thancw10 andcw19 (cw0 = 27 andcw10 = cw19 = 29). This reduction is due to
the higher competition thatF1 experiences and it allows bothF2 andF3 to have
higher throughputs and all the flows to have negligible delays and thus, a stable
network.
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Figure 5.12:Illustration of how EZ-flow modifies theCWmin values at the two first nodes of

each flow.
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Figure 5.13:Delay statistics for flowF1, F2 andF3 in scenario 2: (i) with standard 802.11 and

(ii) with EZ-flow turned on.

Finally, during the last period we see that once again EZ-flow successfully
detects the variation in traffic load and adapts the contention windows to achieve
results similar to those in the single-flow case of scenario1.
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5.5 Dynamical Model

5.5.1 EZ-Flow Dynamics

Using the same notation as in Chapter 3, the dynamics of a network using EZ-flow
are captured by the recursive equations

cwi(n+ 1) = f(cwi(n), bi+1(n)) (5.2)

bi(n+ 1) = bi(n) + zi−1(n)− zi(n), (5.3)

wheref(·, ·) is defined by

f(cwi(n), bi+1(n)) =






min(cwi(n) · 2,maxcw) if (bi+1(n) > bmax)
max(cwi(n)/2,mincw) if (bi+1(n) < bmin)
cwi(n) otherwise,

with bmax andbmin being, respectively, the maximal and minimal threshold values
for the queue andmincw = 2m andmaxcw = 2M being the bounds between which
the contention windows can evolve. Practical values arem = 4 andM = 15, thus
we always take

M > m+ 1.

This discrete-time model is a Markov chain with the tuple

{~b(n), ~cw(n)}

as state, where
~b(n) ∈ N

K+1

and where~cw(n) satisfies both

cwi(n) ∈ {2
m, 2m+1, · · · , 2M}

and

cwi(n) ≥ 2m+min(l,M−m) whenbi+1(n) > bmax + l, (5.4)

wherel > 0. The lower-bound condition (5.4) comes from the recursive applica-
tion of (5.2) for the lastl time slots. Indeed,bi+1(k) > bmax for n − l < k ≤ n
implies thatcwi(k + 1) = min(cwi(k) · 2, 2

M ).
The state space is divided in2K−1 regions, which differ by the entries of~b

that are zero and non-zero (i.e., the queues that are empty or not). Figure 3.7
illustrates these8 regions for a4-hop network (denotedA-H). In each region, one
can compute first the possible outcomes of the back-off timers that depend on the
contention values~cw(n), and next the resulting transmission patterns that depend
also on the possible collisions due to hidden terminals. The possible outcomes are
obtained by following the same reasoning as in Section 3.4. We summarize them
in Table 5.5 for the4-hop network with a stealing effectp = 1 (i.e. no RTS/CTS).
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Region ~z P(~z)

A [1, 0, 0, 0] 1

B [1, 0, 0, 0] cw1/(cw0 + cw1)
[0, 1, 0, 0] cw0/(cw0 + cw1)

C [0, 0, 1, 0] 1

D [0, 1, 0, 0] cw0cw2∑
i=0,1,2

∏
j 6=i cwj

[0, 0, 1, 0] 1− cw0cw2∑
i=0,1,2

∏
j 6=i cwj

E [1, 0, 0, 1] 1

F [0, 0, 0, 1] cw0/(cw0 + cw1)
[1, 0, 0, 1] cw1/(cw0 + cw1)

G [0, 0, 1, 0] cw3/(cw2 + cw3)
[1, 0, 0, 1] cw2/(cw2 + cw3)

H [0, 0, 1, 0] cw0cw1cw3∑
i=0,1,2,3

∏
j 6=i cwj

+ cw1cw2cw3∑
i=0,1,2,3

∏
j 6=i cwj

cw3
cw2+cw3

[0, 0, 0, 1] cw0cw2cw3∑
i=0,1,2,3

∏
j 6=i cwj

+ cw0cw1cw2∑
i=0,1,2,3

∏
j 6=i cwj

cw0
cw0+cw1

[1, 0, 0, 1] cw1cw2cw3∑
i=0,1,2,3

∏
j 6=i cwj

cw2
cw2+cw3

+ cw0cw1cw2∑
i=0,1,2,3

∏
j 6=i cwj

cw1
cw0+cw1

Table 5.5:Probability of occurrence of the transmission pattern~z for the different regions of the

spaceN3.

5.5.2 Proof of Stability

Equipped with the model described above, we now formally prove the efficiency
of EZ-flow in stabilizing the network. We give a proof, which holds when

bmin > M −m+ 1. (5.5)

This condition further reduces the state space of our model as, following asimilar
recursive argument than for (5.4), it implies that

cwi(n) = 2m whenbi+1(n) = 0. (5.6)

Whenbmin ≤M −m+ 1, the proof uses computer-assisted computations, and is
given in [ASTEF09].

Theorem 5.1 EZ-flow stabilizes a4-hop network by maintaining almost surely fi-
nite the queues of all the relaying nodes.

Proof: We apply Foster’s theorem (see Appendix A) with the Lyapunov function

h(b1, b2, b3, cw0, cw1, cw2, cw3) = b1 + b2 + b3,
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and the finite set

S = {cw0, cw1, cw2, cw3 ≤ 2M ; 0 ≤ b1, b2, b3 ≤ bmax +M −m+ 3}.

We need to verify that both conditions (A.1) and (A.2) of this theorem are verified
for all points{~b(n), ~cw(n)} within the state space.

We note first that (A.1) is satisfied by the definition ofh and the non-zero
transition probabilities of the random walk.

It takes some more work to verify (A.2). One needs to compute

ǫ
k,~b

(n) = E

[

h(~b(n+ k(~b(n))))|~b(n)
]

− h(~b(n))

for all possible~cw and with~b(n) in each of the7 regionsB-H outsideS, similarly
to the proof of Theorem2.

First, we note that the transition probabilities from Table 5.5 imply that:

ǫ
1,~b
(n) > 0 for~b(n) ∈ B,

ǫ
1,~b
(n) < 0 for~b(n) ∈ F ∪H,

ǫ
1,~b
(n) = 0 otherwise.

Then, we find that after some computations that for all~cw, (A.2) is verified. In
regionsF andH, we directly have from Table 5.5 that

k(~b(n)) = 1 when~b(n) ∈ F ∪H.

In regionsD andE, we note that there is a strictly positive probability of having
~b(n+ 1) ∈ F ∪H and a zero probability of having~b(n + 1) ∈ B. Therefore, we
derive that

k(~b(n)) = 2 when~b(n) ∈ D ∪ E.

In regionG, we see that there is a strictly positive probability of having~b(n+1) ∈
D ∪H and a zero probability of having~b(n+ 1) ∈ B. Thus, this gives us that

k(~b(n)) = 3 when~b(n) ∈ G.

In regionC, there is a probability1 of having~b(n+ 1) ∈ G. Hence, we conclude
that

k(~b(n)) = 4 when~b(n) ∈ C.

For regionB, the demonstration is a little more complex. First, we use that for
~b(n) ∈ B \ S, we have

b1(n) > bmax +M −m+ 3

and
b2(n) = b3(n) = 0.
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[b1 − 1, 0, 0]

[b1 − 1, 1, 0]

[b1 − 1, 0, 1]

[b1 − 2, 2, 0]

Figure 5.14:Tree representing all possible transitions at stepsn + 1, n + 2 andn + 3 starting

from b(n) ∈ B \ S. The five possible resulting events are areE+3, E+2, E+1, E0, E−1; where

Ex = Ex(~b(n)) is the event thath(~b(n+ 3))− h(~b(n)) = x.

Thus, it follows from (5.4) and (5.6) that

~cw(n) = [2M , 2m, 2m, 2m] for~b(n) ∈ B \ S.

Next, we obtainǫ
3,~b
(n) by definingEx(~b(n)) as the event that

h(~b(n+ 3))− h(~b(n)) = x.

Then, we compute the probabilities for the five possible eventsE+3(~b(n)),E+2(~b(n)),
E+1(~b(n)), E0(~b(n)), andE−1(~b(n)) (see Figure 5.14). We obtain that

P(E+3) = 1/(1 + 2M−m)3

P(E+2) = 1/(1 + 2M−m)2 − 1/(1 + 2M−m)3

P(E+1) = 1/(1 + 2M−m)− 1/(1 + 2M−m)2

P(E−1) = 2M−m/(1 + 2M−m) ·

(1− 2M−m/(2 · 2M−m + 1)) ·

2M−m/(1 + 2M−m).

Then, we find that

ǫ
3,~b
(n) = 3 ·P(E+3(~b(n)))+2 ·P(E+2(~b(n)))+P(E+1(~b(n)))−P(E−1(~b(n))),

and becauseM −m > 1, we have that

ǫ
3,~b
(n) < 0.



5.6. CONCLUDING REMARKS 81

Thus
k(~b(n)) = 3 satisfies (A.2) for~b(n) ∈ B \ S.

Finally, as RegionA ⊆ S, the conditions of Foster’s theorem are satisfied in all
{~b(n), ~cw(n)} within the state space, and it proves that EZ-flow stabilizes the net-
work.
�

5.6 Concluding Remarks

In this chapter, we proposed and designed EZ-flow, a new flow controlmechanism
for IEEE 802.11 WMNs. EZ-flow is fully backward-compatible with the IEEE
802.11 standard and works without any form of message passing. EZ-flow is im-
plemented in a distributed fashion as a simple program running at each relay node.
It takes advantage of the broadcast nature of the wireless medium to passively
estimate the queue occupancy at a successor node. The minimum congestionwin-
dow parameter is adapted at each relay node based on this estimation to ensure a
smooth flow, specifically, each relay node adapts its contention window to avoid
queue build-up at its successor node.

We demonstrated by experiments the attendant benefits of EZ-flow on a testbed
composed of9 standard wireless mesh routers deployed over4 different buildings.
Our measurement results show that EZ-flow simultaneously improves throughput
and fairness performance. To our knowledge, this is among the first implementa-
tions of an algorithm addressing instability in a real multi-hop network.

We have also thoroughly evaluated the dynamic behavior of EZ-flow by using
ns-2 simulation. The results show that EZ-flow quickly adapts to changing traf-
fic loads and ensures end-to-end delays much lower than standard IEEE802.11
WMNs.

Finally, we derived a Lyapunov function with which we analytically proved the
stability of an IEEE 802.11-based linear4-hop topology implementing EZ-flow.
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Chapter 6

Joint Congestion-Control and
Fairness

6.1 Background

6.1.1 Problem Statement

The root cause for congestion in WMNs is the Medium Access Control (MAC) pro-
tocol. Indeed, WMNs typically use distributed MAC protocols (e.g. CSMA/CA)
that have been proved, in Chapter 3, to suffer from congestion when no counter-
measure is applied. In wired networks, the queuing policy is the key factor for
unfairness. A well-known solution is to usefair queuing: one queue per-flow is
maintained, combined with a round-robin scheduler [DKS89, PG93]. However,
in wireless networks, fair queuing is required but not sufficient by itselfto ensure
fairness among flows. Indeed, ensuring fairness depends on both theMAC and the
queuing policy [GSK04]. In Figure 6.2, we depict experimental results that show
how fair queuing fails to achieve fairness when a1-hop flow competes with a3-hop
flow, even if it achieves fairness when a1-hop flow competes with a2-hop flow1.

F1

F3

F2

Figure 6.1:Linear wireless topology for which Fair Queuing achieves max-min fairness when a
1-hop flowF1 and a2-hop flowF2 transmit concurrently, but it fails to do so whenF1 transmits with
a3-hop flowF3 (see Figure 6.2).

1Demo available at: http://icawww1.epfl.ch/NetController/(Video1)
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Figure 6.2: End-to-end throughput in a line topology (see Figure 6.1) with a single-hop and a
multi-hop UDP flow (2- or 3-hop) with the standard FIFO policy (left) and with fair queuing (right).
Fair queuing achieves max-min fairness for the2-hop case (see video1), but fails to prevent starvation
in the3-hop case. Results in the top-right picture (b) look identical, but it is only anartifact of the
scale of the picture. Smaller scale plots show differences.

Our goal in this chapter is to address both intra-flow congestion and inter-flow
fairness for the backhaul of a WMN. In addition, we have several design objectives.
We want our solution to be backward-compatible with existing hardware so that it
can be readily deployed in existing networks. For instance, we want to avoid mod-
ifying any parameter of the MAC layer. We also want our solution to be distributed
and to minimize message-passing.

Our approach is to first develop mechanisms that solve the intra-flow and the
inter-flow problem separately. Hence, our first two sub-problems are as follows:

1. For a given flow, how do we efficiently perform intra-flow congestioncontrol
without message passing and without interacting with any parameter of the
MAC layer in a dynamic network (i.e., with time-varying traffic demands
and link capacities)?

2. How do we efficiently achieve inter-flow fairness when the traffic demands
and link qualities are unknown and time-varying?
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Figure 6.3:Illustration of a wireless mesh network, where a packer is encapsulated with an IP-in-

IP header when entering and leaving thebackhaulsection.

Finally, we efficiently combine both the intra-flow congestion control and inter-
flow fairness mechanisms.

6.1.2 System Model and Assumptions

We consider the single-channel multi-hop backhaul network of a WMN (see Fig-
ure 6.3). There is one Internet gateway in the WMN. Each node supportstwo
wireless interfaces where one is configured as an Access Point (AP) for clients and
the second interface belongs to the backhaul. We assume that the AP wireless inter-
face (i.e., the access part of the mesh) runs on a channel orthogonal tothe backhaul
and therefore we will not consider the access part in our analysis hereafter. The
gateway routes traffic to and from the Internet. Hence, all client traffic at the APs
is forwarded to the Gateway. We assume that all nodes use the same MAC layer
(i.e., IEEE 802.11).

There is a Limited Number of Flows in the WMN Backhaul

In this topology, we define a flow as the tuple<src IP; dst IP> between a source
AP and a destination AP. This is a pragmatic definition of a flow stemming from the
observation that most traffic in the backhaul is going to/coming from the gateway.
Hence the number of flows isO(N), whereN is the number of nodes within the
backhaul of the mesh. Typical values ofN are below50 [ROO, BOW]. Practically,
this is realized by performing an IP-in-IP encapsulation when a packet enters the
backhaul and a decapsulation at the gateway. When client traffic entersthe mesh at
an AP, the outer IP header source address is the IP address of the AP and the outer
IP header destination address is the IP address of the gateway. The inner IP header
is the original header. Therefore, the number of flows that we considerdoes not
explode, even though the final source/destination might be any address within the
Internet.
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Rate of a Flow and Capacity Region

AssumingF flows in the backhaul indexed from1 to F , we denote the rate of a
flow j, j ∈ {1, . . . , F} by xj . Additionally, we denote the flow rate vector by

~x = [x1 x2 . . . xF ].

Observe that, given our definition of flows in the previous paragraph,xj is the rate
achieved above the MAC layer.

Finally, we denote byΛ the network capacity region, which is the set of all
achievable rate vectors~x.

Intra-Flow and Inter-Flow Performance Issues

Performance problems with decentralized CSMA/CA protocols, e.g. IEEE 802.11,
in wireless multi-hop networks can be divided into two categories:

• Intra-flow Congestion Problem: Already with a single flow, network in-
stability can occur. The queues of the relay nodes build up, reducing the
throughput and increasing end-to-end delays. Indeed, we showed inChap-
ter 3 and 5 that the intra-flow congestion is due to the inefficiency of de-
centralized CSMA/CA protocols to form a smooth flow of packets when
transporting the traffic hop-by-hop through the network.

• Inter-flow Fairness Problem: With two or more flows, interference between
flows can lead to serious unfairness and starvation problems if no counter-
policy is applied. This occurs with TCP in simple topologies where one or
more1-hop flows compete with one largerK-hop flow (K ≥ 2) [GMSK09].
In Figure 6.2, our experiments show that unfairness and starvation are not
limited to TCP and that they also occur with UDP. In these experiments,
a 1-hop flow competes with a2-hop (or3-hop) flow. We observe that fair
queuing is clearly needed to achieve fairness, but is not sufficient by itself.

Tradeoff between Fairness and Throughput

There is a tradeoff between (i) maximizing the total throughput and (ii) fairly shar-
ing the capacity among competing flows. This tradeoff is intimately related to the
maximization of a utility functionu(·) of the flow rates [ES05].

For instance, Remember thatxj is the rate of flowj: maximizing

uthr(~x) =
F
∑

j=1

xj (6.1)

yields the maximum total throughput but completely ignores fairness. A utility
function effectively balancing throughput and fairness is

uprop(~x) =

F
∏

j=1

xj . (6.2)



6.1. BACKGROUND 87

This utility function achievesproportional fairness[KMT98], because maximizing
(6.2) is exactly the same as maximizing

u(~x) =
F
∑

j=1

log(xj).

In the remainder of the chapter, we will consider the utility functions (6.1) and
(6.2). The reader interested in further extensions of proportional fairness can con-
sult [MW00].

Then, for a given utility functionu(·) (i.e., either (6.1) or (6.2)), solving the
optimization problem

max
~x∈Λ

u(~x) (6.3)

finds a rate allocation vector~x that maximizes the utility function and satisfies the
particular fairness implicitly embedded by the definition ofu(·). Note that directly
solving the maximization problem (6.3) in one step would imply the knowledge of
the capacity regionΛ. However, the capacity region is, in practice, time-varying
and challenging to measure [SSGG09] and therefore there is a real needfor dy-
namic mechanisms such as the one that we propose in this chapter.

6.1.3 Related Work

As explained in Section 6.1, the serious unfairness and starvation problemsthat
we observe in Figure 6.2 find their origins in both: (i) a queuing problem and(ii)
a MAC problem. The queuing problem has been thoroughly studied for wired
networks [DKS89, PG93]: flow-based scheduling with Weighted Fair Queuing
(WFQ) efficiently provides fairness. However, WFQ alone is not sufficient for
wireless multi-hop networks [GSK04] because the MAC layer plays a criticalrole.

In the previous chapters, we already discussed the recent analytical work on
throughput optimal schemes [YST08, CKLS08, PYC08, YPC08, GLS07, SSR09].
Their goal is to achieve any rate in the capacity region by using variants of the
MaxWeight scheduling algorithm [PYC08, SSR09]. It is important to point out that
these approaches rely on three fundamental conditions: (i) the set of active flows
in the network must be static and no flow can appear (or leave) [vdVBS09], (ii) all
sources should know a priori the capacity region and (iii) no source cantransmit at
a rate above capacity. Our work fundamentally differs because we do not assume
that the sources know the capacity region nor that they rate-limit themselves at the
capacity of the network. Our mechanisms do not rely on any assumption about the
source behavior and provide both congestion control and fairness in adistributed
manner.

Interestingly, in [ES05] Eryilmaz et al. show for single-hop cellular networks
that a combination of queue-length-based scheduling and congestion control leads
to a fair resource allocation. Our work differs as we consider multi-hop scenarios
that require distributed solutions because there exists no base stations thatcan act
as a central scheduler.
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Figure 6.4:On the left, an experiment with UDP shows that increasing the contention window

decreases the link capacity (1-hop). On the right, we see the end-to-end throughput of a single multi-

hop UDP flow (either2-hop or3-hop). In either case, increasing the contention window onthe node

directly connected to the gateway(i.e., last hop) decreases the achieved UDP throughput.

Several practical solutions have also been proposed to address the unfairness
and starvation problems. In [GSK04], Gambiroza et al. introduce the Inter-TAP
Fairness Algorithm (IFA) that achieves a fair allocation. Despite encouraging per-
formances, this solution requires a large amount of network-wide messagepassing,
which is particularly problematic in dynamic scenarios. Indeed, all nodes compute
their offered load and capacity, and transmit this information to all the other nodes
in the network. The work in [GMSK09] by Gurewitz et al. is probably the most
related to ours. The authors identify a starvation problem that occurs when a2-hop
TCP flow competes with one or more1-hop TCP flows. Their proposed counter-
starvation policy consists in “increasing the contention window of all the nodes
directly connected to the gateway”. This policy definitively provides fairness im-
provements but it is topology-dependent and suffers two serious pitfalls. First, in
Figure 6.4, we show that increasing the congestion window (CWmin) seriously
affects the link capacity. An increase to27 − 28 as proposed in [GMSK09] cor-
responds to a10 − 20% decrease in the link capacity. Now, in mesh networks,
the nodes directly connected to the gateway are often the network bottlenecks as
they collect all downstream traffic. Thus, this counter-starvation policy may re-
duce bottleneck link capacities and therefore affect the whole network. Second, the
counter-starvation policy only works with TCP, as it provides congestion-control.
Following this counter-starvation policy on2-hop or3-hop topologies with UDP
will drastically reduce throughput: The source node of any multi-hop flow willag-
gressively access the channel and the last hop will not be able to transmitpackets to
the gateway due to its higher contention window (Figure 6.4, right). Our algorithm
differs because it neither reduces the bottleneck link capacity, nor needs the help
of any congestion-control mechanism from the upper-layers.

Finally, additional work implements algorithms to achieve fairness and conges-
tion control [RJJP08, SSGG09, WJHR09]. In [RJJP08], Rangwala at al. propose
a transport layer congestion control algorithm called WCP that explicitly reacts to
congestion without suffering the unfairness problem of TCP. Similarly, [SSGG09]
Salonidis et al. introduce a rate-control protocol at the network layer, which esti-
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Figure 6.5:Congestion control mechanism running at nodei, with each flowj having its dedicated

queue and rate limiterρji (limiting the link rate). A round-robin (RR) scheduler connects the rate

limiters to the MAC (interface) queue.

mates the network capacity and adapts the transmission rate accordingly to avoid
congestion. Nevertheless, both protocols build upon an end-to-end methodology,
better suited for a static network than a dynamic one. Hop-by-hop approaches
have the potential to provide better performance [YS07]. Both DiffQ [WJHR09]
and EZ-flow (see Chapter 5) are hop-by-hop protocols that performcongestion
control at the MAC layer by using different values for the contention window
parameter (CWmin). Despite good performance, DiffQ and EZ-flow abuse the
role of theCWmin, originally meant to deal with contention and not congestion.
This abuse leads to antagonist goals between congestion (avoiding queuebuild-
up) and contention (avoiding collisions) whenever a part of the network suffers
from both. Indeed, the congestion-control mechanism tends to decrease CWmin

in order to to flush the queue faster, whereas the contention-control mechanism
tends to increaseCWmin to avoid collisions. Congestion-control must be decou-
pled from contention-control at the MAC layer. Similarly to the methodology of
EZ-flow, discussed in previous chapter, our network-layer hop-by-hop congestion-
control algorithm works without message passing, but it significantly differs from
the scheme of the previous chapter, because there are no interactions withthe MAC
layer. Moreover, here we also consider the notion of fairness throughan inter-flow
mechanism.

6.2 Intra-Flow Congestion Control

For a single multi-hop flow, the goal of intra-flow congestion control is to create
a smooth packet flow with low end-to-end delays and high throughput. We use
a hop-by-hop approach where the link rates of the source and its relay nodes are
adapted to maintain a small (but non-zero) number of packets in the relay queues.
Obviously, the last node just before the destination is not rate limited.

In this chapter, we design a novel layer2.5 protocol performing per-flow queu-
ing at each nodei. As depicted in Figure 6.5, each queue is attached to arate
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Figure 6.6:Mechanism used by the network-layer congestion-control scheme to adapt the rateρji
of the rate limiter based on the next-hop queueq̄j

s(i).

limiter that limits the link rate of flowj to ρji . Finally, each rate limiter is sched-
uled in a Round-Robin (RR) manner to the unmodified MAC queue. In addition,
qji denotes the number of packets that are contained in the queue of flowj at node
i and the index of the next-hop (or successor) of nodei for flow j is sj(i). We will
drop the indexj if it is clear from the context. For instance,qjs(i) is the size of the
queue for flowj at the next-hop of nodei.

For each flowj at nodei, our algorithm sets the rateρji according to the size
qjs(i) of the next-hop queue. Hence, our solution comprises two phases: (i) a passive

estimation ofqjs(i), without message-passing, and (ii) the adaptation ofρji .
The first phase follows a methodology similar to the one described for the BOE

of EZ-Flow in Section 5.2.2 (with the advantage of not requiring two wireless
interfaces anymore). For each flowj, each nodei maintains a packet-identifier
list (e.g., UDP or TCP checksums) of the lastP successfully transmitted packets
(typically, P = 100). In addition, each node runs in the promiscuous mode and
attempts to overhear packets forwarded by thenext-hopnodesj(i). Whenever a
forwarded packet is overheard, nodei can use the packet-identifier list to compute
an estimate of the occupancyqjs(i) of the next-hop queue. Nodei simply counts
how many packet identifiers have been added to the list since the identifier ofthe
overheard packet was added. This method gives an exact value whenthe next-hop
node uses the standard FIFO queuing policy.

For each flowj at nodei, the second phase uses the estimates ofqjs(i) to adapt

ρji . For a flowj, an update of the rate limiter parameterρji is performed everyR
packets that are overheard fromsj(i). Let T1 < T2 < T3 denote queue thresholds
and q̄js(i) the per-flow time-averaged occupancy ofqjs(i) computed over the lastR
overheard packets. Whenever an update occursoneof this four cases takes place
(see Figure 6.6):
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1. q̄js(i) ≤ T1: The queue at the next-hop is under-utilized and should be in-
creased (positive expected drift). Thus, if the node has packets in its own
queue,ρji is linearly increased.

2. T1 < q̄js(i) < T2: The queue at the next-hop is neither empty nor over-

flowing. This is a desirable situation andρji should remain unchanged (zero
expected drift).

3. T2 ≤ q̄js(i) ≤ T3: The queue at the next-hop builds up andρji should be

decreased (negative expected drift). Asq̄js(i) ≤ T3, a small decrease ofρji
might be enough to maintain a reasonable number of packets at nodei: ρji is
linearly decreased.

4. T3 > q̄js(i): The next-hop queue is close to overflowing (e.g., due to a sudden

environmental change) andρji should be quickly decreased to avoid packet
losses (large negative expected drift):ρji is multiplicatively decreased.

The role ofT1, T2 andT3 is to describe the number of packets that need to be
maintained in the queues. They depend only on the buffer size of these queues.
Typically, these are fixed and well-known.

Finally, in order to avoid the complete starvation of a flow, we do not allowρji
to go below the minimal value of1 packet per second. This is necessary for the
nodes to estimate the next-hop queue occupancies at any time. The parameterR
represents a tradeoff between reactivity and stability: a largeR fits a highly stable
environment and smooths short-term variations. On the contrary, smallerR values
are better for highly time-varying environments that require a quick reactivity of
the protocol. In our experiments, we always setR = 40.

6.3 Inter-Flow Fairness

The intra-flow congestion control mechanism is required in order to avoid the
queues of relay nodes from overflowing. Nevertheless, it is not enough, by it-
self, to ensure fairness between different competing flows. In fact, thisproblem is
particularly serious when a1-hop flow competes with other multi-hop flows. For
instance, let a1-hop and a2-hop flow send traffic to a gateway. The2-hop flow
will be rate limited by the congestion control mechanism (in order to avoid that the
queue of the relay builds-up), but the1-hop flow will not be rate limited, because
no information about the next-hop queue can be used for intra-flow congestion
control.

We propose a solution for networks with a tree topology, the typical config-
uration for a mesh network where all traffic is directed to and from the gateway.
The gateway has a global view of the throughput achieved by the different flows,
and, in particular, of the fairness of their allocated rates. It can therefore use this
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information to set the rate of the rate limiters of its directly connected neighbors.
A network with multiple gateways is a straightforward extension. Indeed, the mul-
tiple gateways can use their wired links to exchange information, thus making the
problem similar to the case of a macro-gateway making the scheduling decisions
for the whole network.

We believe that it is relevant to consider this fairness problem separately,in a
single-hop scenario. Indeed, any rate adaptation on the last hop induced by a fair-
ness enforcement policy will propagate along the mesh using the intra-flow con-
gestion control mechanism, as discussed in Section 6.4. The experimental results
in Section 6.5 confirm this behavior.

6.3.1 Model Description

We focus on a single-hop scenario, whereF flows j (j ∈ {1, . . . , F}) send traffic
to the gateway. We assume that the capacity regionΛ(n) is unknown, but for the
purpose of the analysis, also time-constant (Λ(n) = Λ) and convex. In these set-
tings, the fairness problem can be modeled as the utility maximization of a slotted-
time system. A time slot corresponds to the fixed duration of a rate limiting (rate
limiter) assignment.

We adapt the notation of Sections 6.1.2 and 6.2. We drop the node indexi and
extend the notation to consider the time-slotted behavior.

• Service rate: ~x(n) ∈ R
F , wherexj(n) is the amount of traffic received at

the gateway from flowj during time slotn.

• Limiting rate : ~ρ(n) ∈ R
F , whereρj(n) is the maximum amount of traffic

set by the gateway for flowj during time slotn.

• Capacity region: Λ(n), which is the set of all the achievable~x(n) by the
system

• Utility function : We consider a concave, continuously differentiable and
strictly increasing utility functionu : RF → R. We denoteu(n) = u(~x(n))
the utility achieved at slotn that can be computed by the gateway.

The achieved throughput vector~x(n) obviously depends on the value of the
rate limiters when~ρ(n) ∈ Λ(n). Indeed, we have

~x(n) = ~ρ(n) (6.4)

when~ρ(n) ∈ Λ(n). Otherwise, we can only write that

~x(n) ∈ ∂Λ(n),

where∂Λ(n) is the boundary of the capacity regionΛ(n). This constraint means
that the gateway has full control of the service rate achieved by each flow when
~ρ(n) ∈ Λ(n). However, it loses this control, when going out of this region.
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6.3.2 Algorithm Description

The optimization problem we focus on is equivalent to answering the following
question:“How should the gateway set the limiting rates~ρ(n) in order to maximize
the utilityu(n) without knowing the network capacityΛ(n)?” .

To answer this question, we note that the utilityu(~x) is a scalar field over the
capacity region. A standard tool for performing optimization on~x in a convex
set is a gradient ascent. In practice,Λ(n) is time-varying and may not always
be convex, but Section 6.5 demonstrates experimentally that our algorithm also
performs well in these scenarios. The key difference between our practical problem
and the standard optimization problem is that the gateway doesnotdirectly control
the achieved throughput~x(n). Instead, the only variables it can control are the rate
limiters ~ρ(n). The gradient ascent on~ρ(n) can only be performed when the rates
are set within the capacity region (i.i.,~ρ(n) ∈ Λ(n)). Outside this region,~ρ(n)
does not determine~x(n) anymore.

To tackle this problem, we introduce a new algorithm that we call E&E (Ex-
plore & Enhance). The E&E algorithm is detailed in Algorithm1 and it combines
two phases.

• The enhancephase is applied whenever the allocated rates~ρ(n − 1) at the
previous time-stepn − 1 were feasible, i.e. whenever the system measured
that~x(n− 1) = ~ρ(n− 1), indicating that the previous allocation was within
the capacity regionΛ(n− 1). The algorithm tries then to increase the utility
by performing a gradient ascent. This is done at line17 of the algorithm. If
it is successful, it updates the rate vector~ρ(n), and repeats a new enhance
phase. If it fails, then it means that the new attempted rate allocation was
outside the (unknown) capacity region. The algorithm then backtracks to the
previous rate vector, which was within the capacity region, and moves to the
explore phase described next.

• The explorephase is applied whenever the allocated rates at the previous
time-step are not feasible. It first choses two flows at random among theF
flows. Then it decreases the rate of the first one by a random amount, and
increases the rate of the second one to reach the same value of the utility
function. Note this is an easy operation that only requires to solve one equa-
tion with one unknown. This allows the algorithm to explore a new part of
the capacity region, which provides the same level of utilityu(·) but which
may be a better point to successfully perform an enhance phase. The explore
phases are crucial to avoid being locked in a local maximum, at the boundary
of the capacity region.

The E&E algorithm starts from an initial condition that is the allocation ob-
tained from running the underlying MAC (in our case IEEE 802.11). Then, we
show in Lemma 6.1 that the algorithm improves the utility function during each
successful enhance phase, and leaves it unchanged between two consecutive suc-
cessful explore phases (during which the last stable assignment~r remains equal to
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the measured achievable rates~x at the end of the last successful phase). A con-
vergence proof appears, however, beyond reach because the capacity region is not
known, and even possibly time-varying.

Algorithm 2 E&E (Explore & Enhance) Algorithm
1: Init: pick α > 0
2: At time slot n = 1:
3: denote~x(0), the service obtained during slot 0, and start the algorithm from

the allocation~ρ(1) = ~x(0)
4: store thelast stable assignment~r(1) = ~ρ(1)
5:

6: At each time slotn > 1:
7: denote~x(n− 1), the service obtained during slotn− 1
8: if ~x(n− 1) = ~ρ(n− 1) then
9: gotoEnhance phase

10: else
11: gotoExplore phase
12: end if
13: broadcast one packet that contains~ρ(n)
14:

15: Enhance phase:
16: set~r(n) = ~ρ(n− 1)

17: set~ρ(n) = ~x(n− 1) + α ·
−−−−−−−−−→
▽u(~x(n−1))

‖
−−−−−−−−−→
▽u(~x(n−1))‖

18:

19: Explore phase:
20: pick randomlyi, j ∈ {1, . . . , F}, with i 6= j
21: pick randomlyβ ∈ [0, α]
22: setρi(n) = ri(n− 1)− β
23: find ρj(n) that satisfies

u(r1(n− 1), . . . , ρi(n), . . . , ρj(n), . . . , rF (n− 1)) = u(~r)

24: set
~ρ(n) = [r1(n− 1), . . . , ρi(n), . . . , ρj(n), . . . , rF (n− 1)]

We stress that Lemma 6.1 proves that the time-evolution of the utility achieved
by the last stable assignment~r(n) is non-decreasing, but this does not imply that
the evolution of the network utilityu(~x(n)) is necessarily non-decreasing. In fact,
the network utilityu(~x(n)) might decrease if an allocation outside the network
capacity is chosen (~ρ(n) /∈ Λ(n)). However, the non-decreasing property of~r(n)
is still interesting to have, because the algorithm can slightly be modified to take
advantage of this. Indeed, an additionalexploitation phasecan be added during
which the mechanisms exploits (i.e., uses) at timen the best achievable allocation
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it discovered at this point in time (i.e., it sets~ρ(n) = ~r(n)). This exploitation
phases can then be scheduled to happen periodically and from Lemma 6.1, we
know thatu(~x(n)) is guaranteed to be non-decreasing during these exploitation
phases (because we have~x(n) = ~ρ(n) = ~r(n) for a time-constant capacityΛ). As
the addition of anexploitation phasedoes not modify the main methodology of the
algorithm, we do not consider the addition of this third phase in the remainder of
the chapter.

Lemma 6.1 The utility function evaluated in the successive last stable assignment
rates,u(~r(n)), is non-decreasing withn.

Proof: We note that~r(n) is the last stable assignment, and therefore~r(n) = ~ρ(n−
k) = ~x(n− k) for somek ≥ 0. At the end of a successful enhance phase, one can
takek = 0 in the previous relation, hence

~r(n+ 1) = ~r(n) + α ·

−−−−−−→
▽u(~r(n))

‖
−−−−−−→
▽u(~r(n))‖

,

andu(~r(n+1)) ≥ u(~r(n)) becauseu(·) is concave (see Theorem 21.4 in [CZ08]).
At the end of an unsuccessful enhance phase the last stable assignment remains

unchanged. In addition, its utility remains unchanged at the end of an explore
phase. As a result, in these two cases we have thatu(~r(n+ 1)) = u(~r(n)).
�

We highlight that the E&E algorithm works for utility functions that are con-
cave, continuously differentiable and strictly increasing. The standard max-min
fair utility function does not satisfy these conditions, as it is not continuouslydif-
ferentiable. Nevertheless, a well-known solution exists to solve this optimization
problem (i.e., water-filling). Therefore, the E&E algorithm can easily be extended
to achieve max-min fairness by (i) starting from a feasible allocation where all
flows achieve the same throughput and (ii) following the water-filling policy at
each enhance phase (as the gradient may not be defined).

6.4 Joint Congestion Control and Fairness for WMNs

The complete framework that we propose results from the interaction between the
intra- and inter-flow mechanisms. Indeed, we solve both the congestion-control
and fairness problem by adapting the per-flow link throughput at each node. For
flow j at nodei, the parameterρji is set by the inter-flow mechanism if the node is
a one-hop neighbor of the gateway and by the intra-flow mechanism otherwise.

In the first case, all one-hop neighbors receive the value to setρj by the gate-
way. To ensure fairness, the gateway runs the E&E algorithm to continuously
update the rate allocation. The gateway sends a single broadcast messagecontain-
ing rate limiter parameter settings to its one-hop neighbors at regular time intervals
(typically every three seconds).
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Figure 6.7:The12-node testbed.

In the second case, the parameterρji of rate limiter for flow j is controlled
locally at nodei by the intra-flow mechanism (without any message passing).
Hence, the intra-flow congestion control mechanismpropagatesthe fair allocation
obtained at the one-hop neighbors of the gateway with the inter-flow mechanism
deeper into the network.

In the next section, we demonstrate the effectiveness of this approach.

6.5 Experimental Evaluation

In this section, we extensively evaluate our solution on a real wireless meshnet-
works. We begin by studying the performances of both the intra- and inter-flow
schemes in isolation, and then we evaluate their interaction in order to solve the
initial starvation problem introduced in Section 6.1.

6.5.1 Hardware and Software Description

We use12 IEEE 802.11 nodes of our testbed as depicted in Figure 6.7. Each
node is an off-the-shelf Asus WL-500gP wireless router equipped with asingle
omni-directional antenna. Each router runs the version8.09.2of the openWRT
firmware [OPE] with theClick modular router [KMC+00] used in user mode. We
implemented our mechanisms in C as five newClick elements that use the Multi-
FlowDispatcher [SL09] functionalities in order to create a new queue at run time
only when the corresponding flow appears at a node. Additionally, we set the size
of the MAC interface buffer to10 packets and the size of the per-flow buffers to
100 packets. We set the parameters of the intra-flow mechanism accordingly to
maintain a small amount of packets in the per-flow queues. We useT1 = 20 (a
little larger than the MAC queue size to maintain some packets in the per-flow
queue),T2 = 40 andT3 = 80 (close to the buffer size limit to avoid overflows).
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Figure 6.8:Experimental results for a4-hop (F4) and a5-hop flow (F5). We show the effect of
our intra-flow congestion control described in Section 6.2 (with c-c) on the queue size (left) and the
median end-to-end throughput (right) with the25 and75 percentile confidence intervals.

Finally, we make two practical extensions to the E&E algorithm: (i) we handle the
time variability of the capacity region by testing the last stable assignment~r after
10 unsuccessful explore phases in order to check whether it remains sustainable;
and (ii) we limit the possible loss of the control messages sent by the gateway by
using a pseudo-broadcast packet (addressed to the neighbor with theweakest link
and overheard by the other nodes), instead of a pure broadcast one.

6.5.2 Evaluation of the Intra-Flow Congestion Control

We evaluate the efficiency of our intra-flow congestion control mechanismby con-
sidering one4-hop flow (F4) and one5-hop flow (F5). These scenarios are relevant
because IEEE 802.11 is known to perform poorly and introduces much congestion
in such configurations, as we showed in Chapter 3.F4 andF5 consist in the fol-
lowing paths through the network:

• F4: 4→ 3→ 2→ 1→ 0

• F5: 5→ 4→ 3→ 2→ 1→ 0.

To assess the level of congestion, we look at the queue occupancies atthe relay
nodes (the source is fully-backlogged and its queue is full at all time). Additionally,
we look at the end-to-end throughputs. We run each experiment for90 minutes
and each minute we measure the queue size and average throughput. Figure 6.8
shows the median value with its25 and75 percentile. We display the results for
each of these two flows (F4 and (F5) both for the case when UDP is used alone
(i.e., without a congestion control scheme) and for the case with our network layer
congestion-control scheme.

We observe that, when UDP is used alone, the queue size of the first relay,
for flow F4, and the queue sizes of the first and second relays, for flowF5, are
very close to their size limit and often overflow. This creates packet losses, loss of
efficiency, and high end-to-end delays.
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In contrast, the intra-flow mechanism efficiently performs congestion control
by keeping a small queue at all the relay nodes. This translates into a significant
reduction of end-to-end delays, because both the queuing delay and thetraveling
delay (i.e., higher end-to-end throughput) are reduced.

Other solutions exist to achieve congestion-control, the most obvious one being
TCP. Although TCP may behave relatively well when only one flow is present, the
end-to-end throughput is reduced due to the explicit ACK messages. Ourmech-
anism performs congestion-control without suffering from this drawback. It im-
proves the end-to-end throughput and maintains small queue sizes. We stress that
when TCP is used, the performance is exactly the same whether or not the intra-
flow congestion control mechanism is used. Indeed, as TCP ensures that the relay
queues are small, the rate set by the rate limitersρji are such that all packets go
through (i.e., the rate of the flow is limited by TCP and not the intra-flow mecha-
nism).

In an attempt to assess how close to optimal the obtained throughputs are, we
compute anoptimalvalue as follows: we divide by3 the capacity of the bottleneck
link when transmitting in isolation (assuming a2-hop interference model). This
represents the best throughput that one could expect in such a scenario (it does not
take into account the losses due to collisions).

We stress that our scheme is not intended to be a replacement to TCP, as we do
not focus on reliable delivery. Nevertheless, our results give insightinto decoupling
the goals of congestion-control and reliable delivery. Indeed our intra-flow mecha-
nism ensures that packet losses are, mostly, not due to buffer overflow (congestion)
at a relay node anymore.

6.5.3 Evaluation of the Inter-Flow Fairness

We evaluate separately our inter-flow fairness mechanism by consideringthree1-
hop flows. We fix each flow at a different rate and measure its capacity withand
without RTS/CTS enabled.

• F ′
1 : 1→ 0 (capacity:1.6 Mb/s;1.5 Mb/s with RTS)

• F ′′
1 : 6→ 0 (capacity:852 kb/s;806 kb/s with RTS)

• F ′′′
1 : 7→ 0 (capacity:3.2 Mb/s;2.6 Mb/s with RTS).

Using these three flows, we evaluate all the four possible scenarios:

• Inter1: F ′
1 with F ′′

1

• Inter2: F ′
1 with F ′′′

1

• Inter3: F ′′
1 with F ′′′

1

• Inter4: F ′
1 with F ′′

1 andF ′′′
1 .
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Figure 6.9: Illustration of the normalized utility and throughput achieved with and without our
E&E mechanism for the four inter-flow scenarios. We show its performance for both utilities: pro-
portional fairness (left) and throughput maximization (right).

As the sources fromF ′′
1 andF ′′′

1 are hidden from each other, we turn on the
RTS/CTS mechanism in the scenarios Inter2 and Inter4, otherwise we turn it off.
We test the efficiency of our algorithm for both the proportional fairness(Eq. 6.2)
and max-throughput (Eq. 6.1) utility functions. We present our results in Figure 6.9
by showing both the achieved utility (normalized with respect to the theoretical
upper-bound) and the per-flow throughput obtained for each scenario. We obtain
the theoretical upper-bound by assuming an idealized MAC that prevents any colli-
sion from happening between flows. In such a case, the proportionally fair optimal
allocation for each flowj isCj/F , whereCj is the flow capacity when transmitting
in isolation andF is the number of flows transmitting concurrently. Nevertheless,
this upper-bound allocation is not necessarily achievable by IEEE 802.11due to
collisions (e.g., in the case of hidden nodes). Therefore, in order to allowfor a fair
comparison of our algorithm, we measure abenchmarkallocation that is obtained
by setting the source traffic rates at the rate given by the upper-bound allocation.
We stress that our benchmark point is not necessarily the optimal point in thecase
of collisions (as the sources need to send at a lower rate due to collisions).How-
ever as the exact capacity region is unknown, the optimal point is also unknown.
Thus our benchmark is a good comparison point in addition to the performances
achieved by IEEE 802.11 without the E&E algorithm. Our results show that the
inter-flow algorithm improves the performances in all scenarios (comparedto both
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IEEE 802.11 and the benchmark). Furthermore in the case of scenarios without
collision, our algorithm reaches the theoretical optimal fair allocation.

For the case of throughput maximization, the optimal point is trivially obtained
by giving all the throughput to the flow with the better link quality and by starving
the other flows. Nevertheless, the policy of E&E is to never completely starve a
flow so that the gateway can maintain a global view of all the flows existing in
the network (i.e., it is impossible to detect whether a flow exists or not if it is
completely starved by a rate limiter). Despite this difference, in the case without
collision (Inter1 and Inter3), the E&E algorithm reaches a point that is very close
to the optimal allocation, even though it does not starve the flow with the weakest
link capacity.

In the case of hidden nodes (the scenarios Inter2 and Inter4), the E&E algo-
rithm improves the performances of IEEE 802.11, but it reaches a local maximum
and not the global maximum. This is due to the non-convexity of the capacity re-
gion in the case of collisions. A solution to this challenge is to allow the explore
phase of the algorithm to try larger steps from time to time in order to discover
the existence of a disjoint sub-set of rate allocations that achieve the same utility
(and from which an enhance phase would be possible). We are currently studying
different variations of theE&E algorithm to overcome these limitations.

6.5.4 Evaluation of the Complete Framework

We conclude our experimental evaluation by an evaluation of the complete solution
that combines both the intra- and inter-flow mechanisms. We consider proportional
fairness for this experiment. Toward this goal, we revisit the initial starvationprob-
lem between a3-hop (F3) and a1-hop flow (F1). To evaluate this scenario, we use
exactly the same flows as in the experiments of Figure 6.2. In our testbed, these
flows correspond to

• F1: 7→ 2

• F3: 14→ 11→ 7→ 2.

For benchmark purposes, we follow a similar methodology to the previous sub-
section and we derive the optimal allocation by allocating to each flow half of the
throughput that it achieves when transmitting in isolation (note that there is no
spatial re-use in this scenario). The experimental results are shown in Figure 6.10.
We see that IEEE 802.11 starves the3-hop flow and it achieves a utility that is less
than 30% of the optimal allocation. On the contrary, our solution benefits from
both our intra- and inter-flow mechanisms and it results in an improvement of the
utility by a factor of3.
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Figure 6.10:Illustration of the normalized utility and throughput achieved by our schemefor the
introductory starvation problem of Figure 6.2 between a3-hop and a1-hop UDP flow. The E&E
algorithm together with the intra-flow mechanism improve by a factor three theutility achieved by
IEEE 802.11.

6.6 Concluding Remarks

We proposed and implemented a fully distributed scheme that allows us to con-
trol congestion in a wireless multi-hop mesh network with a tree topology, by de-
coupling the fair rate allocation scheme between flows and the congestion control
within the different hops of each single flow.

The fair rate allocation is performed by the gateway, using an “Explore and
Enhance” stochastic optimization that alternates gradient ascent on a given utility
function (Enhance phase) with avoidance of local maxima (Exploration phase).

The intra-flow congestion control adapts the transmission rates of each node
along a flow by estimating the queue sizes of the downstream nodes. It doesnot
require message passing, as this estimation is made possible by the broadcastnature
of the wireless channel. Furthermore, this algorithm operates at the network layer
and does not interact with any parameter of the MAC. This makes our algorithm
potentially compatible with multi-hop networks using another underlying MAC
protocol than IEEE 802.11.

In our complete solution, message passing is limited to exchanges of messages
between the gateway and its first hop neighbors: once the gateway has assigned
rates on the first hop links, the intra-flow mechanism propagates them to the rest of
the network. Some key advantages of the solution described in this chapter are that
it does not require to know the capacity of the network (which is indeed difficult to
obtain) and that it is transparent to the MAC and upper layers. Finally, the initial
condition of the algorithm is given by the default rates obtained by an IEEE 802.11
network, which are progressively modified to increase the utility function. This
avoids a long transient phase during which the network would not be operational.
The experimental results show indeed a significant improvement in terms of fair-
ness and throughput. Our next step is to analyze theoretically the convergence of
the E & E algorithm when the capacity region is time-constant and convex.
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Chapter 7

Multi-Hop Networks Beyond
Capacity

7.1 Background

7.1.1 Problem Statement

The throughput of wireless multi-hop networks has received much attentionin the
case where the network operateswithin the capacity region, but notaboveit. In
this chapter, we study the answers to this question for IEEE 802.11 networks on
the simplest non-trivial topology, which is a linear network. We chose to focus on
this topology for the following reasons: (i) it is found as a part of almost every
wireless multi-hop network; (ii) its capacity region is easy to compute, but the
network dynamics may be complex outside the capacity region, as indicated by the
non-monotonic curve of Figure 7.1; (iii) despite the complexity of the dynamics,
we can prove the non-monotonicity of the curve of Figure 7.1, first, mathematically
on a Markov chain model and, next, experimentally through measurements in a
real testbed. We compute the different phases that the throughput evolution goes
through at different input rates, and the values at which the transitions occur.

In order to have a better idea of the counter-intuitive relation between the source
rateλ and the end-to-end throughputµ, we present simulation results for a4-hop
network in Figure 7.1. In this scenario, only node0 (i.e., the source) receives
fresh packets at a rateλ, whereas node1, 2 and3 do not inject any new packets
and solely act as relays for the packets to the destination node4 (see Figure 7.2).
We consider that the IEEE 802.11 protocol is used with its standard settings:(i)
without RTS/CTS, (ii) with a transmission range of1-hop, and (ii) with a sensing
range of2-hop. In other terms, this means that nodei can successfully transmit
only if the nodesi ± k are silent, withk ∈ {1, 2}. The results show that the
relation between the input rateλ and the throughputµ can be divided into three
distinct phases according toλ:

103
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Figure 7.1:Simulation results for a4-hop network show that after an optimal valueλ1 the end-to-

end throughput decreases fromµ1 to µ2 (when the input rate isλ2) and remains constant thereafter.

• λ < λ1: It is the case generally considered, where the source rate is within
capacity. We note that in this caseµ is an increasing function ofλ and it
reaches its maximum atµ1 (µ1 = λ1).

• λ > λ2: It corresponds to the saturated regime, where the source always has
packets to send. We note that in this situation, we haveµ = µ2 independently
of the value ofλ.

• λ1 < λ < λ2: It is the phase during which a form of congestion collapse
occurs. Indeed, we highlight the counter-intuitive results showing thatµ is a
decreasing function ofλ in this region.

Moreover, we note that these results are not an artifact of particular settings we
would have adopted. Indeed, a similar phase-transition behavior is noticedin ns-2
simulations for a7-hop network with RTS/CTS [LBDC+01].

Node1 Node4
Node3Node2

transmission range of Node 

Data flow

2

Node0

Figure 7.2:Simple4-hop linear scenario leading to stability problem and throughput degradation

with IEEE 802.11.
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7.1.2 Related Work

The IEEE 802.11 protocol is known to perform poorly in a practical multi-hop envi-
ronment, both in the case of TCP and in saturated UDP traffic. Indeed, in [GSK04]
Gambiroza et al. show the inefficiency of the protocol in providing optimal perfor-
mances, as far as delay, throughput and fairness are concerned. In a more recent
work [JP09], Jindal et al. show with a simulation that, if the sources are rate-
controlled, IEEE 802.11 achieves a max-min allocation that is at least64% of the
max-min allocation obtained by a perfect scheduler. If the sources are not rate-
limited, we presented experimental evidence that the performance can be much
worse (see Chapter 5 and 6). The performances of linear networks witha satu-
rated source (i.e., node0 always having packets to send) are studied both through a
continuous-time model by Denteneer et al. [DBvdVH08]. By considering a1-hop
interference model, they derive the exact value of the throughput in a particular
case and make conjectures for the general case. Our work differs from these pa-
pers, because we focus on: (i) understanding how the performance varies from an
environment that is rate-controlled (smallλ) to one that is not (largeλ); and (ii)
elucidating the reasons that cause these transitions.

In order to overcome the inefficiency of IEEE 802.11, enormous progress has
been made since the seminal work on back-pressure by Tassiulas et al. [TE92].
Back-pressure is based on a centralized scheduler that selects for transmission
the links with the greatest queue difference. Such a solution works well for a
wired network, but it is not adapted to a multi-hop wireless network where de-
centralized schedulers are needed, due to the synchronization problem.Toward
this goal, Modiano et al. introduce the first distributed scheduling framework that
uses control messages to achieve throughput optimal performances [MSZ06]. Fur-
ther extensions to distributed scheduling strategies are discussed in workssuch
as [CKLS08], where Chapokar et al. propose a scheduler that attainsa guaranteed
ratio of the maximal throughput. Another effort to reduce the complexity of back-
pressure is presented in [YST08], where Ying et al. propose to enhance scalability
by reducing the number of queues that need to be maintained at each node.The
tradeoff that exists in each scheduling strategy between complexity, utility andde-
lay is discussed in depth in [YPC08] by Yi et al. Despite their multiple advantages,
one of the drawbacks of these previous methods is that they require information
about the queue from other nodes. The usual solution is to use message passing,
which produces costly overhead even if it is limited to the direct neighbors.

More recently, researchers have proposed decentralized and throughput-optimal
CSMA schemes that do not require queue information from other nodes. In [GLS07],
Gupta et al. propose an algorithm that uses the maximal node degree in the net-
work. Proutìere et al. [PYC08] propose another algorithm, where each node makes
the scheduling decision based solely on its own queue. Shin et al. [SSR09]pro-
pose an algorithm that achieves stability and where each node makes scheduling
decisions based on a logarithmic function of its own buffer occupancy. The ap-
pealing property of these algorithms is their throughput optimality with perfect
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CSMA, but they require very large queue sizes (i.e., in the order of thousands of
packets), which can seriously degrade delay performances. A different approach
is taken by Jiang et al. who introduce an adaptive CSMA algorithm that adjusts
the transmission aggressiveness based on a differential between the arrival and ser-
vice rate [JWa]. To summarize, significant theoretical progress has been recently
made on algorithms that are based on variations of the back-pressure algorithm
(i.e., MaxWeight). Nevertheless, we emphasize that MaxWeight is based ontwo
assumptions: (i) the set of nodes and the traffic demands are fixed; and (ii) all
the sources are rate limited to transmit only at a rate within the capacity region.
In [vdVBS09], van de Ven et al. show that MaxWeight policies might fail topro-
vide stability in the case that the first condition is violated, due to the variability
in the system. Our work differs, because we focus rather on the secondcondition
and we are interested in analyzing how the source rate affects the stability ofa
IEEE 802.11 multi-hop network. Indeed, the capacity is generally time varying
and difficult to measure exactly in practice [SSGG09]. Hence, it is importantto
know what type of performance losses can be expected when the sources receives
packets at a rate above the physical capacity of the network (which differs from the
link capacity).

7.1.3 Network Model

We introduce a model that is based on the common assumption of a slotted discrete
time axis [CKLS08, ES05, LE99, TE92, YST08, AST09], that is, each transmis-
sion takes one time slot and all the transmissions, occurring during a given slot,
start and finish at the same time. Moreover, we consider that node0 is the only
source and that the packets arrive at the source following a random distribution
of meanλ. Moreover, the number of arriving packetsξ0(n) is i.i.d (independent
and identically distributed) in different time slotsn ∈ N. The destination of all
packets is NodeN , and nodes1 to N − 1 act as relays (ξi>0(n) = 0 for all n).
Every node has an infinite buffer for storing messages, and uses FIFOscheduling
policy, with transmissions from nodei to its nearest right neighbor, nodei + 1.
A packet leaves the system once it reaches the destination nodeN . We capture
the restriction linked to the wireless medium by assuming a2-hop sensing range
(which eliminates collisions). A nodei can therefore only transmit in a slot if the
nodesi± k are not scheduled for allk ∈ {1, 2}.

Under these assumptions, we describe the state of the system by the variables
{bi(n), n ∈ N}, with 0 ≤ i ≤ N − 1, wherebi(n) represents the number of
packets at time instantn in the queue of nodei. At the beginning of each slot the
transmission pattern

~z(n) = [z0(n) z1(n) z2(n) . . . zN−1(n)]

is selected, wherezi(n) = 1 if node i is scheduled for transmission at slotn and
zi(n) = 0 otherwise. In order to pick~z(n), each nodei with a non-empty queue
competes for the access to the channel and picks a uniform backoffβi(n) ∈ [0; 1],
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and the nodes with an empty queue setβi(n) = ∞. Next, if there is at least one
node with a non-empty queue, the nodei with the smallest backoff

βi(n) = min
0≤j<N

βj(n)

is scheduled for transmission (zi(n) = 1) and the nodes within its2-hop sensing
range are removed from the competition (βi+k(n) = ∞ for k ∈ {0, 1, 2}). Then,
the node with the next smallest backoff is selected. This process repeats itself until
no more nodes compete for the channel (i.e.βi(n) = ∞ for all i) and the final
transmission pattern~z(n) is obtained. We stress that this model is simpler than the
real IEEE 802.11 protocol as we do not take into account the exponential increase
of the contention windowcwi (i.e., the doubling of the contention window after
an unsuccessful transmission). Nevertheless, we note that if IEEE 802.11 is used
with a fixed contention window (i.e.,CWmin = CWmax = cwi) the protocol
selects its backoff uniformly in[0; cwi − 1], which is equivalent to the selection
of βi(n) ∈ [0; 1] in our model. We will validate that the results predicted by this
model with experiments with the real IEEE 802.11 protocol in Section 7.4. Finally,
the dynamics of our system is captured by the relation

bi(n+ 1) = bi(n) + zi−1(n)− zi(n) + ξi(n).

We note that the relationbi(n) − zi(n) is always non-negative, because only the
nodes with a non-empty queue (i.e.,bi(n) > 0) can be scheduled for transmission
(i.e., havezi(n) = 1).

7.2 Simulations

Before providing a quantitative analysis in the next section, we will first gain a
qualitative understanding of the phase transition in throughput atλ1 andλ2 in
Figure 7.1, by using time-slotted simulations of the model of Section 7.1.3. For all
our scenarios, simulations are repeated to sweep allλ ∈ [0, 1] with increments of
0.01. We stress that we assume, without loss of generality, that all the links have a
capacity of1 and thus we do not consider the casesλ > 1. The theoretical capacity
of the networkλ = 1/3 is reached by a perfect centralized scheduler.

7.2.1 4-Hop Networks

Simulating the4-hop topology of Figure 7.2 for106 slots, we find that the two
transition pointsλ1 = 0.32 andλ2 = 0.43 correspond to two specific behavioral
changes in the queue evolution of the nodes.

Indeed, a perfect centralized scheduler reaches the capacityλ = 1/3 by always
scheduling nodes0 and3 concurrently. With IEEE 802.11, there is a non-zero
probability of having these two nodes scheduled independently (e.g. if exactly one
of these two nodes has an empty queue), which yields thatλ1 < 1/3. We see that
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the transition pointλ1 is the source rate where the queue of node1 starts to build up
in the network. Interestingly, it is at the first relay node1 and not at the source node
0 where this happens. Because the congestion takes place after the first hop, any
increase in the source rate beyondλ1 (up toλ2) maps to a proportional decrease
in the end-to-end throughputµ. Indeed, as the queue of node0 does not build up
for λ ∈ [λ1, λ2], we have that an increase inλ maps to a proportional increase
in the number of packets transmitted by node0. Moreover, the shared nature of
the wireless medium implies that each time node0 transmits a packet that will be
queued up at node1 (i.e.,λ− λ1 packets per time slot in average), it prevents both
node1 and node2 to forward the packets waiting in their own queues. Resources
are thus wasted on the queue build-up of node1 and the end-to-end throughput
decreases linearly withλ.

The pointλ2 corresponds to the threshold rate above which the queue of node
0 eventually begins to build up. After this threshold, the input rateλ has no result-
ing effect on either the throughputµ or the queue growth at node1, because the
(saturated) source always has packets to send anyway and thus an increase onλ
does not make any difference in the network, except that the queue of the source
grows faster.

7.2.2 5-Hop Networks

Having shown the relation between the phase transition in the end-to-end through-
putµ and buffer build-ups in a4-hop network, we confirm that the relation remains
for largerK-hop topologies.

Toward this goal, we begin by simulating a5-hop network in the same setting.
Our results, depicted in Figure 7.3, show that there are in this case, not two, but
three transition points atλ1, λ2 andλ3. Again, each one of these pointsλi cor-
responds to a threshold rate above which a new queue begins to build up in the
network.

We note that, in a5-hop network, the first transition pointλ1 = 0.3 occurs
again before the theoretical1/3 capacity of the network and this is due to the queue
build-up at node2. To explain why node2 is the first to have its queue explode,
we highlight that it is the only node that cannot transmit concurrently with another
(due to the2-hop sensing range). Hence, it has a smaller channel access probability
than the other competing nodes and it is the first one to build-up when the source
rateλ increases.

The second transition pointλ2 = 0.35 is the source rate where node1 starts
to build up. We observe that this build-up has two effects: (i) it reduces theslope
of the throughput decrease relatively to the input rateλ; and (ii) it linearly reduces
the amount of buffer build-up at node2. The explanation for the second effect is
that the build-up at node1 implies additional transmissions from node0, which
proportionally reduce the number of transmissions from node1, and as result re-
duce the backlog at node2. This also explains the first effect, because the packets
queued at node2 consume more resources (2 transmission slots) than the packets
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Figure 7.3:Simulation results for a5-hop network. The transition points in throughputλi corre-

spond to the threshold rate above which a new queue starts to build up in the network. The queue

of nodesk > 2 are not displayed because they never build up (i.e., they follow a positive recurrent

evolution).

queued at node1 (1 slot). Hence, as in the region[λ2, λ3] the additional packets
are queued at node1 instead of node2, they consume less transmission resources
and this reduces the slope of the throughput decrease relatively toλ.

Finally the last transition pointλ3 = 0.45 happens after the build-up of node0
and the effect is similar to the one ofλ2 in the4-hop case.

7.2.3 Larger K-Hop Networks

We end our simulation study by extending our investigations to largerK-hop
topologies. We repeated our simulations for networks of up to30 hops and we
find that (i) the only nodes where the queues always build-up when the input rate
is above a thresholdλi are node2 (atλ0), node1 (atλ1) and node0 (atλ2); (ii) for
networks larger than7 hops, the queue of node3 builds up when the input rate is
in the range0.28 ≤ λ ≤ 0.30, whereas the queue of node4 builds up only for the
rateλ = 0.28; and (iii) the queue of nodei > 4 always remains bounded for any
input rate. Table 7.1 shows the values of the transition pointsλi that we obtained

Network size λ1 µ1 λ2 µ2 λ3 µ3

4-hop 0.32 0.31 0.43 0.29 - -
5-hop 0.30 0.29 0.35 0.27 0.45 0.26
6-hop 0.29 0.29 0.35 0.26 0.46 0.25
7-hop 0.29 0.28 0.35 0.26 0.46 0.25
10-hop 0.29 0.27 0.35 0.26 0.46 0.25
15-hop 0.29 0.27 0.35 0.26 0.46 0.25
30-hop 0.29 0.27 0.35 0.26 0.46 0.25

Table 7.1:Simulation results for the transition points{λi, µi} for different network sizes.
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for different network sizes.

7.3 Mathematical Analysis

In Chapter 3, we showed that the4-hop model is the simplest and smallest topology
to suffer from congestion and throughput reduction in the saturated regime. Hence,
we focus our mathematical study on this scenario.

7.3.1 4-Hop Network

A 4-hop network is completely defined by the state

{b0(n), b1(n), b2(n), b3(n)}

and, if{b0(n), b1(n), b2(n), b3(n)} = {b0, b1, b2, b3}, then its transmission proba-
bilities can be expressed as

P(z0(n) = 1) = 11b0>0(11b0>0 + 11b3>0)/
∑

i 11bi>0

P(z1(n) = 1) = 11b1>0/
∑

i 11bi>0

P(z2(n) = 1) = 11b2>0/
∑

i 11bi>0

P(z3(n) = 1) = 11b3>0(11b0>0 + 11b3>0)/
∑

i 11bi>0,

(7.1)

where11A is the usual indicator of eventA, which takes value1 if eventA occurs
and0 otherwise. Based on this model, we derive a series of lemmas and theorems.

Lemma 7.1 If λ < 1/4, then the Markov Chain{~b(n)} is positive recurrent.

Proof: We will use the well-known Foster-Lyapunov technique for proving posi-
tive recurrence of the Markov Chain. Let us define the function

L(b0, b1, b2, b3) = 4b0 + 3b1 + 2b2 + b3

and prove that it is an appropriate Lyapunov function. Note that the function
represents the workload of the system (i.e., the total number of time slots for
all packets in the system to leave). Note also that every successful transmis-
sion by any node in the system reduces the function by exactly1. Finally, note
that if at a given time slot there is at least one packet in the system, then at this
time slot there will be at least one successful transmission. Define also the set
V = {(b0, b1, b2, b3) : b0 + b1 + b2 + b3 ≤ 1}. Then we have

E

(

L(~b(n+ 1))− L(~b(n))|~b(n) = ~b
)

≤ 4λ

for all~b and

E

(

L(~b(n+ 1))− L(~b(n))|~b(n) = ~b
)

≤ 4λ− 1 < 0

for all~b /∈ V , therefore the conditions for positive recurrence are satisfied.�
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Lemma 7.2 If λ ≥ 1/3, then the Markov Chain{~b(n)} is not positive recurrent.

Proof: We again use Foster-Lyapunov techniques. Take the function

L(b0, b1, b2, b3) = 3b0 + 2b1 + b2,

which represents the workload of nodes0, 1 and2. Note that the maximal number
of transmissions accomplished by these nodes in one time slot is equal to1, hence,

E

(

L(~b(n+ 1))− L(~b(n)|~b(n) = ~b
)

≥ 3λ− 1 ≥ 0

for any vector~b, and the lemma is proved. �

Lemma 7.1 and 7.2 suggest that there exists1/4 ≤ λ1 ≤ 1/3 such that the
system is stable for allλ < λ1 and unstable for allλ > λ1. We will show that
in fact λ1 < 1/3, which implies that the maximal end-to-end throughput is not
achievable by an IEEE 802.11 network.

Theorem 7.1 The value ofλ1 defined above is strictly smaller than1/3.

Proof: We showed already that atλ ≥ 1/3 the Markov chain representing the
state of the system is not positive recurrent, which, in particular, means that the
total number of packets tends to infinity. However, for our analysis we need more
detailed information, specifically, we need to know at which node the queue build-
up occurs.

For this, consider first node0. From the equations about the probability of
node0 transmitting (i.e.,P(z0(n) = 1)) we conclude that whenever node0 is
non-empty, its transmission probability is larger than or equal to1/3 and whenever
node3 is also non-empty, this probability becomes strictly larger than1/3. These
two facts imply that the number of packets at node0 does not tend to infinity with
probability1, or limn→∞ P(b0(n) = 0) > 0.

Similar arguments allow us to show that atλ = 1/3 the queues of nodes1
and2 grow infinitely. Indeed, the total number of packets in these queues grows
infinitely due to Lemma 7.2 and the previously-established fact that the queue of
node0 stays bounded. Note from (7.1) that the probabilities of transmission of
nodes1 and2 are equal in the case both these queues are non-empty and regardless
of the states of queues0 and3. Indeed, both probabilities are equal to

1

2 + 11b0>0 + 11b3>0
,

and hence, the expected change in the queue size of node2 in this case is0. If we
assume now thatlimn→∞ P(b1(n) = 0) > 0, then whenever the queue of node1
empties, the expected change in the queue size of node2 is negative, which yields
that the queue of node2 stays bounded. This contradicts however Lemma 7.2 and
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hence, the queue of node1 grows infinitely. Now we make use again of the fact
that whenever both queues1 and2 are non-empty, their transmission probabilities
are the same, hence, in all these states the expected change in the size of queue2
is equal to zero, and hence the queue builds up.

We have now established that atλ = 1/3 the queue of node0 stays bounded,
whereas the queues of nodes1 and2 grow infinitely. Assume thatλ1 = 1/3. This
would imply that the throughput of the system grows linearly withλ up to the point
λ1 = 1/3 and hence it is equal toµ = 1/3 whenλ = 1/3.

Consider node3 at λ = 1/3. As both nodes1 and2 are non-empty, we have
from (7.1) that the probability of node3 transmitting in any time slot is equal to

p3 =
1 + 11b0>0

3 + 11b0>0
,

and the probability of node2 transmitting in any time slot is equal to

p2 =
1

3 + 11b0>0
.

As λ > 0, the probability for queue of node0 to be non-empty is strictly positive,
implying that the queue of node3 stays bounded becausep3 > p2. Note that this
analysis is valid for anyλ ≥ 1/3, hence the queue of node3 is always bounded.
As the queues of nodes1 and2 become infinite atλ = 1/3, the state of the sys-
tem may be described by the Markov Chain{b0(n), b3(n)} which has steady-state
probabilities

p(i, j) = lim
n→∞

P(b0(n) = i, b3(n) = j).

The throughput of the system (or, equivalently, of node3) can then be written as

µ = 1/3
∞
∑

j=1

p(0, j) + 1/2
∞
∑

i=1

∞
∑

j=1

p(i, j)

= 1/3P (0, 11) + 1/2P (11, 11) (7.2)

with obvious notationsP (0, 11) andP (11, 11). The throughput of node2 is, how-
ever, also equal toµ and to

µ = 1/2P (0, 0) + 1/3P (0, 11) + 1/3P (11, 0) + 1/4P (11, 11)

whereP (0, 0) = p(0, 0) andP (11, 0) =
∑∞

i=1 p(i, 0). The two last equations
imply that

P (11, 11) = 4/3P (11, 0) + 2P (0, 0).

The throughput of node0 is equal to1/3 and to

1/3 = 1/3P (11, 0) + 1/2P (11, 11) = P (11, 0) + P (0, 0),

due to the latter equation. Recall now thatP (0, 0)+P (0, 11)+P (11, 0)+P (11, 11) =
1 and conclude thatP (0, 11) + P (11, 11) = 2/3. From (7.2) it finally follows that

µ = 1/3P (0, 11) + 1/2P (11, 11) < 1/2(P (0, 11) + P (11, 11)) = 1/3,

and the contradiction proves thatλ1 < 1/3. �
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Theorem 7.2 If node0 is assumed to be saturated (i.e. to have a packet to transmit
at every time instant), then the throughput of the system is equal to2/7.

Proof: We will use an idea from [SdV10]. From the proof of Theorem 7.1 it
follows that nodes1 and2 are also non-empty with probability1, and as the queue
of node3 stays bounded, we can introduce time instantsτ0, τ0 + τ1, .., where

τ0 = inf{t > 0 : b3(t) = 0}

and

τi+1 = inf{t > 0 : b3(τi + t) = 0 and there exists 0 < s < t such that

b3(τi + s) > 0}

for i = 0, 1, ... In words, we mark the time instants when node3 becomes empty.
Due to the stability of node3, the sequenceτ0, τ1, .. consists of a.s. finite integers
that are independent. Moreover, the random variablesτ1, τ2, .. are identically dis-
tributed, and the behavior of the system in each cycle is statistically the same as in
any other cycle.

Thus, we can conclude that the throughput of the system is equal to

µ = ET/Eτ1,

whereT is the (random) number of transmissions accomplished by node3 in a
typical cycle. Let us now find the expected values ofT andτ . We can write

τ1 = ν0 + ν1,

whereν0 is the time until node2 transmits a packet to node3, andν1 is the time
until node3 becomes empty again. First note thatν0 has a Geometric distribution
with parameter1/3. Indeed, when node3 is empty, the other3 nodes compete for
the channel and have equal probabilities (1/3 each) to get the access. Hence, it will
take aGeom(1/3)− 1 time slots until node2 gets the access and then1 more slot
for the transmission itself. Note also that we can write

ν1 =
T
∑

i=1

ρi,

whereρi is the time taken by node3 to successfully transmit one packet. Note that
the random variablesρ1, ρ2, .. are independent and each of them has a Geometric
distribution with parameter1/2. Indeed, when all nodes are non-empty, the prob-
ability for node3 to successfully transmit in any given time slot is equal to1/2,
hence, it will take aGeom(1/2) − 1 time slots until node3 gets access to the
channel and then an additional slot for the transmission. Taking into account our
representations forν0 andν1, we write

Eτ1 = 3 + 2ET. (7.3)
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The expected value of the number of transmissions of node3 over a typical cycle
now remains to be found. For this we will use a method similar to the one used to
obtain the value of the expected length of the busy cycle in anM/G/1 queue. It
is clear that every packet that is transmitted by node2 overρ1 − 1 slots generates
its own cycle, and the distribution of the number of successful transmissionsof
node3 in this cycle is exactly the same as the number of successful transmissions
of node3 in the cycleτ1. Moreover, all these cycles are independent. Hence, we
can write

T = 1 +

ρ1−1
∑

n=1

11z2(n)=1Tn, (7.4)

where11z2(n)=1 is 1 if node 2 is transmitting at time slotn, and is0 otherwise, and
where eachTn is distributed asT . Note that in any time slot during the time slots
when node3 is not transmitting (implying also that node0 is not transmitting),
node2 has a probability of1/2 of getting access to the channel (nodes1 and2
compete for the channel), which means that

E11z2(n)=1 = 1/2.

This, combined with (7.4), implies that

ET = 1 + 1/2(Eρ1 − 1)ET = 1 + 1/2ET

and, hence,
ET = 2.

Plugging this into (7.3) leads to the claim of the theorem. �

Lemma 7.3 There exist aλ2 = 3/7 such that the queue of node0 does not build
up if λ < λ2 and grows infinitely ifλ > λ2.

Proof: We shall concentrate on the caseλ > λ1, so that queues of nodes1 and2
are non-empty with probability1. Assume that the queue of node0 is non-empty.
We shall use Foster-Lyapunov techniques. Consider

E (b0(τ1)− b0(0)|b0(0) = b0) ,

whereτ1 was defined in the proof of Theorem 7.2. It is clear that duringτ1 time
slots node0 will on average receiveλEτ1 = 7λ new packets. Let us now count
how many packets on average will leave node0 over a typical cycle. Recall the
representation

τ1 = ν0 + ν1

used in the proof of Theorem 7.2. Note that during theν1 time slots node0 will
transmit exactly as often as node3, i.e., will transmitT (see again the proof of
Theorem 7.2) packets. Among theν0 time slots there areGeom(1/3) − 1 time
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slots when nodes0 or 1 transmit, and node0 transmits on average in exactly half
of them. Taking this into account, we can conclude that the average number of
packets transmitted by node0 over a typical cycle is equal to1/2(Eν0−1)+2 = 3.

Now we write

E (b0(τ1)− b0(0)|b0(0) = b0) = 7λ− 3,

concluding the proof based on the standard arguments of the Foster-Lyapunov type.
�

7.4 Experimental Validation

We validate the results from our simulations and our model on a testbed composed
of five wireless routers.

7.4.1 Topology Description

The testbed is composed of5 Asus WL-500gP routers in which we change the
mini-PCI WiFi card to an NMP-8602 Atheros card in order to benefit from the
open-source driver. Each router runs the OpenWRT firmware [OPE]with the Mad-
Wifi driver [MAD] that we extended with new commands: (i) to modify the maxi-
mal buffer size (from50 to 100 packets), and (ii) to monitor the queue size evolu-
tion. Each node has a single interface that operates in the the channel13 of IEEE
802.11g with the RTS/CTS mechanism disabled (i.e., standard setting) and with
the data rate set to1 Mb/s. We chose to deactivate the auto-rate and set a fixed rate
instead, in order to limit to the minimum the effect of factors external to our study.
Moreover, we avoid the problem of interference by launching our measurements
during the night.

We deploy the topology over one floor of a building as depicted in Figure 7.4.
As opposed to the simulation and the mathematical analysis, the measurements in
a real testbed show that different links do not generally have the same capacity. We

N0
N1 N2 N3

N4

l0 l1 l2

l321 m

66 m

Figure 7.4:Deployment map of the testbed composed of five Asus WL-500gP wireless routers

that form a4-hop network.
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present in Table 7.2 the link capacity that we measured each minute for660 seconds
(i.e., 11 measurement points). From these measurement points, we compute and
show the median value together with the50% confidence interval. We perform
all our throughput measurements by using theiperf software. From our results,
we see that: (i) the linkl2 is the bottleneck of the network and (ii) the2-hop
interference model can accurately capture some practical deployments asit is the
case for the one of Figure 7.4.

7.4.2 Measurement Results

We consider the4-hop flow going from node0 to node4 with the bottleneck in
the3rd hopl2. We perform our measurements by launching traffic at different rate
λ for 660 s and measuring the queue evolution and the per-minute throughputµ.
Then we compute the median throughput that we depict in Figure 7.5.

First, we note that our experimental results show a similar trend as the simu-
lation results introduced in Figure 7.1 (except for the case of the two outliersat
1 Mb/s and2 Mb/s that we discuss later). Even though we never have exactly
λ = µ in practice due to the packet losses due to collisions or poor channel condi-
tions, we note that the throughputµ increases as a function of the source rate until
a first transition pointλ1 = 125 Kb/s (µ1 = 113 Kb/s). Moreover, the logs show
that this transition pointλ1 corresponds to the threshold after which the queue of
one relay node builds up (it is node2 in our experiment due to the low capacity of
l2), before the queue of the source.

This queue build-up is synonym of wasted resources due to the packets that
are lost because of buffer-overflow. It results in a reduction of throughput with
µ2 = 102 Kb/s.

Then, we investigate the presence of two outlayers atλ = 1 Mb/s andλ =
2 Mb/s. It is interesting to note that, for both rates, the median throughputµ = 108
(109) Kb/s is close to the optimum, but with a large confidence interval range.
Moreover, our logs show that the queue of the source node0 already builds up
(i.e., saturated) at a rate of500 Kb/s. This is even more counter-intuitive as we
would expect that once the source rate is above the saturation threshold of the
source, it would have no influence on the end-to-end throughput. Aftermultiple
repetitions of the experiment to validate this artifact, we conjecture that it is due

Link Median Throughput Confidence Interval
l0 836 Kb/s [836− 839]
l1 858 Kb/s [857− 863]
l2 222 Kb/s [213− 230]
l3 830 Kb/s [824− 837]

Table 7.2:Measurements of the link capacityli for each nodei when transmitting alone. We show

the median throughput with the50% confidence interval.
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Figure 7.5:Measurement results showing the evolution of the end-to-end throughput depending

on the source rateλ. We plot the median value together with the50% confidence interval.

to the performance limitation of our wireless routers that run on a266 MHz CPU.
Indeed, we note that the packets generated at node0 consume the device resources:
(i) when they are generated at the application layer byiperf , and (ii) when they
are passed to the MAC driver that has to check its queue to decide whetherto
accept the packets or not. This extra workload on the machine slows down node0
that ends up transmitting less packets on the linkl0 and this results in an increase
of both the median and the variability of the throughput.

Finally, we run an experiment with TCP traffic for comparison purposes and we
find that it only reaches a throughput of66 Kb/s, which corresponds to only58%
of the best performance achieved by UDP atµ1. Obviously a direct comparison
between TCP and UDP is not fair, because TCP delivers more than only conges-
tion control (i.e., it guarantees reliable and in-order packet delivery).We find it
interesting to note that the gap between UDP and TCP is large. Hence, there isstill
a significant room for improvement for new protocols that decouple the problem
of congestion-control from the problems of reliable in-order delivery,and that deal
with them with separated mechanisms at a different layers.

7.5 Hop-by-Hop Congestion Control

IEEE 802.11 is unable to reach the theoretical network capacity, even in simple lin-
ear topologies. Indeed, given an optimal capacityµ∗ (µ∗ = 1/3 in linear networks
with 2-hop interference model) we show, both in the simulations of Table 7.1 and
analytically in Theorem 7.1, that there exist no source rateλ such that the network
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achieves a throughputµ = µ∗. A key implication of this finding is that it isim-
possible for any end-to-end congestion control scheme that runs overIEEE 802.11
to be throughput-optimal. This supports the idea that doing congestion control in
a hop-by-hop manner, instead of end-to-end, allows the system to reacha higher
throughput. In order to see how well hop-by-hop schemes perform, weanalyze
through simulations some state-of-the-art scheduling algorithms. We consider the
four following scheduling schemes in addition to IEEE 802.11:

• Policy 1 - IEEE 802.11: Each node with a non-empty queue selects its
backoff uniformly in the same interval (recall that we do not consider the
exponential backoff mechanism)

βi = U(0, 1).

• Policy 2 - linear own queue policy:This policy comes from an algorithm
introduced by Shin et al. for a non-slotted time model [SSR09]. In this algo-
rithm a nodei wakes up at a clock tick and if the channel is idle it transmits
with a probability exp(Wi(t))

1+exp(Wi(t))
, whereWi(t) is a function oflog(bi+1) with

bi being the queue size of nodei. We simulated a similar policy for a slotted-
time system by making each nodei select its backoffβi as a function of its
queue

βi =
1

bi + 1
· U(0, 1).

• Policy 3 - logarithmic own queue policy:Another approach studied in [SSR09]
is to select the transmission probability depending onWi(t) that is a func-
tion of log(log(bi + e)). We captured this policy in a slotted-time system
by making each nodei select its backoffβi as a function of thelog(·) of its
queue

βi =
1

1 + log(bi + 1)
· U(0, 1).

• Policy 4 - next-hop queue policy:This policy is inspired from the EZ-flow
algorithm that we presented in Chapter 5. In this scheme each nodei adapts
its transmission probability depending on the queue at the next-hop node
i+1. When the queue at nodei+1 goes above a threshold (i.e.,bi+1 > bmax)
the transmission probability is increased (i.e.βi divided by two), and when it
goes below another threshold (i.e.,bi+1 < bmin) the transmission probability
is decreased (i.e.βi is doubled). In our simulation, we simplify this policy
by neglecting the dependence betweenβi(n) andβi(n − 1). Instead, we
consider that each nodei selects its backoffβi as only a function of the
queue at its next hop

βi =

(

1−
1

bi+1 + 1 + ǫ

)

· U(0, 1),

for a smallǫ > 0 that is used in order to avoid having exactlyβi = 0 for all
the nodes having their next-hop node with an empty queue (i.e.,bi+1 = 0).



7.5. HOP-BY-HOP CONGESTION CONTROL 119

• Policy 5 - airtime-limiting policy: This policy comes from an algorithm
proposed by Jang et al. for TCP traffic in [JPG10]. In their scheme, the
authors find the allocation timeAi of a link li by using the notion of:Ni

(the link li and its interfering links),Wi (the number of flows traversing the
link li), andNWi (the number of flows traversing a link inNi). Finally the
allocation is obtained by trading some efficiency for stability (i.e., not taking
advantage of spatial reuse) and computing

Ai =
Wi

maxk∈Ni
(NWk)

.

Each linkli has then its airtime transmission restricted to be not more than a
fractionAi of the time.

We study each one of these algorithms and we present the throughput evolu-
tion as a function of the input rateλ for multi-hop networks of various sizes in
Figure 7.6. We obtain analytically the throughput of the airtime-limiting policy
and we simulate the other policies for107 time slots using the same settings as in
Section 7.2.

In order to derive the throughput of the airtime-limiting policy (policy5), we
note that we haveWi = 1 for all i and thus we have

−−→
NW = [3, 4, 4, 3]

for a4-hop network and
−−→
NW = [3, 4, 5, 4, 3]

for a5-hop network. That gives a limitation for linkli of Ai = 1/4 for all i in the
case of a4-hop network, andAi = 1/5 for a 5-hop network. The advantage of
this policy is that it never decreases withλ (i.e., robustness) as opposed to policy1
and2. However, this is achieved at the cost of a decrease in efficiency whenUDP
traffic is used. Indeed, when the sources send traffic at exactly the network capacity
λ = 1/3 this policy only delivers a throughput of1/4 (75% of the optimum) or1/5
(60% of the optimum). One should stress that this scheme was designed for TCP,
where robustness to different ratesλ is critical – remember from Section 7.4.2 that
TCP performs poorly over 802.11 linear networks.

As expected, our results show that, in the4-hop case , both policies2 and3 (i.e.,
own queue policies) are throughput-optimal when the source rate remains within
the network capacityλ ≤ 1/3 (i.e., efficiency). For larger topologies, we find inter-
esting results as we note that policy2 is still throughput-optimal, whereas policy4
appears to suffer a throughput degradation, even though it has beenformally proven
to be throughput-optimal [SSR09]. This simulation result illustrates the importance
of having very large queues in order for policy4 to be indeed throughput-optimal.
Based on these results we can conclude that policy2 is the policy delivering the
bestefficiency. However, this is performed at the cost ofrobustnessas we note that
both policies suffer from throughput degradation when the source receives packets



120 CHAPTER 7. MULTI-HOP NETWORKS BEYOND CAPACITY

at a rateλ > 1/3. Furthermore, we see that this degradation is a serious problem
for the linear case (policy2), but it is less severe with thelog(·) function (policy
4). This result supports the proposition of Shin et al. to use thelog(·) as it provides
more robustness that the linear counter-part.
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Figure 7.6:Simulations for a multi-hop network with different hop-by-hop schedulingschemes

used for congestion control. Scheduling policies based on a node’s ownqueue (policy2 and3)

reach high throughput at capacity, whereas policies based on either thenext-hop queue (policy4) or

airtime-limiting (policy5) provide robustness to source ratesλ that are above capacity.
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Finally the next-hop queue policy (policy4) results in a nice tradeoff between
robustness vs. efficiency. Indeed, it also achieves the robustness property of policy
5, and it delivers a throughput that is closer to the optimum and is always better
than IEEE 802.11 in all the topologies that we tested (we simulated networks up to
14 hops).

7.6 Concluding Remarks

The capacity region of a multi-hop network is usually assumed to be known in
most of the recent congestion-control schemes and they, moreover, require this
information in order to be throughput-optimal. Nevertheless, contrary to wired
networks, wireless capacity is time-varying and usually unknown. This makes
it almost impossible to know whether a network is operating within the capacity
region or not.

Up to our knowledge, we are the first to study, both analytically and experi-
mentally, how a multi-hop network behaves at different source rates eitherbelow or
above the capacity. Our contributions are threefold: (i) we proved the existence of
the different transition points{λi, µi} (see Figure 7.1) and explained the rationale
behind them; (ii) we formally proved that it is impossible for an end-to-end con-
gestion control scheme to be throughput-optimal if it runs over IEEE 802.11; (iii)
we studied through simulations some state-of-the-art hop-by-hop congestion con-
trol mechanisms and we highlighted the tradeoff betweenoptimality (throughput
optimality) androbustness(no throughput collapse beyond capacity) that should be
taken into consideration when designing new hop-by-hop scheduling algorithms.
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Chapter 8

Conclusion

8.1 Discussion of the Results

Throughout this thesis we have focused on the scheduling problem that leads an
IEEE 802.11 multi-hop network to be unstable, where we defined instability to
happen when the queue of at least one node in the network builds up indefinitely (in
practice this takes the form of buffer saturation and overflow). First, wevalidated
experimentally the3-hop stability boundarythat means that in the source-saturated
regime a3-hop network is stable, whereas larger topologies are intrinsically unsta-
ble. The effects of this stability boundary have been reported experimentally by
some researchers who stated that ”with current commodity wireless technology it
does not make sense to handle more than three hops” 1. To the best of our knowl-
edge, we are the first to propose an analytical model to understand the root causes
behind these phenomenon. In Chapter 3, we proposed a Markovian modeland we
introduced the notion ofstealing effect. The stealing effect takes the form of col-
lisions that are the result of the hidden node situation and non-zero transmission
time. We showed that, interestingly, these collisions have the beneficial effect of
stabilizing the3-hop network. Indeed, a3-hop network would be unstable if the
stealing effect was not accounted for (i.e., if it has a zero probability of occurring).
In practice, however, the stealing effect probability is always strictly positive due
to the non-zero transmission times

In addition to explaining the instability problem, we proposed, implemented
and evaluated some practical solutions to solve it. The first approach we investi-
gated is to perform the congestion control at the MAC layer withEZ-flow. The
key idea behind EZ-flow is to work in a hop-by-hop manner by using at each node
i two separate modules (i) that passively compute the queue size at the next-hop
qi+1, and (ii) that automatically adapt the channel access probability accordingly
by varying the contention window parametercwi. We showed experimentally, an-
alytically and through simulations that EZ-flow successfully stabilizes a multi-hop

1Lunar project: http://cn.cs.unibas.ch/projects/lunar/
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network without requiring any form of message passing.
A second approach that we considered is to perform the congestion control at the
network layer instead of the MAC layer. Toward this goal, each nodei uses one
IP queueqji per flowj (a flow is the tuple< src IP ; dst IP > within the mesh).
Each IP queue is throttled by a rate limiter of rateρji and all the IP queues are then
scheduled to the MAC queue through a Round-Robin scheduler. Similarly to the
MAC approach, the per-flow next-hop queue sizeqji is obtained passively by tak-
ing advantage of the broadcast nature from the wireless medium. Nevertheless the
channel access probability is adapted by varying the limiting rateρji instead of the
MAC contention windowcwi. This modification allows us to decouple the prob-
lem of congestion from contention, because it does not abuse the MAC contention
mechanism when performing congestion control.

In order to complement the hop-by-hop congestion control scheme that oper-
ates within a flow, we proposed an additional mechanism that runs at the mesh
gateway and that achieves a level of fairness between the different flows of the
mesh. This algorithm calledExplore & Enhance(E&E) optimizes a given util-
ity function without having a prior knowledge of the network capacity region. In
order to perform its task, it runs (i) exploration phases to discover the capacity
region and (ii) enhancement phases to improve the utility by a gradient ascent.
E&E does not require network-wide message passing to propagate the ratealloca-
tion. Instead, it only uses a broadcast message to inform its direct neighbors of the
new allocation and this information is automatically propagated passively by the
congestion-control scheme. We showed in a real deployment both the practicality
and the efficiency of the E&E algorithm. The exact dynamics during the explore
phases, however, are difficult to analyze mathematically and, even in the case of
a fixed capacity region, it is hard to provide a formal proof of convergence to the
optimum. In order to overcome this limitation, we are currently investigating slight
variations of the E&E algorithm that are simpler to study analytically.

After having mostly focused on the source-saturated scenario, we analyzed
the effect of the source rateλ on the end-to-end throughputµ of an IEEE 802.11
multi-hop networks. We reported, both through simulations and experimentally,
some counter-intuitive results that showed that the relation betweenµ andλ is
non-monotonic. We proposed an analytical model that allows us to derive some re-
sults concerning the transition points of the curve showing the relation between λ
andµ for a4-hop network. Using both our simulations and our mathematical anal-
ysis, we showed that if a multi-hop network (4 hops or larger) uses an unmodified
IEEE 802.11 MAC layer, it cannot reach the network capacityµ∗ for any possible
source rateλ. This results implies that it is impossible for an end-to-end conges-
tion control scheme to be throughput optimal when operating above an unmodified
MAC layer. It supports, therefore, the idea of performing the congestion control
in a hop-by-hop manner (at the MAC or network layer) rather than end-to-end (at
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the transport layer). As a result, we compare through simulations the performance
of different state-of-the-art methodologies to perform hop-by-hop congestion con-
trol in a network. This study showed the important tradeoff that exists between
efficiency(i.e., throughput-optimality) androbustness(i.e., no throughput collapse
when the sources attempt to operate at a rate above the network capacity).Cur-
rently, most of the work in the literature focus solely on the efficiency part. The
wireless capacity, however, is in practice both difficult to measure exactly and time
varying. Hence, in reality it is almost impossible to guarantee that the sources
always operatewithin the capacity region without being too conservative. As a
result, the robustness criteria is at least as important as efficiency and westrongly
believe that it should be evaluated when considering new scheduling schemes for
wireless multi-hop networks

Finally, a practical outcome of this thesis is the design and deployment on the
EPFL campus of the first large-scale multi-hop testbed based on IEEE 802.11. Ini-
tially we planed our network to span over the six buildings of the I&C Department,
in order to support our experimental research on wireless mesh network. Further-
more, we designed our testbed to be as flexible as possible in order to be ableto
meet research needs in other fields. The fact that our testbed was usedin various
other research projects [Epi10, Bec11, JSPF+10, EFLBA10] is an indicator that
we reached our objective of building an efficient platform to support experimental
research. For the future, we plan to continue using the testbed and we arecurrently
looking at different possible upgrades and extensions.

8.2 Possible Extensions

In this thesis we used our Markovian model to study the stability or instability of
the network using the Lyapunov-Foster criterion. Furthermore, additional studies
based on this model provide more detailed information about the network behav-
ior. An example of possible extensions has been recently performed by Guillemin
et al. [GKvL10]; they further study our model in order to derive various asymptotic
expressions for the stationary large buffer probabilities of a 3-hop network.
Another possible direction for the extension of our model is to adapt it to cover
topologies more general than the linear ones that we focused on. Indeed, we stud-
ied more general topologies through simulations and experiments, but not analyti-
cally. The challenge there is that, using our methodology, a network containing N
nodes would be modeled as a random walk inN

N−2 and thus the number of states
to consider in the analysis of the Markov chain would rapidly explode.

The experimental studies we performed on a real wireless multi-hop deploy-
ment allowed us to draw attention to the fact that the shared nature of the wireless
medium brings both new features and new challenges.
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On the one hand, our measurements showed that the multi-hop wireless capacity is
highly variable through time, especially in the indoor setting. This implies that the
traditional static scheduling schemes from wired networks cannot directly be ap-
plied to the wireless setting and more adaptive techniques need to be used instead.
In this thesis, we followed this methodology both in EZ-flow and the Explore &
Enhance algorithm, and we stress that a similar adaptive approach can be adapted
to other protocols
On the other hand, the shared nature of the wireless medium also implies that ad-
ditional information is available at a node (i.e., a node hears more than only the
packet targeted to it). In the original IEEE 802.11 protocol, this information is
wasted because at the MAC layer the nodes discard all the packets not targeted to
them. However, the new trend in the network community is to take advantage of
this free information delivered by broadcast wireless medium. Toward this goal,
the nodes are set in the promiscuous mode and use all the sniffed packets inorder
to better perform this task. In this thesis, we showed how EZ-flow follows this
strategy to derive the queue occupancy at the next-hop. Other examplesfollowing
this strategy are found in topics such as in opportunistic routing. Nevertheless,
we think that this topic is still in its infancy and there are still many directions to
explore in order to take full advantage of the possibilities offered by the broadcast
medium.

In Chapter 7 we showed that no end-to-end congestion control scheme can be
throughput-optimal if it runs directly above an unmodified IEEE 802.11 layer. This
results supports the idea that the congestion control in wireless multi-hop networks
should be performed at the network or MAC layer instead than at the transport
layer. Yet, in practice congestion control is currently performed mostly by TCP at
the transport layer. The key advantages of TCP over UDP are that (i) itperforms
congestion control and (ii) it provides reliable in-order packet delivery.
Hence, in order to propose a credible alternative to TCP, it should match these two
features. In this work, we showed that the first mission of congestion control can
be performed more efficiently in a hop-by-hop manner at the network layer. The
second mission of in-order packet delivery is still an open issue and an interest-
ing extension of this work would be to develop a transport layer that guarantees
in-order packet delivery without the congestion-control part. Such anew transport
protocol, coupled with a hop-by-hop congestion-control mechanism (such as EZ-
flow) would be a serious alternative to TCP in wireless multi-hop networks and
wireless mesh networks.

Beside the scheduling problem, the experimental framework that we devel-
oped at EPFL is general enough to allow for the extension of our study onwireless
multi-hop networks into many different directions. Below we describe five differ-
ent directions that we studied or that are possible extensions.

Indoor Localization:The problem of localization has been solved outdoors by
the Global Positioning System (GPS), but this technique is not applicable to the
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indoor scenarios. An alternative solution to the indoor localization problem isto
use the IEEE 802.11 indoor Access Points (APs) to localize a mobile user [BP00,
HLL06, KKCP10]. We consider an approach where the different nodes vary their
transmission power and we evaluated its efficiency in our testbed2 [Epi10]. Our
results showed that an important factor for the precision of the estimation is den-
sity of the APs. Indeed, the denser the network, the more precise the estimation.
We think that this tradeoff would be interesting to investigate analytically in more
detail, in order to derive a mathematical expression of this relation.

Opportunistic Routing:Recently, opportunistic routing algorithms have been
proposed to take advantage of the broadcast nature and the variability ofthe wire-
less medium [BM05, RSMQ09, LDFK09]. To evaluate the performance of these
protocols, most authors only consider throughput. We agree that throughput is im-
portant, but we argue that delay and congestion metrics are at least equally impor-
tant. Our large-scale multi-hop testbed is an ideal platform to evaluate opportunis-
tic as it provides independent routes across different buildings. We are currently
investigating these aspects through a deployment on our testbed [Bec11].Once
the congestion results are obtained, the next step would be to adapt the technique
of congestion-control discussed in this thesis to the case of opportunistic routing.
The challenge there would be to deal with the fact that the next-hop is not known
beforehand and that the packets might be forwarded out-of-order.

Security Attacks:In the field of network security a large amount of problems
and solutions have been studied both analytically or through simulations. We think
that our testbed would be an adequate platform to evaluate experimentally different
attacks and counter-measures. Indeed, we show in one of our projectsthat it is rel-
atively easy to perform ARP spoofing with off-the-shelf hardware3. As of yet, we
have not investigated more complex attacks, but this small example shows that our
experimental infrastructure can be used as a tool to support experimental research
in this field.

Multi-Channel: In this thesis, we mainly focused on the single-channel sce-
nario, but an interesting extension of this work would be to study the similari-
ties and differences between single-channel WMNs and the multi-antenna,multi-
channel WMNs. Indeed, in the multi-antenna setting there are two approaches
possible.
In the first approach, a form of graph coloring could be used to set each link to
one specific channel so as to maximize the spatial reuse. Following such a strategy
implies that a nodei is very likely to use different channels when communicat-
ing with nodei − 1 or i + 1. Therefore, either the queue estimation mechanism
of EZ-flow should be adapted accordingly (when the number of channelsis larger
than the number of antennas, this may require an additional interface), or explicit
messages need to be used for a node to inform its previous-hop of its queue size.
In the second approach, the number of channels used is the same as the number of

2Aziala testbed - IEEE 802.11 Indoor Localization: http://icawww1.epfl.ch/aziala(Video 3)
3Aziala testbed - ARP Spoofing Attack: http://icawww1.epfl.ch/aziala(Video 1 and 2)
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antennas and all the nodes use all their interfaces independently (note that this is
similar to having a single channel of larger capacity). If this methodology is used,
the results and solution that we proposed for a single-channel mesh networks are
then directly applicable to this setting.
Obviously the first approach could result in higher throughput if the number of
channels is larger than the number of available interfaces. Unfortunately,the level
of complexity is also higher due to the channel attribution step. It would be there-
fore interesting to study both approaches in order to evaluate their performance and
to see how the single-channel results apply to this multi-channel setting.

Cooperative APs:As a last extension, we suggest the possibility to consider
our entire testbed as an infrastructure WLAN and to study how cooperationbe-
tween the APs could help significantly improve the performance [WKSK07].
In current deployments, such as the one from the EPFL IT, a user is ableto hear
many access points in his range. Nevertheless, he usually transmits his packets to
a single destination AP. In case a packet is not correctly received by thedestination
AP (e.g., due to poor channel conditions), it is retransmitted by the user regardless
if another AP was able to correctly receive the packet or not. Instead, anew alterna-
tive could be to have the different APs collaborate (as they are typically connected
to a wired infrastructure), then they would send an acknowledgment if at least one
AP receives the packet correctly.
Even though such a mechanism is a relatively drastic change to the currentproto-
col, it is still an interesting alternative to evaluate. Indeed, there is an interesting
gain that can be obtained from spatial diversity (i.e., different APs experience dif-
ferent collision and noise levels). Furthermore it is possible to perform theevalua-
tion of such a mechanism in our testbed by implementing new elements in Click4

that (i) send broadcast packets instead of unicast, and (ii) perform the new acknowl-
edgment mechanism.

4Click Modular Router: http://read.cs.ucla.edu/click/
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Useful Theorems

A.1 Foster’s Theorem

Theorem A.1 (Foster [FMM95], p. 30) Let the transition probability matrixP
on the state spaceZ2 be irreducible and suppose that there exists a positive func-
tion h : Z

2 → R such that for some finite setS, someǫ > 0 and some positive
integer-valued functionk : Z

2 → R wheresup~b∈Z2 k(~b(n)) < ∞ the following
conditions hold

E

[

h(~b(n+ 1)) | ~b(n) =~i
]

=
∑

~k∈Z2

p~i~kh(
~k) <∞ (A.1)

for all ~i ∈ S and

E

[

h(~b(n+ k(~b(n)))|~b(n) =~i
]

≤ h(~i)− ǫk(~b(n)) (A.2)

for all ~i /∈ S. Then the corresponding HMC isergodic.

A.2 Transcience Theorem

Theorem A.2 (Transience [FMM95], p. 31) For an irreducible Homogeneous Markov
Chain (HMC) to be transient, it suffices that there exist a positive functionh(~i),~i ∈
Z
3, a bounded integer-valued positive functionk(~i),~i ∈ Z

3, and numbersǫ, c, d >
0, such that, settingSc = {~i : h(~i) > c} 6= 0, the following conditions hold:

1. sup~i∈Z3 k(~i) = k <∞;

2. E[h(~bn+k(~i))|h(
~bn) = h(~i)]− h(~i) ≥ ǫ, ∀n, for all~i ∈ Sc;

3. for somed > 0, the inequality|h(~i)− h(~j)| > d impliesp~i~j = 0.
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A.3 Non-ergodicity Theorem

Theorem A.3 (Non-ergodicity [FMM95], p. 30) For an irreducible Homogeneous
Markov Chain (HMC) to be non-ergodic, it is sufficient that there exist afunction
h(~i),~i ∈ Z

2, a constantd andc, such that the sets{~i | h(~i) > c} and{~i | h(~i) ≤ c}
are non-empty, and the following conditions hold for everyn ∈ N:

E

[

h(~b(n+ 1)) | h(~b(n)) = h(~i)
]

− h(~i) ≥ 0

for all ~i ∈ {~i : h(~i) > c} and
∣

∣

∣
E

[

h(~b(n+ 1)) | h(~b(n)) = h(~i)
]

− h(~i)
∣

∣

∣
≤ d

for all ~i ∈ Z
2.



Appendix B

Mesh How-To Guide

B.1 Building, Installing and Configuring OpenWRT

OpenWRT [OPE] is a great open-source firmware that allows you to installa
Linux-based system in your router and to easily cross-compile your own programs
for its architecture. For a first quick installation of OpenWRT, one can directly
download from their website the binary source that corresponds to the router ar-
chitecture. Nevertheless, we recommend more advanced users to install theOpen-
WRT build-tree on their computer in order to build their own image for the router
and add any package they are interested in. In the remainder of this section, we
describe all the step-to-step procedure to follow in order to install the release 8.09
of OpenWRT on your router (note that additional information is also availablein
the wiki of the openWRT website).

B.1.1 Getting the Source and Compiling on Your Computer

The first step consists in downloading the openWRT buildtree and you do soby
deciding in which directory you want to install the buildtree (we call it<your-
path-to-openwrt>) and typing the following commands:

# cd<your-path-to-openwrt>
# svn co svn://svn.openwrt.org/openwrt/branches/8.09
# svn co svn://svn.openwrt.org/openwrt/packages/

Following this procedure, you end up with two directories8.09/ andpackages/.
Then to make all the packages ofpackages/accessible to openWRT, you need to
type:

# cd<your-path-to-openwrt>/8.09/package
# for i in ../../packages/*/*; do ln -s $i; done

The next step is useful to directly include the desired configuration files directly
into the built image. First we create the useful directories as follows:

# cd<your-path-to-openwrt>/8.09

131



132 APPENDIX B. MESH HOW-TO GUIDE

# mkdir files
# cd files
# mkdir etc
# cd etc
# mkdir config
# mkdir dropbear
# mkdir init.d

Then we create the five following files inside those directories.

1st File: ”files/etc/config/system”

#### Set the hostname
config system
option hostname TAP1

2nd File: ”files/etc/config/network”

#### VLAN configuration
config switch eth0
option vlan0 ”1 2 3 5*”
option vlan1 ”0 5”
option vlan2 ”4 5”

#### Loopback configuration
config interface loopback
option ifname ”lo”
option proto static
option ipaddr 127.0.0.1
option netmask 255.0.0.0

#### LAN configuration
config interface lan
option ifname ”eth0.0”
option proto static
option ipaddr 192.168.1.1
option netmask 255.255.255.0

#### DMZ configuration
config interface dmz
option ifname ”eth0.2”
option proto static
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option ipaddr 192.168.10.1
option netmask 255.255.255.0

#### WAN configuration
config interface wan
option ifname ”eth0.1”
option proto dhcp

#### Wireless configuration
config interface wifi
option ifname ”ath0”
option proto static
option ipaddr 10.10.10.1
option netmask 255.255.255.0

3rd File: ”files/etc/config/wireless”

#### WiFi settings
config wifi-device wifi0
option type atheros
option channel 13
option agmode 11b

# REMOVE THIS LINE TO ENABLE WIFI:
# option disabled 1

config wifi-iface
option device wifi0
option network wifi
option mode adhoc
option ssid aziala
option bssid 02:ca:ff:ee:ba:be
option encryption none

4th File: ”files/etc/dropbear/authorized keys”

# File containing the SSH public keys of all the authorized machines:
ssh-rsa AAA. . . VhZw== adel@adel-desktop
ssh-rsa AAA. . . ISqw== julien@icsil1-pc12
. . .
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. . .

5th File: ”files/etc/init.d/done”

#!/bin/sh /etc/rc.common
# Copyright (C) 2006 OpenWrt.org

# REGULAR TASKS to be done when booting:
START=95
boot(){
[ -d /tmp/root] && {

lock /tmp/.switch2jffs
firstboot switch2jffs
lock -u /tmp/.switch2jffs

}
# process user commands
[ -f /etc/rc.local] && {

sh /etc/rc.local
}
# set leds to normal state
. /etc/diag.sh
set state done

# Then add your OWN TASKS to be done when booting:
# TASK 1: Launch WPA
ifconfig eth0.1 promisc
wpa supplicant -c /etc/config/wpasupplicant/wpasupplicant.conf -i eth0.1 -D ro-
boswitch -B

# TASK 2: Set the channel rate to 1M
iwconfig ath0 rate 1M

#TASK 3: Mount USB drive
mkdir /root/mnt
mount /dev/sda1 /root/mnt
}

Once you are done editing the above configuration files, you are almost ready
for cross-compiling in your computer an image that will be ready to be flashedon
your wireless router. The only remaining step consists in selecting your router pro-
file (to set for which architecture the compilation should be done) and the programs
that you want to be included as packages in the image. To do so, you need totype:
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# make menuconfig
and this makes you enter a pretty intuitive graphical configuration menu with the
following categories.

• Target System: This fields allows you to specify the platform of your router.
Our Asus WL-500gP routers are based on the Broadcom BCM94704 plat-
form, thus we select ”Broadcom BCM947xx/953xx [2.6]”. The number in
bracket ([2.4] or [2.6]) is the version of the Linux kernel that is selected. In
the earlier version of our testbed, we had our routers running the [2.4] ver-
sion without any problem. Recently, we flashed all our router with a [2.6]
version for a reason of compatibility with the Click package [KMC+00]. In
case you are using other routers than the Asus WL-500gP and do not know
the platform they are based on, you may find this information on1.

• Target Profile: This field allows you to specify the model of your router.

• Base system: This category allows you to include additional library in the
image of your router (this is useful if you start coding your own programthat
require a specific library).

• Network: This category provides you with a huge amount of package that
you can include in your image. However, before adding too many packages,
you must keep in mind that the more selected packages, the larger the size of
your image after compilation and the allowed image size is restricted by the
Flash memory of your router (4Mb for most routers and 8Mb for the Asus
WL-500gP1). In our testbed, the package we were interested in adding to
the standard configuration are: click, iperf, tcpdump and wpa-supplicant2.

• Kernel modules: This category allows you to include useful modules and
driver. In our case, we were particularly interested in (i) adding the open-
source madWiFi driver to our image by selectingkmod-madwifiin the ”Wire-
less Driver” directory; (ii) adding USB support to benefit from 2Gb extra
memory through USB sticks. To do so, we had to select the moduleskmod-
usb-core, kmod-usb-ohci, kmod-usb-storage, kmod-usb-uhciandkmod-usb2
in the ”USB Support” directory. Additionally, we also had to include the
moduleskmod-fs-ext2, kmod-fs-ext3, kmod-fs-hfs, kmod-fs-vfat, kmod-nls-
cp437, kmod-nls-cp850, kmod-nls-iso8859-1in the ”Filesystems” directory.

The above list describes the package that we found, given our needs, the more
useful to be included in our image. However, it is clearly not an exhaustive descrip-
tion of the multiple possibilities of available configurations, and we would recom-
mend the interested readers to go quickly through the different categoriesof the

1http://wiki.openwrt.org/oldwiki/tableofhardware
2As explained further in Section B.2.3, we are interested to have 802.1X (WPA) available on the

routers. However, the default version available in openWRT does not work with our configuration.
Section B.2.3 explains what to do in a scenario similar to ours.
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configuration menu in order to have a clearer idea of what is available. Moreover,
if you know the name of a program you would like to include without knowing its
location on the configuration menu, a useful command is the search command that
is obtained by typing ”/” in the menu.

Now that you are done with the configuration, you are ready to launch your first
compilation of OpenWRT by typing:

# make V=99
where the ”V=99” parameters provides you with all the debugging messages (just
typemake if you do not want to see them). During this first compilation, your com-
puter needs to be connected to the Internet as openWRT will download the needed
source code and cross-compile it. All this process takes a pretty long amount of
time for the first compilation, so you may want to launch it over night. Note that
OpenWRT only compiles everything at the first compilation (or if you execute a
make clean). In the future compilations, only the modified files will be compiled
and thus, the whole process will be significantly faster.

If you followed all the previous steps correctly and went through the compilation
process without any errors, you should now obtain, in thebin/ directory, differ-
ent imagesopenwrt-*.trxandopenwrt-*.bin(the .trx is the one used for the Asus
router). The next step is then to flash your router with the obtained image andwe
describe two ways of going it either through: (i) TFTP or (ii) SSH.

Flashing the image through TFTP

In order to follow this procedure, you need to start your router in the TFTP mode.
For the Asus WL-500gP, this is done by keeping pushed down the RESTORE but-
ton (in the back of the router), while plugging in the power cord. If the Asussuc-
cessfully started in TFTP mode, you notice it by seeing the READY light blinking.
Once in this mode, the router has a TFTP server running that accepts a.trx image
(i.e., the firmware) to be flashed. To do so, you need to plug your computer on the
LAN port of the Asus router and type the following command

# cd<your-path-to-openwrt>/8.09/bin
# tftp 192.168.1.1
# tftp> binary
# tftp> rexmt 1
# tftp> put openwrt-brcm47xx-squashfs.trx

Once the TFTP upload is completed, the router initializes itself with the new
firmware and this is a critical phase. Indeed,do NOT turn off your router dur-
ing the2 minutes following the TFTP transfer or you might break it without being
able to recover. After, this2-minute delay, you can unplug the power cord and plug
it again and then you can start connecting to your router and configuringit. For
details on how to do this, see the Section B.1.1
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Flashing the image through SSH

This alternative way of flashing the router can be relatively useful if it happens that
you can access the router in the normal mode, but not in the TFTP mode (we do
not know the cause of this problem, but it sometimes happened to us). To perform
your flashing through SSH, you need to plug your computer on the LAN port of
the Asus router and type the following command

# cd<your-path-to-openwrt>/8.09/bin
# scp openwrt-brcm47xx-squashfs.trx root@192.168.1.1:/tmp3

# ssh root@192.168.1.1
Then once logged in the router TAP1, you type

root@TAP1#mtd write openwrt-brcm-2.4-squashfs.trx linux && reboot
At the end of this process the router will automatically reboot by itself (you donot
need to touch the power plug) and you will be able to connect to it and configure it
by following the instruction of next section.

First connection to the router and its configuration

A router that has been just flashed cannot be directly accessed viassh, because
the connection is blocked. To activate this connection and allow the connection
through the wireless and WAN port, you need to set a password and followthe
following steps:

# telnet 192.168.1.1
root@TAP1#passwd
root@TAP1#/etc/init.d/firewall disable
root@TAP1#iptables -F

After this you should be able to connect to your router insshand use your router
normally. Moreover, if for security reasons you want to disable the connection via
password, you can easily do that by editing the file/etc/config/dropbear.

B.2 Extending OpenWRT with Some Useful Packages

In the previous section, we explained how to build your own image of openWRT
by including some of the existing packages directly into the image through the
menuconfigwindow. However, one might be interested in adding later on some
extra packages to a working router without wanting to go through the process of
flashing it once again. In this section, we will show how this can easily be done
and how you can easily cross-compile add your own packages/programsinto the
menuconfigwindow.

3Instead of /tmp, you might want to adapt the directory in which you copy theimage in the router.
Indeed, you need to copy it onto a volume with enough free space.
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B.2.1 Basics for Adding a Package on your Router

After having compiled openWRT, one can see that many packages (the*.ipk files)
are created in the folderbin/packages. Moreover, in case you want to create a new
*.ipk file (for example you want to add the vpnc package to an already flashed
router), you just need to select this package in themenuconfigwindow and to run
make once again. Once the compilation process ends, you have a new package
created and you install it following the procedure below (note that this example is
for the Asus router that is built on a mipsel architecture, router based on another
architecture should follow a similar methodology):

# cd<your-path-to-openwrt>/8.09/bin/packages/mipsel
# scp vpnc0.5.3-1mipsel.ipk root@192.168.1.1:/root
# ssh root@192.168.1.1

Then once logged in the router TAP1, you simply type
root@TAP1#opkg install vpnc 0.5.3-1mipsel.ipk

B.2.2 Adding the Click Modular Router

Before describing the procedure of how to cross-compileclick [KMC+00] for
openWRT, we note that this is a relatively big package. Therefore, it mightbe wise
to directly incorporate it in the flashed image instead of installing it afterwards with
theopkg command.

In our deployment, we chose to use the MultiFlowDispatcher library [SL09],
which allows to dynamically span sub-element at run time (e.g., in per-flow queu-
ing, we only create a queue once a new flow appears in the network). In order to
compile Click with new library included (in this case MultiFlowDispatcher), we
needed (i) to add the filemultiflowdispatcher.cc in
<your-path-to-openwrt>/8.09/build dir/mipsel/click-1/lib,
(ii) to add the filemultiflowdispatcher.hh in
<your-path-to-openwrt>/8.09/build dir/mipsel/click-1/include/click, and
(iii) to modify the Makefile in:
<your-path-to-openwrt>/8.09/build dir/mipsel/click-1/userlevel/Makefile.in
in order to addmultiflowdispatcher.o in theGENERIC OBJS variable.

Now that you know how to cross-compileclick for your router, you might be
interested in adding your own elements to Click. To do so, you might want to read
a bit on the basics of how to add an element for click on a computer (i.e., with-
out cross-compilation) on the FAQ section of the Click website4. Then once you
understand this process, the only difference to add your element in the openWRT
buildtree, is that you should add your elements in the folder:

<your-path-to-openwrt>/8.09/build dir/mipsel/click-1/elements/local/

4http://read.cs.ucla.edu/click/learning
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Note that during the debugging process of your elements you might need to re-
install many times theclick*.ipk package on your router, as any modification of
one of your elements is equivalent to a new version of click that contains thenew
element and that needs to be installed. Personally, we find this procedure rather
cumbersome and we even encounter problem re-installing click through the stan-
dardopkg command. Instead, we found that a quicker way to re-install click on
your router (that always worked for us) is to simply copy the binary file onyour
router. This simple technique is performed by typing:

# scp<your-path-to-openwrt>/8.09/build dir/mipsel/click-1/userlevel/click
root@192.168.1.1:/usr/bin/

B.2.3 Adding 802.1x Support for a Secure Wired Connection

Indeed, one of the main goal of wireless multi-hop networks is to avoid using
wires. However, if the network is deployed for research purposes, one should
consider connecting the nodes to a wired network in order to be able to control
them, deploy programs and perform maintenance tasks. If the nodes are deployed
within your research institution’s building(s), you hopefully will be able to use an
already existing wired infrastructure.

In Section 4.3.2 we present an useful way of remotely controlling the nodes.
We describe here the procedure that we followed to connect the nodes using the
wired network that was already present in the buildings.

Connecting the wireless nodes to a regular wired LAN should not represent a
big issue, provided that ethernet interfaces are present on your hardware. However,
some institutions require the users of the infrastructure to use secure protocols such
as VPN5 or 802.1X6 (also known as WPA).

We had successful experiences connecting our nodes through VPN with open-
WRT, using thevpnc [vpn] open-source VPN client. However, the VPN gateway
is disconnecting the nodes once every couple of hours, changing their IP addresses.
A much more convenient way of connecting the routers while using a legacy se-
cure protocol available in our institution is to connect the nodes using 802.1X. This
way, each node is part of the school secure network and has a public IP address that
almost never changes.

Indeed, such a configuration requires that each node connected to thewired
network can access an 802.1X plug. In our case, we had to ask the IT department
of the university to install one such plug in every office where we were willing to
install a node, as very few such plugs were active by default.

Once the plugs in place, we installed a WPA (802.1X) client on the nodes. We
use the well-knownwpa-supplicant program [wpa] for this purpose.
.

5http://en.wikipedia.org/wiki/Virtual_private_networ k
6http://en.wikipedia.org/wiki/IEEE_802.1X
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Here are all the steps that we follow to enable 802.1X authentication with
OpenWRT 8.09 :

• Get thewpa-supplicant-0.6.9-2 package provided by Jouke Wit-
teveen athttp://www.liacs.nl/ ˜ jwitteve/openwrt/8.09/brcm-2.
4/packages/ , or on the Aziala website [AFBT].

• Install it on the nodes using the package manager :
opkg install wpa-supplicant 0.6.9-2 mipsel.ipk

• In our case, the config file is/etc/config/wpa supplicant/wpa supplicant.conf
and it looks like this:

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=root
ap_scan=0
network={
key_mgmt=IEEE8021X
eap=TTLS
identity="p-aziala"
password="xXxXxXxX"
phase2="auth=PAP"
ca_cert="/etc/config/wpa_supplicant/Thawte_Premium_ Server_CA.pem"
priority=5
}

Of course, this file is relevant to our own configuration. In particular, the
.pem file is the certificate required by the authenticator. In order to avoid to
copy it on every node, we include it in the OpenWRT build tree7.

• The WAN interface is eth0.1 with our configuration. We need to set this
interface in promiscuous mode :ifconfig eth0.1 promisc

• The command to launch wpa-supplicant is:
wpa supplicant -c /etc/config/wpa supplicant/wpa supplicant.conf
-i eth0.1 -D roboswitch -B . The option-B is to run wpa-supplicant
as a daemon in background.

We added this line at the end of/etc/init.d/done so that the nodes
automatically authenticate on the wired network at boot time.

7files/etc/config/wpa supplicant/Thawte Premium Server CA.pem
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B.2.4 Adding your Own Program/Package

Now that you master the technique of including existing program, you might be
interested in including your own program (for exampleHelloWorld.c) in the open-
WRT tree in order to cross-compile it and produce a niceHelloWorld.ipkfile that
you will be able to install on your router and share with other people. To achieve
this goal, you have to follow the procedure below:

1. Create the OpenWRT Makefile: The role of the Makefile is to make your
package appear correctly in themenuconfigand to tell the cross-compiler
where it should look for the source code (most likely locally for your own
code, but it can also be online if you provide an URL). The Makefile for your
program (here HelloWorld) is easily created by typing:
# cd<your-path-to-openwrt>/8.09/package
# mkdir HelloWorld
# cd HelloWorld
# cat> Makefile

include $(TOPDIR)/rules.mk

PKG NAME:=HelloWorld
PKG VERSION:=1
PKG RELEASE:=1

PKG SOURCE:=$(PKGNAME)-$(PKG VERSION).tar.gz

include $(INCLUDEDIR)/package.mk

define Package/HelloWorld
SUBMENU:=C
SECTION:=lang
CATEGORY:=Languages
TITLE:=Simple ”Hello World” Program
# URL:=http://website/.../helloworld
# DEPENDS:=+libpcap @!mips
endef

define Package/HelloWorld/description
HelloWorld is a basic program that prints the message ”Hello World” on
standard outputs and then exits.
endef
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define Build/Compile
$(MAKE) -C $(PKG BUILD DIR) \
CPPFLAGS=”$(TARGETCFLAGS) -I$(STAGINGDIR)/usr/include -I$(STAGINGDIR)/include”
\
all
endef

define Package/HelloWorld/install
$(INSTALL DIR) $(1)/usr/bin
$(INSTALL BIN) $(PKG BUILD DIR)/HelloWorld $(1)/usr/bin/
$(INSTALL DIR) $(1)/usr/share/HelloWorld
endef

$(eval $(call BuildPackage,HelloWorld))

2. Put your source code in the buildtree: To do so, you first need to create
the.tar.gz file that contains your program with its Makefile (note that this is
a second Makefile different from previous point). For our Asus based on the
mipsel architecture, you create thisHelloWorld.tar.gz file by doing:
#> mkdir HelloWorld-1
#> mv HelloWorld.c HelloWorld-1
#> cd HelloWorld-1
#> cat> Makefile

CC = mipsel-linux-uclibc-gcc

all:
$(CC) HelloWorld.c -o HelloWorld

#> cd ..
#> tar czf HelloWorld-1.tar.gz HelloWorld-1/
#> mv HelloWorld-1.tar.gz <your-path-to-openwrt>/8.09/dl

Once you follow this process, you should be able to see and select your pack-
age through themenuconfigwindow. After selecting it and launching a compi-
lation with make, you should see your package HelloWorld.ipk created under the
bin/packages/mipseldirectory and you can then install this*.ipk file using the stan-
dard procedure shown at the beginning of this section.
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B.2.5 Cross-compiling your Program without Making a Package

Creating a package is a cleaner way to transfer your program into OpenWRT. Nev-
ertheless, you might be interested in the first debugging phase to quickly compile
your program without going through the work of dealing with the Makefiles.

If that is the case, you can also easily compile your program by using the
cross-compiler that are available int thestagingdir directory from your Open-
wrt buildtree. For example, in the case you want to compile your program Hel-
loWorld.c (or HelloWorld.cpp) for the Asus WL-500gP router (mipsel architec-
ture), you only need to type:

#cd<your-path-to-openwrt>/8.09/stagingdir/toolchain-mipselgcc4.1.2/bin/
# ./mipsel-linux-uclibc-gcc HelloWorld.c -o HelloWorld
# HelloWorld root@192.168.1.1:/root/mnt

B.3 Hacking the MadWiFi Driver

B.3.1 Unlocking the Modification of MAC Parameters

The IEEE 802.11e uses four different classes of service: Best Effort (BE), Back-
ground (BK), Voice traffic (VO), and Video traffic (VI). Nevertheless, by default
in IEEE 802.11, all the traffic is queued as BE traffic. Moreover the parameters
for BE traffic are locked by default in the MadWifi driver and this prevent us from
changing MAC parameters such asCWmin, CWmax, etc. In order to unlock these
modifications, the MadWifi driver needs to be hacked by commenting the corre-
sponding part of the code in the functionieee80211wme updateparams locked()
of madwifi-trunk-r3314/net80211/ieee80211proto.c. Note that a patch contain-
ing all the needed modification is available at8.

B.3.2 Enabling MadWifi to Announce the FULL BUFFER Status to
Upper Layers

By default MadWifi does not inform the upper layer when its queue is full and it
directly discards the packet instead. This is pretty annoying if one plans to use an
additional queue at the IP layer (for example with Click). Indeed this queuewill
always be empty, because it will always gives any new packet to the MACqueue
regardless of whether the MAC queue has space to accept new packetsor not.

In order to overcome this problem, we patch the driver by modifying some files
both in MadWifi and Linux.
First, in MadWifi the files that need to modified are

• madwifi-trunk-r3314/net80211/ieee80211output.c.

• madwifi-trunk-r3314/net80211/ieee80211proto.h.

8http://icawww1.epfl.ch/aziala/P1unlock BEparammodif.patch
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In ieee80211output.c the modifications take place in the methodsieee80211hardstart()
andieee80211parent queuexmit() (that has its return value changed from void
to int). These changes consist in returning a value (i.e., an int) in order to tellthe
upper layer if the MAC has space available in its queue to accept new packets or
not. Finally, the change inieee80211proto.h consists simply in updating the type
of the functionieee80211parent queuexmit() from void to int.
Then in Linux, the modifications consist in using this new feedback delivered
by the MAC in order to only transmit a packet to the MAC if it has enough
room to accept it. The modifications of the code take place in the fileslinux-
2.6.26.8/net/core/dev.candlinux-2.6.26.8/net/packet/afpacket.c.
For the readability of this report we do not discuss all the changes here,but we pro-
vide the links for the patch we created with details modification both for MadWifi9

and for Linux10.

B.3.3 Adding New Commands to Access MAC Parameters

In our research, we were particularly interesting in knowing the queue occupancy
of a node, but unfortunately this information is not given by default by theMAC
driver. In order to satisfy our needs, we hacked the MAC driver in order to add
some new commands that allow to:

• Enable/disable the use of the4 MAC queues existing in IEEE 802.11e (by
default this is disable).

• Get/Set the maximal MAC buffer size (by default this is50 packets).

• Access the current MAC queue occupancy.

In order to achieve this goal, we extended thewlanconfigcommand with our own
commands, and we note that a similar methodology than the one we used can be
use to access/modify some other parameters of interest. More specifically, the files
that we needed to modify to reach our objectives were3 files in the foldermadwifi-
trunk-r3314/ath/ (see the details in11)

• if ath.c

• if athioctl.h

• if athvar.h

2 files in the foldermadwifi-trunk-r3314/net80211/(see the details in12)

• ieee80211output.c

9http://icawww1.epfl.ch/aziala/P22 enablefullBuffer MACsignal madwifi.patch
10http://icawww1.epfl.ch/aziala/P21 enablefullBuffer MACsignal linux.patch
11http://icawww1.epfl.ch/aziala/P31 enableadditionalMACcommands.patch
12http://icawww1.epfl.ch/aziala/P32 enableadditionalMACcommands.patch
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• ieee80211var.h

and1 file in the foldermadwifi-trunk-r3314/tools/ (see the details in13)

• wlanconfig.c

B.4 Installing and Using Net-Controller

B.4.1 Installation

You can download Net-Controller from Sourceforge14. The latest version of the
code can be downloaded with SVN using the following command:

svn co https://netcontroller.svn.sourceforge.net/svnr oot/netcontroller
netcontroller

Since the user interface is written in Python, it does not require to be compiled.
One simply needs the following installed on the machine:

• Python (>= 2.5)

• PyQT

• Matplotlib

Then, once in the source folder of the user interface (/ui ), it suffices to launch:

python NetController.py

cidaemon needs to be compiled in the following way (usinggcc in this ex-
ample):

$YOURGCC -Wall -lm -pthread -o cidaemon cidaemon.c

Where$YOURGCCdenotes your version ofgcc .

B.4.2 Configuration

Net-Controller uses one main configuration file and needs at least one map file, that
maps node indexes to IP addresses.

13http://icawww1.epfl.ch/aziala/P33 enableadditionalMACcommands.patch
14http://sourceforge.net/projects/netcontroller/
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netcontroller.cfg

The filenetcontroller.cfg describes the main options of the program. We
explain them here.

• interval is the period (in seconds) between two updates of the plots.
It can be useful to increase the plot update interval when the control net-
work has large delays. However, setting intervals smaller than a typical RTT
should not hurt much (although in this case the curves may be drawn in gray
if the values are not received fast enough from the network).

• flow interval is the period between two updates of the list of flows.
This typically does not need to be small.

• log dir is the directory in which the logs of the commands launched on
the nodes will be saved.

• trace dir is the directory in which the traces containing all the values that
have been plotted.

• map is the name of the file that contains the mapping between the node
indexes and their IP addresses on the control network. Specifying a valid
file name is mandatory here, as pretty much every operations done by Net-
Controller requires to communicate with the nodes through the control net-
work.

• trafficMap is the name of the file that contains the mapping between the
node indexes and their IP addresses on the actual wireless network. This is
used by the traffic manager of Net-Controller in order to start/stop traffic.

• max commands is the maximum number of simultaneous running com-
mands. Each command is launched in a separate thread. If the limit is
reached, new commands will wait until running commands are done. A
value around 100 is probably good for most situations.

• default nbPoints is the default number of points of the plots. For ex-
ample, if the update period is one second, adefault nbPoints value
of 60 means that the plots will represent the values received during the last
minute, by default. Indeed, this value can be changed by the user once the
GUI is launched.

• direct time represents the direction of the time in the plots. If ’True’
(direct time), the plot moves from right to left. If ’False’ (reverse time), the
plot moves from left to right.

• ip is the IP address of the central host that runs Net-Controller on the control
network.
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• port is the UDP port on which the user interface on the central host is
listening. This is used to receive the values to plot and the lists of flows.

• client port is the UDP port on which the nodes of the network are lis-
tening (on the control network). This is used to transmit the requests for the
values to plot, or the requests for the lists of flows.

B.4.3 Using the Graphical Interface

In Net-Controller, the nodes are represented by integer indexes. Afterhaving spec-
ified a set of indexes, one can choose actions to perform related to thesenodes. The
main actions that are available at the time of writing are related to plots, commands
or traffic.

The nodes one which perform actions can be selected on the left of the GUI
(’Nodes’ section). Shortcuts for selecting the nodes with indexes 1 to 4, all the
nodes at once, or the node with the highest index, are provided in the form of check-
boxes. To select any arbitrary set of nodes, one should use the ’other’ textbox. In
this textbox, it is possible to specify simple regular expressions. Set of contiguous
indexes are noted using “-” between the smallest and the highest index, and several
such expressions can be combined separated by “,”. For example, if one wants to
select the nodes{3, 5, 6, 7, 8}, the expression to use is “3,5-8 ”.

Plotting stuff

The section ’Live plots’ allows to select one or several parameters to plot.A pa-
rameter is just a keyword that uniquely identifies a quantity to plot. The ’Plot!’
button opens a new window representing a plot of all the indicated parameters as
measured in each of the selected nodes. The GUI offers shortcuts in the form
of checkboxes for three parameters. ’CW’ denotes the value of the IEEE 802.11
CWmin parameter, read directly from the Madwifi driver. For example, in our
previous example, if one checks this box and clicks the ’Plot!’ button, a window
will appear showing the temporal evolution ofCWmin for each one of the nodes
{3, 5, 6, 7, 8}. The parameter ’buffer’ denotes the occupancy of the MAC layer
sending queue (here to, as read from Madwifi).

The parameter ’throughput’ is a bit particular. Indeed, the throughputs that
the nodes measure are related to the notion of flow. A flow denotes a tuple<
IPsource, IPdestination >. All the measured throughputs areper flow, that means
that the throughput represents what the selected nodes have received for this flow.
That also means that the parameter has to denote the flow in which one is interested
in. All the nodes of the network report to Net-Controller the flows they are aware
of, and Net-Controller assigns unique IDs to the flows and displays them in the
’Flows’ section of the GUI. Now, if one wants to plot the throughput flow withID
i, the name of the parameter is ’thr%F i’. The checkbox ’throughput’ is simply a
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shortcut for ’thr%F0 ’.

It is possible to plot several parameters for the set of selected nodes. However,
the parameters have to denote the same thing (i.e., use the same unit, since the same
y-axis is used). It is currently only possible to plot several throughputs values (i.e.,
for several different flows) on one plot window.

An other particularity of Net-Controller is that it allows to plot parameters that
are read through a Click socket [KMC+00]. In this case, a parameter name of
the form ’click->element.handler ’ will plot the temporal evolution of the
handlerhandler of the elementelement (see Click documentation for more
details about elements and handlers [KMC+00]).

If nothing is specified in the ’number of points’ textbox, the default value for
the number of points will be used. If the number of points is 1, the plot will display
bars instead of curves.

By default, all the values that are plotted are locally stored in trace files, in the
directory specified by thetrace dir option. If nothing is specified in the ’file
name’ textbox, a default name (that takes into account the exact creation timeand
selected nodes/parameters) will be used.

Sending commands

Once a set of nodes is selected in the ’Nodes’ section, one can send somecom-
mands to all of them. By default, the checkbox ’send it over ssh (as root)’is
checked. That means that all the commands that are typed in the textbox will be
sent with ’ssh root@%IP ’ prepended to them, where ’%IP’ denotes the IP ad-
dress of the node to which the command is sent. For this to work properly, your
public key should be present in the ’authorized keys ’ file related to the SSH
configuration present on the nodes (for more details on how to setup SSH,see Sec-
tion B.1). If you don’t want to prepend ’ssh root@%IP ’ (for example if the
user that you want to use on the nodes is not root), you can uncheck thebox. In this
case, you can launch commands over the whole set of selected nodes using the fol-
lowing pre-defined variables: ’%IP’ (the IP address of the node) and ’%INDEX’ (its
index). For example, if you want to create a local directory for each selected node,
you can enter something like ’mkdir dir %INDEX. If you want to send a set of
SSH commands with a custom user, sayjoe , you can enter something like ’ssh
joe@%IP your-command ’. If you want to systematically be able to send SSH
commands asjoe , you should modify the prefix string in thesendCommand()
method of Net-Controller (in the fileNetController.py ).

In addition, Net-Controller allows to send a special kind of commands to inter-
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act with Click handlers [KMC+00]. A commands such as ’click<-element.handler=value ’
will set the handlerhandler of the elementelement to the valuevalue (see
Click documentation for more details about elements and handlers [KMC+00]).

The status of the command for each of the selected nodes is displayed in the
’status’ textbox. The status can be among the three following states:

• running... : the command did not return yet.

• done : the command returned with an exitcode equals to zero.

• failed : the command returned with a non-zero exitcode.

For each command that is launched, itsstdout and stderr outputs are
appended to a file that contains such outputs for all the commands launched on
the same node. These files are located in the directory indicated by thelog dir
option. If the checkbox ’Auto display output of command’ is checked (which is
the case by default), the part of this file that concerns the last command is read and
displayed on the right textbox once the command returns. That allows the user to
quickly see the outputs of the commands.

The traffic manager

The traffic manager can be send through the menuFile -> Launch traffic
manager or with the keyboard shortcutCtrl+T .

The goal of the traffic manager is to easily start/stop traffic between the nodes
of the wireless network. Theiperf program15 is used to generate the traffic.
Therefore, it is needed at the nodes for the traffic manager to work. The way the
traffic manager works is rather simple. One simply has to specify a few options
related to the traffic that is about to be generated, click the ’Start’ button. Clicking
’Start’ displays a new line after the current one, that allows to generate a new flow.
Once a flow is properly running, its ’status’ turns to ’On’ and the button on the
right becomes ’Stop’. Clicking ’Stop’ stops the flows. It actually kills each Iperf
and SSH processes individually. Therefore, it is highly recommended to wait for
the status on this line to be ’Off’ before trying to start a new flow.

The different option for the flow generation are:

• ’source(s)’: That represents a set of nodes, that can be written using the same
regular expression than for inputing the set of nodes on the main GUI (see
Section B.4.3). Aniperf client process will be launched in each of these
nodes.

• ’destination’: The node that acts as the traffic sink. Aniperf server process
will be launched on this node.

15https://sourceforge.net/projects/iperf/
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• ’port’: The port to use. For the moment, only UDP traffic is implemented.
The input for setting TCP instead should be added anytime soon. Entering
nothing here will select ports automatically (from 6000 and incrementing for
each new flow).

• ’duration (s)’: The duration of the traffic in seconds. Nothing defaults to
100,000 seconds.

• ’ToS’: The type of service. Can be one of the four values recognizedby the
MAC layer (BK, BE, VI, VO). Default is BE (the usual Best Effort traffic
class).

• ’throughput (Mbit/s)’: The desired throughput can be set using a float or
integer value.
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