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ABSTRACT

This paper describes a novel framework for compressive sam-
pling (CS) of multichannel signals that are highly dependent across
the channels. In this work, we assume few number of sources are
generating the multichannel observations based on a linear mixture
model. Moreover, sources are assumed to have sparse/compressible
representations in some orthonormal basis. The main contribution
of this paper lies in 1) rephrasing the CS acquisition of multichan-
nel data as a compressive blind source separation problem, and 2)
proposing an optimization problem and a recovery algorithm to es-
timate both the sources and the mixing matrix (and thus the whole
data) from the compressed measurements. A number of experiments
on the acquisition of Hyperspectral images show that our proposed
algorithm obtains a reconstruction error between 10 dB and 15 dB
less than other state-of-the-art CS methods.

Index Terms— Compressed sensing, Blind source separation,
Hyperspectral images, Mixture model, Sparse approximation, Dic-
tionary learning.

1. INTRODUCTION

Hyperspectral images (HSI) are a collection of hundreds of images
which have been acquired simultaneously in narrow and adjacent
spectral bands, and finds many applications including agriculture,
mineral exploration and environmental monitoring [1, 2].

As it is costly to acquire each pixel of the HSI, it becomes very
interesting to use the compressive sampling (CS) approach [3, 4] to
acquire HSI. If a data x ∈ RN has a sparse or compressible repre-
sentation in some basis, CS is an alternative to the Shannon/Nyquist
sampling, which reduces the number M of measurements required
to acquire the data x i.e.,M < N . In practice, the CS measurements
can be done using the single-pixel hyperspectral camera (SPHC) [5].

We assume like in [1, 2] that the HSI data X ∈ RJ×N
+ ,wherein

J is the number of the spectral channels and N is the resolution
(number of pixels) of the image at each channel of the HSI, is gener-
ated from a linear source mixture model X = AS, where the matrix
A ∈ RJ×I

+ is called the mixing matrix and the matrix S ∈ RI×N
+ is

called the source matrix.
The main contribution of this paper is to exploit this mixture

model as an underlying structure [6] so as to recover HSI with very
few CS measurements. As opposed to our previous work [7], we as-
sume that the mixture parametersA are unknown and we develop an
algorithm to blindly learn this matrixA as well as the sources S from
the CS measurements. We refer to this problem as the compressive
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blind source separation problem, which shares certain similarities
with the dictionary learning problem [8]. It mainly consists in es-
timating A and S simultaneously through an optimization problem
which is not convex. Nonetheless, its objective function becomes
convex if either A or S is fixed. Thus, our proposed algorithm fol-
lows an iterative scheme composed of the two steps below:

1. a sparse approximation step, where the sources S are esti-
mated from the CS measurements while A is fixed;

2. a dictionary update step, where the mixing matrix (also called
dictionary) A is estimated from the CS measurements while
the sources S are fixed.

2. PROBLEM SETUP

In this section we present our linear mixing model of HSI, which
will be later exploited to acquire any HSI with very few CS mea-
surements, via a new joint decoding scheme.

2.1. Observations Model

Each rowXj of the matrixX (in this note, by superscript we index a
row of a matrix) corresponds to a slice of the global cubic HSI i.e, a
2-D image observed in a certain spectral band (we reshape this slice
into an N dimensional vector). Typically there is a high dependency
between the slice images of HSI (rows of X), since the whole scene
to be monitored is composed of few subregions containing certain
different materials. We refer to these regions as different sources.
More precisely, we define a source image Si ∈ [0, 1]1×N as a posi-
tive valued vector which represents the percentage of a given mate-
rial (indexed by i) in each pixel of the scene. As a consequence, for
a given pixel of the scene (indexed by n), the sum of the consisting
sources must be equal to one i.e., ∀n ∈ {1, ..., N} the source images
must satisfy

P
i S

i(n) = 1. In practice, if the spatial resolution of
the image is high compared to the structural content of the image,
each pixel corresponds to only one material, which means that the
sources are disjoint and take their values in the set {0, 1}1×N . It
also implies that the sources are orthogonal which is an assumption
will be exploited later in this paper. For each material there is also
a positive valued vector Ai ∈ RJ×1

+ that represents the spectral re-
flectance, i.e. the energy of material i on the different frequency
channels. With descriptions above, any hyperspectral image can be
decomposed by several distinct sources as following:

X = AS, (1)

where the rows of S ∈ {0, 1}I×N and the columns of A ∈ RJ×I
+

are respectively the I source images and their corresponding spectral
vectors.
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(a) Original data for channel j = 144.
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(b) Reconstruction by setting M = 3000.
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(c) Reconstruction by setting M = 4000.

Fig. 1. Reconstruction of HSI using BSS-IHT, by randomly sampling b) 4.6% and c) 6.1% of the original cube, demonstrated for a slice/channel j = 144.

In real applications, the mixtures Xj and the sources Si have
sparse/compressible representations in wavelet domain. We define
matrix Σ to be the 2D wavelet coefficients of the rows of S such that
S = ΣΨT where Ψ is the 2D wavelet basis. Thus , from the model
(1) we can deduce

X = AΣΨT . (2)

2.2. Sampling Mechanism

Each spectral channel j is sampled by M � N linear measure-
ments (Y j)T = Φ(Xj)T , where Φ ∈ RM×N is the sampling ma-
trix which is the same for all channels. We choose it random Gaus-
sian due to the nice properties of the random matrices for compres-
sion [4]. Stacking these samples together and taking into account the
noise due to the sensors, the quantization and the eventual transmis-
sion, we form the J ×M matrix of measurements:

Y = XΦT + Z, (3)

where Z ∈ RJ×M is the noise matrix that is assumed to have ele-
ments with i.i.d. zero mean Gaussian distributionN (0, σ2).

3. JOINT RECOVERY APPROACH

In this section we describe our approach to recover the multichannel
data X from a set of compressive measurements Y .

3.1. Definition of the optimization problem

The matrices A and S have both positive values (A,S ≥ 0), and
S has a sparse representation Σ in the wavelet basis Ψ. Also, as
mentioned in section 2.1 the source image coefficients represent the
percentage of a given material in a certain pixel n of the scene,
which implies

P
i S

i(n) = 1. We also assume that the sources
are orthogonal because the support of the sources is mostly disjoint.
This constraint results in orthogonality of their wavelet coefficients,
which can be expressed by Off diag(ΣΣT ) = 0, where the operator
Off diag(.) defines a zero-diagonal matrix by zeroing the diagonal
components of its argument. The optimization problem we aim to

solve can be written as:

minimize
A,Σ

‚‚‚Y −AΣΨT ΦT
‚‚‚

F
(4)

subject to ‖Σi‖0 ≤ Ki, 1 ≤ i ≤ I,

Off diag(ΣΣT ) = 0,

A, S ≥ 0,X
i

Si(n) = 1, 1 ≤ n ≤ N,

with S = ΣΨT . Note that ‖.‖F denotes the Frobenius norm of a
matrix, and ‖.‖0 (l0-norm) counts the number of the nonzero ele-
ments in a vector (thus, Ki is the sparsity level of the source i in
the wavelet domain). As we can see, (4) is not decouplable into the
rows/channels, which implies a joint recovery approach

3.2. BSS-IHT Algorithm

As previously mentioned, the main feature of our scheme lies in re-
covering the sources S and the mixing matrix A by alternating be-
tween a sparse approximation step and a dictionary update step i.e.,
blind source separation (BSS) from the compressive measurements.
The sparse approximation step consists in estimating S with a fixedbA ( bA being the current estimate of A) and is implemented via an It-
erative Hard Thresholding (IHT) [9] where each of the constraints of
(4) are imposed at each iteration just after the gradient descent step.
The dictionary update step consists in estimating A with a fixed bS
(bS being the estimate of S obtained from the previous step), and is
obtained by multiplying the pseudo-inverse of bSΦT to the right side
of Y , and then setting the non-positive values to zero so as to impose
the non-negativity constraint on A.

4. EXPERIMENTS

In this section we provide results from two sets of experiments,
that demonstrate the performance of our scheme in noiseless set-
tings. Our simulations are based on HSI synthesized using (1), where
I = 6 sources are extracted from a ground truth map image1 of
farms at the suburb of Geneva city and the source spectra (i.e. ma-
trixA) are choosen at random form the USGS digital spectral library

1We acknowledge Xavier Gigandet for providing this ground truth map.



SNR of bA SNR of bS SNR of bX
M = 3000 23.22 dB 10.73 dB 19.49 dB
M = 4000 29.35 dB 14.00 dB 22.65 dB

Table 1. Performance of BSS-IHT for recovering the mixing matrix bA, the
source images bS, and the whole HSI cube bX of the first experiment, for two
sampling regimes M=3000 and M = 4000.
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Fig. 2. Three source images of HSI from the second experiment (the three
top figures, wherein red and blue pixels correspond to one and zero values
respectively) and the sorted magnitude of their corresponding wavelet coef-
ficients (the three plots below). As we can see, the energy is mainly concen-
trated in the Ki = 250 largest wavelet coefficients of each source, indicated
by the dashed line.

0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

35

Compression ratio M/N

Co
mp

res
sio

n S
NR

 (d
B)

 

 

Fig. 3. Reconstruction SNR of the compressive sampled HSI for different
compression ratio M/N, using BSS-ITH (blue curve) and JS-ITH (red curve)
recovery methods. The dashed blue line indicates reconstruction SNR for
adaptive compression scheme that keeps the Ki = 250 largest wavelet coef-
ficients of each source.

2. Figure 1(a) shows one channel of the resulting HSI. The HSI cube
consists of dimension 256×256×128, which indicates slices of the
resolution N = 256 × 256 that are taken over J = 128 frequency
bands.

Following our sampling scheme, in the first experiment, we set
M = 3000 and 4000, to randomly sample/measure the whole HSI
cube by about 4.6% and 6.1% of its original size, respectively. For
recovery, we use our iterative algorithm based on estimating the
2000 strongest wavelet coefficients of each source i.e., Ki ≤ 2000.
Figure 1 shows one slice of the recovered HSI using our algorithm
for both sampling rates. More details on recovery performance of
BSS-IHT for this experiment are provided in the table 1.

In the second setup, we compare the performance of our algo-
rithm with Iterative Hard Thresholding method using Joint-Sparsity
assumption (JS-IHT). Using the same sampling scheme as in 2.2, the
later method attempts to recover multichannel signals that are sparse

2Available at the url http://speclab.cr.usgs.gov/spectral.lib06.

and also sharing a strong common support set (nonzero coefficients
are nearly at the same positions, across the channels [10]). Indeed,
this assumption applies well to the hyperspectral images, since the
main structures in the images are preserved across the spectral chan-
nels ( just some regions highlight more or less in different frequency
ranges) that leads to a joint-sparse wavelet representation.

We choose the first 64×64 pixels of the upper left part of the im-
ages from the first experiment, and across the first 64 spectral chan-
nels, which enables us to run quick experiments that evaluates the
average performance of both recovery schemes for various compres-
sion matrices of different sizes. Figure 2 shows the three existing
sources of this part and with their sorted wavelet coefficients. Figure
3 demonstrates the reconstruction SNR, for both recovery schemes
and for different compression sizes. The plots are averaged over 20
independent realizations of the random measurement matrix.

By knowing a priori the positions and the values of the 250
largest wavelet coefficients of each source (Ki ≤ 250), together
with the knowledge of the mixing matrixA (the spectral reflectance),
one could reconstruct the whole HSI with SNR of 30.05 dB (the
blue dashed line in Figure 3). Whereas, using our non-adaptive
sampling/reconstrution scheme, we achieve the same reconstruction
SNR, by taking only 18% samples of the whole HSI cube. At the
same compression rate, comparing our recovery scheme with JS-
IHT, indicates more than 15 dB of improvement in performance.

5. CONCLUSION

In this paper we develop a new method for recovering sparse multi-
channel signals from their distributed compressive samples. Unlike
the other methods for multichannel CS, our scheme attempts to im-
prove recovery by exploiting dependencies across the channels via
assuming a linear source mixture model for the signals. Our scheme
recovers the whole signals, by approximating their underlying sparse
sources and their mixing parameters from those few random mea-
surements. Several experiments on the Hyperspectral images indi-
cates a massive improvement in recovery with respect to the state-
of-the-art multichannel CS methods, in particular, under very low
sampling rate regimes.
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