

Development of a global version of the gyrokinetic microturbulence code GENE

T. Görler², X. Lapillonne¹, F. Merz², T. Dannert², F. Jenko², B. F. McMillan¹, J. Chowdhury³, L. Villard¹, and <u>S. Brunner¹</u>

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland ² Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany ³ Institute for Plasma Research, Bhat, Gandhinagar, India

Introduction

- The gyrokinetic code GENE [1], has been extended from its original flux-tube version to a global geometry.
- Includes radial variation of temperature and density profiles, as well as of magnetic geometry.
- Non-periodic boundary conditions allow for profile relaxation.
- Heat sources & sinks enable quasi-stationary microturbulence simulations.
- ▶ Interface with the MHD equilibrium code CHEASE [2,3].
- Various benchmarks, including comparisons with other global codes are presented.

Global GENE Model

The Gyrokinetic Equation

 $-\partial_{t} g_{1j} = \frac{1}{C} \frac{B_{0}}{B_{0\parallel}^{\star}} \left[\frac{1}{L_{nj}} + \left(\frac{m_{j} v_{\parallel}^{2}}{2T_{0j}} + \frac{\mu B_{0}}{T_{0j}} - \frac{3}{2} \right) \frac{1}{L_{Tj}} \right] f_{0j} \partial_{y} \bar{\chi}_{1} + \frac{1}{C} \frac{B_{0}}{B_{0\parallel}^{\star}} \left(\partial_{x} \bar{\chi}_{1} \Gamma_{y,j} - \partial_{y} \bar{\chi}_{1} \Gamma_{x,j} \right) \\ + \frac{B_{0}}{B_{0\parallel}^{\star}} \frac{\mu B_{0} + m_{j} v_{\parallel}^{2}}{m_{j} \Omega_{j}} \left(\mathcal{K}_{x} \Gamma_{x,j} + \mathcal{K}_{y} \Gamma_{y,j} \right) - \frac{1}{C} \frac{B_{0}}{B_{0\parallel}^{\star}} \frac{\mu_{0} v_{\parallel}^{2}}{\Omega_{j} B_{0}} \frac{P_{0}}{L_{p}} \Gamma_{y,j} + \frac{C v_{\parallel}}{B_{0} J} \Gamma_{z,j} - \frac{C \mu}{m_{j} B_{0} J} \partial_{z} B_{0} \partial_{v_{\parallel}} f_{1j} ,$

► where $g_{1j} = f_{1j} + q_j v_{\parallel} \bar{A}_{1\parallel} f_{0j} / T_{0j}$, $\bar{\chi}_1 = \bar{\Phi}_1 - v_{\parallel} \bar{A}_{1\parallel}$, $\Gamma_{\alpha,j} = \partial_{\alpha} f_{1j} + q_j \partial_{\alpha} \bar{\Phi}_1 f_{0j} / T_{0j}$ for $\alpha = (x, y, z)$.

- Field aligned coordinate system $\vec{X} = (x : \text{radial}, y : \text{binormal}, z : \text{parallel}) \implies \vec{B}_0 = \mathcal{C}(x) \vec{\nabla} x \times \vec{\nabla} y$.
- Gyrokinetic equation with radial (x) variations of equilibrium quantities.
- ▶ Particle distribution function $f_i(\vec{X}, v_{\parallel}, \mu) = f_{0i} + f_{1i}$, with f_{0i} a local Maxwellian.
- Gyrokinetic equation is solved for the perturbed distribution function f_{1i} .
- Perturbed electrostatic and vector potentials ($\Phi_1, A_{1\parallel}$) are self-consistently computed through the quasineutrality (Q.N.) equation and parallel component of Ampère's law.
- Gyrokinetic ordering $|k_{\parallel}| \ll |k_{\perp}| \Longrightarrow$ Neglect $\partial/\partial z$ compared to $\partial/\partial x$ and $\partial/\partial y$.
- The overbar denotes gyroaveraged quantities.
- ► Background density, temperature and pressure profiles: $n_{0j}(x)$, $T_{0j}(x)$, $p_0(x)$. Corresponding inverse logarithmic gradients: $L_A(x) = -(d \ln A/dx)^{-1}$ for $A = [n_j, T_j, p]$.
- $\sim \mathcal{K}_X(\mathbf{x}, \mathbf{z})$ and $\mathcal{K}_Y(\mathbf{x}, \mathbf{z})$ are related to curvature and gradients of \vec{B}_0 . $J(\mathbf{x}, z) = [(\vec{\nabla} x \times \vec{\nabla} y) \cdot \vec{\nabla} z]^{-1}$ is the Jacobian.
- $\Omega_j(\mathbf{x}, z) = q_j B_0/m_j$, and $B_{0\parallel}^{\star}(\mathbf{x}, z, v_{\parallel}) = B_0 + (m_j/q_j)v_{\parallel}(\vec{\nabla} \times \vec{b}_0) \cdot \vec{b}_0$, with $\vec{b}_0 = \vec{B}_0/B_0$.

Benchmarking and Code Comparisons

Codes Used for Comparisons

Comparison with linear and non-linear global PIC codes GYGLES [4] and ORB5 [5] based on δf scheme.

► Global GENE :

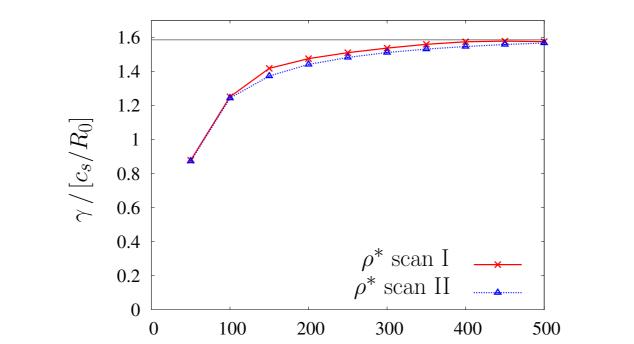
- Solving in direct space except y-direction for which Fourier representation is used.
- Derivatives in real space computed with finite differences.
- Dirichlet radial boundary conditions.
- Direct space anti-aliasing scheme in radial direction.
- Direct space integral gyroaveraging operator in radial direction.

Linear ITG Spectra for CYCLONE Base Case [6] with

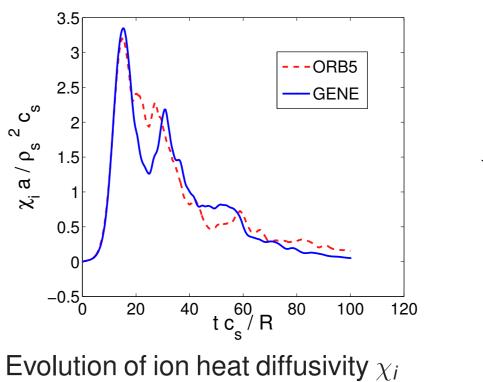
Linear ρ^{\star} scan with Kinetic Electrons and EM Effects

• CYCLONE-like parameters with finite $\beta = 2.5\%$.

Simulations are carried out considering kinetic electrons (proton-electron mass ratio) and both potentials ($\Phi_1, A_{1\parallel}$).

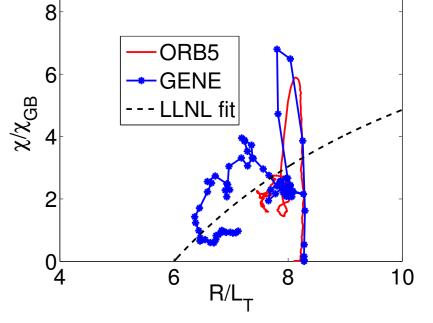


Non-Linear ITG Simulations without Sources \implies Relaxation



for CYCLONE parameters with

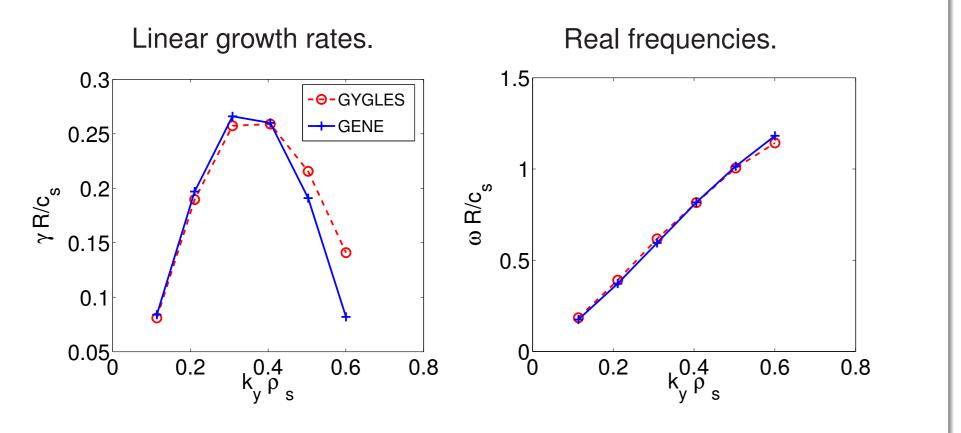
peaked grad. profiles.



 $(R/L_T, \chi_i)$ trace for CYCLONE parameters with flat grad. profiles [7].

Adiabatic Electrons

CYCLONE parameters with adiabatic electrons : a/R = 0.36, $\rho^{\star} = \rho_s/a = 1/180, q = 0.85 + 2.4(x/a)^2, T_i/T_e = 1$, peaked T and n profiles with $R/L_{Ti}(x_0) = 6.96$, $R/L_n(x_0) = 2.2$, and $x_0 = 0.5a$.



Good agreement on growth rates and real frequencies.

• Remaining discrepancies at high k_V can be assigned to differences in the field solvers (2nd order expansion in $k_{\perp}\rho_s$ in GYGLES, all orders kept in GENE).

Linear ITG-TEM Spectra for CYCLONE Base Case with **Kinetic Electrons**

Linear growth rates. - O- GENE-Local 0-0

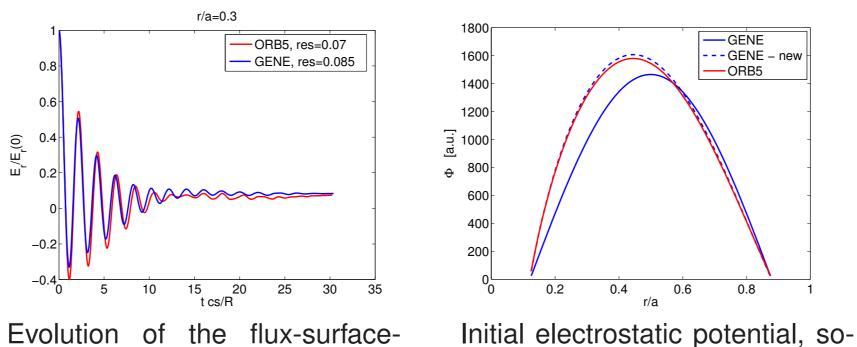
Real frequencies.

Growth rate γ for ρ^{\star} scan at $k_{\nu}\rho_{s} = 0.28$. Radial width of the simulation annulus is kept fixed with respect to (I) the Larmor radius, and (II) the minor radius. Local flux-tube result in black.

 $ightarrow \beta = 2.5\% \implies$ Kinetic ballooning modes dominate. ▶ Local flux-tube limit recovered by global code in limit $\rho^* \rightarrow 0$.

Rosenbluth-Hinton Test

Parameters : a/R = 0.1, $\rho^* = 1/180$, $q = 1 + 0.75(x/a)^2$, $T_i/T_e = 1$, $R/L_T = R/L_n = 0$, $f_1(t = 0) = cos(\pi x/lx)$. Adiabatic electrons.



averaged, radial electric field. lution to the Q.N. equation.

Good agreement obtained for GAM frequency and damping rate, as well as for residual.

 \blacktriangleright Same initial conditions \implies Remarkable agreement: Time traces of the first burst are essentially identical.

▶ Global GENE recovers well the non-linear relaxation traces in the $(R/L_T, \chi_i)$ plane published in [7].

Non-Linear ITG Simulations with Sources ⇒ Quasi-Stationary Microturbulence

Radially dependent heat source/sink over whole system, conserving surface-averaged density and parallel momentum:

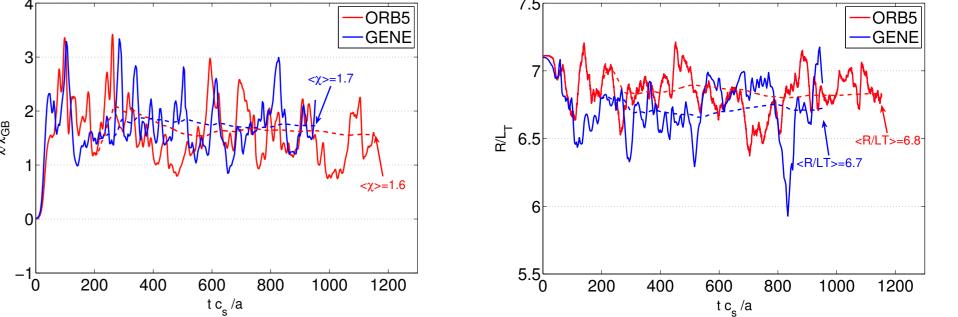
$$\frac{df_{1}}{dt} = -\gamma_{h} \left[\langle f_{1}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle - \langle f_{0}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle \frac{\langle \int d\vec{v} \langle f_{1}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle \rangle}{\langle \int d\vec{v} \langle f_{0}(\vec{X}, |\mathbf{v}_{\parallel}|, \mu) \rangle \rangle} \right]$$

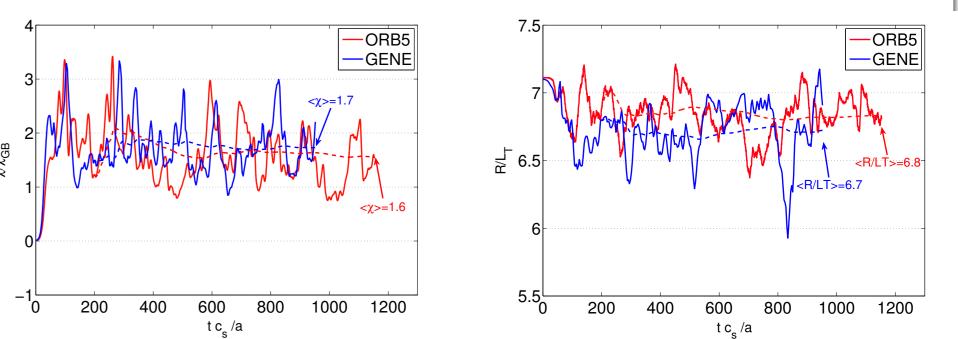
► Relaxation coefficient $\gamma_h \sim 10^{-1} \gamma_{ITG}$

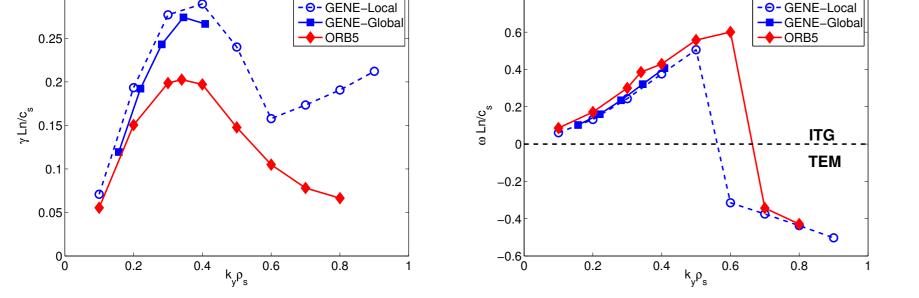
→ Background temperature profile is approximately maintained, while avoiding direct effect on microturbulence.

- CYCLONE parameters with flat grad. profiles.
- Numerical resolution:

 $(120 \times 48 \times 16 \times 48 \times 16)$ in the $(x, y, z, v_{\parallel}, \mu)$ directions.







- Transition from ITG to TEM at higher $k_V \rho_i$.
- Differences between global GENE and ORB5 results may be related to ORB5 treating only trapped electrons kinetically (adiabatic response for passing), while GENE treats electrons fully kinetically.
- Resolution for global GENE simulations: $(320 \times 64 \times 64 \times 32)$ in the $(x, z, v_{\parallel}, \mu)$ directions \implies High resolutions in (x, v_{\parallel}, μ) required for resolving non-adiabatic response of passing electrons at mode rational surfaces.
- Remaining discrepancies related to ρ^{\star} approximations in GENE, in particular in the gyroaveraging appearing in Q.N. equation.
- After correcting these ρ^{\star} approximations on gyroaveraging: ► Very good agreement is reached on the Q.N. solution.
 - ► However, zonal modes become unstable! (under investigation).
- Current simulation results are thus still obtained using the uncorrected gyroaveraging operator.

Time evolution of (a) heat diffusivity χ_i , and (b) temperature gradient R/L_{T_i} for CYCLONE parameters with heat sources/sinks.

References :

[1] F. Jenko, et al., Phys. Plasmas 7, 1904 (2000). [2] H. Lütjens, et al., Comp. Phys. Comm. 97, 219 (1996). [3] X. Lapillonne, et al., Phys. of Plasmas 16, 032308 (2009). [4] M. Fivaz, et al., Comp. Phys. Comm. 111, 27 (1998). [5] S. Jolliet, et al., Comput. Phys. Comm. 177, 409 (2007). [6] A. M. Dimits, et al., Phys. Plasmas 7, 969, (2000). [7] G. L. Falchetto, et al., Plasma Phys. and Control. Fusion 50, 124015 (2008)