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∗ École Polytechnique Fédérale de Lausanne, Switzerland
† CNRS, UMR 6073 IRISA



Approximations parcimonieuses orthogonales

rapides pour dictionnaires locaux

Résumé : Ce rapport présente un nouvel algorithme glouton d’approximation
parcimonieuse nommé LocOMP. LocOMP est conçu pour être utilisé sur des
dictionnaires locaux composés d’atomes de supports courts par rapport à la
longueur du signal. Ce ca comprend notmment les dictionnaires invariants par
translation et temps-fréquence, qu’ils soient mono ou multi-échelles. Dans ce
cas, on connâıt des implémentations rapides de Matching Pursuit (MP). Lo-
cOMP est presque aussi rapide que MAtching Pursuit tout en calculant un ap-
proximation presque aussi bonne que le bien plus coûteux Orthogonal Matching
Pursuit.

Mots-clés : approximation parcimonieuse, algorithmes gloutons, invariance
par translation, Orthogonal Matching Pursuit
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1 Introduction

One basis is not enough to represent certain kinds of signals. For example,
music is known to be well represented by time-frequency decompositions, but
which window length to choose? There are longer and shorter notes, and inside
a note played by a free oscillation instrument such as a guitar or piano there is
a short attack followed by a long relaxation. If one can find a proper basis to
represent each of those phenomena, then one would like to use the union of all
these bases to represent the whole signal. This union of bases is not a basis itself
but a redundant dictionary Φ ∈ RN×D with D > N : given a signal s ∈ RN ,
there are infinitely many possible choices of coefficients x ∈ RD that decompose
s as s = Φx. Sparsity has been proposed as a way to solve the ambiguity of
such redundant models by selecting the decomposition that contains the fewest
non-zero coefficients.

Local dictionaries The length of the signal is chosen by the user and only
limited by the devices sensing and recording it, but the observed phenomena
can have their own characteristic durations. So one can commonly find signals
composed of several events that are each much shorter that the whole signal.
This is typically the case in music, where a single signal will cover a whole piece
made of much shorter notes. Good dictionaries to model such a signal will also
be composed of short atoms, each atom or a few of them trying to match one
of the phenomena.

Definition 1. Let Φ be a dictionary of size D × L. Φ is said to be local if all

its atoms ϕ are null outside of a support interval supp(ϕ) of length L � N .

Common dictionaries such as the Gabor dictionary associated with Short
Term Fourier Transform (STFT) are local dictionaries. Shift-invariant dictio-
naries are the most employed class of local dictionaries: those are made of a few
patterns of length L that are repeated all over the signal support.

The problems that require local dictionaries typically involve large dimen-
sions: the signal can contain several millions of samples and the dictionary even
more atoms. Most known sparse approximation algorithms are too complex to
be applied to such large problems.

Scope of the paper This article explores how the locality hypothesis can be
exploited to accelerate existing sparse approximation algorithms or to propose
new ones. It is focused on Matching Pursuit and Orthogonal Matching Pursuit.
A fast implementation of MP is already available for shift-invariant dictionaries
[1] but MP has been observed to compute significantly worse approximations
than OMP. The aim of this work is to try to provide an implementation of
OMP as close as possible to the complexity of MP. As structural properties of
OMP make it impossible to reach the complexity of MP on local dictionaries,
we propose a new algorithm called LocOMP that is only slightly less efficient
than OMP but can run almost as fast as MP.
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Fast OMP over local dictionaries 4

Organisation Section 2 reviews existing sparse approximation algorithms
with a strong emphasis on greedy algorithm, their detailed complexity and fast
implementation with local dictionaries. Section D presents possible accelera-
tions to OMP implementation in the local case. Even with those accelerations
OMP remains much more expensive than MP.

Section 4 introduces the main contribution of this paper: the new algorithm
LocOMP. The behaviour of LocOMP is close to OMP but it enables the same
accelerations as MP. Section 6 presents experimental evaluations of Matlab im-
plementations of the presented algorithms on music signals. These experiments
show that LocOMP can achieve the same performance as OMP within the same
order of computation time as MP. Section 8 presents future possible extensions
and theoretical developments of this work.

2 State of the art: sparse approximation algo-

rithms

In this section we briefly review some of the most common greedy algorithms
with a strong emphasis on their complexity. Let s be a signal of length N
and Φ a dictionary of size N × D. Φ is redundant if D > N and we define
its redundancy factor α = D

N
. A signal s is said to be sparse over Φ if s can

be approached closely by an decomposition Φx where x contains few non-zero
coefficients:

s = Φx + r (1)

‖r‖2 � ‖s‖2 (2)

‖x‖0 � N (3)

with ‖x‖0 =
∑D

d=1 x0
d the number of non-zero coefficients in x. The columns of

Φ are called atoms. The problem is to find the sparse decomposition among all
the possible ones.

Problem 1. Given a signal s and a dictionary Φ and an allowed sparsity level

K, find the coefficients x that minimize

x̂ = argmin‖x‖0≤K ‖s − Φx‖2
2 (4)

The sparse approximation problem (4) is proved to be NP-Hard [2]. Yet
many suboptimal algorithms have been proposed which can compute a close
approximation within reasonable time.

2.1 `p minimization

The `0 sparsity measure has very bad properties for numerical optimization: it
is not convex, not differentiable and piecewise constant. `p minimization algo-
rithms replace the `0 measure by other constraints that are easier to optimize,
often `p pseudo norms with 0 < p ≤ 1.
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Fast OMP over local dictionaries 5

`p minimization is easier to compute than `0 from a mathematical point of
view. `p pseudo-norms are continuous and piecewise differentiable so variational
approaches can lead to a local minimum. In the special case of P = 1, the norm
is even convex, so there is unique local minimum and there are algorithms to
find it. However those approaches remain costly, especially when dealing with
large data. In fact, even if the final result is sparse, intermediate iterations of
`p minimization algorithms involve computations with a non-sparse x.

2.2 Greedy algorithms

Greedy algorithms reduce the complexity of the sparse approximation problem
(4) by ensuring that the current support is always sparse during the execution
of the algorithm.

2.2.1 Hard Thresholding (HT)

Principle One can hardly think of a simpler algorithm. It only consists in
selecting the K atoms with the highest correlations | 〈s, ϕ〉 | with the signal s.
The coefficient amplitudes xK can then be obtained by projecting the signal s
on the selected sub-dictionary ΦK :

Φ+
K = (Φ∗

KΦk)
−1

Φ∗
k (5)

xK = Φ+
Ks (6)

r = s − ΦKxK (7)

Weaknesses This algorithm does not recover the closest approximation as
soon as the dictionary contains atoms with high cross-correlation. This comes
from the fact that as all atoms are selected simultaneously, several atoms can
model the same component of the signal.

2.2.2 Matching Pursuit (MP)

Principle MP replaces simultaneous atom selection with sequential atom se-
lection [3]. Only one atom is selected and removed from the signal at each
iteration. Algorithm 1 details the process.

Weaknesses The residual r(i) is the projection of the previous residual r(i−1)

orthogonally to the selected atom ϕ(i). So we have r(i) ⊥ ϕ(i) for any i. If Φ
is not orthogonal, then the subtraction of an atom can bring back a correlation
with a previously selected atom. So MP can select the same atom several times.
Even in the noiseless case, it can take an infinite number of iterations to reach
a null residual even though the complete support has already been recovered.
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Algorithm 1 x = MP(s, Φ), K

r(0) = s
Φ(0) = ∅
x(0) = 0
for i = 1 to I do

ϕ(i) = argmaxϕ∈Φ

∣

∣

〈

r(i−1), ϕ
〉∣

∣ {best atom selection}
x(i) = x(i−1) +

〈

r(i−1), ϕ(i)
〉

δϕ(i){coefficient update ϕ(i)}
r(i) = r(i−1) −

〈

r(i−1), ϕ(i)
〉

ϕ(i) {residual update}
end for
return x(I)

2.2.3 Orthogonal Matching Pursuit (OMP)

Principle OMP prevents selecting the atom twice by ensuring that the resid-
ual r(i) remains orthogonal to all the atoms selected so far. Let the sub-
dictionary Φ(i) = (ϕj)1≤j≤i. The residual r(i) is computed by projecting s
(or r(i−1), which gives the same result) orthogonally to Φ(i) [4]. Algorithm 2
details the process.

Algorithm 2 x = OMP(s, Φ)

r(0) = s
Φ(0) = ∅
x(0) = 0
for i = 1 to I do

ϕ(i) = argmaxϕ∈Φ

∣

∣

〈

r(i−1), ϕ
〉
∣

∣ {best atom selection}
Φ(i) = [Φ(i−1), ϕ(i)]

χ(i) =
(

Φ(i)∗Φ(i)
)−1

Φ(i)∗r(i−1) {projection computation}
x(i) = x(i−1) + χ(i) {coefficient update}
r(i) = r(i−1) − Φ(i)χ(i) {residual update}

end for
return x(I)

Weaknesses The selections of suboptimal atoms OMP makes are mostly due
to to its greedy nature. An atom is selected based only on the residual known
at the current iteration. Once it has been selected, there is no way to remove
it. This can lead to early selections of suboptimal atoms that will never be
corrected.

2.2.4 Gradient Pursuit (GP)

GP replaces the projection step of OMP with a single gradient descent, which
leads to an approximate but faster quasi-OMP [5]. The coefficient update χ(i)
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Fast OMP over local dictionaries 7

is given by
χ(i) = −ρ(i)∇x(i) (8)

where ∇x(i) = −2Φ(i)∗r(i−1) is the gradient of the residual error to minimize in
Equation (4) and ρ(i) the optimal step of this descent:

ρ(i) = argminρ∈R

∥

∥

∥
r(i−1) − ρΦ(i)∇x(i)

∥

∥

∥

2

2
= −

∥

∥Φ(i)∗r(i−1)
∥

∥

2

2

2
∥

∥Φ(i)Φ(i)∗r(i−1)
∥

∥

2

2

(9)

2.2.5 More recent algorithms

With the ongoing trend of compressed sensing, several other sparse approx-
imation algorithms have been recently proposed, with a strong emphasis on
theoretical guarantees regarding the stable recovery of sparse vectors xopt from
the observation s ≈ Φxopt. They are mentionned here for the sake of com-
pleteness, but they can hardly be compared with the algorithm contributed
in this paper, since the considered objectives (recovery guarantees rather than
speed) and typical data dimensions are somewhat different. These algorithms
extend the greedy paradigm with two main features: the addition of backtrack-
ing opportunities (in the Pursuit framework, this means being able to remove
previously selected atoms from the support), and the selection of multiple atoms
at a each iteration, to tentatively improve the resolution of close atoms (instead
of taking a poorly informed early decision based only on correlations, one can
keep all the good candidate atoms and wait until after the projection to see
which one fits the decomposition the best).

CoSaMP, and Subspace Pursuit The CoSaMP algorithm selects 2K atoms
at each iteration, then projects the signal over the overall 2K large selection and
only keeps the K atoms with the highest amplitude [6]. This is very close to the
Subspace Pursuit (SP) algorithm [7], the main differences being that SP only
adds K new atoms per iterations and that it updates the projection coefficients
a second time after removing the low amplitude atoms. CoSaMP has been
proven to recover the right support if the dictionary has a quasi-orthonormality
property called Restricted Isometry Property (RIP). Each iteration requires an
orthogonal projection on a 2K dimension subspace. In theory, the performance
guarantees are robust when the orthogonal projection is replaced by a few gra-
dient descent steps, but it has been observed in practice that this can seriously
degrade the performance [8]. Between two iterations up to half of the considered
atoms can change. It is not clear whether a fast implementation is possible or
not, because of the apparent need to repeatedly perform (approximate) orthog-
onal projections over potentially large collections of atoms.

Iterative Hard Thresholding, and GraDeS As its name suggests, the
Iterative Hard Thresholding (IHT) algorithm [9, 8] performs several successive
HT steps. After thresholding, the correlations with the obtained residual are
added to the estimated amplitudes of all atoms, then a new iteration begins
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Fast OMP over local dictionaries 8

and the obtained amplitudes are thresholded again. IHT provides the same
kind of theoretical guarantees as CoSaMP. The GraDeS (for Gradient Descent
with Sparsification) algorithm proposes to relax IHT by adding only a fraction
of the correlations at each iteration [10].

3 Complexity of existing greedy algorithms

This section summarizes the complexity of the greedy algorithms described in
Section 2.2 (excluding those briefly described in subsection 2.2.5) both with ar-
bitrary dictionaries and with structured dictionaries that allow fast transforms.
More detailed explanations can be found in A. The complexity depends on the
signal length N , the number of atoms in the dictionary D, and the number of
non-zero coefficients K. Under the redundant dictionary and sparse decompo-
sition hypotheses, we have K � N < D.

3.1 Using general dictionaries

The cost of each step of HT, MP, OMP and GP is summarized in Table 1. The
main observations one can draw from these figures are that:

the Gram matrix computation is surprisingly more expensive than its in-
version;

the main cost remains the correlation computation in O(DKN).

Gram matrix inversion The low cost for inverting the Gram matrix comes
from the sparsity hypothesis K � N . An inversion seems more difficult than
a simple matrix/vector product, but the size the Gram matrix G(i) to invert is
bounded by K × K whereas the sub-dictionary Φ(i)can be as large as K × N .
The Gram matrix is small, but its computation involves scalar products of long
vectors.

Comparison of MP and OMP MP is strictly cheaper than OMP because
its selection step is the same and its projection step is simpler. However, in
the general case, both MP and OMP projection steps are cheaper than the
selection step. So both MP and OMP end up in the same complexity class.
As GP complexity lies between GP and OMP, it does not appear to bring any
significant gain over OMP in that case.

3.2 Complexity using fast dictionaries

The application of Φ∗ during the selection step might be the most expensive
step of greedy algorithms in the general case, but in practice this cost is often
avoided. There are many known bases that allow fast analysis (application of
Φ∗) and synthesis (application of Φ). For example the Fast Fourier Transform
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Table 1: Detailed complexity of greedy algorithms in the general case, depending
on the signal length N , number of atoms D and sparsity K, under the hypotheses
K � N < D.

Algorithm Thresholding MP OMP GP
λ = Φ∗r DN DN DN DN

argmax |λ| D log D D D D

G(i) = Φ(i)∗Φ(i) K2N ∅ iN iN
χ = G−1λ(i) K2 ∅ i2 i

r(i) = r(i−1) − Φ(i)χ KN N iN iN
Cost per iteration DN + K2N DN DN DN

Number of iterations 1 & K K & K
TOTAL DN + K2N DKN DKN DKN

Table 2: Detailed complexity for greedy algorithms using a fast dictionary,
depending on the signal length N , number of atoms D and sparsity K, under
the hypotheses K � N < D.

Algorithm HT MP OMP GP
λ = Φ∗r D log N D log N D log N D log N

argmax |λ| D log D D D D

G = Φ(i)∗Φ(i) K log N ∅ i log N i log N
χ = G−1λ(i) K2 ∅ i2 i

r(i) = r(i−1) − Φ(i)χ D log N N D log N D log N
Cost per iteration D log D + K2 D log N D log N + i2 D log N

Number of iterations 1 & K K & K
TOTAL D log D + K2 DK log N DK log N + K3 DK log N

can compute both of those operations in O(N log N) for a Fourier basis of size
N .

Let the redundant dictionary Φ be a union of such fast bases. Let α be the
number of bases. Then D = αN and the global cost for analysis and synthesis
is O(αN log N) = O(D log N). This makes the selection step, thus MP, much
faster. As the cost remains the same for the OMP projection, it becomes more
costly than the selection cost if K >

√
D log N , which might be reached or not

depending on the considered data. These results are summarized in Table 2.

3.3 MPTK: fast MP implementation for shift-invariant

dictionaries

A shift-invariant dictionary is a dictionary made of atoms of size L � N shifted
at different positions in the signal. In that case, a scalar product only costs
O(L) to compute. If the dictionary is a union of fast “bases” of L atoms that
perform an analysis in O(L log L), then the cost for the whole dictionary analysis
is O(D log L).
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Fast OMP over local dictionaries 10

Moreover, the residual only changes on an interval of length L between two
consecutive MP iterations. Let supp(ϕ) = [tmin(ϕ), tmax(ϕ)] be the support of
an atom. Then r(i) = r(i) outside of supp(ϕ(i)). So any atom with a disjoint
support from supp(ϕ(i)) has the same correlation with r(i) and r(i−1). So at the
selection step of iteration i + 1, only the correlations of atoms which support
overlaps supp(ϕ(i)) have to be computed again, the other ones being the same as
during the previous iteration i. The update of the residual is local, which
makes the update of the correlations also local. If the atoms of Φ have
a uniform distribution in time, there are about D L

N
correlations to recompute.

So the complete analysis is only performed on the first iteration. After that,
only a partial analysis in O(L log L) is required. This acceleration is presented
in [3].

The highest correlation is also easier to find: if 2 correlations have not
changed, then their comparison has not changed either. Comparisons can be
stored in a tournament tree. This enables to find the best atom in O(log D)
and also decreases the storage cost.

These improvement are the core of the MPTK library1 [1] that decreases the
complexity of MP from O(DK log L) to O ((D + KL) log L).

3.4 Conclusion

The speed gap between MP and OMP gets even wider when working with local
dictionaries, as MP can be implemented very efficiently. This article presents
a new algorithm called LocOMP that achieves the same approximation quality
as OMP while remaining in the complexity class of MPTK when working with
local dictionaries. As OMP has structural properties that prevent a fast imple-
mentation (see D for more detail), LocOMP only approaches the behaviour of
OMP.

4 LocOMP: Local Orthogonal Matching Pursuit

4.1 General description

The speed gap between MP and OMP for local dictionaries comes from the
different costs to compute the correlations Φ∗r (see D for more detail). MP
complexity is low because the residual only changes on a short interval of length
L at each iteration. As the cost of an iteration is linked to the length of this
interval, this length is the parameter we need to control to obtain a fast algo-
rithm.

LocOMP does so by projecting the residual on a subset of Φ(i) that only
contains atoms “close” to the last selected atom ϕ(i) in the time domain. Al-
gorithm 3 describes the simplified process (without the accelerations previously
described in Sections 3.3 and D).

1http://mptk.irisa.fr
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Fast OMP over local dictionaries 11

The algorithm uses a function neighbour that computes a sub-dictionary

Ψ(i) ⊂ Φ(i) on which the residual is to be projected. Ψ(i) of course contains the
last selected atom ϕ(i). Different possible choices for neighbour define a gradual
progression from MP to OMP:

MP is given by the choice Ψ(i) = ϕ(i);

OMP is given by the choice Ψ(i) = Φ(i).

The sub-dictionary Ψ(i) will generally not contain all the atoms of Φ(i−1) that
would need a coefficient update in OMP , so LocOMP is only an approximation
of OMP.

Algorithm 3 x = LocOMP(s, Φ)
r0 = s
Φ0 = ∅
x0 = 0
for i = 1 to I do

ϕ(i) = argmaxϕ∈Φ

∣

∣

〈

r(i−1), ϕ
〉∣

∣ {best atom selection}
Φ(i) = Φ(i−1) ∪ ϕ(i)

Ψ(i) = neighbour(Φ(i), ϕ(i)) {sub-dictionary selection}
χ(i) =

(

Ψ(i)∗Ψ(i)
)−1

Ψ(i)∗r(i−1) {projection}
x(i) = x(i−1) + χ(i) {coefficient update}
r(i) = r(i−1) − Ψ(i)χ(i) {residual update}

end for
return x(i)

4.2 LocGP algorithm

LocGP selects a sub-dictionary as LocOMP does, then updates the coefficients
with a single gradient descent as GP does instead of a complete least-square
minimization. It is detailed in Algorithm 4.

As a side effect of the neighbourhood selection, the Gram matrix to invert at
each iteration is very small, only a O( iL

N
) square. Thus there is little speed gain

to expect in the application of a faster projection. However we will see in Section
8.1 that LocGP has other appealing properties for practical implementation.

4.3 Complexity

As for MPTK the first iteration is expensive: it requires a full correlation com-
putation in O(D log L). Let T ≥ L be the length of the interval over which
the residual changes at each iteration. For any iteration i > 1, the selection
step only requires the correlation computation of r(i−1) with α(T + 2L − 2)
atoms of Φ, which can be performed in O(αT log L). Then the search for the
highest correlation is done as in MPTK and the Gram matrix computation G(i)

as in OMP (a faster computation for local dictionaries is described in D). The
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Algorithm 4 x = LocGP(s, Φ)
r0 = s
Φ0 = ∅
x0 = 0
for i = 1 to I do

ϕ(i) = argmaxϕ∈Φ

∣

∣

〈

r(i−1), ϕ
〉
∣

∣ {best atom selection}
Φ(i) = Φ(i−1) ∪ ϕ(i)

Ψ(i) = neighbour(Φ(i), ϕ(i)) {sub-dictionary selection}
χ(i) = ‖Ψ(i)∗r(i−1)‖2

‖Ψ(i)Ψ(i)∗r(i−1)‖2 Ψ(i)∗r(i−1) {Gradient computation}
x(i) = x(i−1) + χ(i) {coefficient update}
r(i) = r(i−1) − Ψ(i)χ(i) {residual update}

end for
return x(i)

sub-matrix Ψ(i)∗Ψ(i) is then extracted from G(i). It contains about i T
N

atoms.
We chose to use a complete conjugate gradient descent to solve the projection

problem for a cost in O
(

i2 T 2

N2

)

2. Finally the residual update can be performed

in O(T log L).
If the algorithm is only run for a few iterations, then the main cost is the cost

O(D log L) of the first iteration, as for MPTK. If run for a large number of iter-
ations, the main cost becomes the correlation computation time in O(T log L)
per iteration. T has to remain close to L to ensure that LocOMP com-
plexity remains close to that of MP. Those results are summarized in Table
3.

5 Selection of the sub-dictionary Ψ(i)

The choice of Ψ(i) controls both the quality of the approximation and the cost
of LocOMP. It has to contain many atoms to provide a good approximation
while keeping the length of the residual change T = | supp(Ψ(i))| small.

5.1 Choosing supp(Ψ(i)) is choosing Ψ(i)

As the cost of LocOMP mostly depends on T , the objective of the sub-dictionary
selection is to select as many atoms as possible in a given residual change inter-
val. If the residual change interval is fixed to be I = [ ˆtmin, ˆtmax], then
the best possible sub-dictionary is the exhaustive sub-dictionary Ψ̂(i)

that contains all the atoms of Φ(i) whose support is included in I. Any
other admissible sub-dictionary Ψ contains less atoms than Ψ̂(i), so it provides
a worse approximation for an equivalent computation cost. So one only has to

2Pati’s inversion method cannot be applied because the selected sub-dictionary Ψ(i)

changes at each iteration.
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Fast OMP over local dictionaries 13

Table 3: Detailed complexity of MP, OMP and LocOMP with fast local dictio-
naries, depending on the signal length N , number of atoms D and sparsity K,
under the hypotheses K � N < D and L � N .

Algorithm MPTK OMP LocOMP/LocGP
λ(1) = Φ∗s D log L D log L D log L

m(1) = argmax |λ(1)| D D D

λ(i) = Φ∗ri−1 αL log L D log L αT log L
m(i) = argmax |λi| log(D) D log(D)

Φ(i) = Φ(i−1) ∪ {ϕ(i)} 1 log i log i
G(i) = Φ(i)∗Φ(i) 0 L log L L log L

Ψ(i) selection 0 0 log i

χ(i) = Ψ(i)+r(i−1) 0 i2L
N

i2T 2

N2

r(i) = r(i−1) − Ψ(i)χ(i) L D log L T log L

Cost per iteration αL log L D log L + i2L
N

T log L

TOTAL α(N + KL) log L DK log L + K3L
N

α(N + TK) log L

select an time interval I around the last selected atom. Then we define the
sub-dictionary

Ψ(i) =
{

ϕ ∈ Φ(i)| supp(ϕ) ⊆ I
}

(10)

5.2 Choice of I

Monoscale case The selected sub-dictionary Ψ(i) should at least contain all
the atoms of Φ(i−1) correlated with the last atom ϕ(i) to ensure a behaviour
close to that of OMP. If this is not the case, it could happen that two correlated
atoms are never selected together, so their correlation is neglected for the whole
algorithm.

In this work, we chose the smallest choice of I that ensures this property:
I = [tmin(ϕ(i)) − L + 1, tmax(ϕ

(i)) + L − 1]. Then the subdictionary Ψ(i) is the
set of all atoms belonging to Φ(i−1) that overlap ϕ(i), plus ϕ(i) itself, as shown
in Figure 1. The maximal length of the residual change is T = 3L − 2. This
choice should lead to LocOMP being 5

3 more costly than MP.

Multiscale case So far we have considered that all atoms have the same sup-
port length L. However sparsity is commonly used as a regularization criterion
for multiscale models. For example the dictionary can be a union of Gabor
bases with different window length L1, L2,... These models are frequently used
in music processing when one needs fine frequency definition for the stationary
parts and fine temporal definition for the transient parts.
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Figure 1: Selection of the sub-dictionary Ψ(i). All the atoms of Φ(i) that overlap
the last atom ϕ(i) are kept. The residual only changes on an interval of length
T <=≤ 3L − 2.
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With a multiscale dictionary, when a large scale atom is selected, then all
short scale atoms that are inside its support must be selected too even if they do
not overlap the last selected atom ϕ(i). This makes the computation of optimal
boundaries for I more difficult. It requires to:

find the beginning of the earliest atom that overlaps with ϕ(i)

˜tmin = min{tmin(ϕ)|ϕ ∈ Φ(i) ∧ tmax(ϕ) > tmin(ϕ(i))}

find the end of the latest atom that overlaps with ϕ(i)

˜tmax = max{tmax(ϕ)|ϕ ∈ Φ(i) ∧ tmin(ϕ) < tmax(ϕ
(i))}

extract all atoms of Φ(i) whose support is included in [ ˆtmin, ˆtmax]. Ψ(i) can
contain short atoms that do not overlap with ϕ(i), as shown in Figure 2.

In this work, we rather chose simple, data-independent boundaries that are
looser but easier to compute. Let L be the largest scale in the dictionary. Then
we define I as:

I = [tmin(ϕ(i)) − L + 1, tmax(ϕ
(i)) + L − 1] (11)

⊇ [ ˜tmin, ˜tmax] (12)

The two intervals are equal if there are L-scale atoms in Φ(i−1) that only overlap
with ϕ(i) for 1 sample. If there are no short-scale atoms close to ˜tmin or ˜tmax,
then the intervals can also select the same sub-dictionary Ψ(i) even though they
are different.

6 Experimental results

We evaluated LocOMP and LocGP to support our asymptotic complexity eval-
uations to measure their approximation quality compared to MP and OMP. We
compared MATLAB implementations of the algorithms MP, LocGP, LocOMP,
GP and OMP. We chose to recode all the algorithms instead of using the much
faster MPTK to set all the algorithms on an equal footing.

6.1 Protocol

The great cost of OMP restricts the dimensions that can be handled. We chose a
1 minute music extract from the RWC base [11]. This extract was downsampled
to 8000Hz, which makes a signal length of N = 480000 samples. The dictionary
was a fully shift-invariant MDCT dictionary of scale L = 32. It contains about
D = 15.106 atoms.

All algorithms were run for I = 20000 iterations.
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Figure 2: Selection of the sub-dictionary Ψ(i) with a multiscale dictionary. The
short atom ϕ(c) is uncorrelated with the last atom ϕ(i), but it is kept anyway
because its support its inside the support of the large kept atom ϕ(d).
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6.2 Effective computation time

Figure 3 plots the cumulated computation time needed by each algorithm de-
pending on the number of iterations. One can clearly see that OMP and GP
are much slower than MP, LocGP and LocOMP. The figures had to be plotted
in log− log scale so that all curves fit in the same plot.

It took about 5 days to global projection algorithms (OMP et GP) to com-
plete the 20000 iterations whereas MP finished its run in only 10 minutes and
both LocOMP and LocGP only required about 15 minutes. This confirms nu-
merically that LocOMP remains in the same order of cost as MP.

The slope of the curves towards the first iteration also provides interesting
insight. The curves of local algorithms start horizontally because the first it-
eration is much more expensive than the other ones. So the cost to run one
iteration or a few ones is almost the same.

For global projection algorithms the slope towards the first iteration shows a
linear behaviour in the log / log coordinates: at the beginning of the algorithm,
OMP or GP have almost nothing else to do than recomputing the correlations
again and again. When i grows, the projection step becomes more noticeable
and the curves drift above their initial tangent. This tangent is a lower bound
for the cost of global projection algorithms: even if one could compute the
projection at no cost, a global algorithm could not cost less. This confirms the
interest of local updates.

6.3 Approximation quality

Figures 4 show the approximation quality defined as

SNR(i) = −10 log

∥

∥r(i)
∥

∥

2

2

‖s‖2
2

(13)

depending on the iteration.
The different curves are hard to distinguish on the original curve (left). Only

MP seems to provide significantly lower quality, all other curves are mixed.
To get a closer look, we used OMP, that is presumably the best performing

algorithm under this experiment, as a reference. The right curve shows the
difference between the SNR achieved by OMP and the SNR achieved by each
algorithm. One can see that the final loss of MP is equal to 0.6dB. LocOMP
ends up 0.01dB lower than OMP and LocGP 0.09dB lower. OMP and GP
achieved the same quality on this experiment.

This confirms that the local update strategy, which only approximates OMP,
can provide almost as good performance as the much more expensive, complete
OMP, while remaining in the order of complexity of MP. The higher quality
loss of LocGP compared to LocOMP is still not explained. The algorithmic link
is the same between OMP and GP on one side and LocOMP and LocGP on
the other side. As OMP and GP share the same behaviour, one could expect
LocOMP and LocGP to do the same.
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Figure 3: Cumulated computation time spent by different algorithms depending
on the iteration. Local algorithms (MP, LocOMP and LocGP) are much faster
than global ones (OMP and GP). The LocOMP and LocGP curves cannot be
told apart on this plot, neither can OMP and GP. The dashed tangent is the
lower bound for any algorithm that computes the correlations at each iteration.
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Figure 4: Approximation SNR obtained by several algorithms depending on the
iteration. All the algorithms perform similarly apart from MP. The right plot
shows the SNR loss compared to OMP.

On these experiments, the overall approximation quality of all algorithms,
including OMP, is limited, with only 11dB reached after 20000 iterations. The
quality difference between MP and OMP is accordingly small. This is mainly
due to the choice of a small, short-scale dictionary. This choice was driven by
the will to provide a comparison with OMP, so the dictionary had to be small
enough so that we could actually afford to run OMP and GP.

More promising, although still preliminary, results are displayed in the next
section with larger dictionaries. They show that LocGP provides a substantial
quality gain over MP.

7 Theoretical study

LocOMP was designed to ensure that its complexity remains within that of MP,
and its quality should lie somewhere between MP and OMP. In this section we
discuss which known theoretical guarantees that apply to both MP and OMP
are also valid for LocOMP (resp. LocGP).

7.1 General MP, General Strong MP

The results presented in this section are based on the work of Tropp [12] and
Gribonval and Vandergheynst [13]. Tropp provided results for OMP, and Gri-
bonval and Vandergheynst pointed out that some of these results are valid for
a wider class of algorithms they labelled General MP. A General MP algorithm
is an algorithm that at iteration i:

selects the atom with highest correlation to the residual,

computes an approximant that lies in the span of all previously computed
atoms Φ(i).

One can easily see that LocOMP belongs to General MP.
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However, not all the results extend because the General MP class is too
wide: it contains obviously non-functional algorithms such as selecting the best
atom then adding it (typos happen...) to the residual instead of subtracting it.
In this paper we define a smaller class of algorithms that we call General Strong
MP. This class intuitively corresponds to algorithms at least as good as MP. A
General Strong MP algorithm xMP is an algorithm that:

belongs to General MP;

ensures that from any given residual s, any dictionary Φ and after any
number of xMP iterations i, one more iteration of xMP decreases the
residual energy at least as much as one iteration of MP.

Lemma 1. LocOMP and OMP belong to General Strong MP.

Proof. At iteration i, both MP, OMP and LocOMP update the residual with an
orthogonal projection. MP projects the residual on the space SMP orthogonal
to the last atom ϕ(i). OMP projects it on the space SOMP orthogonal to
the set of selected atoms Φ(i). LocOMP projects it on the space SLocOMP

orthogonal to the selected subdictionary Ψ(i). We conclude using the fact that
ϕ(i) ∈ Ψ(i) ⊂ Φ(i) so SOMP ⊂ SLocOMP ⊂ SMP .

Lemma 2. GP and LocGP do not belong to General Strong MP.

Proof. One can build a counter-example where an iteration of MP would get
an exact decomposition (yielding a zero residual), but not the corresponding
iteration of GP. This example needs at least three iterations: GP and MP are
always identical over the first two iterations.

Consider the dictionary Φ made of the three atoms ϕ1 =
(

1 0 0
)

, ϕ2 =
1√
5

(

1 2 0
)

and ϕ3 = 1√
6

(

2 −1 1
)

. Let s = 12ϕ1 + 2ϕ2

√
5 − ϕ3

√
6 =

(

12 5 −1
)

. The first iteration of GP (or LocGP, since they share the same be-

haviour if the dictionary is not local) selects ϕ1 and leads to r(1) =
(

0 5 −1
)

.
The second iteration selects ϕ2 and we let the reader check that GP leads to
r(2) =

(

−2 1 −1
)

= −ϕ3

√
6. The third iteration selects ϕ3. An MP resid-

ual update would lead to r(3) = 0. However, the gradient is proportional to
Φ∗r(2) = (−2, 0,−

√
6) which is not in the direction of ϕ3 so GP leads to a

non-zero residual and does not decrease the energy of the residual as much as a
step of MP would.

This observation is consistent with the convergence rate for GP proven by
Blumensath and Davies [5], that is slower than MP in the worst case.

7.2 Recovery of exactly sparse vectors

Assume that the signal s is exactly k-sparse, i.e. there exists a K-sparse vector
xopt such that s = Φxopt. In that case, a natural question is whether the
algorithm can retrieve xopt. Let Φopt be the subdictionary of Φ associated to the
nonzero entries of xopt. Tropp provided a sufficient Exact Recovery Condition
(ERC) on the dictionary Φ for OMP to recover xopt [12]:
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Theorem 1 (Tropp). Denote Φ̄opt = Φ \ Φopt and assume that

max
ϕ∈ ¯Φopt

∥

∥Φ+
optϕ

∥

∥

1
< 1. (14)

Then, for any signal s = Φoptxopt, OMP recovers xopt in K = ‖xopt‖0 iterations.

Tropp only proves that under the ERC (14) OMP can only select atoms of
Φopt. The exact recovery comes form the fact that OMP can never select the
same atom twice, so if it keeps selecting optimal atoms it has to select them
all. Gribonval and Vandergheynst pointed that the first part of the proof is
also valid for General MP. As LocOMP belongs to General MP, the following
theorem holds:

Theorem 2 (Gribonval/Vandergheynst). With the same notations and assump-

tions as in Theorem 1, for any signal s = Φoptxopt, all the atoms selected by

LocOMP belong to Φopt.

7.3 Convergence speed for exactly sparse signals

There are also results for MP that guarantee a fix decay rate per iteration, thus
an overall exponential decay. Indeed, if one can prove that for some 0 < η < 1,
∥

∥r(i)
∥

∥

2

2
≤ η

∥

∥r(i−1)
∥

∥

2

2
, then

∥

∥r(i)
∥

∥

2

2
≤ ηi ‖s‖2

2.
Mallat and Zhang proposed a geometrical bound [3] for η. In finite dimen-

sion, if the dictionary is complete, then there is a ρ > 0 such for any unitary
vector s, there at least one atom ϕ ∈ Φ such that | 〈s, ϕ〉 | ≥ ρ. Then, at iteration
i, for any General Strong MP algorithm, we have

|
〈

r(i−1), ϕ(i)
〉

| ≥ ρ
∥

∥

∥
r(i−1)

∥

∥

∥

2
∥

∥

∥
r(i)
∥

∥

∥

2

2
≤
∥

∥

∥
r(i−1) −

〈

r(i−1), ϕ(i)
〉

ϕ(i)
∥

∥

∥

2

2

≤
∥

∥

∥
r(i−1)

∥

∥

∥

2

2
−
〈

r(i−1), ϕ(i)
〉2

≤
(

1 − ρ2
)

∥

∥

∥
r(i−1)

∥

∥

∥

2

2

so η = 1 − ρ2 is a lower bound for the decay rate. However this bound is
pessimistic, especially in high dimension. For example, if the dictionary Φ is
an orthonormal basis in dimension N , then the best possible ρ is 1√

N
and the

corresponding η is 1− 1
N

, which tends towards 1 when the dimension N increases.
Gribonval and Vandergheynst proposed another bound in the case of quasi-

incoherent dictionaries. The cumulative coherence µ1 of a dictionary Φ is a
function of K defined as

µ1(K) = max
ϕ0∈Φ,(ϕk)1≤k≤K∈(Φ\{ϕ0})K

K
∑

k=1

| 〈ϕ0, ϕk〉 | (15)
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This function measures how close to orthogonal the dictionary is: if it was
orthogonal, then µ1(K) would be 0 for any K ≤ N . If the cumulative coherence
increases slowly with K, then the dictionary is called quasi-incoherent. In that
case, the following theorem holds:

Theorem 3. Let Φ be a dictionary of cumulative coherence µ1. Let K be such

that µ1(K) + µ1(K − 1) < 1 and let Φopt ⊂ Φ be a sub-dictionary containing

K atoms. Then the ERC (14) holds for Φopt, and for any General Strong MP

algorithm, if s = Φoptxopt then

∀i > 0,
∥

∥

∥
r(i)
∥

∥

∥

2

2
≤
(

1 − 1 − µ1(K − 1)

K

)i

‖s‖2
2 (16)

Proof. The reader can refer to the proof provided by Gribonval and Vandergheynst
for both MP and OMP. The proof for OMP only adds the fact that OMP de-
creases the error more than MP on one iteration, so it is actually valid for the
whole General Strong MP class, including LocOMP.

7.4 Stable recovery of sparse vectors in the presence of

noise

Natural signals are usually not exactly sparse, either because the sparse model is
only a simplified approach or because the measurements were noisy. The signal
model s = Φoptxopt + ε is therefore often more realistic than the exact sparse
model s = Φoptxopt + ε. Tropp proved that with quasi-incoherent dictionaries,
OMP manages to retrieve atoms belonging to Φopt until the residual error gets
small enough. Gribonval and Vandergheynst pointed that Tropp’s proof also
holds for any General MP algorithm, including LocOMP and LocGP.

Theorem 4. Let Φ be a dictionary of cumulative coherence µ1. Let K be such

that µ1(K) + µ1(K − 1) < 1 and let Φopt ⊂ Φ be a sub-dictionary containing

K atoms. Let s = Φoptxopt + ε: LocOMP only selects atoms of Φopt until the

following error threshold is reached:

∥

∥

∥
r(i)
∥

∥

∥

2

2
≤
(

1 +
K (1 − µ1(K − 1))

(1 − µ1(K − 1) − µ1(K))
2

)

‖s − Φoptxopt‖2
2 (17)

7.5 Convergence speed in the presence of noise

Gribonval and Vandergheynst provided an upper bound for the number of iter-
ations it takes MP to reach the error threshold of Theorem 4. This result can
be generalized to General Strong MP, hence LocOMP.

Theorem 5. With all the hypotheses of Theorem 4 still holding, let σ2
K be the

residual energy of the best K-term approximant to s. If σ2
K ≤ 3

σ2
1

K
, then the

threshold of Theorem 4 is reached within at most

I = 2 +
K

1 − µ1(K − 1)
log

3σ2
1

Kσ2
K

(18)
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iterations. If not, then the signal is too noisy to guarantee the recovery of atoms

from Φopt.

Proof. The reader can follow the proof by Gribonval and Vandergheynst. The
only change needed to extend the proof to General Strong MP is in the proof
of their Lemma 3. They use the fact that for MP,

∥

∥

∥
r(i)
∥

∥

∥

2

2
−
∥

∥

∥
r(i+1)

∥

∥

∥

2

2
=
〈

r(i), ϕ(i+1)
〉2

(19)

To extend the proof to General Strong MP, replace this equality with

∥

∥

∥
r(i)
∥

∥

∥

2

2
−
∥

∥

∥
r(i+1)

∥

∥

∥

2

2
≥
〈

r(i), ϕ(i+1)
〉2

(20)

8 Perspectives

8.1 MPTK implementation

An implementation of LocGP in the MPTK library is currently under develop-
ment. A prototype is already running, but it is still much slower than expected.

We chose LocGP for software engineering reasons. MPTK currently does not
use any matrix computations thanks to fast dictionaries. We would like to keep
it that way because it is programmed and C++ so the access to linear algebras
libraries is not native. The simple expression of the gradient in LocGP makes
it possible to implement it without having to link MPTK with an external
matrix library. As LocOMP seems to achieve significantly better quality, its
implementation is also targeted in the long term.

Obtained quality We compared our prototype implementation of LocGP
with the MP implementation in MPTK. Only these two algorithms could be
compared since C++ implementations of other algorithms were not available
(and not worth developing) for OMP and GP. We still used 1 minute music sig-
nals downsampled to 8 kHz but this time we used a multiscale MDCT dictionary
with scales L1 = 32 and L2 = 1024, which amount to 4ms and 128ms. These
scales roughly correspond to the time windows used for AAC audio compression.
Both algorithms were run for 20000 iterations.

Figure 5 shows the SNR depending on the iteration. We observe that
LocGP brings a average gain of 2dB over MP, which looks promising.

Computation time The obtained computation times are, however, disap-
pointing. MP finished the whole computation in less than 10 minutes, whereas
it almost took one day to run LocGP. Profiling of the LocGP program hints at
a great time loss during residual update.

MPTK uses fast dictionaries. Correlations are computed using an FFT-
based fast analysis algorithm. In MP, an atom that is selected at iteration
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Figure 5: Average approximation obtained by MP and LocGP depending on the
iteration. The averages have been computed over 10 piano signals downsampled
to 8 kHz. The decompositions used MDCT dictionaries with scale 32 and 1024.
LocGP provides an average gain of 2dB over MP.
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i is only used at this iteration when it is removed from the residual, and also
maybe if it is selected again later. Because of that the residual update has never
been a problem for MPTK and fast synthesis has not been implemented in the
blocks. To subtract an atom from the residual, its waveform is synthesized
from its analytical definition and the subtraction is carried sample-wise. On
the contrary, LocGP subtracts every atom of the sub-dictionary Ψ(i) at each
iteration. The synthesis of the waveforms over and over again seems to be the
cause of the poor speed: LocGP spends its time computing cosines to generate
oscillating waveforms. We are implementing a fast synthesis method to solve this
problem. As the residual update is local, several atoms of the neighbourhood
Ψ(i) should fall within the same few frames, which is what fast methods need
to provide a gain over naive implementations.

8.2 Extension to multidimensional signals

LocOMP as described in this paper only applies to temporal series. However,
local or shift-invariant dictionaries are also used in image processing. It would
be interesting to extend LocOMP to this case.

To do so, one needs to define the sub-dictionary Ψ(i). The notion of support
overlapping is not specific to unidimensional signals: two atoms overlap if they
have at least one atom in common. So the criteria to define Ψ(i) are still valid.

However Ψ(i) might be harder to extract from Φ(i). In the unidimensional
case, the fast extraction is based on sorting the atoms (see C for more details).
If the dimension of the signal grows, the location of the atoms is not provided
by a single instant anymore but by a vector of coordinates. As the multi-
dimensional coordinate spaces have no total ordering that preserves
locality, we will need to find another way to extract Ψ(i).

9 Conclusion

Sparse approximation over local dictionaries requires specific algorithms because
of the large signal and dictionary dimensions that one wants to handle. MP was
already known to be suitable for fast implementation over local dictionaries.

Contributions We proposed several algorithmic accelerations that enable a
faster OMP implementation without changing the behaviour of the algorithm.
All those accelerations still do not make OMP tractable because the correlations
λ = Φ∗r have to be computed at each iteration.

We proposed a new algorithm, LocOMP, whose behaviour is close to OMP
for a complexity that stays in the same class as MP. The key idea was to select
a sub-dictionary Ψ(i) containing only atoms located close to the last selected
atom ϕ(i). We also provided a fast way to extract Ψ(i) from Φ(i) by using a
sorted index of Φ(i).

LocOMP has shown experimentally that the approximations it computes
can be as good as OMP.
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Perspectives We have proposed possible extensions of LocOMP, but for now
the most urgent task to address is the optimization of the MPTK implemen-
tation. Theoretical complexity and experimental results show that LocOMP
fills the necessary speed and quality requirements to replace MP as a tractable
approximation algorithm, but it still lacks a high-performance implementation
to reach its theoretical speed on real size data.

The link between the choice of Ψ(i) and the obtained quality has also yet
to be fully understood. Larger sub-dictionaries lead to better approximations
(on one iteration at least). Quantification of this evolution might help design
better sub-dictionary selection heuristics as the one used here. This problem is
linked to the theoretical study hinted at in Section 7, as both rely on theoretical
bounding of the approximation error. As we chose Ψ(i) as small as possible here
and still got almost as good results as OMP in this work, there might be no
need for larger sub-dictionaries.
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A Detailed explanations on the complexity of

greedy algorithms with general dictionaries

Hard Thresholding HT requires a matrix-vector product Φ∗s that is per-
formed in O(DN), then the search for the K highest correlations is is lower
than O(D log D) (which is the cost to sort them all), finally the amplitude com-
putation can be performed in O(NK). As D > N � K, the main cost is the
cost in O(DN) to compute the correlations.

MP One MP iteration is a thresholding with K = 1, so the correlation com-
putation in O(DN) stays the most expensive part. The number of iterations to
run to recover K different atoms is unknown. If one assumes that it stays in
the range of K, then the global algorithm cost is in O(DKN).

OMP OMP performs the same computations as MP, plus an orthogonal pro-
jection, at each iteration. This projection consists in computing the Gram
matrix G(i) = Φ(i)∗Φ(i), invert it and apply the inverse to a correlation vector
that is already known from the selection step. Pati proposed a way to compute
the new inverse G(i)−1 from the previous one G(i−1)−1 [4]. The main cost in
O(iN) is spent computing the new line of the Gram matrix Φ(i−1)∗ϕ(i). Then
the previous inverse has to be applied once, which is done in O(i2). This leads
to a total cost in O(K2N), that is no more than th cost to compute only the
projection on the final dictionary Φ(K)∗Φ(K).
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GP The gradient ∇x(i) is composed of correlations that are already known
from the selection step. The computation of ρ requires one more synthesis in
O(D log N). Then one just have to change the coefficients, which is done in
O(i). Compared to OMP, the cost in O(i2) has been decreased to O(i).

B Average proportion of overlapping atoms

When updating the Gram matrix, how many atoms are there Φ(i−1) that overlap
ϕ(i)? Let us assume that tmin(ϕ(i)) belongs to the interval J = [L−1, N−2L+1].
Then

I = [tmin(ϕ(i)) − L + 1, tmin(ϕ(i)) + L − 1] (21)

and the length of I is 2L − 1. If the tmin of the other atoms of Φ(i−1)are
supposed independent and uniformly distributed over the interval [0, N − L],
then the probability p for an atom to fall in the neighbourhood I is given by

p =
2L − 1

N − L + 1
(22)

and as there i− 1 atoms in Φ(i−1) the average number of selected atoms equals

(i − 1)p =
(i − 1)(2L − 1)

N − L + 1
= O

(

iL

N

)

(23)

C Data structures for fast access to selected atoms

Fast recovery of the connected component of ϕ(i) The atoms of Φ(i−1)

that overlap the last atom ϕ(i) can be found without traversing the whole sub-
dictionary Φ(i−1) by maintaining a sorted index of the atoms. If atoms are
ordered with increasing tmin, then one just have to find the atoms with the
smallest and the largest admissible tmin and select every atom between those
two. Moreover the sorted index is dynamic as a new atom is added each itera-
tion. So the index needs to be fast at:

inserting a new element,

extracting a sub-index between 2 given boundaries,

browsing that sub-index.

These criteria are fulfilled by sorted set implementation based on Red-Black
trees, such as the ones used in the Java 3 and C++ 4 standard libraries. The
insertion of tmin(ϕ(i)) is performed in O(log i) as well as the search for the
boundaries, and the browsing of a sub-index containing Q elements is performed
in O(Q). This leaves a global cost for the Gram matrix computation step equal
to

O

(

log i +
iL2

N

)

= O
(

κ2iN
)

(24)

3http://java.sun.com/javase/6/docs/api/java/util/TreeSet.html
4http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a00528.html
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Double indexing The Gram matrix G(i) = Φ(i)∗Φ(i) is a dynamic matrix
that grows by one line and column per iteration. To be able to store this matrix
without having to move elements, one would like the new line and column to
be added at the end of the matrix. This means that two different indexes have
to be maintained for Φ(i): the increasing tmin index and the increasing i index.
The first index is used to find the correlated atoms with ϕ(i) and the second
one to access coefficients in G(i).

C.1 MPTK implementation

It has already been noted in Section C that the selection of Ψ(i) can be performed
efficiently thanks to a sorted time index but that the order in which atoms are
added to the book must also be stored. MPTK implementation adds another
constraint to the indexing of selected atoms.

In MPTK, the dictionary is a collection of blocks. Each block is a filter bank
that implements fast analysis for a given family of atoms. For example, there is
one block per scale when using a multiscale STFT dictionary.

LocGP needs to know the correlations Ψ(i)∗r(i−1) during the projection step.
Theoretically, these have been computed in the previous selection step. How-
ever, most of them are not stored in MPTK as they are not useful for MP. So
the useful correlations have to be detected and saved during the selection step
before they are forgotten. This requires the extraction of all the atoms produced
by a given block.

To do so we chose a hierarchical structure described in Figure 6. The atoms
are first sorted according to their block, then their tmin, then other parameters
(the frequency for STFT atoms).

This structure slows the extraction of Ψ(i) a little. If there are B blocks,
then the extraction has to be performed B times for a total cost of O(B log i

B
)

instead of O(log i). However the number of blocks is usually small. Browse and
insertion times do not change significantly.

D “Fast” exact OMP implementation for local

dictionaries

The shift-invariant structure could be used to provide a faster implementation of
OMP as it was done for MP in MPTK. We show that even with these improve-
ments, OMP would remain much slower than MP. This will point which part of
the algorithm is the most costly and worth replacing with a faster, suboptimal
step.

D.1 Correlation computation

As for MP, the cost of a fast analysis is reduced to O(D log L) but contrary to
MP, the residual change r(i) − r(i−1) is global. As detailed in Algorithm 2, at
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Figure 6: MPTK data structure for fast access to the atoms. Atoms belonging
to the same block and tmin are in a single heap, then the heaps of the same
block are sorted by growing tmin, then those trees are stored in a block array.
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iteration i − 1 the coefficient update χ(i−1) = x(i−1) − x(i−2) is equal to

χ(i−1) =
(

Φ(i−1)∗Φ(i−1)
)−1

Φ(i−1)∗r(i−2) (25)

Some of the χ(i−1) can be null. First, r(i−2) is orthogonal to Φ(i−2) so
Φ(i−1)∗r(i−2) =

〈

ϕ(i−1), r(i−2)
〉

δϕ,ϕ(i−1) . Then, if the Gram matrix has the
following block structure

Φ(i−1)∗Φ(i−1) =

(

A 0
0 B

)

(26)

then the inverse is equal to

(

Φ(i−1)∗Φ(i−1)
)−1

=

(

A−1 0
0 B−1

)

(27)

In this case, only the coefficients of χ(i−1) belonging to the block that contains
the last atom ϕ(i−1) can be non-zero. Let Γ be the undirected graph that has
the atoms of Φ(i−1) as vertexes and a link between two atoms if their correlation
is non-zero. Then the blocks of the Gram matrix are the connected components
of Γ.

Local dictionaries are more likely to provide such a block structure for the
Gram matrix of the sub-dictionary Φ(i−1) (to a permutation): two atoms whose
supports do not overlap are not correlated. So if there is a time t in the signal
that is not inside the support of any atom of Φ(i−1), then all the atoms either end
before t or start after t. So there are at least 2 distinct connected components
in Γ, and the residual can only change over the time support of the component
that contains the last atom ϕ(i).

But do such t always exist? If enough atoms are selected their supports can
cover the whole support of s. Then Γ is connected and the residual changes
over its whole support. This behaviour seems likely at the end of OMP.

D.2 Gram matrix computation

Principle The Gram matrix G(i) = Φ(i)∗Φ(i) can be computed faster if the
dictionary is local. First, as atoms only have a support length L, a cross-
correlation can be computed in O(L) instead of O(N). Second, less correlations
are required. As two atoms whose supports do not overlap are uncorrelated, the
Gram matrix is sparse and the position of its zero coefficients can be predicted.
The prediction consists in a simple test on the support begin tmin and end tmax:

supp(ϕ) ∩ supp(ϕ(i)) 6= ∅ ⇔
{

tmax(ϕ) ≥ tmin(ϕ(i))
tmin(ϕ) ≤ tmax(ϕ

(i))
(28)

⇔
{

tmin(ϕ) + L − 1 ≥ tmin(ϕ(i))
tmin(ϕ) ≤ tmin(ϕ(i)) + L − 1

(29)

⇔ tmin(ϕ(i)) − L < tmin(ϕ) < tmin(ϕ(i)) + L (30)
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So an atom ϕ overlaps the last atom ϕ(i) if tmin(ϕ) belongs to the interval

I = [max{tmin(ϕ(i)) − L + 1, 0},min{tmin(ϕ(i)) + L − 1, N − L}]

Naive implementation How to find the atoms of Φ(i−1) that overlap the
last atom ϕ(i)? The direct way would be to browse Φ(i−1) and to compute the
scalar product for atoms that satisfy the constraint (30). It can be assumed
that there are O

(

iL
N

)

atoms to be selected (see B for justification). Then the
cost for this step would be

O
(

|Φ(i−1)| + LE(i)
)

= O

(

(i − 1) +
L(i − 1)(2L − 1)

N − L + 1

)

(31)

= O

(

i +
iL2

N

)

(32)

This cost encompasses the O(i) cost of the traversal of Φ(i−1) and the com-
putation time for selected atoms. One can see that the computation time has

been reduced by a factor
(

L
N

)2
. The first L

N
factor comes from the fastest com-

putation of one scalar product and the second from the smaller amount of scalar
products to be computed. Yet, the traversal cost is not guaranteed to be smaller
than the effective computation time. In C we show that this cost can be avoided
by using a sorted data structure.

Fast dictionaries Correlations between atoms can also be computed using
FFT or other fast algorithms if the dictionary enables it. FFT decreases the
costs by computing the correlations with a basis of L atoms in a single step.
For many fast local dictionaries such as Short Term Fourier Transform, locality
is defined for a basis: all the atoms that are processed together by the FFT
share the same support. Those dictionaries can combine the fast correlation
algorithm and our fast detection of zero correlations for a cost in O(L log L):
one only needs to compute correlations between ϕ(i) and the few bases that
overlap it. This implementation is not always interesting: when computing the
Gram matrix one only needs the atoms that:

overlap ϕ(i)

belong to Φ(i−1)

The FFT will compute the correlations for a whole basis but because of the
second criterion only some of them are useful. For the FFT to be faster than
naive scalar product computation, one needs

L log L <
iL2

N
(33)

i > N
log L

L
(34)
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Gram matrix inversion As seen before, the use of short, local atoms makes
G(i) sparse. The number of atoms that overlap the last atom ϕ(i) given in
Equation (23) is also the average number of non-zero coefficients on each line

of G(i). So there are totally about O
(

i2L
N

)

non-zero coefficients in G(i). This

is also the cost to invert G(i) using Pati’s method for example [4].
So the total cost of an OMP iteration is reduced to

O

(

D log L +
L log L

+

i2L

N

)

(35)

=O

(

N log L

(

α +
L

N
+

i2L

N2 log L

))

(36)

This cost is expressed using the FFT implementation to compute the Gram
matrix. As we suppose L � N , the computation of the Gram matrix is much
faster than the best atom selection. The Gram matrix inversion cost only be-
comes relevant when

i & N

√

α log L

L
(37)

Choosing for example N ≈ 106, α = 2 and L = 1024, the inversion cost would
become relevant i & 140000, which does not seem highly sparse. So the main
term in this complexity is due to the best atom selection in O(D log L), although
the Gram matrix inversion might become more expensive for large iterations.

D.2.1 Conclusion

In the general case, the best atom selection step is the same for MP and OMP.
The only difference is the projection step. Working with local dictionaries de-
creases the projection step for OMP and the selection step for MP. This still
leaves a speed gap between MP and OMP, but the speed difference between
MP and OMP is mostly due to the selection step.

This invalidates previous attempts at fast approximate OMP such as GP.
Those approaches tried to decrease the cost of the projection step, but in our
case it is not the most expensive one. We need an algorithm that can decrease
the cost of the best atom selection compared to OMP. This is what LocOMP
does.
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E Notations

Vectors ϕ atom
s signal
r residual
x decomposition coefficients
λ correlations

Matrices Φ dictionary
Ψ sub-dictionary
G Gram matrix

Indexing Xi ith column of matrix X
xi ith coefficient of vector x

x(i) variable x at iteration i
Dimensions N signal length

D number of atoms in the dictionary
K sparsity level
L atom support length
T residual change support length
I total number of iterations
α redundancy factor

Norms ‖r‖2 euclidean norm
‖x‖0 number of non-zero coefficients in x

Misc. 〈ϕ1, ϕ2〉 scalar product
argminE f(e) element e of E that minimizes f(e)

M∗ adjoint of M
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