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Abstract – The bond orientational correlation function (BCF) of a semiflexible ring polymer
on a flat surface is studied theoretically. For a stiff chain, we give an exact analytic form of
BCF with perturbation calculations. For a chain sufficiently longer than its persistence length,
the conventional exponential decay vanishes and a long-range order along the chain contour
appears. We demonstrate that the bond orientational correlation satisfies the scaling properties,
and construct an interpolating formula for its universal curve that encompasses the short- and
large-distance behaviors. Our analytical findings are confirmed by extensive Langevin dynamics
simulations, and are in excellent agreement with recent experimental data obtained from DNA
molecules imaged by atomic force microscopy without any fitting parameters.
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Introduction. – Circular polymers represent an
important class of macromolecules not only found in
living organisms, but also employed in modern biotech-
nology. The interplay between topology, mechanical and
entropic elasticities determines the equilibrium shape
of DNA minicircles and larger plasmids [1,2]. For the
targeted search by proteins along genomic DNA [3,4],
long-range spatial and temporal interactions arising from
such interplay are known to be crucial. While physical
properties of circular polymers are significantly different
from those of linear polymers, an understanding compa-
rable to that of open polymers is still lacking [5–14].
A central complication lies in the topological constraint
that severely restricts a rigorous theoretical treatment.
Here we tackle this problem by studying the bond
orientational correlation function (BCF) of a semiflexible
ring polymer on a flat surface by combining analytical
and numerical approaches.
Polymers are one-dimensional curves embedded in

higher space dimensions, and the bond orientational
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correlation function (BCF) is a basic quantity charac-
terizing their conformation. One may often assume its
exponential decay, which then leads to the quantification
of the persistence length, a fundamental length scale in
a polymer chain. In many realistic situations, the BCF
exhibits more interesting and complicated features, and
its physical interpretation should be carefully made.
Several studies have considered particular cases of poly-
mers such as in melts [15], at the Θ-point [16,17] or with
short-range repulsion [18], but these studies so far seem
mostly devoted to linear chain systems, and do not help
resolve recent experimental data on circular DNA [19,20].
Scaling concepts have been successfully applied to

various problems in polymer physics for years [21,22].
A complete physical picture of planar polymer ring
conformations is however still lacking, making it unclear
whether a scaling argument is sufficient to understand
topologically constrained polymer chains. This concern
directly links to a key issue on whether or not global
topological effects can be mapped into fictitious local
interactions. In this paper, we provide (to our knowl-
edge) the first successful example of such a mapping
by demonstrating a quantitative agreement between a
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scaling approach and the corresponding experiments and
numerical simulations. We investigate the functional form
of BCF of a circular chain confined in two dimensions
over the entire range of flexibility χ≡L/"p, where L
and "p are the contour length and the persistence length
of the chain. For χ" 1, where a ring takes a nearly
circular shape with small fluctuations around it, the
exact analytic expression of the BCF is obtained within a
Gaussian theory. For χ# 1, measurements of the average
monomer distribution indicates that the equilibrium
chain configuration is adjusted so that it just closes
the central hole region. This essential observation leads
us to the self-confinement picture, through which we
introduce a concept of “topological blob” characterizing
the spatial size of the confinement. By combining the
Gaussian theory and the scaling arguments, we construct
an interpolating formula for BCF that encompasses
the short- and large-distance behaviors. Our analytical
findings are confirmed by extensive Langevin dynamics
(LD) simulations, and are in excellent agreement with
our experimental data obtained from DNA molecules
imaged by atomic force microscopy (AFM). In the present
paper, we propose a generic idea on how to map global
topological effects such as circularity into fictitious local
interactions of open polymers, which may help inspire a
further development of the understanding on topologically
constrained polymers.

Numerical simulation methods. – Before describ-
ing our analytical approaches, we briefly mention our
simulation details. In our LD simulations, a polymer is
modeled as a chain of M connected spheres of diameter
a confined in the two-dimensional space. The total poten-
tial energy includes three contributions U =Ustr +ULJ +
Ubend. The stretching energy

Ustr =
K

2

M−1
∑

i=1

(|ri+1− ri|− a)
2 (1)

ensures the connectivity of spheres, where ri is the
two-dimensional position vector of sphere i. We take
the modulus K large enough to make the bond length
fluctuations negligible. The truncated Lennard-Jones (LJ)
potential,

ULJ = εLJ
∑

i<j

(

a6

|ri− rj |6
−

a12

2|ri− rj |12

)

, (2)

makes the ring non-ideal, and at the same time prevents
chain self-crossings in order to fix the ring topology. We
take εLJ = kBT , where kBT is the thermal energy. The
bending energy

Ubend =
kBT "p
a

M
∑

i=1

(

1−
ui−1 ·ui
a2

)

, (3)

accounts for the stiffness of the chain backbone, where
ui = ri+1− ri is the bond vector. The dynamics of the

chain follows the Langevin equation

m
d2ri
dt2
=−γ

dri
dt
−∇riU + ξi(t), (4)

where m and γ are the mass and friction coefficient of
a monomer, and the random force vector ξ satisfies the
fluctuation-dissipation relations

〈ξi(t)ξj(t
′)〉= 2γkBT1δijδ(t− t

′), (5)

where 1 is a 2× 2 unit matrix. Since we are only inter-
ested in the equilibrated conformations of the chain,
solvent-mediated hydrodynamic interactions between
distant monomers are totally ignored. We discretize our
Langevin equations with the time step ∆t, and perform
numerical integration using a leapfrog algorithm. We
rescale all quantities by the sphere diameter a, the
thermal energy kBT , and the unit time τ = γa2/(kBT ).
For sufficient numerical accuracy, we adopt the time step
∆t/τ = 0.005. Total simulation times are up to 109 steps,
and data are averaged over several independent runs for
sufficient statistics. To highlight the topological effect, a
comparative analysis for freely self-crossing rings is also
performed by setting εLJ = 0. We refer to the model with
and without ULJ as, respectively, a self-avoiding ring
(SAR) and an ideal phantom ring (IPR).

Stiff chains: Gaussian perturbation theory. – To
proceed, we first present the Gaussian theory of a stiff
circle whose contour length is smaller or comparable to
its persistence length. A closed curve is parameterized by
the arc-length s∈ [0, L], whose unit tangent vector at s
is given by t(s) = (−sin θ(s), cos θ(s)). For a perfect circle,
we have θ(s) = θ0(s) = 2πs/L. The bending energy of the
ring is described by

E =
kBT "p
2

∫ L

0
(∂st)

2 ds, (6)

where ∂s represents the derivative with respect to s. The
torsional elasticity of the ring is neglected in this study, as
valid for nicked DNA rings used in the experiments [19].
Expanding E in terms of small fluctuations δθ(s) = θ− θ0,
and writing δθ(s) as the discrete Fourier series:

δθ(s) =
1

L

∞
∑

n=−∞

′

θ̃ne
2πins/L, (7)

we obtain

E =
4π2kBT "p
L3

∞
∑

n=2

n2|θ̃n|
2. (8)

Note that the prime in summation in eq. (7) implies to
exclude the modes n=±1, as well as n= 0, to ensure the

closure condition:
∫ L
0 δt(s) ds= 0 [23]. Applying equipar-

tition, we obtain

〈|θ̃n|
2〉=

L3

4π2"pn2
(9)
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Fig. 1: (Colour on-line) Images of DNA plasmids and simula-
tion snapshots. (a) DNA mini-circles (L! 230 nm). (b) pSH1
plasmids (L! 2016 nm). (c), (d) superposition in the center-
of-mass frame of pictures of (a) and (b), respectively. (e),
(f) Superposition in the center-of-mass frame of chain configu-
rations from our simulations for χ! 7, and χ! 110. In black,
representative snapshot taken at random.

for n! 2. The bond correlation function is defined as

G(s) = 〈t(s) · t(0)〉= 〈cos[θ(s)− θ(0)]〉. (10)

The ring architecture assures the translational invariance
〈t(s1) · t(s2)〉= 〈t(s) · t(0)〉 for s= |s1− s2| and the inver-
sion symmetry G(s) =G(L− s). Expanding eq. (10) in
powers of δθ up to the quadratic order, and using eq. (9),
we obtain

G(s) =

[

1+
L

2π2"p

{

g

(

2πs

L

)

− g(0)

}]

cos

(

2πs

L

)

, (11)

where

g(z) =
∞
∑

n=2

cos(nz)

n2
=
(π− z)2

4
−
π2

12
− cos z. (12)

In fig. 2 (left), eq. (11) is compared to the numerical
data obtained from our LD simulations for two different
models, i.e., a self-avoiding ring chain (SAR) and an ideal
phantom ring chain (IPR). Remarkably, the agreement

s/L

G(s)

SAR
IPR

 230 nm DNA

 Theory

s/L

χ =5.8

Fig. 2: (Colour on-line) (Left) Bond correlation function (BCF)
for χ! 5.8 as a function of the rescaled contour length s/L.
Data points are obtained from our LD simulations, and the
solid line is eq. (11). The dotted curve represents the BCF for
a circle, cos(2πs/L). (Right) Fit of eq. (11) to the experimental
BCF obtained from 230 nm long DNA [19].

is excellent even for χ* 6. Approaching the stiff limit
G(s)→ cos(2πs/L) with χ→ 0, the negative curvature in
the initial part of G(s) develops. Indeed, the condition
∂2sG(s)|s=0 < 0 could be a practical sign of the stiff
regime. From this criterion, we numerically determine
the crossover point as χ∗ = 8, below which a polymer is
regarded to be in the stiff regime and no self-crossing of
the chain is expected. This makes the data from SAR and
IPR undistinguishable, as seen in fig. 2 (left). It is helpful
to keep in mind, what this crossover means in terms of
the conformation of the polymer. For stiff rings, there is a
center region enclosed by the polymer, where no monomers
are found, see fig. 1(c) or (e). Increasing the flexibility
leads to a progressive narrowing of the center hole. The
hole eventually disappears at the limit χ∗, which implies
interactions between distant parts of the ring, compare
figs. 1(c) and (d). As a consequence, the breakdown of the
Gaussian approximation signals the onset of the interplay
between excluded volume effects and topology, which are
essential in the flexible regime.
The analytical formula, eq. (11) is also successfully

applied to the experimental data of two-dimensional equi-
librated circular DNA imaged by AFM (for experimen-
tal details see [19]). We give an example in fig. 2 (right),
where we fit eq. (11) to the data by treating the persistence
length "p as a fitting parameter. The obtained value of "p =
45nm, i.e. χ* 5 for this polymer, is in good agreement to
the values for longer chains (49–52 nm) obtained previ-
ously from the initial exponential decay in their BCF [19],
given the different theories used in the two studies. In
particular, eq. (11) provides a way to measure directly the
persistence length of short rigid circular molecules that
was not available previously [19].

Flexible chains: scaling regimes. – For the flexible
regime, we compare now in fig. 3 the BCFs of IPRs and
SARs obtained from our numerical simulations. Clearly,
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χ=29 
χ=58 
χ=116 
χ=29 
χ=58 
χ=116 

s/a

G(s)

Fig. 3: (Colour on-line) Bond correlation functions for SARs
(solid curves) and IPRs (dashed curves) obtained from our
LD simulations for various values of χ, as a function of the
(dimensionless) contour length s/a, where a is the monomer
diameter.

self-avoidance has a dramatic effect in this regime. To
unveil the scaling structure in the BCF, let us begin with
the trivial example of IPRs. The only sources of correlation

are the bending rigidity and the sum rule
∫ L
0 dsG(s) = 0

which is a consequence of circularity [24]. The first item
leads to an initial exponential decay with G(s)∼ e−s/2"p ,

and the second item can be rewritten as
∫ L
2"p
dsG(s)*−1.

The absence of any long-range interactions in IPRs results
in the equipartitioning of the returning correlation at a
constant weak negative level, G(s)∼−"p/L for s# 2"p.
This disappears in the long chain limit, i.e., G(s) = 0 for
L/"p =∞ [24].
The above considerations suggest that G(s, L) for IPRs

of different chain lengths can be collapsed onto a single
master curve, φ(s/L) = ("p/L)−1G(s, L)(*−1). Indeed,
the presence of such a scaling,

φ(s/L) =

(

"p
L

)α

G(s, L), (13)

is not accidental in this simple example only, but rather
a general consequence of the self-similar structure of the
flexible chains. One can elaborate its scaling structure by
making use of the relation [15,18]

G(s− s′) = 〈∂sr · ∂s′r〉=−
1

2
∂s∂s′〈R

2(s− s′)〉, (14)

where 〈R2(s− s′)〉 is the internal end-to-end distance.
For IPRs, 〈R2(s)〉 * "ps(1− s/L) where a correction
term −s/L appears due to the circularity [25]. Since the
leading term vanishes after the second derivative, this
small term is responsible for the formula α=−1 and
φ(x)*−1 given above. For linear chains with excluded
volume interactions (characterized by the non-ideal

 2000 nm DNA
 Theory

φ(s/L)

s/Ls/L

φ(s/L)
χ=29
χ=58
χ=116  
χ=172

Theory

Fig. 4: (Colour on-line) (Left) Scaling plot of the BCF, φ(s/L),
obtained from our simulations of SARs for different χ. (Right)
φ(s/L) obtained from 2000 nm long circular DNA [19]. In both
figures, the analytic formula eq. (18) is also plotted.

exponent ν = 3/4 in two dimensions), this indicates a
power-law decay in the bond correlation φ(x) = x−1/2

with α= 2ν− 2 =−1/2. For SARs, the rigorous relation
for the internal end-to-end distance is not available.
Nevertheless, our physical picture described below
suggests φ(s/L) = ("p/L)−1/2G(s, L), indicating that all
the circularity effects are absorbed into the functional
form of φ(s/L) while α is solely determined by the swelling
exponent ν. We numerically verified that this scaling
ansatz, first proposed by Baumgärtner [26] in a different
model (i.e., a ring with no topological constraint), works
perfectly (fig. 4 (left)).

Interpolating formula. – Our final task is to deduce
the universal scaling function φ(x) for SARs. To see
the importance of the topology, we tentatively adopt
an approximation formula for the internal end-to-end
distance proposed by Bloomfield and Zimm [27]:

〈R2(s)〉= c "2−2νp
s2ν(L− s)2ν

s2ν +(L− s)2ν
, (15)

which accounts i) for the inversion symmetry 〈R2(s)〉=
〈R2(L− s)〉 due to circularity and ii) for the non-ideality
due to the excluded volume effect through the exponent ν.
In spite of its simple construction, it provides a fairly good
description for 〈R2(s)〉. The factor c= 1.56 in eq. (15) was
fixed from numerical simulation for our two-dimensional
ring. Surprisingly, however, the scaling form of the BCF
obtained from eqs. (14) and (15)

φS(y) =
c

2

∂2

∂y2

[

y2ν(1− y)2ν

y2ν +(1− y)2ν

]

. (16)

works well only at a small separation s/L" 0.1. Unlike for
a linear chain, the power-law decay of BCF disappears at
around s/L* 0.1 and the curve shows a negative curvature
in the middle range before taking zero at s/L* 0.23
(see fig. 4). The reason for this disagreement is that the
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interplay of topology and excluded volume interactions is
missing in eq. (15), and this becomes evident only when
taking the second derivative of eq. (15).
To handle this self-interaction of topological origin, one

can replace the global constraint by a fictitious tube
and envision the chain to be confined within it [6]. The
average path of length L depicted in fig. 1 (f) is the
analogue of the primitive path used in the reptation
theory [28]. The particular feature of our system is
that the tube is configured by the molecule itself, and
encloses topological blobs of radius ξ. According to the
analogy with a polymer confined in a tube, the length
scale ξ is set in such a way that each part of the ring
just comes into unavoidable contact with others. In a
coarse-grained frame, the primitive chain acquires an
effective bending elasticity arising from excluded volume
interactions among topological blobs. These topological
blobs cover the internal area of the ring in such a way that
there exists no center hole, and the blob size ξ represents
an effective persistence length. Recalling the physical
meaning of the crossover point χ∗, the above statement
is expressed as χ∗ ∼L/ξ, i.e., the primitive chain actually
resides on the crossover point, no matter how long the
chain is. More compact configurations would need a
larger pressure, while more extended ones would result
in entropy loss; both are thermodynamically unfavorable.
This ensures the use of the Gaussian approximation
to analyze the primitive path fluctuations. With this
conceptual renormalization, the chain contour length L
and the persistence length "p appearing in eq. (11) should
be replaced with the contour length of the primitive path
L and the blob size ξ.
The BCF of the primitive path, whose arc length is

parameterized by 0< σ<L, is given by eq. (11), with the
substitutions of L/"p→ χ∗ and s/L→ σ/L. The obtained
function is re-interpreted as that of the true chain. The
scaling function in this regime is therefore given by

φL(y) = χ
1/2
∗

[

1+
χ∗
2π2
{g(2πy)− g(0)}

]

cos(2πy), (17)

where a possibility of order-of-one prefactor was omitted,
which is justified later on from the comparison to the
experimental data.
Having clarified the physical pictures of chain’s short-

and long-distance behaviors, we now construct a formula
for the bond correlation. Within a topological blob of
size ξ, the chain is a self-avoiding walk free from the
topological constraint and its BCF is given by eq. (16).
At length scale larger than ξ, however, the fine-grained
structure becomes irrelevant, and the global topological
effect controls the BCF, see eq. (17). We propose a linear
interpolation for the scaling function,

φ(y) = 2yφL(y)+ (1− 2y)φS(y), (18)

which encompasses the short-scale behavior, eq. (16), and
the large-scale limit, eq. (17). This simple interpolation

formula describes the simulation data perfectly over the
entire available length range in fig. 4 (left). Agreement
with the AFM experimental data in fig. 4 (right) is also
remarkable. In both cases, there is no fitting parameter,
meaning that the analytical, numerical, and experimental
results all collapse onto the single master curve.
For completeness, we note that there is an additional

regime at the shortest scale s < "p, where the conformation
is almost a rod-like. This finite size effect indicates a
lower limit for the applicability of formula (18) at s% *
"p⇔ s%/L= c0χ−1, below which the bending elasticity
dominates. The numerical factor is estimated to be c0 = 4
from the simulation data. A close inspection of fig. 4 (left)
shows this general trend in the small s/L region. One
may appreciate its apparent effect for shorter/stiffer rings,
for example, judged by a criteria s%/L> 0.25⇔ χ< 16.
Finally, looking for the condition s%/L= 0.5, i.e., the
bending effect dominates the whole ring, we again find
the crossover point χ∗ = 8.

Summary. – We have shown how the statistical
behavior of semiflexible rings can be separated into two
regions: a first one, at small χ, dominated by mechanical
constraints, and the other one, at large χ, dominated
by topological and self-avoiding effects. We derived a
formula allowing us to measure the rigidity of short
rings and proved its applicability to DNA . We further
unraveled the complex but universal behavior at large χ
based on the self-confinement concept. This work offers
a conceptual frame that could be eventually extended to
other polymer properties. Among others, a generalization
to three-dimensional case is an interesting but non-trivial
issue where direct biological applications are possible.
Work in this direction is now under progress.
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