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Abstract. This paper presents the first results on AIDA/cube, algetaail side-
channel attacks on variable number of rounds of all memtféhed<ATAN fam-
ily of block ciphers. Our cube attacks reach 60, 40 and 30dsufi KATAN32,
KATAN48 and KATANG64, respectively. In our algebraic attackve use SAT
solvers as a tool to solve the quadratic equations reprsamof all KATAN ci-
phers. We introduced a novel pre-processing stage on tlaieqs system before
feeding it to the SAT solver. This way, we could break 79, 6d &0 rounds of
KATAN32, KATAN48, KATANG64, respectively. We show how to ferm side
channel attacks on tHall 254-round KATAN32 with one-bit information leak-
age from the internal state by cube attacks. Finally, we show to reduce the
attack complexity by combining the cube attack with the bige& attack to re-
cover the full 80-bit key. Further contributions includexnnghenomena observed
in cube, algebraic and side-channel attacks on the KATAReig For the cube
attacks, we observed that the same maxterms suggestedhanmnte cube equa-
tion, thus reducing the overall data and time complexiti@s. the algebraic at-
tacks, a novel pre-processing step led to a speed up of thes@R&r program.
For the side-channel attacks, 29 linearly independent egbations were recov-
ered after 40-round KATAN32. Finally, the combined algébnd cube attack,
a leakage of key bits after 71 rounds led to a speed up of tlebelg attack.
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1 Introduction

This paper describes our findings of cube attacks [16], aieavk as AIDA [30], alge-
braic [11] and side-channel (cube) attacks [17] applied varéable number of round
of all members of the KATAN family of block ciphers [13]. Asrfas we are aware of,
this is the first paper detailing these attacks on the KATADhers.

The cube attack is a kind of algebraic technique that exptb# existence of low-
degree polynomial equations in the output of cryptograplgorithms. An attractive
feature of the cube attack is that it requires only black-acsess to the cryptographic
function, that is, the knowledge of internal details of tamget function is not required.
Informally, if the decomposition of algebraic multivaggbolynomial equations at the
output of a target cipher has degree at nwst1, then linear equations on unknown
key bits can potentially be extracted, provided that at 28stomputations (encryp-
tions) are feasible. Thus, the basic setting is key-regobet distinguish-from-random
variants have been demonstrated in [2]. In [16] the cubelatteas been applied to
reduced-round variants of the Trivium [14] stream cipher.

Algebraic cryptanalysis exploit the multivariate polyniahsystem of equations in
ANF format representing a given cipher [11]. The aim is toveduch systems for the
unknown key (usually in a known-plaintext setting, but oftee use chosen-plaintext
attack to reduce the running time). Typically, quadratioatpns are the main target
representation. We convert the ANF equations to CNF formdtfaed it to a SAT
solver, in our case MiniSat [18] and CryptoMiniSat [26]. Biarmore, we introduce a
novel pre-processing step on the system of equations bgfidre it to a SAT solver.
This allows us to break a larger number of rounds. Ultimately combine the cube
and algebraic attacks on reduced-round KATAN ciphers.

We also combined the cube and side-channel techniquesatkatte full-round
KATAN32, following the model in [17]. Table 4 summarizes #ile attack complexi-
ties in this paper. Up to the moment, we know of no other inddpat attacks on the
KATAN ciphers, even for reduced-round versions.

This paper is organized as follows: Sect. 2 briefly descrihesKATAN family
of block ciphers; Sect. 3 provides some theoretical baakgion algebraic attacks;
Sect. 4 gives theoretical framework and our experimentdirfgs on AIDA/cube at-
tacks; Sect. 5 combines both attacks; Sect. 6 describegslaieel cube attack; Sect. 7
concludes the paper.

2 The KATAN Family of Block Ciphers

KATAN is a family of lightweight, hardware-oriented blockohers consisting of three
variants with 32, 48 and 64-bit blocks. For all KATAN ciphgksy size is of 80 bits(=
80), and they all iterate 254 rounds [13]. The block size sduss suffix to designate
each cipher member, as KATAN32, KATAN48 and KATAN64. The idesof these
ciphers was inspired by the stream cipher Trivium [14]. Ttracdure of KATAN32
cipher consists of two LFSR’s, calldd andLp, loaded with the plaintext and then
transformed by two nonlinear Boolean functiofisand fy, as follows (Table 1 lists the



bit sizes and the indices andy; of L, andL>).

fa(La) = La[x1] + La[xo] + (La[xa] - La[xa]) + La[xs] - IR) + ka
fo(L2) = La[ya] + La[y2] + (L2[ya] - L2[ya]) + L2[ys] - L2[Ye]) + ko

where IR is the output of an LFSR i.k;[xs] is used whenever IR 1. The values of
IR for each round is specified in [13]. For tivh round,ks = ky; andky, = ko1 that
is, only two key bits are used per round. The output of eachese functions is loaded
to the least significant bits (LSB) of the other LFSR, aftexttare left-shifted. This
operation is performed in an invertible manner.

For KATANA48, f, and f, are each applied twice per round, so that the LFSR'’s are
clocked twice (but the same pair of key bits are reused). AIANG64, each Boolean
function is applied three times per round, again with theesaar of key bits reused
three times.

The selection of bitg; andy; in f; and f, are listed in Table 1. In this report, plaintext

Table 1. Parameters for th& and f,, functions.

Cipher |Ly| [Lo[ X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 ¥5 Y6
KATAN32 13 19 12 7 8 5 318 7 1210 8 3
KATAN48 19 29 181215 7 6 2819211315 6
KATANG64 25 39 24152011 9 3825332114 9

and ciphertext bits are numberedright-to-left order starting from 0. Thus, for in-
stance, a plaintext block for KATAN32 will be numbereds: (pzi, - - -, Po). The key
schedule algorithm of all KATAN ciphers is a linear mappihgtt expands an 80-bit
key K to 508 subkey bits according to

Ki, for0<i<79
ki—go+ ki—e1+ ki—s0+ki—13, otherwise

Thus, the subkey of thieth round iska||kp = Kai||Kai+1.

After r rounds, at most 2r key bits are mixed with the internal state since two
key bits are xored per round. Thus, at least 40 rounds aresddmefore complete key
diffusion for any KATAN cipher is achieved. Further detalsout these ciphers can be
foundin [13].

For analyses purposes, the numbering of the key bits in thekey in our attacks
isK = (K79, ceoy Ko).

3 Algebraic Attacks Using SAT Solvers

Algebraic cryptanalysis is a type of cryptographic attdtét trelies on solving a mul-
tivariate polynomial representation of a given cipher asthéunction. It was initially



formulated as early as 1949 by Shannon [29]. Algebraic ledtagince the controver-
sial paper of [11], have been applied to several stream $€9,10] and is able to
break some of them but it has not been successful in breakalgife block ciphers,
except Keeloq [7,21]. Compared to statistical analysishsas linear and differential
cryptanalysis, algebraic attacks require a comparatamigll number of text pairs. The
adversary formulates the cipher as a polynomial multivarggistem of equations. This
representation is usually over small finite fields KBE(2). This system of equations is
often sparse, since efficient implementations of real-gveyistems require a low gate-
count. In the subsequent stage, the adversary solves tieersyche problem of solving
such system is NP hard in general and is recognized as the lgladepn. An instance
of an MQ problem is a set of functions

f1(Xe,-- %) =VY1, fa(X1,.... %) =V¥2 ...y Tm(X1,..., %) =V¥m

wheref; can always be converted to a quadratic polynomial by intcodunew vari-
ables. Notice than is the number of variables amd is the number of equations. Let
c = T denote the degree of “overdefinition” of a system [4]. Herce; 1 denotes
exactly a defined systern,> 1 an overdefined system and< 1 an underdefined sys-
tem. The polynomial representation of most block ciphegsoaerdefined or if not then
c= 1. Itturned out that the more the system is overdefined anmdsplae easier it is to
be solved [11]. For one instance of KATAN cipher< 1. This because in all versions,
the key size is larger than the block size. Thus, more tharpairds required to find
the correct key.

There are multiple methods for solving such systems. Tlitioaal method uses
the Grobner basis approach such as Buchberger [6] or FA[RDF5 [19] algorithms.
The drawback of such methods is memory, implying that aftethde the algorithm
outputs the result or it crashes due to running out of mendrig.is true particularly for
large systems, but they are usually faster than other mefloodmall systems and when
the characteristic of field is not 2. Wherg = 2, more efficient methods were proposed,
such as converting these equations to Boolean expressi@mijunctive Normal Form
(CNF) [4] and deploying various SAT-solver programs. Otsteategies include the XL
family [12,11], the recent MutantXL [15,25], ElimLin [8] ahthe Raddum-Semaev
[27] algorithms. We focus on SAT-solver based methods mplper. From now on we
will work only with the field GF(2). To solve such polynomial system by SAT solvers,
the attacker initially converts the system from Algebraimridal Form (ANF) to CNF.
There is an efficient conversion method due to Bard-Coudefierson [4]. We also use
a direct method which we call “local interpolation”. Let agse that the total degree of
the equations is at most 6. We proceed as follows:

— If there are equations which contain more than 6 variabfgg,teese long XORs
into several shorter XORs with at most 6 variables, by adéixtga variables, for
exampleabc+ def+ gh=1 becomeabc+ def=xandx+gh= 1.

— for each equation, convert the Boolean function to CNF aritkwtrexplicitly.

The concatenation of these CNFs gives a file with extensioior which we can
apply any SAT solver. The magic number 6 originates fromday is called the cutting
number—sometimes 4, 5, or rarely 7 is optimal instead.



The area of SAT Solving has seen tremendous progress oviasthygears. Many
problems (e.g. in hardware and software verification) anodunapplication in crypt-
analysis that seemed to be completely out of reach a decadeamgnow be handled
routinely. Besides, new algorithms and better heuristiefined implementation tech-
nigues turned out to be vital for this success. New SAT sshean now solve large
systems in reasonable time. Since 2002, almost each year R&# competition [28]
was established. In 2007 and 2010 respectively, MiniSgdtah8 CryptoMiniSat [26]
won the Gold prizes. We used these two SAT solvers in our aisahut since the tim-
ings of MiniSat were faster, we do not report CryptoMinigegults in this paper.

3.1 Straightforward Algebraic Attack on KATAN Using SAT Sol vers

One instance of KATAN32 can be represented as 8620 very esgpradratic equa-
tions with 8668 variables, KATAN48 as 2908 equations and 2840 variables and
KATANG64 as 49324 equations and 4940 variables. As can be observed, the system
is underdefined. That is because the key size is larger thoak Bize for all versions.
To have a defined or an overdefined system, we need multiplpleam

A summary of our results is in Table 4. We used the “guess atefmee” alge-
braic attack initially proposed in [4]. This implies that Wie t bits of the key and then
we show that recovering the other 8Q bits is faster than exhaustive search. This is
represented in the column titled “Fixed” in Table 4. In fagg fix t LSB of the key,
since heuristically we obtained better results than fixiveg tMSB of the key. We used
the graph partitioning method by Wong and Bard [31] to detiieebest state variables
to fix, but it did not bring about anything better than using treuristic of fixing the
leastt significant bits of the key. Note, if we fixbits, the algebraic attack is solving a
system of equations to recover the-80remaining bits.

We represent the time complexity of the SAT Solver (MiniSatyeconds using a
3 Ghz CPU. Note that our algebraic attacks are in the chokentgxt scenario, except
in some rare cases as noted. We noticed that chosen-plaattaek is much stronger
against KATAN family than known-plaintext (KP) attack. lmioattacks, we followed
the following structure for the chosen plaintexts for KATAR pi1 = ((pi > 19) +
1) < 19 andpit1 = ((pi > 29) + 1) < 29 for KATAN48 andpi+1 = ((pi > 39) +
1) <« 39 for KATANG4 for i > 1, wherep; is thei-th plaintext we pick andy; can
be arbitrary. Note that bits 129,39 are exactly bit 0 of_; register for KATAN32,
KATAN48 and KATAN64 respectively. This choice of the bits kes the SAT solver
run faster. Moreover, we believe it is fair to assume eachdancryption of KATAN
takes at least 3 CPU cycles. This yields a comparison betiteecomplexity of our
attacks and exhaustive key search.

Deploying the straightforward method of converting ANF tdfEand then feeding
it to a SAT solver, we could break up to 75 rounds of KATAN32 &@®rounds of
KATAN48 and 60 rounds of KATAN64. But, we can do better by menfing a pre-
processing on the system of equations before applying it$é& solver. Using this
pre-processing (see next section), we could break 79 roohH&TAN32. We only
tried this method on KATAN32 equations. Further researchldiapply this technique
to other members of the family.



3.2 The Pre-processing SAT-Solver Attack

In this attack, we use the equations generated as desclgzer @and solve them with
the SAT solver MiniSat [18]. It is simpler to formulate KATAAL a sparse system. But,
this may not be the best representation for a SAT solver. Maeacteristic of these
equations is that there are many of them with the farmy, as wellax=0,y=1
and more rarelx+y = 1. Also, in a typical example (78 rounds, 45 key bits fixed
and 20 CPs of KATAN32) there are 51,321 total equations. fM#lfuone wants to take
advantage of these special equations, during pre-proggssicreate a smaller system
which has fewer variables and equations.

More precisely, the four heuristics of a CNF problem are (&) number of vari-
ables, (2) the number of clauses, (3) the average humbemabayg per clause, and
(4) the total number of symbols in the system. The pre-psingsalgorithm that we
describe in the next section is designed on the principleiaigrily reducing (1) and
(2) while causing the minimum possible increase in (3) andTd be specific, at each
iteration, a substitution will be made and this substitutieduces (1) and (2) by one,
and the substitution is selected in the style of the “greddgrahm” using (4) as the
criterion.

The following pre-processing algorithm, due to Bard, is fanmment of the “mas-
saging” algorithm of [4] and so we call it “turbo-massageariing with the equations
that were generated, we ran the pre-processing algoritfier;that, we converted the
polynomials into a CNF problem, according to [4] and ran 18&ti on that CNF prob-
lem to get a solution. We will explain the pre-processorglaerd refer the reader to [4]
or [3] for the process of converting a polynomial system &{ONF problem.

3.3 The Turbo-Massage Pre-processing Algorithm

As described before, the equations can be thought of asessemolynomials(x) =
0, f2(x) =0, .... We define the operation “fully-substitute” as follows: LEix) be a
polynomial with some monomial. To fully-substitutef (x) into g(x) on u means to

— Write g(x) in the formg(x) = phy(x) + ha(x).

— Write f(x) in the form f (x) = p+ hs(x).

— Replacey(x) with hy(x)hz(x) + h2(x), which is mathematically equivalent, because
in any satisfying solutio, we would havel = hz(X).

— By clever use of data structures, this can be made highlyieftic

Observe that for the four common forms=y, as well ax= 0,y =1, and more
rarelyx+y = 1, the “fully-substitute” definition does what one would dsolving a
system of equations with a pencil and paper. For more higleeahwf (x), understand-
ing what it does t@(x) is more complex.

We must also use a non-standard definition of the weight ofympamial f (x). We
define it to be the number of monomials fiix), but excluding the constantl from
the tabulation. The reason for this is thaf {i) has weightv according to this modified
definition, then 2~ conjunctive normal form clauses of lengthwill be required to
represent the polynomial, assuming all the monomials asady defined. The total
number of symbols is thew2"~ and so minimizingw is crucial in keeping the CNF
problem small and thus solvable. We now perform the foll@paigorithm:



— INPUT: A system of polynomial equations ovéi=(2), and a weight-limitmay.

— Mark all polynomials “unused.”

— While the set of unused polynomials is not empty do:

Locate the lowest weight unused polynomfiéx).

If f(x) exceedsVmay, terminate.

Mark f(x) as “used.”

If f(x) has weight 1, then seleptto be the only monomial irfi (X).

If f(x) has weight 3 or higher, selegto be the monomial which appears least

frequently in the entire system of equations.

o If f(x) has weight exactly 2, seleptto be the monomial which appears most
frequently in the entire system of equations.

e For any polynomiag(x) containing the monomial, simply “fully-substitute”
f(x) into g(x) on .

The “turbo-massaging” algorithm will always terminatechase eventually every
polynomial has been marked used. In practice, it will teaterearly, where all unused
polynomials are of weighiimax Or higher. If there ara “used” polynomials, then there
will be n monomials which appear nowhere in the entire system exoeptdctly one
polynomial. This is, of course, the monomjalhich was chosen when that polynomial
was getting used. In our system of equations, it was almesya the case (by an
overwhelming margin) thatwas degree one. And so, each used polynomial effectively
amputates one variable from the polynomial system of egnati

The special case of weight 2 deserves explanation. Whes weight 1, there is no
decision to be made, but it is noteworthy that the weiglty will decrease. Wherf has
weight 2, then the weight af will not change during the “fully-substitute” operation,
except in some odd cases like substituting y into zx+ zy+w+ x+y = 0, where the
weight goes from 5 to 1 instantly. Since the weight is notllike change and we are
eliminating a monomial, it makes sense to eliminate a commonomial. When the
weight of f is 3 or more, then the weight gfwill increase. If we choosg to be very
popular, appearingtimes, then the total weight of the system will increasétwy— 2).
Thus, it makes sense to keep the weight growth bounded ara$epdo be rare. This
heuristic was found after an enormous number of iteratiérisial-and-error.”

For example, in the 78-round, 20 CP, 45-bit-key case of KAB&RNhe weight went
from 11Q 726 to 101516 after 47032 polynomials got used. Furthermore, the “fully
substitute” function was called 33887 times. There were 5033 equations at this
point, down from 51321, representing,288 equations that became=00. In other
words, the original system was not full rank. The averagayhtedf a polynomial, us-
ing the modified definition of weight, was roughly02898. The system had 203
distinct monomials, plus,®05 variables which appeared only in degree 1 monomials,
and ended with a CNF problem of 5398 variables, and 15610 clauses. The conver-
sion process, which must be run only once and fidtithes, takes between 20 and 29
minutes in all the cases explored here.

It should be noted that in other polynomial systems it mightlioe case that is
often quadratic or higher degree. It remains open if onelsHouce i to be linear when
possible. This is a question that the authors hope to imgagstishortly. As it comes to
passWmax = 2 turned out to be slightly better thaw,,x = 3 for this problem, but in
other cases up t@max= 5 has been used.



A minor note for algebraic geometers familiar with the cqrtaaf a Macaulay ma-
trix [23] in the Lazard [22] family of algorithms (including4 [20], XL and their vari-
ants [12,11]) is that this algorithm is like a Gaussian Hfiation on that matrix, but
stopping early. The pivoting strategy used is reduciblé&Narkowitz pivoting algo-
rithm [24]. However, the “fully-substitute” is not the sarimethis case, as adding=y
to zx+ zy+ w+ x+Yy = 0 would result inzx+ zy+w = 0. On the other hand, fully-
substitutingx =y into zx+ zy+ w+ x+Yy = 0 would result inzx+ zx+w+x+x=0
which turns intow = 0. As you can see, full-substitution is distinct from addiagd
is very similar to what a mathematician would do if solvingystem of polynomial
equations with a pencil and paper.

3.4 Results

The first result was 76 rounds, 20 CP and 45 (fixed) key bits ofAM32, broken faster
than by brute force. To extend this result, we explored us#mger key bits, and more
rounds. First we conducted the above process for 20 CPspafi@f77, 78, 79 and 80
rounds. Every case was run 50 times.

Because we fixed 45 bits of the key, and so assuming one naooagper round for
a brute force attacker, our attack againstunds is faster than brute force if and only if
it runs int seconds with &t < r28910-° or more plainlyt < r23°10-°~r(34.3597---).
We also ran trials with 43 bits of the key fixed for 76 rounds #mete the threshold
would be 4 times greater or 13BY seconds and for 41 bits of the key 5495
seconds.

The running times are given in Table 2. Observe the enormatiance in each
trial. In some cases, the fastest run is 18@8ster than the slowest. This is very typical
in SAT-solver-based cryptanalysis. We excluded the thaistebt and slowest trials and
took the mean and standard deviation of the remaining 44 tria

The running time of 2 executions, all added together, is the sum ©f€amples
from independent random variables. Therefore, the celitnél theorem applies and
regardless of the actual distribution of running timesh#é tmean ism and stdev is
o1, the sum of 2° of them will be normally distributed and have a mean &g, and
a standard deviation 02°%g;. Sincea/mis an important instrument in gauging the
reliability of a normal sample, it is interesting to note éehato/m (for the sum of
245 execution times) would be 225(g;/my) which is phenomenally tiny. Thus, the
running time of the real-world attacker would be essentiatinstant.

Notice, that we claim that the*2 running times are independent, but we do not
claim that they are identically distributed. On the othendheone could conceive of a
cipher where one key bit was ignored by the cipher, in whidedhe running times for
two keys which differ only in that bit would be highly depemieThese cases are of
pedagogical interest only, because no cipher designerdnawdr do that.

As can be seen in Table 2, we are between 80.75 and 2.39 tistes faan brute
force search for up to and including 79 rounds. In the cas® o68nds, out of 50 trials,
29 of them timed-out after 1 hour. Since this is majoritysitbt possible that the mean
is less than the required 2748.77 seconds, and so we arestart ttaan brute-force for
80 rounds. For 43 key bits and 41 key bits, the attack becomstsyymore efficient.



But, we cannot test 39 key bits, as the time-out value woule lt@ be set to 167,125
seconds or roughly 46 hours, for each of 50 processes.

In addition to MiniSat, we ran all 50 instances with Cryptaiiiat [26], a SAT-
Solver constructed specifically for cryptography by Mate@&dHowever, it was con-
sistently slower than MiniSat. We suspect that this is theedsecause CryptoMiniSat
was intended to minimize the impact of long-XORs, which avenmally very damag-
ing to the running time of SAT-solver methods; however, weghao long-XORS in our
equations, in fact, no sum was longer than 5 symbols afteppreessing, excluding
the constant monomial.

3.5 The Gibrat Hypothesis

In[4], [8] as well as [3], Bard hypothesized that the trudmilisition of the running times
of a CNF-problem in a polynomial-system-based SAT problelofs the Gibrat dis-
tribution. That is to say, that the logarithm of the runniinge is normal. The running
times here were such that their standard deviations exdete@emean. If the distri-
bution of the running time were normal, haviog> 1 would imply a very significant
fraction of the running times would be negative. Therefdres not possible that the
running time is normally distributed. On the other hand, ¥g8e sabulated the mean and
standard deviation of the logarithm.

The ratio of the mean and standard deviation of the logarithnunning times is
much more reasonable. The kurtosis is the typical measuntswhthe “normalness” of
a distribution and the kurtosis of the logarithms of the finagrtimes are far closer to 1
(and are in fact withint1) than the kurtosis of the running times themselves (whath h
kurtoses over 9). So the hypothesis that the running time&#rat, from [4], seems
well-justified for these examples.

3.6 A Strange Phenomena

We were perplexed to discover that solving 77 rounds wasdaiee than solving 76
rounds or 78 rounds. Therefore, we ran the experiments agamboth sets of results
listed in the Table 2 as first batch and second batch. As yoseanin both cases, 77
rounds is much easier than 76 or 78—and with a very large makdpreover, this re-
mained true as well in our experiments with CryptoMiniSas.rAndom variables, the
ith iteration of the 76 round attack and tk iteration of the 77 round attack had ab-
solute correlation of @60419 - - and likewise between 77 and 78 it wag.09699 - -.
These extremely low correlations make it safe to hypotleefiat the running times
are independent and this removes the possibility that theete an artifact of some
methodology error. Note, the formula for correlation thatused is

El(X =) (Y — )]

Cor(X,Y) = vy

as is standard. Moreover, we observed the same behavioardda¢ing with the size of
the vertex separator in the variable-sharing graph reptaten of polynomial system
of equations of KATAN32 using the strategy described in [Fr KATAN32, the size



of vertex separator is not increasing with the number of dstemd as a matter of fact
it fluctuates. We offer no explanation as to the cause of thekness of the 77-round
version of KATAN32.

4 AIDA/Cube attacks

AIDA/cube attacks [16] are generic key-recovery attacle ttan be applied to cryp-
tosystems in a black-box setting, that is, the internalcstme of the target cipher is
unknown. An important requirement is that the output from thyptosystem can be
represented as a low-degree decomposition multivaridtepmial in Algebraic Nor-
mal Form (ANF), callednaster polynomial, in the key and the plaintext. This attack
does not depend on the knowledge of the master polynomial, which neagidmse, or
whose representation is so large that it cannot even bedstore

Let p(x1,...,Xn,V1,.-.,Vm) denote a master polynomial oveiF(2) in ANF, with
X, 1 <i < n, the public variables (plaintext, IV bits) ang the secret key variables.
We assume the adversary is allowed to query the master poiahat valuess (that
is, a chosen-plaintext, chosen-1V setting) of its choibege are also called tweakable
parameters) and obtain the resulting bit from the masteynmohial. This way, the
adversary obtains a system of polynomial equations in tefsgcret variables only.
The ultimate goal of the attack is to solve this system of &quoa, which reveals the
key variabless;. For this attack, the master polynomial is decomposed &sifsi

P(X1,- - %, V1, -+, Vm) =t - Pg) +A(X, - -, %0, Ve, -+, Vim)

wheret; is a monomial containing only public variables from anindet C {1,2,...,n}
calledcube or hypercube; '+ stands for bitwise xorpg) is called thesuperpoly of |

in p. The superpoly of in p does not contain any common variable witrand each
monomial inq does not contain at least one variable fronsince they have all been
factored out inpg). The pg;) of interest are linear mappings in terms\gpk. Any
that leads to a linegpg) in key bits is callednaxterm. The output of the offline phase
of the attack consists of linear equations in the user keydirectly. Further, Gaussian
elimination allows one to reconstruct the user key (indejean of the key schedule
algorithm). For instance, let

P(X1,X2,X3,V1,V2,V3,V4) = X2.X3.V3 -+ X1.X2.V1 + X2.V4 + X1.X3.V2.V3 + X1.X2.V2 + 1
Letl = {1,2}, so that; = x;.x2 and we have the following decomposition
P(X1,X2,X3,V1,V2,V3,Va) = X1.X2. Pgiy +Q
wherepg) = V1 + V2 andq = X2.X3.V3 + X2.Va + X1.X3.V2.V3 + 1.
The main motivation for this decomposition of the mastetypomial is that the
symbolic sum oveGF(2) of all evaluations op by assigning all possible binary values

to the variables i (and a fixed value, usually 0, to all the public variables nddiis
exactly pg), the superpoly of; in p. This is the fundamental theorem in [16]. In the
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example,

@ p(xlaXZaX3aV17V27V37V4) = p(oa OaX37V17V27V37V4)+
X,i€l

p(oa 15X37V17V2,V3,V4)
P(1,0,X3,V1,V2,V3,Va)
p(la 1ax37V17V2,V3,V4) =Vi+Vo = pS(I)

+
+

sincet; = 0 whenever either of;, x2 is zero. Ing, since each monomial does not contain
at least one of the variablestin each monomial will appear an even number of times
in the summation op and the xor sum will be zero.

The cube attack has a pre-processing (offline) and an ontiasep In the former,
the aim is to find monomialg’s that lead to linear superpolys. The maxterms are not
key dependent, so they need to be computed only once perrmpadgaomial, for a
fixed number of rounds. For each maxterm, the adversary ctasphbe coefficients
of thev;’s, effectively reconstructing the ANF of the superpoly efcht,. This step
is performed by linearity tests [5]. The main issue in themrecessing is to find the
correct combination dff | public variables (out o) x; that result ininear superpolys
Since the exact form of the master polynomial is unknowrs #tép is heuristic and
consists in randomly choosing the cube variables and usiegrity tests to check the
superpolys. This phase is performed only once for a givelmezipnd a fixed number of
rounds.

Besides the linearity tests there are also 'constant’ testisare used to determine
the constant terms 0 or 1 in the superpoly’s. The public egnot in the maxterms
should be set to the same fixed value in both phases. Afteffiaisaf® number of lin-
early independent (LI) superpolys have been found, theeiplhase starts by evaluating
the superpolys, that is, summing ppver all the values of the corresponding maxterm,
@ p and deriving the value of the linear combination of segydbits. If the degree
X,i€l
of t; is d, each xor sum required 2valuations of (which implies a chosen-plaintext
setting). Thus, the time and data complexities are propaatito the maximum degree
d among all maxterms.

The online complexity is proportional to#2encryptions, for a superpoly whose
maxterm hagl; variables, since the ciphertexts have to be collected (ameldy for
t

this same amount of chosen plaintextst Il superpolys are available, theEizdi

=
encryptions will be needed to recover each superpoly. Optter hand, if the key size
is k bits, then - encryptions shall be enough to recover the remaining unkryat
t

of the key. In total, the time complexity becomés®2+ szi.
i=

5 An ideal quantity is a trade-off between the number of liheardependent superpolys and
the effort to recover the remaining key bits.
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4.1 Cube Attack on KATAN32

Table 5 shows cubes and maxterms for 40-round KATAN32. Thet@nan is shown in
hexadecimal (the bits set to "1’ are the selected bits) foormmact description in the
tables in the appendix. We used Gaussian elimination tatskleequations. Experi-
mentally, not all ciphertext bits leak information on they kets (cube equations). Some
ciphertext positions provide larger leakage than othenerd are three cubes of degree
15, 36 cubes of degree 16, one cube of degree 19 and four ctibegmee 20. We
found that the same maxterm can be used for different keytimpsafor distinct cipher
bits. This means that we can save data and computationallegitypuring the online
phase. For instance, the maxte#dD3D98Ex gives two LI equationsks, + kos + kag
andko4+ 1. Thus, the data complexity is- 3%+ 35. 216 4 219 4. 220 — 22276 Cp,
The memory cost is negligible. The computational compyeisit??% 76 4 280-44 ~ 236
40-round KATAN32 computations, which is dominated by thhaxstive search for the
remaining 36 key bits.

Table 6 shows cubes and maxterms for 50-round KATAN32. Otltef6 maxterms
obtained in total, we observed that the maxtdiBBEE7 7By gives equation&y + ki
andkg + ko + 1 and a similar phenomenon happened for the maxE83AEAEGy and
9CF75766x . Thus, the data complexity becomes 23’ = 22542 and the time complex-
ity is 22542 1 280-46 234 50_round KATAN32 computations.

Table 7 shows cubes and maxterms for 60-round KATAN32. Otlte#fi 1 maxterms
obtained in total, we observed that the maxtdffaFFOEFy gives equation&ys + 1
andkpz + k32 + 1 and a similar phenomenon happened for the max&tFaDFDFy .
Thus, the data complexity becomes 28° ~ 23028 CP and time complexity is®28 +
280-41 — 239 60-round KATAN32 encryptions.

In all our cube attacks, we ran M@0 linearity tests and then we tested the equations
for 50 distinct random keys to be sure they are correct.

4.2 Cube Attack on KATAN48

Table 9 shows cubes and maxterms for 30-round KATAN48. O®3ofmaxterms, six
of the have degree 14, nine have degree 13 and eighteen hgreedE2. The data
complexity is 6 214+9.2131 18.212= 21790 CP, The memory cost is negligible. Since
two subkey bits are used per round, at most 60 key bits areagseds 30 rounds. The
computational complexity is2-90 4 260-33 ~, 227 30-round KATAN48 computations,
which is dominated by the exhaustive search for the remgi2ikey bits.

Table 10 shows cubes and maxterms for 40-round KATAN48. AlbBtained max-
terms have degree 20. The data complexity is2Z9 ~= 224% CP. The memory cost
is negligible. The computational complexity i§*2° + 24° ~ 249 40-round KATAN48
computations, which is dominated by the exhaustive seancthé remaining 49 key
bits.

4.3 Cube Attack on KATANG4

Table 11 shows cubes and maxterms for 30-round KATAN64. Blhfaxterms found
have degree 16. The data complexity of the attack i225~ 22064 CP, The memory
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cost is negligible. Since only two subkey bits are used pendothere are at most 60
key bits involved in 30 rounds. The time complexity &2+ 260-25 ~ 235 30-round
KATAN64 computations.

5 Combining Cube and Algebraic Attacks

The bottleneck in cube attacks is that after some roundgjeigece of maxterms be-
comes large. Therefore, it takes a long time to find a linepesaolynomial. But still,
if we even get a few linear superpolynomials, it would helpaduce the complexity of
the classical algebraic attack. In fact, the overall coxiptevould be the sum of those
two complexities. For a small number of rounds, algebraiacit are successful, but
for larger number of rounds it becomes slower. In such célsesgesult of cube attacks
and classical algebraic attacks can be combined. For icestaiserving Table 4, we
have obtained a 3-bit condition on the key bits for 71-rouTKN32 using cube at-
tacks with time complexity 28, The complexity of algebraic attack alone &%,
Binding these two attacks reduces the complexity of algelattack by ¥8 because it
reduces the number of keys to be guessed from 35 to 32. Inifacteed to guess 3 bits

less in order to get the same complexity. So, in Table 4, gdsices our complexity to
263.60

6 Side-Channel Attack for Full-Round KATAN32

In this section we consider side-channel attack models aadh7] in which internal
cipher data leaks aftar rounds, where < 254, of some full-round KATAN cipher.
On one hand, such data is supposed to have been indepenchgitlyed by some side
channels for instace, power or timing analysis or electigmetic emanations (which
is a strong assumption). On the other hand, for our attadcingebnly one bit of the
cipher state is needed.

The position of the internal cipher data that leaks is setébly the adversary such
that its polynomial representation has low degiteand it can be regarded as ciphertext
bit ¢; afterr rounds. Unlike [17], though, we considgrto be error free, that is, noise-
free. Cube attacks are further employed to derive inforomadin the key frong;. In this
setting, the same bd; is supposed to be accessible after each encryptiofi 6F2by
the adversary. The adversary chooses different cubes ér tobabtain new equations
fromc;, all of which are mutually linearly independent.

In this model, only very few internal cipher bits are allowedeak. In our case,
only a single internal bit will be used. Assume one can gev#iee of internal bit;g
after 40 rounds (c.f. Table 3). We can recover 29 key bits viaecattack with data
complexity 10 212 215+ 2.216 4 218 4 3.219 4 12.220 — 22380 CP, The remaining
key bits are recovered by brute force. This brings about ithe tomplexity of 21
encryptions to attack the full 254-round KATAN32.
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7 Conclusions

This paper described algebraic, AIDA/cube and side-chaatiteecks on the KATAN
family of block ciphers [13]. A new feature observed in culbi@aeks is that the same
maxterms suggests more than one linear independent equatithe key bits. This
phenomenon leads to a reduction in the data complexity ohttacks.

For algebraic attacks, deploying pre-processing step@sythtem of equations be-
fore feeding it to the SAT solvers decreases the compleXitiyeoattack for KATAN32.
As topic for further research, this method can be tried oeoféimily members.

In the side-channel attack for KATAN32, we observed sigaiftdeakage from bit
19 after 40 rounds. More specifically, we could recover 28dinindependent equations
on the key bits. Surprisingly enough, this bit position isiety the LSB of register
L1. This finding is similar to the structure of chosen plainsgpicked in attacking var-
ious versions using SAT solvers (Sect. 3.1). We leave simitie-channel analysis of
KATAN48 and KATANG4 as future work.

Table 4 summarizes the attack complexities on the KATAN fauii block ciphers.
In this table, we keep two different time complexities: Tinaad Time, since there is
no straightforward and unique way to convert one into theiofRecall that Timgmea-
sures the effortin number of encryptions, while Tinneeasures the effortin clock time.
The former is used for attacks that explicitly perform paréncryption or decryption,
while the latter is used for attacks related to internal apens in SAT solvers.
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Maxterms and Cube indexes

The maxterms listed bellow represent the ones with the sstathaxterms. All cube
equations listed are linearly independent (LI). We use lwemét to describe max-
terms such that those one bits are selected bits. e.g. 00006ans the maxterm
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cube indices are 0, 1, 2 and 3. For KATAN32, plaintext/cipéerbits are numbered
asp = (ps1, ---» Po). For KATAN4S, the bit numbering ip = (p47, ..., Po). For
KATANG4, the bit numbering i = (pe3, -- -, Po)-
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Table 2. Running time and some statistical results for different banof rounds of the prepro-
cessed equations for KATAN32. The running times are in sg.con

# of rounds 76 77 77 78 79 80 76 76
fixed 45 45 45 45 45 45 43 41
first batchsecond batch
1 2.89 1.00 2.43 11.04 | 17.05 59.62 1.50 1.75
2 3.15 2.16 3.69 11.54 | 24.97 64.61 5.48 191
3 3.39 2.25 4.01 1451 | 26.86 | 100.28 15.75 3.36
4 3.39 3.39 4.12 15.83 | 28.82 | 135.34 25.88 3.77
5 4.61 3.93 4.40 19.17 | 54.27 | 157.10 34.81 5.17
6 6.73 4.16 4.44 24.99 | 57.02| 166.41 39.92 5.65
7 8.29 4.22 4.65 51.46 | 60.72 | 230.60 39.97 8.64
8 8.46 4.58 4.72 63.04 | 64.08| 277.04 45.06 | 11.35
9 11.54| 4.81 5.07 86.06 | 70.34 | 353.45 50.19 | 21.71
10 13.15| 4.84 6.41 89.89 | 89.17 | 354.07 50.79 | 35.31
11 17.19| 4.96 6.81 109.21| 109.86| 402.56 52.09 | 41.71
12 17.62| 5.44 10.08 115.86| 130.28| 423.76 60.94 53.7
13 23.64| 5.62 14.54 141.19| 137.77| 433.73 75.35 | 55.77
14 26.60| 5.74 15.03 148.91| 145.05| 463.78 | 102.91| 61.6
15 27.69| 5.83 18.16 161.49| 210.29| 516.65 | 116.01| 78.29
16 37.32| 6.80 18.51 163.23| 217.28| 687.88 | 121.89 | 84.18
17 38.04| 7.64 19.51 206.66| 269.08| 1163.48 | 123.25| 87.51
18 39.67| 8.38 21.31 218.43| 326.69| 1591.56 | 123.36 | 104.76
19 48.68 | 9.54 21.35 230.86| 402.61| 2180.93 | 124.39 | 108.29
20 50.63 | 10.08 21.57 236.17| 408.39| 3261.20 | 131.54 | 128.62
21 56.51 | 11.32 22.06 241.45| 537.16| 3274.25 | 132.67 | 138.37
22 62.53 | 13.81 22.41 248.64| 547.32(29 timeouts 134.03 | 166.93
23 66.03 | 15.72 22.63 256.66| 718.58 207.34 | 170.14
24 81.25| 16.69 27.15 293.66| 780.44 208.48 | 182.83
25 88.88 | 17.47 28.45 319.31| 873.25 233.40| 183.9
26 101.43| 17.86 32.39 377.06| 893.29 258.52 | 185.41
27 115.13| 19.19 45.27 455.50( 949.06 300.38 | 200.08
28 127.09| 19.63 49.92 504.97|1007.55 326.94 | 223.6
29 176.33| 22.76 54.80 593.65|1223.91 374.62 | 246
30 200.26| 24.29 54.82 822.36|1244.11 387.17 | 248.05
31 224.75| 29.68 73.71 854.80|1388.4( 444.42 | 254.58
32 243.36| 30.09 82.72 880.31|1436.0( 449.31 | 256.05
33 258.53| 33.27 85.42 |1111.591632.59 542.73 | 263.13
34 278.53| 34.02 85.56 |1118.541838.31 829.13 | 275.75
35 294.99| 35.62 97.22 |1197.051864.99 905.35 | 304.75
36 353.49| 35.94 97.76 |1388.3§1875.87 954.94 | 305.1
37 407.02| 43.33 103.34 |1449.292031.09 1217.79| 305.18
38 423.38| 43.65 111.18 |1514.892038.93 1367.94| 328.86
39 475.98| 48.18 118.48 |1517.732167.59 1390.52| 352.89
40 506.67| 48.22 119.15 |1533.102262.5( 1618.79| 356.23
41 687.95| 49.96 184.91 |1538.9712369.57 2234.32 403.7
42 842.95| 73.62 222.26 (1689.962413.34 2455.77| 407.63
43 942.88| 106.69 226.48 (1894.402495.42 2668.97 418.7
44 2387.95 133.21 335.07 (2031.932641.9( 3246.26| 427.04
45 2400.12 186.39 456.45 |2375.142960.11 3326.73| 429.21
46 3722.63 201.89 662.92 (2682.713460.9( 3530.63| 555.35
47 4471.24 302.66 815.38 (2837.974023.81 7157.16| 577.3
48 > 6000 344.63 976.94 [3731.614129.64 9378.05| 6248.59
49 > 6000| 433.70 | 2378.61 |>6000{4212.65 > 10,000/ 6763.91
50 > 6000| 524.56 > 6000 |>6000|> 6000 > 10,000/ 9655.8
Threshold-time [2611.34 2645.70| 2645.70 (2680.0§2714.42 2748.78 |10445.3541781.4(
# faster 47 50 49 48 49 21 48 50
Median 95.16 | 17.67 30.42 348.19| 883.27 n/a 245.96 | 184.66
Mean of all but 6 | 463.21| 38.98 100.88 | 768.47(1146.77 n/a 868.70 | 205.97
Stdev of all but 6 | 957.09| 60.29 168.93 | 786.56(1054.09 n/a 1381.91| 154.29
Kurtosis of all but§ 9.51 9.19 9.30 0.17 | -0.12 n/a 9.33 -0.46
Times faster 5.64 67.87 26.23 3.49 | 237 n/a 12.02 | 202.85
than brute force
Mean of log 4648 | 2.914 3.650 5.938 | 6.369 n/a 5.706 | 4.810
Stdev of log 1.820| 1.185 1.421 1.380 | 1.396 n/a 1513 | 1.319
Kurtosis of log | -0.582| -0.470 -0.620 | -0.514]| -0.985 n/a -0.985 | 0.867
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Table 3. Maxterms, 29 cube equations from ciphertextdag from 40-round KATAN32.

Maxterm |Degree Cube equation Cipher bit
41356548 | 12 Ky C19
2464E14Cx| 12 k15 C19
1EA26848y | 12 ks +1 C19
E3516900x | 12 k1 +kig C19
4A8E6888x | 12 ko+ki7+1 C19
EBD02900x | 12 ks +kipo+1 C19
AO867A0CK| 12 kig+ki7+1 C19
QC4CA3x| 12 Ks+kio+kig C19
E2A54302x | 12 k114 k154 kos C19
90045983x| 12 ko 4+ k7 4+ Kq1 + k16 + kog + Kog C19
bd30cblly| 15 ki3 C19
7¢366259x% 16 k]_g C19
2cd5f 264y | 16 ks +kis+1 C19
b7351759x| 18 k3 +kig+ ko3 C19
cf9df 815x| 19 k3+1 C19
75ed47leex| 19 kog+1 C19
65765d7ax| 19 |ko+kio+kis+kig+kig+kog+kspo+kaz| €19
ab7f 3adby 20 k7 C19
b61d73f9x| 20 ks+1 C19
3d7f 3476x| 20 ko 4+ Kig C19
e4f 636bex| 20 ke +Kig Ci9
acdlbbf6x| 20 k12 +kog + kog C19
bdcddcacyx| 20 kig+ ko1 +kog+1 Ci9
def f 1456x | 20 k7 + ko + k1g + kog C19
37d7d2b3x| 20 k16 + Koz + kog + Ka3 C19
d7035eef x| 20 ks +kg+kia+kig+1 C19
ad754de7x| 20 ko + ki6 + K19+ koo + ko + ka3 C19
17df aabdx| 20 |kiz+kig+ko1+koo+koz+kog+kso+1 C19
6af eaf 85x| 20 |ko-+ ko +kig+ koga+ kos+ kog+ ko7 + k3o C19
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Table 4. Attack complexities on KATAN family of block ciphers (mempcomplexity is negli-

gible).
Cipher # Rounds Time Timey Data Fixed Attack Source

KATAN32 40 11 sec 3KP O MiniSat2.2, LI converter Sect. 3.1
40 86 22276 cp 0 AIDA/Cube Sect. 4.1
50 24 2542 ¢cp o AIDA/Cube Sect. 4.1
50 11 sec 3KP O MiniSat2.2, LI converter Sect. 3.1
60 2° 23028 ¢Ccp o AIDA/Cube Sect. 4.1
60 18 sec 3KP O MiniSat2.2, LI converter Sect. 3.1
65 1.81min 3KP O MiniSat2.2, LI converter Sect. 3.1
66 8.85min 3KP O MiniSat2.2, LI converter Sect. 3.1
67 26 sec 3KP 30 MiniSat2.2, LI converter Sect. 3.1
68 255min 3KP 30 MiniSat2.2, LI converter Sect. 3.1
69 47.76 min 3 KP 35 MiniSat2.2, LI converter Sect. 3.1
70 1.64min 10CP 35 MiniSat2.2, LI converter Sect. 3.1
71 3.58min 10CP 35 MiniSat2.2, LI converter Sect. 3.1
71 3.58min 10CP 35 MiniSat2.2 & Cube, LI converter Sect. 5
75 12.50 h 3CP 35 MiniSat2.2, LI converter Sect. 3.1
76 1.59min 20CP 45 MiniSat2.2, BCJ converter/Pre-Proc. Szt
76 41min 20CP 43 MiniSat2.2, BCJ converter/Pre-Proc Se2t.
76 3.08min 20CP 41 MiniSat2.2, BCJ converter/Pre-Proc.8e2t
77 18 sec 20CP 45 MiniSat2.2, BCJ converter/Pre-Proc Se&ct. 3
78 5.80min 20CP 45 MiniSat2.2, BCJ converter/Pre-Proc.8e2t
79 1472 min 20CP 45 MiniSat2.2, BCJ converter/Pre-Pro¢. Se&
254 21 22380Ccp 0 Side-Channel Sect. 6

KATAN48 30 227 21790 ¢cp o AIDA/Cube Sect. 4.2
40 2P 22495 Cp 0 AIDA/Cube Sect. 4.2
40 2 sec 5CP 40 MiniSat2.2, LI converter Sect. 3.1
50 7 sec 5CP 40 MiniSat2.2, LI converter Sect. 3.1
60 13.18 min 5CP 40 MiniSat2.2, LI converter Sect. 3.1
61 7.12min  5CP 45 MiniSat2.2, LI converter Sect. 3.1
62 11.86 min 10CP 40 MiniSat2.2, LI converter Sect. 3.1
63 17.47 min 10CP 45 MiniSat2.2, LI converter Sect. 3.1
64 6.42 h 5CP 40 MiniSat2.2, LI converter Sect. 3.1

KATAN64 30 2% 22084 Cp o AIDA/Cube Sect. 4.3
40 2 sec 5CP 40 MiniSat2.2, LI converter Sect. 3.1
50 12 sec 5CP 40 MiniSat2.2, LI converter Sect. 3.1
60 3.17h 5CP 40 MiniSat2.2, LI converter Sect. 3.1

Timey: time complexity unit for attacking rounds is number af-round KATAN computations.
Timey: clock time for algebraic attacks; KP: known plaintext; @Rosen plaintext;

LI converter: local interpolation converter; BCJ: Bard«Cmis-Jefferson converter

negl: negligible, Pre-Proc: preprocessed system of equations
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Table 5. Maxterms, cube degree and equations and ciphertext bibDfoodnd KATAN32.

Maxterm |Degree Cube equation Cipher bit
03D193AFx| 16 ke C23
8FF802F4yx| 16 ki+1 c7
315D8EElx| 16 ko + ki3 C21
531DAE2Ax | 16 kg + koo + Kog+1 Co2
AD3E0887x| 15 ks C22
5C3449FAx| 16 ks + k7 + ki3 + kog C2
(C934392Fx| 16 ks + k7 +kio+1 Co
E05946ECx | 15 k12 Cs
C2F7904Dx | 16 K14+ k17 C22
AAC90EE6y | 16 kig+1 C3
C5A473M5x | 16 ks + k7 4+ ki + k19 C2
24AC9FElx| 16 ko+1 Cs
F0279C78x | 16 kig+1 Co
BD30CB11lyx| 15 kiz+1 C19
66079CABx| 16 ko + k1o C2
EBCB9421yx| 16 kg C3
41D3D98Ex | 16 k12 + kog + Kzg C21
41D3D98Ex | 16 kog+1 C22
49A5E4ABy | 16 ks +ki2+kig+kog+1 Co1
F92F9920x| 16 ki1 + koo Co
DD59A48Cx| 16 kg + K12+ k14 + K15 C
6DED8883x| 16 k14 Cy
7D856271x| 16 ks +Kkiga+1 C22
FB4433Clx| 16 kis+1 Co1
8A879E95x| 16 ki1 +1 Co
916A7599x| 16 ko + kg 4+ K10+ k1g+kig+ kog (7]
8BCDBCCCx| 16 kg+ko1+1 C2
F5495155yx | 16 |kg+ki1+kio+Kis+kig+koo+Kog+kog+1 C1
1B584CCFyx| 16 ks +ks+koz+1 (7]
89A3C57Cx| 16 k10+ K12 + koo + k37 C22
69315AA7x | 16 ks + K10+ kos + kog C23
3AMDB8ETx| 16 ko+kg +Kkig+ki7+ko7+ks7+1 C22
9271A58Fx| 16 ko + kg + kg + k19 + koz + ko7 + k3a (7]
7911E746x| 16 ki + kg + kog+k3p+1 C1
4EC6856Bx | 16 ko +kio+Kiz+kig+kss+1 C23
E1D99370x| 16 k15 -+ k74 Kso C20
846ADBF2y | 16 ks + K14+ k16 + ka3 Co4
82DC78B3x| 16 ko1 +Kks1+1 C20
E4416E9Ex| 16 k1 + kg + K14+ kig+ koo + koz+ kg + 1 Co1
65765D7Ax | 19 ko + K10+ K16+ kig+kig+ Kog + k3o + ka3 C19
EC3F1DF2yx| 20 ke + kig+ Kig+ Kos+ ko7 + kg + 1 Co
AAGC3FDDy | 20 k7 + koo +koa +kao 4 Ka1 C20
CB6F2FD2y | 20 k1a+ K16+ Koa+ Kog+ K3z +kao+ 1 C1
7B36D5B5x | 20 kg + ko3 + Kog + k31 + kag C2
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Table 6. Maxterms, LI cube equations and ciphertext bit for 50-rod®TAN32.

Maxterm |Degree Cube equation Cipher bit
1BBEE77Byx| 20 ko + k12 C10
1BBEE77Bx| 20 kg +kog+ 1 C31
B1FF633Ax| 20 kig+1 C10
EB3AEAE6y | 20 koo Cy
EB3AEAEGy | 20 k16 + koo + Kog + k31 + kas + ka2 Cog
AEF689F9x | 20 kig+ks2+1 C30
56CE3DFAx| 20 k1o C10
TFDAA996y | 20 ks C10
D77FE20Ex| 20 kos Cog
AF19DFB4x | 20 ke C12
DC3CI7EDx| 20 ks +ki1+1 C30
61BC7B9Fx| 20 ks + koo Co
23B35FD7yx| 20 ko C12
9CF75766x| 20 kis+1 Cg
9CF75766x| 20 kz+1 Cog
ES8FB7CAx| 20 koo + kog Co6
C7E6C7CBx | 20 k11 +ko1+Kk3p+1 C10
3E3BE3EAx| 20 kiz+1 C10
3FFCCD62x | 20 kg + k10 + K13+ Kia+ koo + ko C30
EF4FDO85yx| 20 ke + k11 + Koo + k3o + ka3 + K37 c7
2F6D66FAX| 20 ks+1 C31
BESEL19F3yx | 20 |kp+k7+kg+Kio+Kkig+ki7+ ko1 + Kog+ ko7 + k3o + Kag + kzg+Kaz|  Cog
ECDD58BDx| 20 ke + K7 + K16+ K17+ kog+ ko + kog + kog + ko7 + Kag + 1 C29
DEBCFB22x | 20 kg + k17 + Kog + kas + ka7 + Kas Cg
FE3E09D7x | 20 k11 + ko2 Co
F83B3AEBy 20 k]_g Co9
BACCAF37x| 20 ko + kg2 + K14+ ko2 C12
TFDO7B66yx| 20 kis+ ka1 +1 Cs
BAFEA8D3x 20 k27 C10
AF6AAET5x | 20 ki +1 Co
3ADC3DD7x| 20 ko + k2 4+ K12+ koo + kog + K31 C10
A7TD3F749x | 20 ko + k1o + K12+ ko1 + ko3 + k3o Cg
8FF7D615x| 20 kig+kig+kog+1 Cog
AF88BDFAx | 20 k17 Cy
FE1AL11FFx| 20 ks +kiq+Kig+koo+ k3 +1 C12
DFF9C30Dx| 20 kog C29
95BF5D4Dx | 20 | ko+Kkg+ k7 +kg+kio+kiga+Kig+ Kig+ koo + kog + ko + K3s + 1 Cs
9DF2EE93x| 20 ko1 +ksg+1 Co7
6DD3973Bx | 20 k12 + K14+ kog C11
A271A7FFx | 20 k1 + kg +kio+kig+ koo + ko1 +1 C10
F6CDFALSy | 20 kg + K14+ K15+ kig + koa + Kag + k33 + Kao C29
5ESABSEByx| 20 k12 + k14 + K16+ koo + Koo + kos + kog + k3o C31
FD847AF6y | 20 kog+Kksz+1 Co
F770ECECK| 20 ks 4 k16 + Kog + Kog + Ko7+ k3o + k32 + kaa + ks + kg + K43 Cs
FBAE4E3Ax| 20 k7 4+ kog + kog+ kaz+kag + 1 C27
EEB6A9A7y | 20 ks + Ko + K16 + k1g+ k19 + Kos + kog + ka7 + kag + ka1 + Ka3 + kag (ord
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Table 7. Maxterms, cube degree and equations and ciphertext biDfooénd KATAN32.

Maxterm |Degree Cube equation Cipher bit
B6F7FAFDx| 25 kso+1 C31
EFE7F6FAx 25 kgg C11
F7CDFFCEx| 25 kog+ k3o + k32 + kag + kao+ Kap + kag + ksp+ 1 C31
FEBF7EAEx| 25 kog+ k3o + Kgo+ ksg + 1 C14
63D7FFF7x| 25 k1g+ kog + k3o + kag + Kaog + Kaz + Kag Co7
3F7BBF5Fx | 25 kg + k1g + Koo + Kog + K32 C17
EF2FFOEFy | 25 kog+ 1 C12
EF2FFOEFyx | 25 koo +ksp+1 C31
FFF3F573x| 25 K15+ K17+ Kig+ koz + k3o + K3z + kas + ka7 + Ka1 + kaz+ kaga + 1 C11
DAOEFFF7x| 25 kg + k1o + K14+ koo + koa + kog + k3o + kgg + 1 C11
FFD6BABFyx | 25 Ksg C31
FF5777F6x| 25 kg7 C11
B7F2DFDFy | 25 kig+1 Cig
B7F2DFDFy | 25 kiz+kig+1 C17
BDF7FD97x| 25 ko7 + k3 C11
TFDEBFDCx| 25 k14 + ko1 + koo + ka1 Cis
EFFOB7EDx| 25 kiz+ks1+1 Cig
FFF5FDCCx| 25 k19 + ko3 + Ko7+ ka5 + kag + Kaz + kag+ 1 Co
EEBB7DF7x| 25 koo +1 Cig
F7C6EDFFyx| 25 kg +k1g+ k35 +kaz+1 C14
FE3BF77Ex| 25 ki7+ksz+1 Ci5
OFFE7FAEX| 25 kio+kig+ koo +koga+1 C17
EFFFDDOAx | 25 kag + k3o C12
FEF7779Bx| 25 ko3 + ko7 C14
CFFF7BE6x | 25 k12 C14
EABFF73Fx| 25 k3o +ksg+1 C13
BC7FCF7Fx| 25 ko +1 C14
FADFECFBy | 25 kaz+1 C14
DDD3FF3Fyx| 25 kog+1 C13
EB67DDFFx| 25 k16 + kog+ Kog + kas + kao + Kag + 1 C30
FEEFB8FEyx | 25 k3o + k32 + Ka2 C31
3CFFEF7Ex | 25 k1a+kig+ Koo+ koo +1 C13
DFEFFADDx| 25 kis C31
AFBEFDCFx | 25 k1o C17
DAFOFFEDx | 25 kog + k32 + K3g+ ka5 + 1 Ci8
DF733FEFx| 25 kig+ko1+1 C17
BF7BEE6Fyx| 25 ki+1 C13
FFEESTFCx| 25 |Ky1+ Koo+ ka3 +Kas+ ka7 +-kag+Ka1 +Kaa+Kas +-Kag +Kso+-ks1 + Ksg+keo+ 1| €11
FATECFFDx| 25 k17 + Koo + kog + ko7 + kog + K3z + k3a + ko Cig
BOE77FFEx| 25 k10 -+ koo + Kog + kog + kog + k3o + kag + k37 + kag + kag + ks + 1 C11
FF37EDEBx| 25 kso Cog
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Table 8. Maxterms, cube degree and equations and ciphertext bitlfoodnd KATAN32.

Maxterm |Degree Cube equation Cipher bit
FFFFD5FCx | 27 ks2 + ks4 + Keo C14
FFFFF7Cox | 27 |K31+ksy+ksa+Ksa+Kea+ky1| Car
FFF3FATFx| 28 keg+1 Cig

Table 9. Maxterms, cube degree and equations and ciphertext bibfoo3nd KATAN48.

Maxterm |Degree Cube equation Cipher bit
080065A4348Cx| 14 K10+ K13+ ko7 C30
816011140125 | 12 Ky Co
040C10006BAdy | 12 k3 C30
834000025073y | 12 ks + k12 Co
04800011D1D1yx| 12 ko C4
4006B04001A9 | 12 ko C35
0282A2444E00yx | 12 ki3 C31
050E4324024Ax | 14 ko+ki+ks+kis+1 Co
10A032428412x | 12 kg +1 C32
880391220424y | 12 ko + kg C3
80204850301Byx| 12 ke + 1 C30
8464022840C4x| 12 ki1 +1 C30
094024005E14yx | 12 ki1 + Kz + k7 +kig C30
000226985028 | 13 k2 +Kq + kg +Kio+kos C3
02160206A070x| 12 ks +kig+1 C35
0AAF00027010x| 13 ks +ks +kio C33
880111800520 | 12 kio+1 C1
430841102A88yx| 12 k1 Co
180028808CD9y | 13 Ko+ko+1 Co
40A101501883x| 12 ko +kig+1 Co
0003C11042C3x| 12 ko+kiz+1 C2
8C0401084E0Ex| 13 kg +kio+Kkig C31
22A404909D08y | 14 ko + k3 + k7 +Kyo+Kiz+ki7+kog C32
0F5800240285x| 13 ks + ko + k16 C3
860051430C08y| 12 k1 +k7 +kio+kiz+ koo C1
203483004E1Ax| 14 Ko + k3 + kg + k7 + ko1 + Koo + kog C29
40E8040512C8x| 13 Ko+ Ky + ko + ks + ke + kg + k17 + ko C33
64209090B082x | 13 k3 + kg + k7 + kg + k15 + koo C30
013820886215 | 13 k1 + kg + K12+ K14+ kog C36
A0285800E906x | 14 ko + kg + ks + kg + k1o + k11 + ki3 + kog Co
00000500DB14x| 12 |kg+Kki+ko+ks+ky+Kg+ki1+kis+kor+kog+kzo+1 C2
048070044F82x| 13 ko + K11+ K13+ K15+ ko1 +Kag C1
6103080056A9x | 14 ko + ki1 + K + k1o + k11 +kig+Ki7+ kos+kzpo+1 Cs
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Table 10.Maxterms, cube degree and equations and ciphertext biDfoodnd KATAN48.

Maxterm |Degree Cube equation Cipher bit
66140B44FE81x| 20 k3 + ks C37
2096B841C6F2x | 20 ko + ks C18
2004D819B69Fx | 20 ks Cs6
01E07456499Bx| 20 k3+kip+kig+1 C13
874108B1E347x| 20 ko + kg C43
85DF1310A226% 20 kll C43
D9F00150D11Ex| 20 ki +kio+1 C12
204D49C3B56Cx | 20 ka C16
3000F607DCAEX| 20 ke +1 C43
75045046CC5Ex | 20 kg Ci5
8D705440E2CBy | 20 ks + k14 +Kig Ca2
5024603E9A37x| 20 k3 + ks + kg +kio+koz+1 C16
5024603E9A37x| 20 ki +ko+1 Caa
3034E083566Dx| 20 k7 +1 C18
81E48D04DB19x| 20 ki+ks+ks+kiga+kis+1 C41
41482473ADB4yx| 20 ka+kig+1 C42
3D4635605382x | 20 k13 C39
51902406CABFyx| 20 ks +kg+kio+1 Caa
583088DBOC6Ex| 20 k1 + ko + ko + k16 Ci6
5040CACE9AFlyx| 20 ko+ke +ke+kop+1 Ca1
7749008CBACly| 20 Ky + ks + kg + kig+ kg1 +kiz+1 Ca2
96940C46139Ey | 20 ko +Kky +Ko+Kkio+kia+koo+1 Ca1
96800804FF5Byx| 20 ko + k3 +kg+ kg +kis+ki7+1 Ca6
211013326F3Dx| 20 ks + kg + K10+ k16 + kos Ci5
18574012A577yx| 20 ks + kg +Kio+Kig+kog+1 Ca7
81668801EE97x | 20 |Ko+Ky+Kks+ke+kg+Kg+Kig+kis+ksp+1 Ca6
3050A044F5EDx| 20 Ky +Kg + Ko +kiz+ kis+kog + 1 Cs6
42BF16A44AA0x| 20 k7 + Ko + ko2 C10
50AD4122AA1Fyx| 20 kio+ ko7 C12
0AABO004F89Dx| 20 ko + k3 +kio+k11+kog C20
C884A100FCF3yx| 20 k3 4+ k11 + ki3 +Kkia+ Kis+Ki7+ kog Ci8
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Table 11.Maxterms, cube degree and equations and ciphertext biDfoo3nd KATANG64.

Maxterm Degree Cube equation Cipher bit
0CB0C29808C10001x | 16 ks C44
2E2128800020305Ax | 16 ka c7
10E2002920014471y| 16 ki + ks + k2 Ca7
0A12042100446263x| 16 kg +kio+kig C12
029290C002C10140x | 16 ko Cs
AE00032002100492x | 16 ko Co
4241092108534C00x | 16 k1 C44
OE0864A20828A800x | 16 ko Cs6
4104901087403083x | 16 k7 Cs
44010B12812A0124x | 16 k3 C49
0200A0D00305E08Ax | 16 ks + k1o Cag
041102168238A802x | 16 ke Co
439C00A810940044x | 16 k3 +kg + k17 Co
60910A0B93000802x | 16 k1 +ks Ca7
0180084049C98003x | 16 Ko +k1 +ko +Kg + ki1 Cs
3C1500040080Q097x | 16 ka+kis C48
0800FD4900016180x | 16 ks + ko + kig Cs4
002091443A501C40x | 16 ko + k13 C45
1027118032506001x | 16 k1 + ks + k1o + ko1 C10
0080DC00814454A8y | 16 ks + k7 + k14 Cag
1132000241095220x | 16 | kg + ks + k7 + kg + kis+ koo + koa | Csp
8E200808003A8D40x | 16 k3 + kg + k1o + kig Cs1
00458C3220521011x | 16 |ko+ko+ks+kio+kis+kiz+koo| €11
4024935001018048x | 16 ko + ks + Ko + k11 + ko2 C49
8004007882307052x | 16 ko + ks + K12+ ko3 Cs
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