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Abstract. This paper presents the first results on AIDA/cube, algebraic and side-
channel attacks on variable number of rounds of all members of the KATAN fam-
ily of block ciphers. Our cube attacks reach 60, 40 and 30 rounds of KATAN32,
KATAN48 and KATAN64, respectively. In our algebraic attacks, we use SAT
solvers as a tool to solve the quadratic equations representation of all KATAN ci-
phers. We introduced a novel pre-processing stage on the equations system before
feeding it to the SAT solver. This way, we could break 79, 64 and 60 rounds of
KATAN32, KATAN48, KATAN64, respectively. We show how to perform side
channel attacks on thefull 254-round KATAN32 with one-bit information leak-
age from the internal state by cube attacks. Finally, we showhow to reduce the
attack complexity by combining the cube attack with the algebraic attack to re-
cover the full 80-bit key. Further contributions include new phenomena observed
in cube, algebraic and side-channel attacks on the KATAN ciphers. For the cube
attacks, we observed that the same maxterms suggested more than one cube equa-
tion, thus reducing the overall data and time complexities.For the algebraic at-
tacks, a novel pre-processing step led to a speed up of the SATsolver program.
For the side-channel attacks, 29 linearly independent cubeequations were recov-
ered after 40-round KATAN32. Finally, the combined algebraic and cube attack,
a leakage of key bits after 71 rounds led to a speed up of the algebraic attack.
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1 Introduction

This paper describes our findings of cube attacks [16], also known as AIDA [30], alge-
braic [11] and side-channel (cube) attacks [17] applied to avariable number of round
of all members of the KATAN family of block ciphers [13]. As far as we are aware of,
this is the first paper detailing these attacks on the KATAN ciphers.

The cube attack is a kind of algebraic technique that exploits the existence of low-
degree polynomial equations in the output of cryptographicalgorithms. An attractive
feature of the cube attack is that it requires only black-boxaccess to the cryptographic
function, that is, the knowledge of internal details of the target function is not required.
Informally, if the decomposition of algebraic multivariate polynomial equations at the
output of a target cipher has degree at mostd + 1, then linear equations on unknown
key bits can potentially be extracted, provided that at most2d computations (encryp-
tions) are feasible. Thus, the basic setting is key-recovery, but distinguish-from-random
variants have been demonstrated in [2]. In [16] the cube attack has been applied to
reduced-round variants of the Trivium [14] stream cipher.

Algebraic cryptanalysis exploit the multivariate polynomial system of equations in
ANF format representing a given cipher [11]. The aim is to solve such systems for the
unknown key (usually in a known-plaintext setting, but often we use chosen-plaintext
attack to reduce the running time). Typically, quadratic equations are the main target
representation. We convert the ANF equations to CNF format and feed it to a SAT
solver, in our case MiniSat [18] and CryptoMiniSat [26]. Furthermore, we introduce a
novel pre-processing step on the system of equations beforegiving it to a SAT solver.
This allows us to break a larger number of rounds. Ultimately, we combine the cube
and algebraic attacks on reduced-round KATAN ciphers.

We also combined the cube and side-channel techniques to attack the full-round
KATAN32, following the model in [17]. Table 4 summarizes allthe attack complexi-
ties in this paper. Up to the moment, we know of no other independent attacks on the
KATAN ciphers, even for reduced-round versions.

This paper is organized as follows: Sect. 2 briefly describesthe KATAN family
of block ciphers; Sect. 3 provides some theoretical background on algebraic attacks;
Sect. 4 gives theoretical framework and our experimental findings on AIDA/cube at-
tacks; Sect. 5 combines both attacks; Sect. 6 describes side-channel cube attack; Sect. 7
concludes the paper.

2 The KATAN Family of Block Ciphers

KATAN is a family of lightweight, hardware-oriented block ciphers consisting of three
variants with 32, 48 and 64-bit blocks. For all KATAN ciphers, key size is of 80 bits (n=
80), and they all iterate 254 rounds [13]. The block size is used as suffix to designate
each cipher member, as KATAN32, KATAN48 and KATAN64. The design of these
ciphers was inspired by the stream cipher Trivium [14]. The structure of KATAN32
cipher consists of two LFSR’s, calledL1 andL2, loaded with the plaintext and then
transformed by two nonlinear Boolean functions,fa and fb as follows (Table 1 lists the
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bit sizes and the indicesxi andy j of L1 andL2).

fa(L1) = L1[x1]+L1[x2]+ (L1[x3] ·L1[x4])+L1[x5] · IR)+ka

fb(L2) = L2[y1]+L2[y2]+ (L2[y3] ·L2[y4])+L2[y5] ·L2[y6])+kb

where IR is the output of an LFSR i.e.L1[x5] is used whenever IR= 1. The values of
IR for each round is specified in [13]. For thei-th round,ka = k2i andkb = k2i+1 that
is, only two key bits are used per round. The output of each of these functions is loaded
to the least significant bits (LSB) of the other LFSR, after they are left-shifted. This
operation is performed in an invertible manner.

For KATAN48, fa and fb are each applied twice per round, so that the LFSR’s are
clocked twice (but the same pair of key bits are reused). For KATAN64, each Boolean
function is applied three times per round, again with the same pair of key bits reused
three times.
The selection of bitsxi andyi in fa and fb are listed in Table 1. In this report, plaintext

Table 1.Parameters for thefa and fb functions.

Cipher |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

and ciphertext bits are numbered inright-to-left order starting from 0. Thus, for in-
stance, a plaintext block for KATAN32 will be numbered asp = (p31, . . ., p0). The key
schedule algorithm of all KATAN ciphers is a linear mapping that expands an 80-bit
keyK to 508 subkey bits according to

ki =

{

Ki , for 0≤ i ≤ 79

ki−80+ki−61+ki−50+ki−13, otherwise

Thus, the subkey of thei-th round iska||kb = k2i ||k2i+1.
After r rounds, at most 2∗ r key bits are mixed with the internal state since two

key bits are xored per round. Thus, at least 40 rounds are needed before complete key
diffusion for any KATAN cipher is achieved. Further detailsabout these ciphers can be
found in [13].

For analyses purposes, the numbering of the key bits in the user key in our attacks
is K = (K79, . . ., K0).

3 Algebraic Attacks Using SAT Solvers

Algebraic cryptanalysis is a type of cryptographic attack that relies on solving a mul-
tivariate polynomial representation of a given cipher or hash function. It was initially
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formulated as early as 1949 by Shannon [29]. Algebraic attacks, since the controver-
sial paper of [11], have been applied to several stream ciphers [1,9,10] and is able to
break some of them but it has not been successful in breaking real-life block ciphers,
except Keeloq [7,21]. Compared to statistical analysis, such as linear and differential
cryptanalysis, algebraic attacks require a comparativelysmall number of text pairs. The
adversary formulates the cipher as a polynomial multivariate system of equations. This
representation is usually over small finite fields likeGF(2). This system of equations is
often sparse, since efficient implementations of real-world systems require a low gate-
count. In the subsequent stage, the adversary solves the system. The problem of solving
such system is NP hard in general and is recognized as the MQ problem. An instance
of an MQ problem is a set of functions

f1(x1, . . . ,xn) = y1, f2(x1, . . . ,xn) = y2 , . . . , fm(x1, . . . ,xn) = ym

where fi can always be converted to a quadratic polynomial by introducing new vari-
ables. Notice thatn is the number of variables andm is the number of equations. Let
c = m

n denote the degree of “overdefinition” of a system [4]. Hence,c = 1 denotes
exactly a defined system,c > 1 an overdefined system andc < 1 an underdefined sys-
tem. The polynomial representation of most block ciphers are overdefined or if not then
c≈ 1. It turned out that the more the system is overdefined and sparse the easier it is to
be solved [11]. For one instance of KATAN cipher,c < 1. This because in all versions,
the key size is larger than the block size. Thus, more than onepair is required to find
the correct key.

There are multiple methods for solving such systems. The traditional method uses
the Gröbner basis approach such as Buchberger [6] or F4 [20]and F5 [19] algorithms.
The drawback of such methods is memory, implying that after awhile the algorithm
outputs the result or it crashes due to running out of memory.This is true particularly for
large systems, but they are usually faster than other methods for small systems and when
the characteristic of fieldq is not 2. Whenq= 2, more efficient methods were proposed,
such as converting these equations to Boolean expressions in Conjunctive Normal Form
(CNF) [4] and deploying various SAT-solver programs. Otherstrategies include the XL
family [12,11], the recent MutantXL [15,25], ElimLin [8] and the Raddum-Semaev
[27] algorithms. We focus on SAT-solver based methods in this paper. From now on we
will work only with the fieldGF(2). To solve such polynomial system by SAT solvers,
the attacker initially converts the system from Algebraic Normal Form (ANF) to CNF.
There is an efficient conversion method due to Bard-Courtois-Jefferson [4]. We also use
a direct method which we call “local interpolation”. Let assume that the total degree of
the equations is at most 6. We proceed as follows:

– If there are equations which contain more than 6 variables, split these long XORs
into several shorter XORs with at most 6 variables, by addingextra variables, for
exampleabc+de f+gh= 1 becomesabc+de f = x andx+gh= 1.

– for each equation, convert the Boolean function to CNF and write it explicitly.

The concatenation of these CNFs gives a file with extension .cnf on which we can
apply any SAT solver. The magic number 6 originates from [4],and is called the cutting
number—sometimes 4, 5, or rarely 7 is optimal instead.
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The area of SAT Solving has seen tremendous progress over thelast years. Many
problems (e.g. in hardware and software verification) and inour application in crypt-
analysis that seemed to be completely out of reach a decade ago can now be handled
routinely. Besides, new algorithms and better heuristics,refined implementation tech-
niques turned out to be vital for this success. New SAT solvers can now solve large
systems in reasonable time. Since 2002, almost each year a SAT Race competition [28]
was established. In 2007 and 2010 respectively, MiniSat [18] and CryptoMiniSat [26]
won the Gold prizes. We used these two SAT solvers in our analysis but since the tim-
ings of MiniSat were faster, we do not report CryptoMinisat results in this paper.

3.1 Straightforward Algebraic Attack on KATAN Using SAT Sol vers

One instance of KATAN32 can be represented as 8620 very sparse quadratic equa-
tions with 8668 variables, KATAN48 as 24,908 equations and 24,940 variables and
KATAN64 as 49,324 equations and 49,340 variables. As can be observed, the system
is underdefined. That is because the key size is larger than block size for all versions.
To have a defined or an overdefined system, we need multiple samples.

A summary of our results is in Table 4. We used the “guess and determine” alge-
braic attack initially proposed in [4]. This implies that wefix t bits of the key and then
we show that recovering the other 80− t bits is faster than exhaustive search. This is
represented in the column titled “Fixed” in Table 4. In fact,we fix t LSB of the key,
since heuristically we obtained better results than fixing thet MSB of the key. We used
the graph partitioning method by Wong and Bard [31] to derivethe best state variables
to fix, but it did not bring about anything better than using the heuristic of fixing the
leastt significant bits of the key. Note, if we fixt bits, the algebraic attack is solving a
system of equations to recover the 80− t remaining bits.

We represent the time complexity of the SAT Solver (MiniSat)in seconds using a
3 Ghz CPU. Note that our algebraic attacks are in the chosen-plaintext scenario, except
in some rare cases as noted. We noticed that chosen-plaintext attack is much stronger
against KATAN family than known-plaintext (KP) attack. In our attacks, we followed
the following structure for the chosen plaintexts for KATAN32: pi+1 = ((pi ≫ 19)+
1) ≪ 19 andpi+1 = ((pi ≫ 29)+ 1) ≪ 29 for KATAN48 andpi+1 = ((pi ≫ 39)+
1) ≪ 39 for KATAN64 for i ≥ 1, wherepi is the i-th plaintext we pick andp1 can
be arbitrary. Note that bits 19,29,39 are exactly bit 0 ofL1 register for KATAN32,
KATAN48 and KATAN64 respectively. This choice of the bits makes the SAT solver
run faster. Moreover, we believe it is fair to assume each round encryption of KATAN
takes at least 3 CPU cycles. This yields a comparison betweenthe complexity of our
attacks and exhaustive key search.

Deploying the straightforward method of converting ANF to CNF and then feeding
it to a SAT solver, we could break up to 75 rounds of KATAN32 and64 rounds of
KATAN48 and 60 rounds of KATAN64. But, we can do better by performing a pre-
processing on the system of equations before applying it to aSAT solver. Using this
pre-processing (see next section), we could break 79 roundsof KATAN32. We only
tried this method on KATAN32 equations. Further research would apply this technique
to other members of the family.
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3.2 The Pre-processing SAT-Solver Attack

In this attack, we use the equations generated as described earlier and solve them with
the SAT solver MiniSat [18]. It is simpler to formulate KATANas a sparse system. But,
this may not be the best representation for a SAT solver. One characteristic of these
equations is that there are many of them with the formx = y, as well asx = 0, y = 1
and more rarelyx+ y = 1. Also, in a typical example (78 rounds, 45 key bits fixed
and 20 CPs of KATAN32) there are 51,321 total equations. Naturally one wants to take
advantage of these special equations, during pre-processing, to create a smaller system
which has fewer variables and equations.

More precisely, the four heuristics of a CNF problem are (1) the number of vari-
ables, (2) the number of clauses, (3) the average number of symbols per clause, and
(4) the total number of symbols in the system. The pre-processing algorithm that we
describe in the next section is designed on the principle of primarily reducing (1) and
(2) while causing the minimum possible increase in (3) and (4). To be specific, at each
iteration, a substitution will be made and this substitution reduces (1) and (2) by one,
and the substitution is selected in the style of the “greedy algorithm” using (4) as the
criterion.

The following pre-processing algorithm, due to Bard, is a refinement of the “mas-
saging” algorithm of [4] and so we call it “turbo-massage”. Starting with the equations
that were generated, we ran the pre-processing algorithm; after that, we converted the
polynomials into a CNF problem, according to [4] and ran MiniSat on that CNF prob-
lem to get a solution. We will explain the pre-processors here and refer the reader to [4]
or [3] for the process of converting a polynomial system intoa CNF problem.

3.3 The Turbo-Massage Pre-processing Algorithm

As described before, the equations can be thought of as a series of polynomialsf1(x) =
0, f2(x) = 0, . . .. We define the operation “fully-substitute” as follows: Letf (x) be a
polynomial with some monomialµ. To fully-substitutef (x) into g(x) onµ means to

– Write g(x) in the formg(x) = µh1(x)+h2(x).
– Write f (x) in the form f (x) = µ+h3(x).
– Replaceg(x) with h1(x)h3(x)+h2(x), which is mathematically equivalent, because

in any satisfying solutionx, we would haveµ= h3(x).
– By clever use of data structures, this can be made highly efficient.

Observe that for the four common forms:x = y, as well asx = 0, y = 1, and more
rarelyx+ y = 1, the “fully-substitute” definition does what one would do if solving a
system of equations with a pencil and paper. For more higher weight f (x), understand-
ing what it does tog(x) is more complex.

We must also use a non-standard definition of the weight of a polynomial f (x). We
define it to be the number of monomials inf (x), but excluding the constant+1 from
the tabulation. The reason for this is that iff (x) has weightw according to this modified
definition, then 2w−1 conjunctive normal form clauses of lengthw will be required to
represent the polynomial, assuming all the monomials are already defined. The total
number of symbols is thenw2w−1 and so minimizingw is crucial in keeping the CNF
problem small and thus solvable. We now perform the following algorithm:
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– INPUT: A system of polynomial equations overGF(2), and a weight-limitwmax.
– Mark all polynomials “unused.”
– While the set of unused polynomials is not empty do:

• Locate the lowest weight unused polynomialf (x).
• If f (x) exceedswmax, terminate.
• Mark f (x) as “used.”
• If f (x) has weight 1, then selectµ to be the only monomial inf (x).
• If f (x) has weight 3 or higher, selectµ to be the monomial which appears least

frequently in the entire system of equations.
• If f (x) has weight exactly 2, selectµ to be the monomial which appears most

frequently in the entire system of equations.
• For any polynomialg(x) containing the monomialµ, simply “fully-substitute”

f (x) into g(x) onµ.

The “turbo-massaging” algorithm will always terminate, because eventually every
polynomial has been marked used. In practice, it will terminate early, where all unused
polynomials are of weightwmax or higher. If there aren “used” polynomials, then there
will be n monomials which appear nowhere in the entire system except in exactly one
polynomial. This is, of course, the monomialµwhich was chosen when that polynomial
was getting used. In our system of equations, it was almost always the case (by an
overwhelming margin) thatµwas degree one. And so, each used polynomial effectively
amputates one variable from the polynomial system of equations.

The special case of weight 2 deserves explanation. Whenf has weight 1, there is no
decision to be made, but it is noteworthy that the weight ofg will decrease. Whenf has
weight 2, then the weight ofg will not change during the “fully-substitute” operation,
except in some odd cases like substitutingx = y into zx+zy+w+x+y = 0, where the
weight goes from 5 to 1 instantly. Since the weight is not likely to change and we are
eliminating a monomial, it makes sense to eliminate a commonmonomial. When the
weight of f is 3 or more, then the weight ofg will increase. If we chooseµ to be very
popular, appearingk times, then the total weight of the system will increase byk(w−2).
Thus, it makes sense to keep the weight growth bounded and chooseµ to be rare. This
heuristic was found after an enormous number of iterations of “trial-and-error.”

For example, in the 78-round, 20 CP, 45-bit-key case of KATAN32, the weight went
from 110,726 to 101,516 after 47,032 polynomials got used. Furthermore, the “fully
substitute” function was called 330,587 times. There were 50,033 equations at this
point, down from 51,321, representing 1,288 equations that became 0= 0. In other
words, the original system was not full rank. The average weight of a polynomial, us-
ing the modified definition of weight, was roughly 2.02898. The system had 53,993
distinct monomials, plus 2,005 variables which appeared only in degree 1 monomials,
and ended with a CNF problem of 55,398 variables, and 156,010 clauses. The conver-
sion process, which must be run only once and not 245 times, takes between 20 and 29
minutes in all the cases explored here.

It should be noted that in other polynomial systems it might be the case thatµ is
often quadratic or higher degree. It remains open if one should forceµ to be linear when
possible. This is a question that the authors hope to investigate shortly. As it comes to
pass,wmax = 2 turned out to be slightly better thanwmax = 3 for this problem, but in
other cases up towmax= 5 has been used.
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A minor note for algebraic geometers familiar with the concept of a Macaulay ma-
trix [23] in the Lazard [22] family of algorithms (includingF4 [20], XL and their vari-
ants [12,11]) is that this algorithm is like a Gaussian Elimination on that matrix, but
stopping early. The pivoting strategy used is reducible to the Markowitz pivoting algo-
rithm [24]. However, the “fully-substitute” is not the samein this case, as addingx = y
to zx+ zy+ w+ x+ y = 0 would result inzx+ zy+ w = 0. On the other hand, fully-
substitutingx = y into zx+ zy+ w+ x+ y = 0 would result inzx+ zx+ w+ x+ x = 0
which turns intow = 0. As you can see, full-substitution is distinct from adding, and
is very similar to what a mathematician would do if solving a system of polynomial
equations with a pencil and paper.

3.4 Results

The first result was 76 rounds, 20 CP and 45 (fixed) key bits of KATAN32, broken faster
than by brute force. To extend this result, we explored usingfewer key bits, and more
rounds. First we conducted the above process for 20 CPs, and for 76, 77, 78, 79 and 80
rounds. Every case was run 50 times.

Because we fixed 45 bits of the key, and so assuming one nano-second per round for
a brute force attacker, our attack againstr rounds is faster than brute force if and only if
it runs int seconds with 245t < r28010−9 or more plainlyt < r23510−9≈ r(34.3597· · ·).
We also ran trials with 43 bits of the key fixed for 76 rounds andthere the threshold
would be 4 times greater or 137.439r seconds and for 41 bits of the key 549.755r
seconds.

The running times are given in Table 2. Observe the enormous variance in each
trial. In some cases, the fastest run is 1000× faster than the slowest. This is very typical
in SAT-solver-based cryptanalysis. We excluded the three fastest and slowest trials and
took the mean and standard deviation of the remaining 44 trials.

The running time of 245 executions, all added together, is the sum of 245 samples
from independent random variables. Therefore, the centrallimit theorem applies and
regardless of the actual distribution of running times, if the mean ism1 and stdev is
σ1, the sum of 245 of them will be normally distributed and have a mean of 245m1 and
a standard deviation of 222.5σ1. Sinceσ/m is an important instrument in gauging the
reliability of a normal sample, it is interesting to note here thatσ/m (for the sum of
245 execution times) would be 2−22.5(σ1/m1) which is phenomenally tiny. Thus, the
running time of the real-world attacker would be essentially constant.

Notice, that we claim that the 245 running times are independent, but we do not
claim that they are identically distributed. On the other hand, one could conceive of a
cipher where one key bit was ignored by the cipher, in which case the running times for
two keys which differ only in that bit would be highly dependent. These cases are of
pedagogical interest only, because no cipher designer would ever do that.

As can be seen in Table 2, we are between 80.75 and 2.39 times faster than brute
force search for up to and including 79 rounds. In the case of 80 rounds, out of 50 trials,
29 of them timed-out after 1 hour. Since this is majority, it is not possible that the mean
is less than the required 2748.77 seconds, and so we are not faster than brute-force for
80 rounds. For 43 key bits and 41 key bits, the attack becomes vastly more efficient.
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But, we cannot test 39 key bits, as the time-out value would have to be set to 167,125
seconds or roughly 46 hours, for each of 50 processes.

In addition to MiniSat, we ran all 50 instances with CryptoMiniSat [26], a SAT-
Solver constructed specifically for cryptography by Mate Soos. However, it was con-
sistently slower than MiniSat. We suspect that this is the case because CryptoMiniSat
was intended to minimize the impact of long-XORs, which are normally very damag-
ing to the running time of SAT-solver methods; however, we have no long-XORs in our
equations, in fact, no sum was longer than 5 symbols after pre-processing, excluding
the constant monomial.

3.5 The Gibrat Hypothesis

In [4], [8] as well as [3], Bard hypothesized that the true distribution of the running times
of a CNF-problem in a polynomial-system-based SAT problem follows the Gibrat dis-
tribution. That is to say, that the logarithm of the running time is normal. The running
times here were such that their standard deviations exceeded the mean. If the distri-
bution of the running time were normal, havingσ > µ would imply a very significant
fraction of the running times would be negative. Therefore,it is not possible that the
running time is normally distributed. On the other hand, we also tabulated the mean and
standard deviation of the logarithm.

The ratio of the mean and standard deviation of the logarithmof running times is
much more reasonable. The kurtosis is the typical measurement of the “normalness” of
a distribution and the kurtosis of the logarithms of the running times are far closer to 1
(and are in fact within±1) than the kurtosis of the running times themselves (which had
kurtoses over 9). So the hypothesis that the running times are Gibrat, from [4], seems
well-justified for these examples.

3.6 A Strange Phenomena

We were perplexed to discover that solving 77 rounds was far easier than solving 76
rounds or 78 rounds. Therefore, we ran the experiments again, with both sets of results
listed in the Table 2 as first batch and second batch. As you cansee, in both cases, 77
rounds is much easier than 76 or 78—and with a very large margin. Moreover, this re-
mained true as well in our experiments with CryptoMiniSat. As random variables, the
ith iteration of the 76 round attack and theith iteration of the 77 round attack had ab-
solute correlation of 0.060419· · · and likewise between 77 and 78 it was−0.09699· · ·.
These extremely low correlations make it safe to hypothesize that the running times
are independent and this removes the possibility that the effect is an artifact of some
methodology error. Note, the formula for correlation that we used is

Cor(X,Y) =
E[(X−µx)(Y−µy)]

σxσy

as is standard. Moreover, we observed the same behaviour when dealing with the size of
the vertex separator in the variable-sharing graph representation of polynomial system
of equations of KATAN32 using the strategy described in [31]. For KATAN32, the size
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of vertex separator is not increasing with the number of rounds and as a matter of fact
it fluctuates. We offer no explanation as to the cause of the weakness of the 77-round
version of KATAN32.

4 AIDA/Cube attacks

AIDA/cube attacks [16] are generic key-recovery attacks that can be applied to cryp-
tosystems in a black-box setting, that is, the internal structure of the target cipher is
unknown. An important requirement is that the output from the cryptosystem can be
represented as a low-degree decomposition multivariate polynomial in Algebraic Nor-
mal Form (ANF), calledmaster polynomial, in the key and the plaintext. This attack
does not depend on the knowledge of the master polynomial, which may be dense, or
whose representation is so large that it cannot even be stored.

Let p(x1, . . . ,xn,v1, . . . ,vm) denote a master polynomial overGF(2) in ANF, with
xi , 1≤ i ≤ n, the public variables (plaintext, IV bits) andv j the secret key variables.
We assume the adversary is allowed to query the master polynomial at valuesxi (that
is, a chosen-plaintext, chosen-IV setting) of its choice (these are also called tweakable
parameters) and obtain the resulting bit from the master polynomial. This way, the
adversary obtains a system of polynomial equations in termsof secret variables only.
The ultimate goal of the attack is to solve this system of equations, which reveals the
key variablesv j . For this attack, the master polynomial is decomposed as follows:

p(x1, . . . ,xn,v1, . . . ,vm) = tI · pS(I) +q(x1, . . . ,xn,v1, . . . ,vm)

wheretI is a monomial containing only public variables from an indexsetI ⊂{1,2, . . . ,n}
calledcube or hypercube; ’+’ stands for bitwise xor;pS(i) is called thesuperpoly of I
in p. The superpoly ofI in p does not contain any common variable withtI and each
monomial inq does not contain at least one variable fromI , since they have all been
factored out inpS(I). The pS(I) of interest are linear mappings in terms ofv j ’s. Any tI
that leads to a linearpS(I) in key bits is calledmaxterm. The output of the offline phase
of the attack consists of linear equations in the user key bits directly. Further, Gaussian
elimination allows one to reconstruct the user key (independent of the key schedule
algorithm). For instance, let

p(x1,x2,x3,v1,v2,v3,v4) = x2.x3.v3 +x1.x2.v1 +x2.v4 +x1.x3.v2.v3 +x1.x2.v2 +1

Let I = {1,2}, so thattI = x1.x2 and we have the following decomposition

p(x1,x2,x3,v1,v2,v3,v4) = x1.x2.pS(i) +q

wherepS(I) = v1 +v2 andq = x2.x3.v3 +x2.v4 +x1.x3.v2.v3 +1.
The main motivation for this decomposition of the master polynomial is that the

symbolic sum overGF(2) of all evaluations ofp by assigning all possible binary values
to the variables inI (and a fixed value, usually 0, to all the public variables not in I ) is
exactly pS(I), the superpoly oftI in p. This is the fundamental theorem in [16]. In the
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example,

M

xi ,i∈I

p(x1,x2,x3,v1,v2,v3,v4) = p(0,0,x3,v1,v2,v3,v4)+

p(0,1,x3,v1,v2,v3,v4)+
p(1,0,x3,v1,v2,v3,v4)+
p(1,1,x3,v1,v2,v3,v4) = v1 +v2 = pS(I)

sincetI = 0 whenever either ofx1, x2 is zero. Inq, since each monomial does not contain
at least one of the variables intI , each monomial will appear an even number of times
in the summation ofp and the xor sum will be zero.

The cube attack has a pre-processing (offline) and an online phase. In the former,
the aim is to find monomialstI ’s that lead to linear superpolys. The maxterms are not
key dependent, so they need to be computed only once per master polynomial, for a
fixed number of rounds. For each maxterm, the adversary computes the coefficients
of the v j ’s, effectively reconstructing the ANF of the superpoly of each tI . This step
is performed by linearity tests [5]. The main issue in the pre-processing is to find the
correct combination of|I | public variables (out ofn) xi that result inlinear superpolys.
Since the exact form of the master polynomial is unknown, this step is heuristic and
consists in randomly choosing the cube variables and using linearity tests to check the
superpolys. This phase is performed only once for a given cipher and a fixed number of
rounds.

Besides the linearity tests there are also ’constant’ teststhat are used to determine
the constant terms 0 or 1 in the superpoly’s. The public variables not in the maxterms
should be set to the same fixed value in both phases. After a sufficient5 number of lin-
early independent (LI) superpolys have been found, the online phase starts by evaluating
the superpolys, that is, summing upp over all the values of the corresponding maxterm,
M

xi ,i∈I

p and deriving the value of the linear combination of secretv j bits. If the degree

of tI is d, each xor sum requires 2d evaluations ofp (which implies a chosen-plaintext
setting). Thus, the time and data complexities are proportional to the maximum degree
d among all maxterms.

The online complexity is proportional to 2di encryptions, for a superpoly whose
maxterm hasdi variables, since the ciphertexts have to be collected (and xored) for

this same amount of chosen plaintexts. Ift LI superpolys are available, then
t

∑
i=1

2di

encryptions will be needed to recover each superpoly. On theother hand, if the key size
is k bits, then 2k−t encryptions shall be enough to recover the remaining unknown part

of the key. In total, the time complexity becomes 2k−t +
t

∑
i=1

2di .

5 An ideal quantity is a trade-off between the number of linearly independent superpolys and
the effort to recover the remaining key bits.

11



4.1 Cube Attack on KATAN32

Table 5 shows cubes and maxterms for 40-round KATAN32. The maxterm is shown in
hexadecimal (the bits set to ’1’ are the selected bits) for a compact description in the
tables in the appendix. We used Gaussian elimination to select LI equations. Experi-
mentally, not all ciphertext bits leak information on the key bits (cube equations). Some
ciphertext positions provide larger leakage than others. There are three cubes of degree
15, 36 cubes of degree 16, one cube of degree 19 and four cubes of degree 20. We
found that the same maxterm can be used for different key equations, for distinct cipher
bits. This means that we can save data and computational complexity during the online
phase. For instance, the maxterm41D3D98Ex gives two LI equations:k12+ k25 + k36

andk24 + 1. Thus, the data complexity is 3· 215+ 35· 216+ 219+ 4 · 220 = 222.76 CP.
The memory cost is negligible. The computational complexity is 222.76+280−44≈ 236

40-round KATAN32 computations, which is dominated by the exhaustive search for the
remaining 36 key bits.

Table 6 shows cubes and maxterms for 50-round KATAN32. Out ofthe 46 maxterms
obtained in total, we observed that the maxterm1B8EE77Bx gives equationsk2 + k12

andk8 +k26+1 and a similar phenomenon happened for the maxtermEB3AEAE6x and
9CF75766x. Thus, the data complexity becomes 43·220 = 225.42 and the time complex-
ity is 225.42+280−46≈ 234 50-round KATAN32 computations.

Table 7 shows cubes and maxterms for 60-round KATAN32. Out ofthe 41 maxterms
obtained in total, we observed that the maxtermEF2FF9EFx gives equationsk26 + 1
andk22 + k32 + 1 and a similar phenomenon happened for the maxtermB7F2DFDFx.
Thus, the data complexity becomes 39·225≈ 230.28 CP and time complexity is 230.28+
280−41 = 239 60-round KATAN32 encryptions.

In all our cube attacks, we ran 10,000 linearity tests and then we tested the equations
for 50 distinct random keys to be sure they are correct.

4.2 Cube Attack on KATAN48

Table 9 shows cubes and maxterms for 30-round KATAN48. Out of33 maxterms, six
of the have degree 14, nine have degree 13 and eighteen have degree 12. The data
complexity is 6·214+9·213+18·212= 217.90 CP. The memory cost is negligible. Since
two subkey bits are used per round, at most 60 key bits are usedacross 30 rounds. The
computational complexity is 217.90+ 260−33 ≈ 227 30-round KATAN48 computations,
which is dominated by the exhaustive search for the remaining 27 key bits.

Table 10 shows cubes and maxterms for 40-round KATAN48. All 31 obtained max-
terms have degree 20. The data complexity is 31·220 ≈= 224.95 CP. The memory cost
is negligible. The computational complexity is 224.95+ 249 ≈ 249 40-round KATAN48
computations, which is dominated by the exhaustive search for the remaining 49 key
bits.

4.3 Cube Attack on KATAN64

Table 11 shows cubes and maxterms for 30-round KATAN64. All 25 maxterms found
have degree 16. The data complexity of the attack is 25·216 ≈ 220.64 CP. The memory
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cost is negligible. Since only two subkey bits are used per round, there are at most 60
key bits involved in 30 rounds. The time complexity is 220.64+260−25 ≈ 235 30-round
KATAN64 computations.

5 Combining Cube and Algebraic Attacks

The bottleneck in cube attacks is that after some rounds, thedegree of maxterms be-
comes large. Therefore, it takes a long time to find a linear superpolynomial. But still,
if we even get a few linear superpolynomials, it would help toreduce the complexity of
the classical algebraic attack. In fact, the overall complexity would be the sum of those
two complexities. For a small number of rounds, algebraic attacks are successful, but
for larger number of rounds it becomes slower. In such cases,the result of cube attacks
and classical algebraic attacks can be combined. For instance, observing Table 4, we
have obtained a 3-bit condition on the key bits for 71-round KATAN32 using cube at-
tacks with time complexity 229.58. The complexity of algebraic attack alone is 266.60.
Binding these two attacks reduces the complexity of algebraic attack by 1/8 because it
reduces the number of keys to be guessed from 35 to 32. In fact,we need to guess 3 bits
less in order to get the same complexity. So, in Table 4, this reduces our complexity to
263.60.

6 Side-Channel Attack for Full-Round KATAN32

In this section we consider side-channel attack models suchas [17] in which internal
cipher data leaks afterr rounds, wherer < 254, of some full-round KATAN cipher.
On one hand, such data is supposed to have been independentlycaptured by some side
channels for instace, power or timing analysis or electromagnetic emanations (which
is a strong assumption). On the other hand, for our attack setting, only one bit of the
cipher state is needed.

The position of the internal cipher data that leaks is selected by the adversary such
that its polynomial representation has low degreed and it can be regarded as ciphertext
bit c j afterr rounds. Unlike [17], though, we considerc j to be error free, that is, noise-
free. Cube attacks are further employed to derive information on the key fromc j . In this
setting, the same bitc j is supposed to be accessible after each encryption of 2d CP by
the adversary. The adversary chooses different cubes in order to obtain new equations
from c j , all of which are mutually linearly independent.

In this model, only very few internal cipher bits are allowedto leak. In our case,
only a single internal bit will be used. Assume one can get thevalue of internal bitc19

after 40 rounds (c.f. Table 3). We can recover 29 key bits via cube attack with data
complexity 10·212+ 215+ 2 ·216+ 218+ 3 ·219+ 12·220 = 223.80 CP. The remaining
key bits are recovered by brute force. This brings about the time complexity of 251

encryptions to attack the full 254-round KATAN32.
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7 Conclusions

This paper described algebraic, AIDA/cube and side-channel attacks on the KATAN
family of block ciphers [13]. A new feature observed in cube attacks is that the same
maxterms suggests more than one linear independent equation on the key bits. This
phenomenon leads to a reduction in the data complexity of ourattacks.

For algebraic attacks, deploying pre-processing step on the system of equations be-
fore feeding it to the SAT solvers decreases the complexity of the attack for KATAN32.
As topic for further research, this method can be tried on other family members.

In the side-channel attack for KATAN32, we observed significant leakage from bit
19 after 40 rounds. More specifically, we could recover 29 linear independent equations
on the key bits. Surprisingly enough, this bit position is exactly the LSB of register
L1. This finding is similar to the structure of chosen plaintexts picked in attacking var-
ious versions using SAT solvers (Sect. 3.1). We leave similar side-channel analysis of
KATAN48 and KATAN64 as future work.

Table 4 summarizes the attack complexities on the KATAN family of block ciphers.
In this table, we keep two different time complexities: Time1 and Time2, since there is
no straightforward and unique way to convert one into the other. Recall that Time1 mea-
sures the effort in number of encryptions, while Time2 measures the effort in clock time.
The former is used for attacks that explicitly perform partial encryption or decryption,
while the latter is used for attacks related to internal operations in SAT solvers.
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A Maxterms and Cube indexes

The maxterms listed bellow represent the ones with the smallest maxterms. All cube
equations listed are linearly independent (LI). We use hex format to describe max-
terms such that those one bits are selected bits. e.g. 0000000 fx means the maxterm
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cube indices are 0, 1, 2 and 3. For KATAN32, plaintext/ciphertext bits are numbered
as p = (p31, . . ., p0). For KATAN48, the bit numbering isp = (p47, . . ., p0). For
KATAN64, the bit numbering isp = (p63, . . ., p0).
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Table 2. Running time and some statistical results for different number of rounds of the prepro-
cessed equations for KATAN32. The running times are in second.

# of rounds 76 77 77 78 79 80 76 76
fixed 45 45 45 45 45 45 43 41

first batchsecond batch
1 2.89 1.00 2.43 11.04 17.05 59.62 1.50 1.75
2 3.15 2.16 3.69 11.54 24.97 64.61 5.48 1.91
3 3.39 2.25 4.01 14.51 26.86 100.28 15.75 3.36
4 3.39 3.39 4.12 15.83 28.82 135.34 25.88 3.77
5 4.61 3.93 4.40 19.17 54.27 157.10 34.81 5.17
6 6.73 4.16 4.44 24.99 57.02 166.41 39.92 5.65
7 8.29 4.22 4.65 51.46 60.72 230.60 39.97 8.64
8 8.46 4.58 4.72 63.04 64.08 277.04 45.06 11.35
9 11.54 4.81 5.07 86.06 70.34 353.45 50.19 21.71
10 13.15 4.84 6.41 89.89 89.17 354.07 50.79 35.31
11 17.19 4.96 6.81 109.21 109.86 402.56 52.09 41.71
12 17.62 5.44 10.08 115.86 130.28 423.76 60.94 53.7
13 23.64 5.62 14.54 141.19 137.77 433.73 75.35 55.77
14 26.60 5.74 15.03 148.91 145.05 463.78 102.91 61.6
15 27.69 5.83 18.16 161.49 210.29 516.65 116.01 78.29
16 37.32 6.80 18.51 163.23 217.28 687.88 121.89 84.18
17 38.04 7.64 19.51 206.66 269.08 1163.48 123.25 87.51
18 39.67 8.38 21.31 218.43 326.69 1591.56 123.36 104.76
19 48.68 9.54 21.35 230.86 402.61 2180.93 124.39 108.29
20 50.63 10.08 21.57 236.17 408.39 3261.20 131.54 128.62
21 56.51 11.32 22.06 241.45 537.16 3274.25 132.67 138.37
22 62.53 13.81 22.41 248.64 547.32 29 timeouts 134.03 166.93
23 66.03 15.72 22.63 256.66 718.58 207.34 170.14
24 81.25 16.69 27.15 293.66 780.44 208.48 182.83
25 88.88 17.47 28.45 319.31 873.25 233.40 183.9
26 101.43 17.86 32.39 377.06 893.29 258.52 185.41
27 115.13 19.19 45.27 455.50 949.06 300.38 200.08
28 127.09 19.63 49.92 504.97 1007.55 326.94 223.6
29 176.33 22.76 54.80 593.65 1223.91 374.62 246
30 200.26 24.29 54.82 822.36 1244.11 387.17 248.05
31 224.75 29.68 73.71 854.80 1388.40 444.42 254.58
32 243.36 30.09 82.72 880.31 1436.00 449.31 256.05
33 258.53 33.27 85.42 1111.591632.59 542.73 263.13
34 278.53 34.02 85.56 1118.541838.31 829.13 275.75
35 294.99 35.62 97.22 1197.051864.98 905.35 304.75
36 353.49 35.94 97.76 1388.381875.87 954.94 305.1
37 407.02 43.33 103.34 1449.292031.08 1217.79 305.18
38 423.38 43.65 111.18 1514.892038.93 1367.94 328.86
39 475.98 48.18 118.48 1517.732167.55 1390.52 352.89
40 506.67 48.22 119.15 1533.102262.50 1618.79 356.23
41 687.95 49.96 184.91 1538.972369.57 2234.32 403.7
42 842.95 73.62 222.26 1689.962413.38 2455.77 407.63
43 942.88 106.69 226.48 1894.402495.42 2668.97 418.7
44 2387.95 133.21 335.07 2031.932641.90 3246.26 427.04
45 2400.12 186.39 456.45 2375.142960.11 3326.73 429.21
46 3722.62 201.89 662.92 2682.713460.90 3530.63 555.35
47 4471.28 302.66 815.38 2837.974023.81 7157.16 577.3
48 > 6000 344.63 976.94 3731.614129.64 9378.05 6248.59
49 > 6000 433.70 2378.61 > 6000 4212.65 > 10,000 6763.91
50 > 6000 524.56 > 6000 > 6000 > 6000 > 10,000 9655.8

Threshold-time 2611.34 2645.70 2645.70 2680.062714.42 2748.78 10445.3541781.40
# faster 47 50 49 48 49 21 48 50
Median 95.16 17.67 30.42 348.19 883.27 n/a 245.96 184.66

Mean of all but 6 463.21 38.98 100.88 768.47 1146.77 n/a 868.70 205.97
Stdev of all but 6 957.09 60.29 168.93 786.56 1054.09 n/a 1381.91 154.29

Kurtosis of all but 6 9.51 9.19 9.30 0.17 -0.12 n/a 9.33 -0.46
Times faster 5.64 67.87 26.23 3.49 2.37 n/a 12.02 202.85

than brute force
Mean of log 4.648 2.914 3.650 5.938 6.369 n/a 5.706 4.810
Stdev of log 1.820 1.185 1.421 1.380 1.396 n/a 1.513 1.319

Kurtosis of log -0.582 -0.470 -0.620 -0.514 -0.985 n/a -0.985 0.867
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Table 3.Maxterms, 29 cube equations from ciphertext bitc19 from 40-round KATAN32.

Maxterm Degree Cube equation Cipher bit
41356548x 12 k4 c19
2464E14Cx 12 k15 c19
1EA26848x 12 k5 +1 c19
E3516900x 12 k1 +k16 c19
4A8E6888x 12 k0 +k17+1 c19
EBD02900x 12 k3 +k10+1 c19
A0867A0Cx 12 k14+k17+1 c19
C0C34C43x 12 k4 +k10+k19 c19
E2A54302x 12 k11+k15+k23 c19
9C045983x 12 k2 +k7 +k11+k16+k24+k26 c19
bd30cb11x 15 k13 c19
7c366259x 16 k18 c19
2cd5f264x 16 k6 +k15+1 c19
b7351759x 18 k3 +k18+k23 c19
cf9df815x 19 k3 +1 c19
75e471eex 19 k24+1 c19
65765d7ax 19 k0 +k10+k16+k18+k19+k26+k30+k43 c19
ab7f3a4bx 20 k7 c19
b61d73f9x 20 k8 +1 c19
3d7f3476x 20 k2 +k19 c19
e4f636bex 20 k6 +k16 c19
acd1bbf6x 20 k12+k20+k29 c19
bdcddcacx 20 k16+k21+k26+1 c19
deff1456x 20 k7 +k9 +k18+k26 c19
37d7d2b3x 20 k16+k23+k26+k43 c19
d7035eefx 20 k4 +k8 +k14+k18+1 c19
ad754de7x 20 k2 +k16+k19+k20+k26+k43 c19
17dfaa6dx 20 k13+k18+k21+k22+k23+k26+k30+1 c19
6afeaf85x 20 k0 +k9 +k18+k24+k25+k26+k27+k30 c19
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Table 4. Attack complexities on KATAN family of block ciphers (memory complexity is negli-
gible).

Cipher # Rounds Time1 Time2 Data Fixed Attack Source
KATAN32 40 11 sec 3 KP 0 MiniSat2.2, LI converter Sect. 3.1

40 236 222.76 CP 0 AIDA/Cube Sect. 4.1
50 234 225.42 CP 0 AIDA/Cube Sect. 4.1
50 11 sec 3 KP 0 MiniSat2.2, LI converter Sect. 3.1
60 239 230.28 CP 0 AIDA/Cube Sect. 4.1
60 18 sec 3 KP 0 MiniSat2.2, LI converter Sect. 3.1
65 1.81 min 3 KP 0 MiniSat2.2, LI converter Sect. 3.1
66 8.85 min 3 KP 0 MiniSat2.2, LI converter Sect. 3.1
67 26 sec 3 KP 30 MiniSat2.2, LI converter Sect. 3.1
68 2.55 min 3 KP 30 MiniSat2.2, LI converter Sect. 3.1
69 47.76 min 3 KP 35 MiniSat2.2, LI converter Sect. 3.1
70 1.64 min 10 CP 35 MiniSat2.2, LI converter Sect. 3.1
71 3.58 min 10 CP 35 MiniSat2.2, LI converter Sect. 3.1
71 3.58 min 10 CP 35 MiniSat2.2 & Cube, LI converter Sect. 5
75 12.50 h 3 CP 35 MiniSat2.2, LI converter Sect. 3.1
76 1.59 min 20 CP 45 MiniSat2.2, BCJ converter/Pre-Proc Sect. 3.2
76 4.1 min 20 CP 43 MiniSat2.2, BCJ converter/Pre-Proc Sect.3.2
76 3.08 min 20 CP 41 MiniSat2.2, BCJ converter/Pre-Proc Sect. 3.2
77 18 sec 20 CP 45 MiniSat2.2, BCJ converter/Pre-Proc Sect. 3.2
78 5.80 min 20 CP 45 MiniSat2.2, BCJ converter/Pre-Proc Sect. 3.2
79 14.72 min 20 CP 45 MiniSat2.2, BCJ converter/Pre-Proc Sect. 3.2
254 251 223.80 CP 0 Side-Channel Sect. 6

KATAN48 30 227 217.90 CP 0 AIDA/Cube Sect. 4.2
40 249 224.95 CP 0 AIDA/Cube Sect. 4.2
40 2 sec 5 CP 40 MiniSat2.2, LI converter Sect. 3.1
50 7 sec 5 CP 40 MiniSat2.2, LI converter Sect. 3.1
60 13.18 min 5 CP 40 MiniSat2.2, LI converter Sect. 3.1
61 7.12 min 5 CP 45 MiniSat2.2, LI converter Sect. 3.1
62 11.86 min 10 CP 40 MiniSat2.2, LI converter Sect. 3.1
63 17.47 min 10 CP 45 MiniSat2.2, LI converter Sect. 3.1
64 6.42 h 5 CP 40 MiniSat2.2, LI converter Sect. 3.1

KATAN64 30 235 220.64 CP 0 AIDA/Cube Sect. 4.3
40 2 sec 5 CP 40 MiniSat2.2, LI converter Sect. 3.1
50 12 sec 5 CP 40 MiniSat2.2, LI converter Sect. 3.1
60 3.17 h 5 CP 40 MiniSat2.2, LI converter Sect. 3.1

Time1: time complexity unit for attackingr rounds is number ofr-round KATAN computations.
Time2: clock time for algebraic attacks; KP: known plaintext; CP:chosen plaintext;
LI converter: local interpolation converter; BCJ: Bard-Courtois-Jefferson converter
negl: negligible, Pre-Proc: preprocessed system of equations
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Table 5.Maxterms, cube degree and equations and ciphertext bit for 40-round KATAN32.

Maxterm Degree Cube equation Cipher bit
03D193AFx 16 k6 c23
8FF802F4x 16 k1 +1 c7
315D8EE1x 16 k2 +k13 c21
531DAE2Ax 16 k9 +k20+k24+1 c22
AD3E0887x 15 k5 c22
5C3449FAx 16 k3 +k7 +k13+k28 c2
C934392Fx 16 k5 +k7 +k10+1 c0
E05946ECx 15 k12 c5
C2F7904Dx 16 k14+k17 c22
AAC90EE6x 16 k19+1 c3
C5A473A5x 16 k5 +k7 +k18+k19 c2
24AC9FE1x 16 k0 +1 c5
F0279C78x 16 k16+1 c0
BD30CB11x 15 k13+1 c19
66079CABx 16 k0 +k10 c2
EBCB9421x 16 k9 c3
41D3D98Ex 16 k12+k25+k36 c21
41D3D98Ex 16 k24+1 c22
49A5E4ABx 16 k6 +k12+k16+k29+1 c21
F92F9920x 16 k11+k22 c0
DD59A48Cx 16 k4 +k12+k14+k15 c2
6DED8883x 16 k14 c4
7D856271x 16 k3 +k14+1 c22
FB4433C1x 16 k15+1 c21
8A879E95x 16 k11+1 c0
916A7599x 16 k2 +k8 +k10+k18+k19+k24 c4
8BCD8CCCx 16 k9 +k21+1 c2
F5495155x 16 k8 +k11+k12+k15+k18+k20+k24+k26+1 c1
1B584CCFx 16 k3 +k5 +k23+1 c4
89A3C57Cx 16 k10+k12+k20+k37 c22
69315AA7x 16 k6 +k10+k25+k28 c23
3A4D88E7x 16 k0 +k9 +k14+k17+k27+k37+1 c22
9271A58Fx 16 k2 +k8 +k9 +k19+k23+k27+k34 c4
7911E746x 16 k1 +k8 +k26+k30+1 c1
4EC6856Bx 16 k0 +k10+k13+k18+k35+1 c23
E1D99370x 16 k15+k17+k32 c20
846AD5F2x 16 k6 +k14+k16+k33 c24
82DC78B3x 16 k21+k31+1 c20
E4416E9Ex 16 k1 +k6 +k14+k16+k22+k23+k39+1 c21
65765D7Ax 19 k0 +k10+k16+k18+k19+k26+k30+k43 c19
EC3F1DF2x 20 k6 +k16+k18+k25+k27+k42+1 c0
AA6C3FDDx 20 k7 +k22+k24+k32+k41 c20
CB6F2FD2x 20 k14+k16+k24+k26+k33+k40+1 c1
7B36D5B5x 20 k8 +k23+k28+k31+k38 c2
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Table 6.Maxterms, LI cube equations and ciphertext bit for 50-roundKATAN32.

Maxterm Degree Cube equation Cipher bit
1B8EE77Bx 20 k2 +k12 c10
1B8EE77Bx 20 k8 +k26+1 c31
B1FF633Ax 20 k16+1 c10
EB3AEAE6x 20 k22 c9
EB3AEAE6x 20 k16+k20+k28+k31+k35+k42 c28
AEF689F9x 20 k16+k32+1 c30
56CE3DFAx 20 k12 c10
7FDAA996x 20 k5 c10
D77FE20Ex 20 k25 c28
AF19DFB4x 20 k6 c12
DC3C97EDx 20 k4 +k11+1 c30
61BC7B9Fx 20 k5 +k20 c9
23B35FD7x 20 k0 c12
9CF75766x 20 k15+1 c6
9CF75766x 20 k7 +1 c26
E58FB7CAx 20 k22+k26 c26
C7E6C7CBx 20 k11+k21+k31+1 c10
3E3BE3EAx 20 k13+1 c10
3FFCCD62x 20 k8 +k10+k13+k14+k20+k24 c30
EF4FD985x 20 k6 +k11+k22+k32+k33+k37 c7
2F6D66FAx 20 k3 +1 c31
BE5E19F3x 20 k2 +k7 +k9 +k12+k16+k17+k21+k26+k27+k30+k34+k39+k43 c29
ECDD58BDx 20 k6 +k7 +k16+k17+k20+k23+k25+k26+k27+k34+1 c29
DEBCFB22x 20 k4 +k17+k28+k35+k37+k45 c8
FE3E09D7x 20 k11+k22 c9
F83B3AEBx 20 k18 c29
BACCAF37x 20 k2 +k12+k14+k22 c12
7FD07B66x 20 k15+k31+1 c8
BAFEA8D3x 20 k27 c10
AF6AAE75x 20 k1 +1 c9
3ADC3DD7x 20 k0 +k2 +k12+k20+k24+k31 c10
A7D3F749x 20 k2 +k10+k12+k21+k23+k30 c8
8FF7D615x 20 k16+k18+k28+1 c28
AF88BDFAx 20 k17 c9
FE1A11FFx 20 k5 +k14+k19+k22+k31+1 c12
DFF9C30Dx 20 k23 c29
95BF5D4Dx 20 k2 +k4 +k7 +k8 +k10+k14+k16+k18+k22+k24+k26+k35+1 c6
9DF2EE93x 20 k21+k38+1 c27
6DD3973Bx 20 k12+k14+k29 c11
A271A7FFx 20 k1 +k9 +k10+k16+k20+k21+1 c10
F6CDFA15x 20 k8 +k14+k15+k18+k24+k29+k33+k40 c29
5E5AB5EBx 20 k12+k14+k16+k20+k22+k25+k26+k39 c31
FD847AF6x 20 k24+k33+1 c9
F770ECECx 20 k5 +k16+k24+k26+k27+k30+k32+k34+k35+k36+k43 c5
FBAE4E3Ax 20 k7 +k28+k29+k33+k44+1 c27
EEB6A9A7x 20 k6 +k9 +k16+k18+k19+k25+k28+k37+k38+k41+k43+k48 c7
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Table 7.Maxterms, cube degree and equations and ciphertext bit for 60-round KATAN32.

Maxterm Degree Cube equation Cipher bit
B6F7FAFDx 25 k30+1 c31
EFE7F6FAx 25 k38 c11
F7CDFFCEx 25 k28+k30+k32+k36+k40+k42+k49+k50+1 c31
FEBF7EAEx 25 k28+k30+k40+k54+1 c14
63D7FFF7x 25 k16+k26+k30+k38+k40+k43+k44 c27
3F7BBF5Fx 25 k8 +k18+k20+k26+k32 c17
EF2FF9EFx 25 k26+1 c12
EF2FF9EFx 25 k22+k32+1 c31
FFF3F573x 25 k15+k17+k19+k23+k32+k33+k35+k37+k41+k43+k44+1 c11
DA9EFFF7x 25 k4 +k10+k14+k22+k24+k29+k30+k49+1 c11
FFD6BABFx 25 k46 c31
FF5777F6x 25 k47 c11
B7F2DFDFx 25 k16+1 c16
B7F2DFDFx 25 k13+k16+1 c17
BDF7FD97x 25 k27+k34 c11
7FDEBFDCx 25 k14+k21+k22+k41 c15
EFF9B7EDx 25 k13+k31+1 c16
FFF5FDCCx 25 k19+k23+k27+k35+k38+k43+k48+1 c9
EEBB7DF7x 25 k22+1 c16
F7C6EDFFx 25 k8 +k18+k35+k43+1 c14
FE3BF77Ex 25 k17+k33+1 c15
9FFE7FAEx 25 k10+k18+k20+k24+1 c17
EFFFDD9Ax 25 k38+k39 c12
FEF7779Bx 25 k23+k27 c14
CFFF7BE6x 25 k12 c14
EABFF73Fx 25 k32+k36+1 c13
BC7FCF7Fx 25 k2 +1 c14
FADFECFBx 25 k43+1 c14
DDD3FF3Fx 25 k28+1 c13
EB67DDFFx 25 k16+k26+k28+k35+k40+k44+1 c30
FEEFB8FEx 25 k30+k32+k42 c31
3CFFEF7Ex 25 k14+k16+k20+k22+1 c13
DFEFF4DDx 25 k15 c31
AFBEFDCFx 25 k10 c17
DAF9FFEDx 25 k28+k32+k36+k45+1 c18
DF733FEFx 25 k16+k21+1 c17
BF7BEE6Fx 25 k1 +1 c13
FFEE57FCx 25 k11+k29+k33+k35+k37+k39+k41+k44+k45+k49+k50+k51+k59+k60+1 c11
FA7ECFFDx 25 k17+k22+k24+k27+k28+k33+k34+k39 c16
B9E77FFEx 25 k10+k20+k24+k26+k28+k30+k36+k37+k38+k44+k53+1 c11
FF37EDEBx 25 k50 c29
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Table 8.Maxterms, cube degree and equations and ciphertext bit for 71-round KATAN32.

Maxterm Degree Cube equation Cipher bit
FFFFD5FCx 27 k52+k54+k60 c14
FFFFF7C5x 27 k31+k51+k53+k54+k64+k71 c31
FFF3FA7Fx 28 k46+1 c18

Table 9.Maxterms, cube degree and equations and ciphertext bit for 30-round KATAN48.

Maxterm Degree Cube equation Cipher bit
080065A4348Cx 14 k10+k13+k27 c30
816011140125x 12 k4 c0
040C10006BA4x 12 k3 c30
834000025073x 12 k5 +k12 c0
04800011D1D1x 12 k2 c4
4006B04001A9x 12 k0 c35
0282A2444E00x 12 k13 c31
050E4324024Ax 14 k0 +k1 +k6 +k15+1 c0
10A032428412x 12 k9 +1 c32
880391220424x 12 k2 +k8 c3
80204850301Bx 12 k6 +1 c30
8464022840C4x 12 k11+1 c30
094024005E14x 12 k1 +k3 +k7 +k18 c30
00C226985028x 13 k2 +k4 +k8 +k10+k25 c3
02160206A070x 12 k8 +k14+1 c35
0AAF00027010x 13 k3 +k5 +k10 c33
88011180D520x 12 k10+1 c1
430841102A88x 12 k1 c0
180028808CD9x 13 k0 +k21+1 c0
40A101501883x 12 k2 +k19+1 c0
0003C11042C3x 12 k0 +k17+1 c2
8C0401084E0Ex 13 k8 +k12+k18 c31
22A404909D08x 14 k0 +k3 +k7 +k10+k13+k17+k24 c32
0F5800240285x 13 k5 +k9 +k16 c3
860051430C08x 12 k1 +k7 +k10+k13+k20 c1
203483004E1Ax 14 k0 +k3 +k6 +k7 +k21+k22+k28 c29
40E8040512C8x 13 k0 +k1 +k2 +k4 +k6 +k8 +k17+k23 c33
64209090B082x 13 k3 +k6 +k7 +k9 +k15+k22 c30
013820886215x 13 k1 +k6 +k12+k14+k29 c36
A0285800E906x 14 k0 +k4 +k5 +k9 +k10+k11+k13+k26 c0
0C000500DB14x 12 k0 +k1 +k2 +k5 +k7 +k8 +k11+k15+k21+k25+k32+1 c2
048070044F82x 13 k0 +k11+k13+k15+k21+k34 c1
6103080056A9x 14 k0 +k1 +k6 +k10+k11+k16+k17+k23+k30+1 c5
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Table 10.Maxterms, cube degree and equations and ciphertext bit for 40-round KATAN48.

Maxterm Degree Cube equation Cipher bit
66140B44FE81x 20 k3 +k8 c37
2096B841C6F2x 20 k0 +k6 c18
2004D819B69Fx 20 k8 c46
01E07456499Bx 20 k3 +k12+k18+1 c13
874108B1E347x 20 k2 +k9 c43
85DF1310A226x 20 k11 c43
D9F00150D11Ex 20 k1 +k12+1 c12
204D49C8B56Cx 20 k4 c16
3000F607DC4Ex 20 k6 +1 c43
75045046CC5Ex 20 k9 c15
8D705440E2CBx 20 k5 +k14+k18 c42
5024603E9A37x 20 k3 +k6 +k8 +k10+k23+1 c16
5024603E9A37x 20 k1 +k2 +1 c44
3034E083566Dx 20 k7 +1 c18
81E48D04DB19x 20 k1 +k3 +k5 +k14+k15+1 c41
41482473ADB4x 20 k4 +k19+1 c42
3D4635605382x 20 k13 c39
51902406CABFx 20 k3 +k8 +k10+1 c44
583088DB0C6Ex 20 k1 +k2 +k9 +k16 c16
5040C4CE9AF1x 20 k0 +k2 +k4 +k21+1 c41
7749008CBAC1x 20 k1 +k5 +k8 +k10+k11+k13+1 c42
96940C46139Ex 20 k0 +k1 +k9 +k12+k14+k20+1 c41
96800804FF5Bx 20 k0 +k3 +k8 +k9 +k15+k17+1 c46
211013326F3Dx 20 k4 +k8 +k10+k16+k25 c15
18574012A577x 20 k6 +k8 +k12+k14+k29+1 c47
81668801EE97x 20 k0 +k1 +k5 +k6 +k8 +k9 +k14+k15+k31+1 c46
3050A044F5EDx 20 k1 +k8 +k9 +k13+k15+k24+1 c46
42BF16A44AA0x 20 k7 +k9 +k22 c10
50AD4122AA1Fx 20 k10+k27 c12
0AAB9004F89Dx 20 k0 +k3 +k10+k11+k26 c20
C884A100FCF3x 20 k3 +k11+k13+k14+k15+k17+k28 c18
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Table 11.Maxterms, cube degree and equations and ciphertext bit for 30-round KATAN64.

Maxterm Degree Cube equation Cipher bit
0CB0C29808C10001x 16 k5 c44
2E2128800020305Ax 16 k4 c7
10E2002920014471x 16 k1 +k5 +k12 c47
0A12042100446263x 16 k8 +k10+k19 c12
029290CC02C10140x 16 k2 c5
AE0C032002100492x 16 k9 c9
4241092108534C00x 16 k1 c44
0E0864A20828A800x 16 k0 c56
4104901087403083x 16 k7 c8
44010B12812A0124x 16 k3 c49
0200A0D00305E08Ax 16 k3 +k10 c48
041102168238A802x 16 k6 c9
439C00A810940044x 16 k3 +k8 +k17 c9
60910A0B93000802x 16 k1 +k8 c47
018C084049C98003x 16 k0 +k1 +k2 +k8 +k11 c8
3C1500040080C097x 16 k4 +k15 c48
0800FD4900016180x 16 k5 +k9 +k18 c54
002091443A501C40x 16 k2 +k13 c45
1027118032506001x 16 k1 +k5 +k10+k21 c10
0080DC00814454A8x 16 k5 +k7 +k14 c49
11320C0241095220x 16 k4 +k5 +k7 +k9 +k15+k20+k24 c50
8E200808003A8D40x 16 k3 +k6 +k12+k16 c51
00458C3220521011x 16 k0 +k2 +k5 +k10+k11+k13+k20 c11
4024935C01018048x 16 k0 +k5 +k9 +k11+k22 c49
8004007882307052x 16 k0 +k6 +k12+k23 c6
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