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Adaptive Sleep-Wake Discrimination for Wearable
Devices
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Abstract—Sleep/wake classification systems that rely on phys-
iological signals suffer from inter-subject differences that make
accurate classification with a single, subject-independent model
difficult. To overcome the limitations of inter-subject variability
we suggest a novel on-line adaptation technique that updates
the sleep/wake classifier in real-time. The objective of the
present study was to evaluate the performance of a newly
developed adaptive classification algorithm that was embedded
on a wearable sleep/wake classification system called SleePic. The
algorithm processed electrocardiogram and respiratory effort
signals for the classification task and applied behavioral mea-
surements (obtained from accelerometer and press-button data)
for the automatic adaptation task. When trained as a subject-
independent classifier algorithm, the SleePic device was only able
to correctly classify 74.94% ± 6.76 of the human rated sleep/wake
data. By using the suggested automatic adaptation method the
mean classification accuracy could be significantly improved to
92.98% ± 3.19. A subject-independent classifier based on activity
data only showed a comparable accuracy of 90.44% ± 3.57.
We demonstrated that subject-independent models used for on-
line sleep and wake classification can successfully be adapted to
previously unseen subjects without the intervention of human
experts or off-line calibration.

Index Terms—adaptation, wearable, physiological signal clas-
sification, context awareness, personal health, point-of-care.

I. INTRODUCTION

MONITORING sleep and wake behavior of subjects at
home allows the early detection of sleep disorders

and is reducing health care costs [1]. Ambulatory health
applications require comfortable devices that embed wear-
able sensors, electronics, and intelligent signal processing.
The design of wearable sleep/wake discrimination systems
is particularly challenging. The most common physiological
signal used for sleep discrimination in clinical settings is
the recording of brain activity with an electroencephalogram
(EEG) [2]. Unfortunately, EEG cannot be easily recorded with
a wearable system and is subject to an increased level of
noise. An alternative method is needed. It has also been shown
that during sleep, inter-subject differences in EEG [3] and
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cardio-respiratory signals [4], [5] are more pronounced than
intra-subject variations. Consequently, any signal processing
and classification algorithm tuned to a model user is bound
to produce highly variable results in different persons. This
suggests that on a mobile device an efficient user adaptation
strategy is required.

A. Background

Sleep and wake behavior is normally monitored using
polysomnographic analysis that includes the recording of EEG
[6]. Polysomnography is usually conducted in sleep centers
which requires the patient to stay overnight. More recently,
portable recorders were used for ambulatory sleep recordings
that allow the patient to go home overnight. The portable sys-
tems are modular, supporting a multitude of sensors required
for polysomnographic analysis. Recent attempts to integrate
sensors and electrodes into textiles made the recorders more
wearable. Despite these advances, the devices often remain
bulky. Furthermore, the portable systems were only used for
recording and not for signal processing or classification. .
Instead of polysomnographic recordings, the less accurate
actigraphy method is often used for long term sleep studies [7],
[8]. Actigraphy is a passive measure of sleep/wake behavior.
Miniature accelerometers in a watch-like device are used to
record the movement patterns of the subject. These wristbands
are small, light-weight, and low-power and therefore easy to
wear over multiple days. Several classification algorithms have
been suggested for actigraphy analysis [9]–[13]. However,
they do not provide real-time detection of sleep and wake.
Furthermore, they often incorrectly classify low activity tasks
(e.g. reading or watching television) as sleep because the
measured behavioral quiescence is not unique to sleep [8],
[11]. Furthermore, actigraphy is not a good tool for detecting
wakefulness in subjects with irregular or fragmented sleep
schedules [14].

We have previously demonstrated on-line sleep/wake classi-
fication based on power spectral density estimates of electro-
cardiogram (ECG), respiration effort (RSP) [4], and optionally
accelerometer (ACC) signals [15]. We showed that if an
artificial neural network (ANN) is trained and tested later on
the same user, a mean correct sleep and wake classification of
94.23% ± 1.65 can be achieved [15]. However, when the ANN
classifier was tested on data from users who did not contribute
to the training of the classifier, the accuracy dropped signifi-
cantly to 88.59% ± 6.66. This indicated that at least some of
the signals do not generalize well for other users and a single
model cannot be used for accurate classification in a larger
population. In our previous work we remarked that an ANN
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could be trained for each user individually [4]. However, ob-
taining the necessary training data set with accurate sleep/wake
labels for the supervised training of the ANN was very time
consuming. This was because the procedure required setting
up sensors for home video, electrooculography (EOG), and
electromyography (EMG), and a technician manually analyzed
the recordings. Further, the applications for the classifier were
limited to people that were willing to undergo the training
procedure.

To address inter-subject differences in automated sleep scor-
ing and sleep disorder classification from polysomnography
recordings, different classification models for different subject
groups are used [16]. Typically, clustering algorithms were
used to associate the biomedical signals from a new subject
to a subject group [17]. Subject groups were built off-line
from previously classified signals stored in a database. This
approach required significant amount of processing and stor-
age resources. The need for large data sets with accurate pre-
labeled data also required considerable time investments and
human intervention. Such a clustering and database approach
is therefore not conceivable for an autonomous wearable
system. An adaptation method for off-line actigraphy analysis
of sleep and wake has been suggested [12]. The density
of movements of the subject was calculated to adjust two
thresholds used for the sleep and wake discrimination. The
movement density was calculated off-line over the whole
duration of the recording. Further, the described experiments
only analyzed the periods when the subjects were in bed. This
method of gathering a priori knowledge for the algorithm
adaptation is neither practical nor available for wearable real-
time applications. Another possible adaptation strategy was
the tuning of the classification threshold of an ANN [4]. This
simple method required only one parameter to be adjusted.
The tuning was very limited, was performed off-line and did
not allow for adaptation to possible changes in the wearer’s
physiology. This tuning resulted in a statistically insignificant
increase of the mean accuracy of only 1.43% for the given
data and ANN topologies [4].

We introduce a new way to improve the classification
accuracy with an on-line algorithm because the subject-
independent networks did not show the desired accuracy for
new users [15]. We decided to modify directly the ANN
weights with a learning algorithm as it was used for the off-
line training of subject-independent classifiers. To adjust the
weights in a supervised manner, some a priori knowledge
about the user’s sleep/wake state is required. Video analysis,
polysomnography or any other known sleep detection methods
described above would need some off-line analysis by a human
or machine expert and were not suitable for an on-line data
labeling on a wearable system. Equally, unsupervised cluster-
ing methods like the one used in [18] are too computationally
intensive. Further, it is very unlikely that unsupervised training
can find a more accurate classifier than a supervised, subject-
specific training. We therefore suggest two new feedback
methods to gather a priori knowledge and to automatically
label the recorded data on-line. The feedback methods make
use of typical behaviors that are used to differentiate sleep
from wake by observation. Typical behaviors are a) specific
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Fig. 1. Overview of the sleep/wake classification algorithm. Raw ECG, RSP
and ACC signals are recorded and stored in a buffer for 20 s. Then a window
function is applied and a short-time fast Fourier transformation (FFT) is used
to calculate the spectral power density. The resulting frequency data are fed to
a feed-forward ANN with a tangent-sigmoid transfer function. A symmetric
classification threshold separates the ANN output into sleep or wake.

body posture; b) maintained behavioral quiescence; c) elevated
arousal threshold; and d) state reversibility with stimulation
[19]. We decided to monitor the user’s activity because it can
be passively recorded with an accelerometer. We also monitor
user’s reactivity to give an estimate of the arousal threshold.
This measure can be easily recorded with a reaction task.

In the following sections we present the research and
development of algorithms for user-adaptive sleep and wake
discrimination and experimental classification results. The
experiments were performed on a wearable, energy efficient
device called SleePic (derived from Sleep and Programmable
interface controller). The SleePic device has been custom
designed for our experiments. It is composed of a chest-
worn belt that records ECG, RSP, and 3-axis ACC, and a
wristwatch that acts as user interface with LEDs and a button.
A detailed description of the SleePic hardware can be found in
[20]. The SleePic embeds the previously developed sleep/wake
classification algorithm and a newly developed method to
adapt to different users automatically. The adaptation method
does require only minimal user interaction and does not need
the supplementary and constraining video, EMG, and EOG
recordings that were used in our previous studies [4], [15].
The presented methods demonstrate the first step towards the
development of context-aware personal health devices that are
able to adapt to the user autonomously.

II. ALGORITHM DESCRIPTION

The goal of our work was to develop an algorithm for
cardio-respiratory sleep/wake classification that is able to adapt
to inter-subject differences automatically. The algorithm had
to be power efficient so that it could run on a wearable device.
Further, for a high user acceptance, the algorithm had to rely
on low user interaction to minimally disturb the subject in
her/his daily activities. The algorithm was composed of two
stages: a) sleep/wake discrimination with an ANN classifier
(Fig. 1); and b) an adaptation procedure that automatically
labeled data segments and adapted the ANN to the user (Fig.
2).
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Fig. 2. Overview of the data flow for the automatic labeling of sleep/wake
for the cardio-respiratory and accelerometer data (ECG,RSP,ACC) that was
used for the adaptation of the artificial neural network (ANN) classifier. A
priori label information is obtained from button and activity (ACT) data.

A. Sleep/Wake Discrimination

The sleep/wake classifier was based on the processing of
cardio-respiratory signals. We included also the processing of
accelerometer data (ACC) because it is considered the most
power-efficient signal to record on a wearable system. We
have described the classifier in details previously [4], [15] and
present only the differences from the original version next.

The ECG, RSP and ACC signals were sampled over seg-
ments of 20 seconds (Fig. 1). The high sampling rate of ECG
was reduced from 256 Hz to 51.2 Hz to simultaneously fit
all segments of the three signals into the RAM of the SleePic
micro-controller. The 20-seconds segment size corresponded
to 1024 sampling points (ECG) and 512 sampling points (RSP
and ACC) respectively. The power-of-two size of the segments
was favorable for the processing of the FFT on the micro-
controller. On each segment, a Hamming window function
was applied to reduce the border effects of the time-frequency
transformation. The frequency content was extracted from
each segment with a FFT. The content of the frequency bands
obtained by the FFT were then fed to a feed-forward, single-
layer ANN with a tangent-sigmoid output function stored in a
look-up table. The size of the ANN varied depending on how
many input signals were selected. A symmetric threshold was
applied to classify the continuous ANN output into sleep and
wake. The input network weights of the ANN were found to be
redundant and not all necessary for the successful classification
of sleep and wake [21]. Therefore we created a different
network topology for this study that used only the relevant
input weights. In our particular case (single-layered network),
all input features i ∈ 1, . . . , N were considered as relevant
when the mean weight over all training runs 1 to M was
larger than the median standard deviation of all layer weights
of all runs, as follows

S(wi) =

 1 mean( ~wi)
> median(std(~w1,...,N ))

0 otherwise,
(1)

where ~wi = (w1
i , . . . , w

M
i ) and S is the selection function.

The input size of the resulting pruned network was reduced to
8.3% of its original size. Only the reduced network topology
was used in this study for the training, testing, and adaptation.
We used the Levenberg-Marquardt back-propagation algorithm
[22] to train the ANN and update the synaptic weights.

B. Adaptation Procedure

For the on-line adaptation of the ANN weights, a priori
knowledge about the user’s sleep/wake state was required. We
developed two new feedback methods to automatically label
the recorded data for supervised adaptation (Fig. 2).

a) Activity Feedback: From actigraphy we know that certain
movement patterns can reliably be associated with a sleep or
wake behavior [7], [8]. We therefore used actigraphy measures
to obtain a number of labeled physiological data segments
without user interaction at all. Inspired from the algorithm of
Cole [10], the algorithm examined the current, four prior and
two posterior activity data segments (ACT ) of 1-minute size.
An activity data segment consisted of the sum of activity zero-
crossing within that segment. If the activity of the resulting
seven minutes window was very low (high), the algorithm
considered the central 20 seconds as sleep (wake), otherwise
the algorithm did not label the data and the data was not
selected for the adaptation set (f = NaN ), as follows

f(ACT ) =

 1 if ACTn−4,...,n+2 ≤ 1
−1 if ACTn−4,...,n+2 ≥ 10
NaN otherwise,

(2)

where f = 1 equals sleep and f = −1 equals wake.
b) Button Feedback: Humans are subject to an elevated

arousal threshold during sleep [19]. A stimulation below this
threshold will cause no reaction of the subject during sleep,
but eventually will during wake. We applied this method to
our algorithm by stimulating the wearer of the SleePic with a
blinking LED on the SleePic Watch and simultaneously with a
single, light vibration on the chest. Both stimuli could not be
perceived during sleep. The stimuli were randomly generated
by the SleePic every 15 to 60 minutes. If the wearer reacted to
this stimulation by pressing the button on the SleePic Watch
within 1 minute (button = 1), he/she was considered as
awake (f = −1). If a response was absent (button = 0), the
wearer was either asleep or missed the stimulus. In that case,
the activity segment (ACT ) within the stimulus period was
analyzed. If it was below or equal a threshold of one zero-
crossing, the wearer was considered as asleep (f = 1) and
otherwise, no automatic labeling was performed (f = NaN )
as follows

f(button) =


−1 if button = 1
1 if button = 0

and ACT ≤ 1
NaN otherwise.

(3)

The data from the 20 seconds prior to the stimulus were
labeled accordingly to avoid training on the button pressing
movement patterns that may arise during this period.

III. METHODS AND MATERIALS

SleePic was used to demonstrate and test the developed
algorithms. The algorithms did run in real-time on SleePic, but
because of the nature of the experimental design, it was not
possible to perform the computing tasks in real-time. Instead
the computing was done post hoc. This procedure did not alter
the performance of the algorithm.
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A. Subjects and Recordings

Following informed consent, eight volunteers (two female
and six male) aged 24 - 30 years wore the SleePic system.
The subjects were in good health and reported no cardio-
respiratory disease or any sleep disorders. The subjects came
to the laboratory in the evening and were instructed about
the experiment procedure and how to wear the device. The
subjects wore the SleePic device for a minimum of 36 hours
that included two nights. They were allowed to remove the
belt during heavy sport or when showering. During the whole
experiment, the subjects performed a randomly scheduled
reaction task using the button on the SleePic Watch. The
subjects were asked to sleep at home. After the recording,
the subjects returned the SleePic recording system to the
laboratory, were debriefed, and filled out a questionnaire about
the usability and comfort of the system.

Because of the ambulatory nature of the experiment, the
subjects were expected to move freely and perform normal
daily activities. Therefore, we did not consider the possibility
of recording EEG signals for reference. Instead, the subjects
had to maintain a logbook by indicating the system-off times,
their sleep times, and particular events related to the system
that may happen during the experiment. Additionally, a tech-
nician installed an infra-red video camera in the bedroom
to record the sleep behavior during bedtime. A technician
analyzed the logbook and video recordings and labeled the
wake/sleep periods in 10-second intervals. Afterwards, the
technician removed data epochs from the SleePic data for
periods where the SleePic was not worn. When the SleePic
recording device failed to record any data, the missing data
epochs were also discarded. However, signals with move-
ment artifacts or other task-dependent disturbances were not
discarded, since they might contain useful information for
the classification. With one subject, the sensor belt became
too loose, which was not detected immediately during the
recording. Therefore an additional 3.5 hours with bad data
were discarded for this recording. The cardio-respiratory and
activity data obtained from the SleePic system were used for
the classification experiments. The expert sleep/wake labels
obtained from the logbook and the video analysis were solely
used for the performance assessment of the algorithm.

B. Classification Experiments

We conducted a series of experiments to evaluate the
adaptation strategies. Data from the SleePic system were used
to train and adapt three different network topologies. The
topologies differed in the input signal vector. The networks
topologies consisted either of the features from the cardio-
respiratory signals (ECGRSP), the activity features (ACC), or
the combination thereof (ECGRSPACC).

1) Subject-Independent Experiments: In a first set of ex-
periments, we replicated the generalization experiments from
our previous study [4] but using SleePic data. The expert-
labeled data from each subject were randomly divided into
a training data set (80%) and a validation data set (20%).
The test data set consisted of the full data set of each subject
(Fig. 3). In order to prevent any performance bias, training
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Fig. 3. Classification experiments. In the subject-independent experiments
(top), data from all subjects but one contributed to training (80%) and
validation (20%) data set. The data from the remaining subject consisted
of the test data set. In the adaptation experiments (bottom), the data from
one subject was again used as test data set. The feedback adaptation set and
the feedback validation set were composed of the button and activity (ACT)
feedback from the same subject. For the feedback experiments the button and
ACT feedback data were used separately to build the feedback adaptation
and validation sets. All the experiments were repeated until every subject was
once in the test data set.

and test data sets from the same data set were never used
simultaneously within an experiment. We trained networks
for each ANN topology by using the training data sets of
all subjects but one.1 The performance of the network was
evaluated after each training iteration on the validation data
sets from the same subjects in the training data set. The
training was stopped if the performance of the validation
did not increase for more than five iterations. The test data
sets from the remaining subject were used to measure the
performance of the network after the training was completed.
We repeated the experiment until every subject was once in
the test data set (eight times). Ten independent runs for each
experiment and subject were performed from different initial
network weight values. Initialization of the weights was done
with the Nguyen-Widrow method [23].

2) Adaptation Experiments: In this set of experiments, the
feedback adaptation data set was used individually to adapt
the generalized networks obtained in the subject-independent
experiments. The feedback data (labeled by the Button and
Activity Feedback algorithms) were combined and randomly
split into a feedback adaptation data set (80%) and a feedback
validation data set (20%). For each subject 10 different
feedback data sets were generated (Fig. 3, bottom). The
feedback validation data set was used to stop the training and
avoid over-fitting. The same data as in the subject-independent
experiments were used as test data set. The best network
obtained from the subject-independent experiments for each
topology was used as a start network for the adaptation
procedure.2 Ten independent runs for each feedback adaptation
and validation data set were generated. This was repeated for

1The training parameters for the Subject-Independent experiments were: µ:
0.001; µ increase: 10; µ decrease: 0.1; µ max: 1010; min gradient: 10−10;
max validation failures: 5.

2The training parameters for the adaptation experiments were: µ: 0.001;
µ increase: 2; µ decrease: 0.1; µ max: 1010; min gradient: 10−10; max
validation failures: 2.
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each subject (eight times) and each topology, making a total
of 240 runs.

3) Feedback Experiments: With the feedback experiments
we analyzed the individual contributions from each feedback
strategy to the performance of the networks. For this, the adap-
tation experiments were repeated with only the automatically
labeled data from the Button Feedback or the Activity Feed-
back in the adaptation and validation data set, respectively.

C. Performance Assessment

To evaluate the performance of the classifiers, we calculated
the accuracy (fraction of all correctly classified segments), the
sensitivity (fraction of correctly classified sleep segments), and
the specificity (fraction of correctly classified wake segments).
These performance measures were calculated on all 20-second
segments for each experiment and topology, as follows

accuracy =
#true sleep seg +#true wake seg

#all seg
(4)

sensitivity =
#true sleep seg

#all sleep seg
(5)

specificity =
#true wake seg

#all wake seg
. (6)

We estimated the quality of sleep with the sleep efficiency
parameter, calculated as the total classified sleep time divided
by the time in bed.

IV. RESULTS

A total of 250 hours of valid SleePic recordings were
obtained (37% sleep and 63% wake). On average, 1.83 labeled
segments per hour were obtained from the Button Feedback
(58 ± 13.2 labels per recording), containing 36.95% ± 10.27
sleep labels. This corresponds to an equivalent sleep/wake
proportion as for the entire recording. Using the labeling rule
from the Button Feedback method neither false positive nor
false negative labels were generated. The automatic labeling
from the Activity Feedback contained on average 14 labeled
segments per sleep hour and 8.9 per wake hour (335.88 ±
99.85 per recording). Using this labeling rule, the algorithm
generated a total of 27 false sleep and 6 false wake labels that
corresponded to an error rate of 1.3%. The wrong labels were
not discarded for the adaptation experiments.

The accuracy, sensitivity or specificity of the subject-
independent experiments with topologies containing the fre-
quency features of ACC data was statistically better than the
topology without the ACC (left boxes in Fig. 4; Student’s t-
test, p<0.05, for both cases).

The adaptation method improved the accuracy of all topolo-
gies containing cardio-respiratory features as inputs (Student’s
t-test, p<0.01). The adaptation method had a larger impact
on the sensitivity than the specificity for both topologies
containing cardio-respiratory signals (Table I). The accuracy
of the adaptation experiments showed no significant difference
compared to the subject-independent experiments in the ACC
topology (Fig. 4; Student’s t-test, p>0.40).

No significant difference in accuracy, sensitivity or speci-
ficity between the three feedback methods can be observed

TABLE I
MEAN PERFORMANCE OF FEEDBACK METHODS [%± SD]

Feedback accuracy sensitivity specificity
ACC
Subject-independent 90.44 ± 3.57 91.39 ± 3.91 89.92 ± 4.34
Button 91.63 ± 4.41 94.69 ± 6.59 87.54 ± 7.89
Activity 92.62 ± 3.08 97.14 ± 2.49 88.25 ± 6.26
Button & Activity 92.98 ± 3.19 96.71 ± 2.44 88.97 ± 6.44
ECGRSP
Subject-independent 74.94 ± 6.76 57.53 ± 28.06 86.58 ± 10.89
Button 76.64 ± 9.25 69.65 ± 23.71 79.80 ± 12.41
Activity 91.06 ± 3.44 95.79 ± 2.63 87.15 ± 4.80
Button & Activity 91.12 ± 3.43 95.16 ± 3.17 87.20 ± 4.94
ECGRSPACC
Subject-independent 90.23 ± 4.29 89.58 ± 8.54 90.48 ± 5.56
Button 91.59 ± 4.33 92.63 ± 6.92 90.57 ± 4.52
Activity 92.67 ± 2.83 96.25 ± 3.04 89.62 ± 4.72
Button & Activity 92.94 ± 3.37 96.09 ± 3.63 90.42 ± 4.72

TABLE II
MEAN SLEEP EFFICIENCY AFTER ADAPTATION [%± SD]

Expert ACC ECGRSP ECGRSPACC
84.98 ± 8.66 93.07 ± 5.86 95.82 ± 6.42 92.39 ± 4.74

for the ACC and ECGRSPACC topologies (Table I; Student’s
t-test, p>0.75). Furthermore, the sensitivity for the Activity
Feedback showed a reduced standard deviation compared to
the Button Feedback. This indicates that the falsely labeled
Activity Feedback labels had no negative influence on the
adaptation performance. Button feedback alone was not able
to improve the accuracy of the ECGRSP topology.

The adaptation algorithm significantly overestimated sleep
efficiency (Table II). This means that most classifier models
estimated the sleep quality of the subjects to be better than it
was detected by the human expert.

V. DISCUSSION

We aimed to design a power-efficient algorithm for wear-
able sleep/wake classification. The experiments successfully
showed that the presented algorithm can be embedded in a
wearable device with an autonomy of more than 36 hours.

The classification test results in Fig. 4 indicated that the
specificity of the ACC topology was higher than expected
from literature that analyzed previous actigraphy algorithms
[8], [11]. Two effects might have contributed to this result:
a) The SleePic was measuring the activity of the subjects based
on the movements of the body and not of the wrist. However,
the location of measurement should not significantly change
the detection of motor activity [24]; and b) In addition to
motor activity, the features computed by the SleePic algorithm
also contained information about body position. The body
position was encoded in the low frequency component of
the FFT preprocessing. This information was not available to
algorithms in traditional wrist actigraphy. The high correlation
between effective sleep efficiency (percentage of sleep when
in bed) and ACC sensitivity (percentage of correct sleep
classification) supported the hypothesis that the ANN classifier
is using the body position as valuable classification feature.
(Kendall correlation τ = 0.90, p < 0.01). Further experiments
including wrist actigraphy are required to study this effect in
more detail.
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Fig. 4. Accuracy (left), specificity (middle) and sensitivity (right) of the three different ANN input topologies (ACC, ECGRSP, ECGRSPACC). Left boxes:
Results of subject-independent networks (Independent). Right boxes: Results when adapting the subject-independent networks with the adaptation data set
(Adapted). The horizontal lines of each box are the lower quartile, median, and upper quartile values (from bottom to top). The whiskers represent the most
extreme values within 1.5 times the inter-quartile range from the quartile. The outliers (crosses) are data with values beyond the ends of the whiskers.

The experiments showed that the detection of sleep was
more difficult than wake (low sensitivity) and had the highest
impact in reducing the subject-independent performance of
the ECGRSP topology. This suggested that the inter-subject
variation of ECG and RSP was mostly present during sleep. In
fact, the classification models that presented sensitivities below
50% belonged to two subjects that had sleep patterns that
would correspond to wake patterns in the other subjects. This
high discrepancy between subjects during sleep strengthens
our postulation for the need for a user adapting device.

A. Subject-Independent versus Adapted Systems

Our observations suggest that the ACC data were able to
generalize well between different subjects and adaptation or re-
training for a new subject was not necessary (Fig. 4). The use
of accelerometer data recorded from the chest might therefore
be an appropriate alternative to a cardio-respiratory classifier
that requires model adaptation. However, studies have shown
that accelerometer data alone does not accurately classify
wake states containing low activity [8], [11]. To evaluate this
effect, additional experiments with subjects that present fewer
movement patterns during wake are required.

Sleep patterns of ECG and RSP contained larger inter-
subject variations than the wake patterns. Adaption was able
to address these variations. Specificity could not significantly
be improved. This indicated that the wake patterns contained
intra-subject differences, which were difficult to separate with
the single-layer ANN classifier used for our experiments.

B. Button versus Activity Feedback

The high labeling accuracies obtained with the Button
feedback (100%) and Activity feedback (98.2%) indicated that
both methods were robust strategies to obtain automatically
labeled sleep/wake data. Although the labeling rules for the
Activity feedback were much more conservative than com-
monly used actigraphy algorithms, mislabeling could not be
prevented. This had no effect on the adaptation performance.

We repeated the adaptation experiment with each labeling
source to qualify the data obtained from the different feedback
methods for the automatic labeling. The size of the adaptation
data set collected by the Button feedback was too small to
improve the classification of the ECGRSP topology (Table I).

The actively sampled Button Feedback required some attention
of the wearer. Therefore, increasing the frequency of gathering
this feedback could lead to more discomfort. The different
strategies for the labeling might be also complementary. This
can be explained by the nature of the feedback adaptation data.
Whereas data from the Activity Feedback came only from
clearly classifiable segments of sleep and wake passively sam-
pled from accelerometer data, the randomly sampled Button
Feedback data also contained segments that were more difficult
to classify, e.g. where subjects displayed low activity when
awake. Gathering of a larger adaptation set for more specific
adaptation data in further experiments could be improved with
a modified labeling rule. We suggest using a combined solution
where the button pressing task is not activated randomly, but
by using prior knowledge. The unthresholded output of the
ANN is a possible source of prior knowledge. For example,
if the output is close to the classification threshold where the
classification uncertainty is increased, an additional reactivity
test could be useful.

VI. CONCLUSION

We demonstrated that embedded, subject-independent mod-
els used for on-line sleep and wake classification can be
successfully adapted to previously unseen subjects without
the intervention of human experts. We have shown that for a
topology that is based only on accelerometer data, the maximal
accuracy can be reached when it is trained for a subject-
independent application. An adaptation to a new user has only
minimal effects on the performance of such a classifier. In the
same way, we have shown that the ANN classifiers that were
based on a cardio-respiratory signal topology can be improved
significantly by adapting the neural weights. Although the
accuracy of the adapted networks was not significantly higher
than the ones from the accelerometer based networks, the use
of cardio-respiratory signals for the classification could display
an advantage when higher specificity is required.

The main achievement was the description and evaluation of
two methods for automatic gathering of labeled data about the
subjects’ sleep/wake states. Both methods used measurements
of typical behaviors that are associated with normal sleep and
wake, notably an increased arousal threshold and maintained
behavioral quiescence during sleep. The suggested methodol-
ogy is based only on occasional button pressing of the subject
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and the measurement of the user’s activity which makes the
method power and computationally efficient.

The conducted experiments show some limitations. The
duration of the experiments was not sufficient to assess the
robustness of the adaptation algorithm. The duration did
not allow us to monitor intra-subject variations and possible
effects thereof on the adaptation and consequently on the
classification performance. The SleePic device that embeds
the described algorithms will need also to be tested on groups
experiencing sleep disorders. For clinical applications, the
system and algorithms will need to undergo further tests with
more subjects and including data from a wider population.

Because of the simplicity and the low sensor requirements
of the newly described method, it is not limited to the cardio-
respiratory sleep/wake classification, but could also be used for
automatic adaptation of other sleep discrimination algorithms.
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and M. Partinen, “Automatic sleep-wake and nap analysis with a new
wrist worn online activity monitoring device vivago WristCare.” Sleep,
vol. 26, no. 1, pp. 86–90, 2003.

[10] R. J. Cole, D. F. Kripke, W. Gruen, D. J. Mullaney, and J. C. Gillin,
“Automatic sleep/wake identification from wrist activity.” Sleep, vol. 15,
no. 5, pp. 461–9, 1992.

[11] L. de Souza, A. Benedito-Silva, M. Pires, D. Poyares, S. Tufik, and
H. Calil, “Further validation of actigraphy for sleep studies,” Sleep,
vol. 26, no. 1, pp. 81–5, 2003.

[12] J. Hedner, G. Pillar, S. D. Pittman, D. Zou, L. Grote, and D. P. White,
“A novel adaptive wrist actigraphy algorithm for sleep-wake assessment
in sleep apnea patients.” Sleep, vol. 27, no. 8, pp. 1560–6, 2004.

[13] S. Edward, S. Nadezhda, S. Stephanie, N. Michael, and C. S. Group,
“Activity-based sleep/wake identification in infants,” Physiological Mea-
surement, vol. 25, p. 1291, 2004.

[14] J. Paquet, A. Kawinska, and J. Carrier, “Wake detection capacity of
actigraphy during sleep.” Sleep, vol. 30, no. 10, pp. 1362–9, 2007.

[15] W. Karlen, C. Mattiussi, and D. Floreano, “Improving actigraph
sleep/wake classification with cardio-respiratory signals.” in Conference
proceedings : ... Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society., vol. 2008, Vancouver, 2008, pp.
5262–5.

[16] T. Penzel and R. Conradt, “Computer based sleep recording and analy-
sis,” Sleep medicine reviews, vol. 4, no. 2, pp. 131–48, 2000.

[17] P. Anderer, G. Gruber, S. Parapatics, M. Woertz, T. Miazhynskaia,
G. Klosch, B. Saletu, J. Zeitlhofer, M. J. Barbanoj, H. Danker-Hopfe,
S.-L. Himanen, B. Kemp, T. Penzel, M. Grozinger, D. Kunz, P. Rap-
pelsberger, A. Schlogl, and G. Dorffner, “An E-health solution for
automatic sleep classification according to Rechtschaffen and Kales:
validation study of the Somnolyzer 24 x 7 utilizing the Siesta database.”
Neuropsychobiology, vol. 51, pp. 115–133, 2005.

[18] A. Krause, A. Smailagic, and D. Siewiorek, “Context-aware mobile
computing: learning context- dependent personal preferences from a
wearable sensor array,” IEEE Transactions on Mobile Computing, vol. 5,
no. 2, pp. 113–27, 2006.

[19] W. F. Flanigan, The Sleeping Brain: Perspectives in the Brain Sciences,
ser. Perspectives in the Brain Sciences. Brain Information Service/Brain
Research Institute (UCLA), Los Angeles, CA, 1972, vol. 1, ch. Behav-
ioral, pp. 14–18.

[20] W. Karlen and D. Floreano, “SleepPic. Hardware Developments for a
Wearable On-line Sleep and Wake Discrimination System,” in Proceed-
ings of BIOSIGNALS 2011 - International Conference on Bio-inspired
Systems and Signal Processing, Rome, Italy, 2011, F. Babiloni, A. Fred,
J. Filipe, and H. Gamboa, Eds. SciTePress, 2011, p. to appear.
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