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Correlated Images With Compressed
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Abstract—This paper addresses the problem of distributed
coding of images whose correlation is driven by the motion of
objects or the camera positioning. It concentrates on the problem
where images are encoded with compressed linear measurements.
We propose a geometry-based correlation model that describes
the common information in pairs of images. We assume that the
constitutive components of natural images can be captured by
visual features that undergo local transformations (e.g., trans-
lation) in different images. We first identify prominent visual
features by computing a sparse approximation of a reference
image with a dictionary of geometric basis functions. We then
pose a regularized optimization problem in order to estimate the
corresponding features in correlated images that are given by
quantized linear measurements. The correlation model is thus
given by the relative geometric transformations between corre-
sponding features. We then propose an efficient joint decoding
algorithm that reconstructs the compressed images such that they
are consistent with both the quantized measurements and the
correlation model. Experimental results show that the proposed
algorithm effectively estimates the correlation between images in
multiview data sets. In addition, the proposed algorithm provides
effective decoding performance that advantageously compares
to independent coding solutions and state-of-the-art distributed
coding schemes based on disparity learning.

Index Terms—Correlation estimation, geometric transforma-
tions, quantization, random projections, sparse approximations.

I. INTRODUCTION

I N RECENT years, vision sensor networks have been
gaining an ever-increasing popularity enforced by the

availability of cheap semiconductor components. These net-
works typically produce highly redundant information so
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that an efficient estimation of the correlation between images
becomes primordial for effective coding, transmission, and
storage applications. The distributed coding paradigm becomes
particularly attractive in such settings; it permits to efficiently
exploit the correlation between images with low encoding
complexity and minimal inter-sensor communication, which
translates into power savings in sensor networks. One of the
most important challenging tasks, however, resides in the
proper modeling and estimation of the correlation between
images.
In this paper, we consider the problem of finding an effi-

cient distributed representation of correlated images where the
common objects are displaced due to viewpoint change or mo-
tion of scene objects. In particular, we are interested in a sce-
nario where the images are given under the form of few quan-
tized linear measurements computed by very simple sensors.
Even with such a simple acquisition stage, the images can be re-
constructed under the condition that they have a sparse represen-
tation in a particular basis (e.g., discrete cosine transform (DCT)
and wavelet) that is sufficiently different from the sensing ma-
trices [3], [4]. Rather than independent image reconstruction, we
are however interested in the joint reconstruction of the images.
In particular, we focus here on estimating the underlying corre-
lation between images from the compressed measurements. In
contrary to most distributed compressive schemes in the litera-
ture, we want to estimate the correlation prior to image recon-
struction for improved robustness at low coding rates.
We propose to model the correlation between images as geo-

metric transformations of visual features, which provides amore
efficient representation than block-based translational models
that are commonly used in state-of-the-art coding solutions. We
first compute the most prominent visual features in a reference
image through a sparse approximation with geometric func-
tions drawn from a parametric dictionary. Then, we formulate
a regularized optimization problem whose objective is to iden-
tify the features in the compressed images that correspond to
the prominent components in the reference images. Correspon-
dences then define relative transformations between images that
form the geometric correlation model. A regularization con-
straint ensures that the estimated correlation is consistent and
corresponds to the actual motion of visual objects. We then use
the estimated correlation in a new joint decoding algorithm that
approximates multiple images. The joint decoding is cast as an
optimization problem that warps the reference image according
to the transformation described in the correlation information
while enforcing the decoded images to be consistent with the
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quantizedmeasurements.We finally propose an extension of our
algorithm to the joint decoding of multiview images.
While our novel framework could find applications in sev-

eral problems such as distributed video coding or multiview
imaging, we focus on the latter for illustrating the joint de-
coding performance.We show by experiments that the proposed
algorithm computes a good estimation of the correlation be-
tween multiview images. In particular, the results confirm that
the dictionaries based on geometric basis functions permit to
capture the correlation more efficiently than a dictionary built
on patches or blocks from the reference image [5]. In addition,
we show that the estimated correlation model can be used to de-
code the compressed images by disparity compensation. Such
a decoding strategy permits to outperform independent coding
solutions based on JPEG 2000 and state-of-the-art distributed
coding schemes based on disparity learning [6], [7] in terms
of rate–distortion (RD) performance due to accurate correlation
estimation. Finally, the experiments outline that the consistent
prediction term proves to be effective in increasing the decoding
quality of the images given by quantized linear measurements.
The rest of this paper is organized as follows. Section II

briefly overviews the related work with emphasis on recon-
struction from random projections and distributed coding
algorithms. The geometric correlation model used in our
framework is presented in Section III. Section IV describes
the proposed regularized energy model for an image pair and
the optimization algorithm. The consistent image prediction
algorithm is described in Section V. Section VI describes the
extension of our scheme to multiview images. Finally, exper-
imental results are presented in Section VII, and Section VIII
concludes this paper.

II. RELATED WORK

We present in this section a brief overview of the related
works in distributed image coding where we mostly focus on
simple sensing solutions based on linear measurements. In re-
cent years, signal acquisition based on random projections has
actually received significant attention in many applications such
as medical imaging, compressive imaging, or sensor networks.
Donoho [3] and Candes et al. [4], [8] have shown that a small
number of linear measurements contain enough information to
reconstruct a signal, as long as it has a sparse representation in a
basis that is incoherent with the sensing matrix. Rauhut et al. [9]
extend the concept of signal reconstruction from linear measure-
ments using redundant dictionaries. Signal reconstruction from
linear measurements has been applied to different applications
such as image acquisition [10]–[12] and video representation
[13]–[15].
At the same time, the key in effective distributed representa-

tion certainly lies in the definition of good correlation models.
Duarte et al. [16], [17] have proposed different correlation
models for the distributed compression of correlated signals
from linear measurements. In particular, they introduce three
joint sparsity models (JSMs) in order to exploit the inter-signal
correlation in the joint reconstruction. These three sparse
models are respectively described by: 1) JSM-1, where the

signals share a common sparse support plus a sparse innova-
tion part specific to each signal; 2) JSM-2, where the signals
share a common sparse support with different coefficients; and
3) JSM-3 with a non-sparse common signal with individual
sparse innovation in each signal. These correlation models
permit a joint reconstruction with a reduced sampling rate or
equivalently a smaller number of measurements compared to
the independent reconstruction for the same decoding quality.
The sparsity models developed in [16] have been then applied
to distributed video coding [18], [19] with random projections.
The scheme in [18] used a modified gradient projection sparse
algorithm [20] for the joint signal reconstruction. The authors
in [19] have proposed a distributed compressive video coding
scheme based on the sparse recovery with decoder side infor-
mation. In particular, the prediction error between the original
and side information frames is assumed to be sparse in a par-
ticular orthonormal basis (e.g., wavelet). Another distributed
video coding scheme has been proposed in [5], which relies on
an inter-frame sparsity model. A block of pixels in a frame is
assumed to be sparsely represented by linear combinations of
the neighboring blocks from the decoded key frames. In partic-
ular, an adaptive block-based dictionary is constructed from the
previously decoded key frames and eventually used for signal
reconstruction. Finally, iterative projection methods are used
in [21] and [22] in order to ensure that a joint reconstruction
of correlated images that are sparse in a dual-tree wavelet
transform basis is consistent with the linear measurements in
multiview settings. In general, state-of-the-art distributed com-
pressive schemes [18]–[22] estimate the correlation model from
two reconstructed reference images where the reference frames
are reconstructed from the respective linear measurements by
solving an -TV or - optimization problem. Unfortunately,
reconstructing the reference images based on solving an -
or -TV optimization problem is computationally expensive
[3], [4]. In addition, the correlation model estimated from
highly compressed reference images usually fails to capture
the actual geometrical relationship between images. Motivated
by these issues, we estimate in this paper a robust correlation
model directly in the compressed domain without explicitly
reconstructing the compressed images.
In multiview imaging or distributed video coding, the corre-

lation is explained by the motion of objects or the change of
viewpoint. Block-based translation models that are commonly
used for correlation estimation fail to efficiently capture the ge-
ometry of objects; this results in a poor correlation estimation
particularly when computed from the highly compressed im-
ages. Furthermore, most of the aforementioned schemes (ex-
cept [5]) assume that the signal is sparse in a particular or-
thonormal basis (e.g., DCT or wavelet). This is also the case
of the JSMs described above, which cannot be used to relate
the scene objects by means of a local transform and unfortu-
nately fail to provide an efficient joint representation of cor-
related images at low bit rates. It is more generic to assume
the signals to be sparse in a redundant dictionary, which al-
lows more flexibility in the design of the representation vec-
tors. The most prominent geometric components in the images
can be efficiently captured by dictionary functions. The corre-
lation can be then estimated by comparing the most prominent
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Fig. 1. Schematic of the proposed scheme. Images and are correlated through displacement of scene objects due to viewpoint change.

features in different images. Few works have been reported in
the literature for the estimation of a correlation model using re-
dundant structured dictionaries in multiview [23] or video ap-
plications [24]. However, these frameworks do not construct
the correlation model from the linear measurements. In gen-
eral, most of the schemes in classical disparity and motion es-
timation focus on estimating correlation model from original
images [25], [26] and not from compressed images. We rather
focus here on estimating the correlation from compressed im-
ages where the image is given with random linear measure-
ments. The correlation model is built using the geometric trans-
formations captured by a structured dictionary, which leads to
an effective estimation of the geometric correlation between
images.
Finally, the distributed schemes in the literature that are based

on compressed measurements usually fail to estimate the actual
number of bits for the image sequence representation (except
[5]) and hence cannot be directly applied in practical coding
applications. Quantization and entropy coding of the measure-
ments is actually an open research problem due to the following
two reasons: 1) the reconstructed signal from quantized mea-
surements does not necessarily satisfy the consistent reconstruc-
tion property [27]; and 2) the entropy of the measurements is
usually large, which leads to unsatisfactory coding performance
in imaging applications [28]. Hence, it is essential to adapt the
quantization techniques and reconstruction algorithms in order
to reduce distortion in the reconstructed signal, such as [29]
and [30]. The authors in [31] and [32] have also studied the
asymptotic reconstruction performance of the signal under uni-
form and non-uniform quantization schemes. They have shown
that a non-uniform quantization scheme usually gives smaller
distortion in the reconstructed signal compared with a uniform
quantization scheme. Recently, an optimal quantization strategy
for the random measurements has been designed based on dis-
tributed functional scalar quantizers [33]. In this paper, we use
a simple quantization strategy for realistic compression along
with consistent prediction constraints in the joint decoding of
correlated images in order to illustrate the potential of low-
complexity sensing solutions in practical multiview imaging
applications.

III. FRAMEWORK

We first describe our framework for a pair of images, and
then the extension to more images is presented in Section VI.
We consider a pair of images and (with resolution

) that represent a scene taken from different view-
points; these images are correlated through displacement of vi-
sual objects. The captured images are independently encoded
and are transmitted to a joint decoder. The joint decoder esti-
mates the relative transformations between the received signals
and jointly decodes the images. The framework is illustrated in
Fig. 1.
We focus on the particular problem where one of the images

serves as a reference for the correlation estimation and the de-
coding of the second image. While the reference image could
be encoded with any compression algorithm (e.g., JPEG, com-
pressed sensing framework [12]), we choose here to encode the
reference image with JPEG 2000 coding solutions. Next, we
concentrate on the independent coding and joint decoding of the
second image where the first image serves as side informa-
tion. The second image is projected on a random matrix
to generate the measurements . The measurements
are quantized with a uniform quantization algorithm, and the
quantized linear measurements are finally compressed with an
entropy coder.
At the decoder, we first estimate the prominent visual

features that carry the geometry information of the objects
in the scene. In particular, the decoder computes a sparse
approximation of the image using a parametric dictionary
of geometric functions. Such an approximation captures the
most prominent geometrical features in the image . We then
estimate the corresponding features in the second image
directly from the quantized linear measurements without
implementing explicit image reconstruction steps. In particular,
the corresponding features between images are related using a
geometry-based correlation model where the correspondences
describe local geometric transformations between images.
The correlation information is further used to decode the
compressed image from the reference image . We finally
ensure a consistent prediction of by explicitly considering
the quantized measurements during the warping process.
Before getting into the details of the correlation estimation
algorithm, we describe the sparse approximation algorithm and
the geometry-based correlation model built on a parametric
dictionary.
We now describe the geometric correlation model that is

based on matching the sparse geometric features in different im-
ages. We first compute a sparse approximation of the reference
image using geometric basis functions in a structured dictio-
nary , where is called an atom. The dictionary
is typically constructed by applying geometric transformations
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Fig. 2. Sample Gaussian atoms with mother function
that undergo different sets of transformations.

(given by unitary operator ) to a generating function to
form the atom . A geometric transformation indexed by
consists of a combination of operators for anisotropic scales
and , rotation , and translations and . For example, when
is a Gaussian function ,

the transformation is expressed as

(1)

with

In Fig. 2, we illustrate Gaussian atoms for different translation,
rotation, and anisotropic scaling parameters. Now, we can write
the linear approximation of the reference image with func-
tions in as

(2)

where represents the coefficient vector. The number of
atoms used in the approximation of is usually much smaller
than the dimensions of image . We use here a suboptimal so-
lution based on matching pursuit [34], [35] in order to estimate
the set of atoms.
The correlation between images can be now described by the

geometric deformation of atoms in different images [23], [24].
Once the reference image is approximated as given in (2),
the second image could be approximated with transformed
versions of the atoms used in the approximation of . We can
thus approximate as

(3)

where represents a local geometrical transformation of
the atom . Due to the parametric form of the dictionary, it is
interesting to note that the transformation on boils down
to a transformation of the atom parameters, i.e.,

(4)

For clarity, we show in Fig. 3 a sample synthetic correlated
image pair and their sparse approximations using atoms in the
dictionary. We see that the sparse approximations of images can
be described with the transforms of atom parameters.

Fig. 3. Illustration of the atom transform in the approximation of the cor-
related images: (a) original correlated synthetic images and (b) sparse approx-
imation of the images using atoms in the dictionary. The rectangle and square
objects are related with transformations and , respectively.

The true transformations , however, are unknown in
practical distributed coding applications. Therefore, the main
challenge in our framework consists in estimating the local ge-
ometrical transformations when the second image is
available in the form of quantized linear measurements .

IV. CORRELATION ESTIMATION FROM COMPRESSED
LINEAR MEASUREMENTS

A. Regularized Optimization Problem

We now describe our optimization framework for estimating
the correlation between images. Given the set of atoms
that approximates the first image , the correlation estimation
problem consists in finding the corresponding visual patterns in
the second image that is given only by compressed random
measurements . This is equivalent to finding the correlation
between images and with the JSM based on local geomet-
rical transformations, as described in Section III.
In more details, we are looking for a set of atoms in
that corresponds to the visual features selected

in the first image. We denote their parameters by , where
for some , . We

propose to select this set of atoms in a regularized
energy minimization framework as a tradeoff between efficient
approximation of and smoothness or consistency of the
local transformations between images. The energy model
proposed in our scheme is expressed as

(OPT-1)

where and represent the data and smoothness terms, re-
spectively, and is the regularization parameter that balances
the importance of the data and smoothness terms. The solution
to our correlation estimation is given by the set of atom pa-
rameters that minimizes energy , i.e.,

(5)

Parameter represents the search space given by

(6)
The multidimensional search window is defined as

, where , , , , and determine the
window size for each of the atom parameters (i.e., translations
and , rotation , and scales and ). Even if our for-

mulation is able to handle complex transformations, they gen-
erally take the form of motion vectors or disparity information
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in video coding or stereo imaging applications. The label sets
and the search space are drastically reduced in this case. The
terms used in OPT-1 are described in the next paragraphs.

B. Data Cost Function

The data cost function computes (in the compressed domain)
the accuracy of the sparse approximation of the second image
with geometric atoms linked to the reference image. The de-
coder receives the measurements that are computed by the
quantized projections of onto a sensingmatrix . For each set
of atom parameters , the data term reports the
error between measurements and orthogonal projection of
onto that is formed by the compressed versions of the atoms,
i.e., . It turns out that the orthogonal
projection of onto the subspace spanned by (column) vectors
in is given as , where represents the pseudoin-
verse operator. More formally, the data cost is computed using
the following relation:

(7)

The data cost function given in (7) first calculates the coeffi-
cients and then measures the distance between the
observations and . In other words, data cost function
accounts for the intensity variations between images by es-

timating the coefficients of the warped atoms.
However, when the measurements are quantized, the coef-

ficient vector fails to properly account for the error intro-
duced by quantization. The quantized measurements only pro-
vide the index of the quantization interval containing the actual
measurement value, and the actual measurement value could
be any point in the quantization interval. Let be the th
coordinate of the original measurement and be the cor-
responding quantized value. It can be noted that the joint de-
coder has only access to the quantized value and not the
original value . Henceforth, the joint decoder knows that
the quantized measurement lies within the quantization interval,
i.e., , where and define the
lower and upper bounds of the quantizer bin . We therefore
propose to refine the data term in the presence of quantization
by computing a coefficient vector as the most consistent coef-
ficient vector when considering all the possible measurement
vectors that can result in the quantized measurements vector
. In more details, the quantized measurements can be pro-

duced by all the observation vectors , where is
the Cartesian product of all the quantized regions , i.e.,

. The data cost term given in (7) can be thus
modified as

s.t. (8)

Therefore, robust data term first jointly estimates coef-
ficients and measurements , and then it computes the dis-
tance between and . It can be shown that the Hessian of
the objective function in (8) is positive
semi-definite, i.e., , and hence, the objective function
is convex. In addition, region forms a closed convex set

as each region , forms a convex set. Hence-
forth, the optimization problem given in (8) is convex, which
leads to effective solutions.

C. Smoothness Cost Function

The goal of the smoothness term in OPT-1 is to regularize
the atom transformations such that the transformations are co-
herent for neighbor atoms. In other words, the atoms in a spa-
tial neighborhood are likely to undergo similar transformations
when the correlation between images is due to object or camera
motion. Instead of directly penalizing the transformation
to be coherent for neighbor atoms, we propose to generate a
dense disparity (or motion) field from the atom transformations
and to penalize the disparity (or motion) field such that it is co-
herent for adjacent pixels. This regularization is easier to handle
than a regular set of transformations and directly corre-
sponds to the physical constraints that explain the formation of
correlated images.
In more details, for a given transformation value

at pixel , we compute the horizontal component and ver-
tical component of the motion field as

(9)

where represent the Euclidean coordinates. Ma-
trices , , and represent the grid transformations due to
scale, rotation, and translation changes, respectively. They are
defined as

Finally, the smoothness cost in OPT-1 is given as

(10)

where and are the adjacent pixel locations and is the
usual 4-pixel neighborhood. The term in (10) captures the
distance between local transformations in neighboring pixels. It
is defined as

(11)
The parameter in (11) sets a maximum limit to the penalty; it
helps to preserve the discontinuities in the transformation field
that exist at the boundaries of visual objects [36].

D. Optimization Algorithm

Wenow describe the optimizationmethodology that is used to
solve OPT-1. Recall that our objective is to assign a transforma-
tion to each atom in the reference image in order to build
a set of smooth local transformations that is consistent with
quantized measurements . The candidate transformations are
chosen from a finite set of labels ,
where , , , , and refer to the label sets corre-
sponding to translation along - and -directions, rotations, and
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Fig. 4. A graph is constructed using the set of vertices
, where the pixel nodes and label nodes

. Each pixel is connected to the l-node with a t-link. Some
t-links are omitted for the sake of clarity. The pixels , are connected
with an n-link. The correlation solution is given a multiway cut that leaves each
p-node connected with only one t-link [36].

anisotropic scales, respectively [see (6)]. One could use an ex-
haustive search on the entire label to solve OPT-1. However,
the cost for such a solution is high as the size of the label set
exponentially grows with the size of the search windows ,
, , , and . Rather than doing an exhaustive search,

we use graph-based minimization techniques that converge to
strong local minima or global minima in a polynomial time with
tractable computational complexity [36], [37].
Usually, in graph cut algorithms, a graph is con-

structed using sets of vertices and edges . The sets of vertices
are given as , where defines nodes corresponding
to the pixels in the images (p-nodes) and defines the label
nodes (l-nodes), as shown in Fig. 4. The p-nodes that are in the
neighborhood are connected by an edge called n-link. The
cost of n-link usually corresponds to the penalty of assigning
different labels to the adjacent pixels, as given by . In ad-
dition, each p-vertex is connected to the l-node by an edge
called t-link. The cost of a t-link connecting a pixel and a label
corresponds to the penalty of assigning the corresponding label
to that pixel; this cost is normally derived from the data term.
The final solution is given by a multiway cut that leaves each
p-vertex connected with exactly one t-link. For more details, we
refer the reader to [36].
In order to solve our OPT-1 problem, we first need to map

our cost functions on the graph in order to assign weights to
the n- and t-links. For a given pair of transformation labels at
pixels and , it is straightforward to calculate the weights of
the n-links using (11). It should be noted that the motion field
for a given label is computed using (9). We now describe how
to calculate the cost of the t-links based on data cost . Let

be the set of pixels in the support of the atom that is
given as

(12)

where is a constant. Using this definition, we calculate the
t-link penalty cost of connecting a label node to all the
pixel nodes in the support of the atom as given in
(7), where . That is, the t-link
cost computed between the label and pixels is

with . However, due to
atom overlapping, the pixels in the overlapping region could be
assignedmore than one label. In such cases, we compute the cost
corresponding to the index of the atom that has the maximum
atom response. Index is computed as

(13)

where is the response of the th atom at location , i.e.,
. After mapping the cost functions

on the graph, we calculate the correlation solution using a max-
imum-flow/minimum-cut algorithm [36]. Finally, the data term
in OPT-1 can be replaced with the robust data term given

in (8) in order to provide robustness to quantization errors. The
resulting optimization problem can be efficiently solved using
graph cut algorithms as described above.

E. Complexity Considerations

We now briefly discuss the computational complexity of our
correlation estimation algorithm which can be basically divided
into two stages. The first stage finds the most prominent features
in the reference image using sparse approximations in a struc-
tured dictionary. The second stage estimates the transformation
for all the features in the reference image by solving the OPT-1
regularized optimization problem.
Overall, our framework offers a very simple encoding stage

with image acquisition based on random linear projections.
The computational burden is shifted to the joint decoder, which
can still tradeoff complexity and performance. Even if the
decoder is able to handle computationally complex tasks in
our framework, the complexity of our system stays reasonable
due to the efficiency of graph cut algorithms whose complexity
is bounded by a low-order polynomial [36], [37]. Complexity
can be further reduced in both stages compared to the generic
implementation proposed above. For example, the complexity
of the sparse approximations of the reference image can be
significantly reduced using a tree-structured dictionary without
significant loss in the approximation performance [38]. In ad-
dition, a block-based dictionary can be used in order to reduce
the complexity of the transformation estimation problem with
block-based computations. However, experiments show that
this comes at a price of a performance penalty in the correlation
estimation accuracy. Overall, it is clear that the decoding
scheme proposed above offers high flexibility with an inter-
esting tradeoff between the complexity and the performance.
For example, one might decide to use the simple data cost
even when the measurements are quantized; it leads to a simpler
scheme but to a reduced correlation estimation accuracy.

V. CONSISTENT IMAGE PREDICTION BY WARPING

After correlation estimation, one can simply reconstruct an
approximate version of the second image by warping the ref-
erence image using a set of local transformations that forms
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the warping operator (see Fig. 1). The resulting approxima-
tion is, however, not necessarily consistent with quantized mea-
surements ; the measurements corresponding to the projection
of the image on the sensingmatrix are not necessarily equal
to . The consistency error might be quite significant because
the atoms used to compute the correlation and the warping op-
erator do not optimally handle the texture information.
We therefore propose to add a consistency term in the

OPT-1 energy model and to form a new optimization problem
for improved image prediction. The consistency term forces
the image predicted through the warping operator to be con-
sistent with the quantized measurements. We define this addi-
tional term as the square of the norm difference between
the quantized measurements generated from the reconstructed
image and measurements . The consistency
term is written as

(14)

where is the quantization operator. In the absence of quanti-
zation, the consistency term simply reads as

(15)

We then merge the three cost functions , , and with
regularization constants and in order to form a new energy
model for consistent image prediction. It is given as

(OPT-2)

We now highlight the differences between the terms and
used in OPT-2. Data cost adapts the coefficient vector

to consider the intensity variations between images, but it fails
to properly handle the texture information. On the other hand,
consistency term warps the atoms by considering the texture
information in the reconstructed image , but it fails to care-
fully deal with the intensity variations between images. These
two terms therefore impose different constraints on the atom
selection that effectively reduce the search space. We have ex-
perimentally observed that the quality of the predicted image
is maximized when all three terms are activated in the OPT-2
optimization problem.
We propose to use the optimization method based on graph

cuts described in Section IV.D in order to solve OPT-2. In partic-
ular, we map the consistency cost into the graph (see Fig. 4)
in addition to the data cost and smoothness cost . For a
given , we propose to com-
pute the t-link cost of connecting the label to the pixels

as a cumulative sum of . In the
overlapping regions, as described earlier, we take the value cor-
responding to the atom index that has maximum response as
given in (13). Then, the n-link weights for the adjacent pixels
and are computed based on (11). After mapping the cost

functions on the graph, the correlation solution is finally esti-
mated using maximum-flow/minimum-cut algorithms [36]. Fi-
nally, the data cost in OPT-2 can be again replaced by the
robust data term given in (8). We show later that the perfor-
mance of our scheme improves by using the robust data term

in the presence of quantization. At last, the complexity of

estimating the correlation model with the OPT-2 problem is
tractable due to the efficiency of graph cut algorithms [36], [37].

VI. CORRELATION ESTIMATION OF MULTIPLE IMAGE SETS

So far, we have focused on the distributed representation of
image pairs. In this section, we describe the extension of our
framework to the data sets with correlated images denoted
as . Similar to the stereo setup, we consider as
the reference image. This image is given in a compressed form
, and its prominent features are extracted at a decoder with a

sparse approximation over the dictionary (see Section III).
The images are independently sensed using the
measurement matrix , and their respective measurements

are quantized and entropy coded. Our framework
can be applied to image sequences or multiview imaging. For
the sake of clarity, we focus on a multiview imaging frame-
work where the multiple images are captured from different
viewpoints.
We are interested in estimating a depth map that captures

the correlation among images by assuming that the camera
parameters are given a priori. The depth map is constructed
using the set of features in the reference image and the
quantized measurements . We assume that the depth
values are discretized such that the inverse depth is uni-
formly sampled in the range , where and

are the minimal and maximal depths in the scene, respec-
tively [39]. The problem is equivalent to finding a set of labels

that effectively captures the depth information for each
atom or pixel in the reference image, where is a dis-
crete set of labels corresponding to different depths. We propose
to estimate the depth information with an energy minimization
problem OPT-3 which includes three cost functions as follows:

(OPT-3)

where , , and represent the data, smoothness, and
consistency terms, respectively. These three terms are balanced
with regularization constants and .
The data term assigns a set of labels respec-

tively to the atoms while respecting con-
sistency with the quantized measurements. It reads as

(16)

where

Operator represents the projection of the atom to
the th view when the local transformation is given by depth
label (see Fig. 5). It can be noted that the data term in (16) is
similar to the data term described earlier for image pairs [see (7)]
except that the sum is computed for all the views. Depending on
the relative position of the th camera with respect to the refer-
ence camera, the projection can involve changes in
the translation, rotation, or scaling parameter or combinations
of them. Therefore, the projection of the atom to
the th view approximately corresponds to another atom in the
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Fig. 5. Illustration of the atom interactions in the multiview imaging scenario.
The original position of the features in all the images is marked in black color.
The projection of the first feature at in views and corresponds
to the actual position of the feature in the respective views and thus forms a
valid 3-D region at . Meanwhile, the projection of the second feature
at corresponds to the actual position only in view but not in view
(highlighted in red color). Hence, the second feature does not intersect at ,
which results in suboptimal solution at .

dictionary . It is interesting to note that the data cost is min-
imal if the projection of the atom onto another view corre-
sponds to its actual position in this view.1 This happens when
the depth label corresponds to the true distance to the visual
object represented by the atom . For example, the projection
of the feature in Fig. 5 corresponds to the actual position of
the features in views and . Therefore, the data cost for this
feature at label is minimal. On the other hand, the
projection of the feature is far from the actual position of
the corresponding feature in view . The corresponding data
cost is high in this case, which indicates a
suboptimal estimation of the depth label .
The smoothness cost enforces consistency in the depth

label for the adjacent pixels and . It is given as

(17)

where is a constant and represents the usual 4-pixel neigh-
borhood. Finally, the consistency term favors depth labels
that lead to image predictions that are consistent with the quan-
tized measurements. We compute the consistency for all the
views as the cumulative sum of terms given in (14). More
formally, the consistency term in the multiview scenario is
computed as

(18)

1We assume that there is no occlusion.

where predicts the th view using the set of labels
and the set of atoms . Finally, the OPT-3 optimiza-

tion problem can be solved in polynomial time using the graph-
based optimization methodologies described in Section IV-D.
In this case, the weights to the t-links connecting between the
label and the pixels are assigned as .
The n-link cost for the neighboring pixels , is assigned
as .

VII. EXPERIMENTAL RESULTS

A. Setup

In this section, we report the performance of the correlation
estimation algorithms in stereo and multiview imaging frame-
works. In order to compute a sparse approximation of the ref-
erence image at a decoder, we use a dictionary that is con-
structed using two generating functions, as explained in [35].
The first one consists of 2-D Gaussian functions in order to
capture the low-frequency components (see Fig. 2). The second
function represents a Gaussian function in one direction and the
second derivative of a Gaussian in the orthogonal direction in
order to capture the edges. The discrete parameters of the func-
tions in the dictionary are chosen as follows. Translation pa-
rameters and take any positive value and cover the full
height and width of the image. Ten rotation parame-
ters are used between 0 and with increments of . Five
scaling parameters are equidistributed in the logarithmic scale
from 1 to vertically and 1 to horizontally. Image
is captured by random linear projections using a scrambled

block Hadamard transform with a block size of 8 [12]. Mea-
surements are quantized using a uniform quantizer. The bit
rate is computed by encoding the quantizedmeasurements using
an arithmetic coder. Unless stated differently, the parameters
and in the optimization problems are selected based on

trial-and-error experiments such that the estimated transforma-
tion field maximizes the quality of the predicted image .

B. Generic Transformation

We first study the performance of our scheme with a pair of
synthetic images that contains three objects. Original images
and are given in Fig. 6(a) and (b), respectively. It is clear
that the common objects in the images have different positions
and scales. The absolute error between the original images is
given in Fig. 6(c), where the peak signal-to-noise ratio (PSNR)
between and is found to be 15.6 dB.
We encode the reference image to a quality of 35 dB,

and the number of features used for the approximation of
is set to . The transformation field is estimated with

pixels, samples, and . We
first estimate the transformation field with the OPT-1 problem
by setting , i.e., smoothness term is not activated.
The resulting motion field is shown in Fig. 6(d). In Fig. 6(d),
we observe that the proposed scheme gives a good estimation
of the transformation field even with a 5% measurement rate
that is quantized with 2 bits. We further see that the image
predicted with the help of the estimated correlation informa-
tion is closer to the original image than to [see Fig. 6(e)].
We then include the consistency term in addition to the data
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Fig. 6. Comparison of the estimated motion fields and the predicted images with the OPT-1 and OPT-2 problems in the synthetic scene. The motion field is
estimated using a measurement rate of 5% with a 2-bit quantization. (a) Original image . (b) Original image . (c) Absolute error between and . (d) Motion
field estimated with OPT-1 without activating , i.e., 0. (e) Prediction error with OPT-1 when the motion field in (d) is used for image prediction. (f) Motion
field estimated with OPT-2 without activating . (g) Prediction error with OPT-2 when the motion field in (f) is used for image prediction. (h) Motion field
estimated with OPT-2. (i) Prediction error with OPT-2 when the motion field in (h) is used for image prediction. The smoothness energy values of the motion
fields are (d) 4309, (f) 4851, and (h) 1479. The PSNRs of the predicted images in (e), (g), and (i) with respect to are 20, 20.4, and 21.53 dB, respectively.

cost, and we solve the OPT-2 problem without activating the
smoothness term, i.e., . The estimated transformation
field and the prediction error are shown in Fig. 6(f) and (g), re-
spectively. We observe that the consistency term improves the
quality of the motion field and the prediction quality. Finally,
we highlight the benefit of enforcing smoothness constraint in
our OPT-2 problem. The estimated transformation field with
the OPT-2 problem, including the smoothness term, is shown
in Fig. 6(h). By comparing the motion fields in Fig. 6(d) and (f),
we see that themotion field in Fig. 6(h) is smoother andmore co-
herent; this confirms the benefit of the smoothness term. Quan-
titatively, the smoothness energy of the motion field shown
in Fig. 6(h) is 1479, which is clearly smaller compared with the
solutions given in Fig. 6(d) and (f) (i.e., 4309 and 4851, respec-
tively). In addition, the smoothness term effectively improves
the quality of the predicted image since it gets closer to the
original image , as shown in Fig. 6(i).

C. Stereo Image Coding

We now study the performance of our distributed image rep-
resentation algorithms in stereo imaging frameworks. We use
two data sets, namely, Plastic and Sawtooth.2 The images are
downsampled to a resolution of and
(original resolution of the data sets are 370 423 and 434
380, respectively). We carry out experiments using views 1

and 3 for the Plastic data set and views 1 and 5 for the Saw-
tooth data set. These data sets have been captured by a camera
array where different viewpoints are uniformly arranged on a
line. As this corresponds to translating the camera along one of
the image coordinate axes, the disparity estimation problem be-
comes a 1-D search problem and the smoothness term in (10)

2These image sets are available at http://vision.middlebury.edu/stereo/data/.

is accordingly simplified. Viewpoint 1 is selected as the refer-
ence image , and it is encoded such that the quality of is
approximately 33 dB. Matching pursuit is then performed on
with atoms and atoms for the Plastic and Saw-
tooth data sets, respectively. The measurements on the second
image are generally quantized using a 2-bit quantizer. At the
decoder, the search for the geometric transformations is
carried out along the translational component with window
size pixels and no search is considered along the ver-
tical direction, i.e., . Unless explicitly stated, we use the
data cost given in (7) in the OPT-1 and OPT-2 problems.
We first study the accuracy of the estimated disparity in-

formation. In Fig. 7, we show the estimated disparity field
from 8870 quantized measurements (i.e., a measure-

ment rate of 35%) for the Plastic data set. The ground truth
is given in Fig. 7(a). The transformation is estimated

by solving OPT-1, and the resulting dense disparity field is
illustrated in Fig. 7(b). In this particular experiment, param-
eter is selected such that the error in the disparity map
is minimized. The disparity error (DE) is computed between
the estimated disparity field and the ground truth as
DE , where

represents the pixel resolution of the image [25]. In
Fig. 7(b), we observe that OPT-1 gives a good estimation of
the disparity map; in particular, the disparity value is correctly
estimated in the regions with texture or depth discontinuities.
We could also observe that the estimation of the disparity field
is, however, less precise in smooth regions as expected from
feature-based methods. Fortunately, the wrong estimation of
the disparity value corresponding to the smooth region in the
images does not significantly affect the warped or predicted
image quality [25]. Fig. 7(c) confirms such a distribution of
the disparity estimation error where the white pixels denote an
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Fig. 7. Comparison of the estimated disparity fields with OPT-1 and OPT-2 for the Plastic data set. (a) Ground truth disparity field between views 1 and 2.
(b) Estimated disparity field with OPT-1. (c) Error in the disparity map with OPT-1 DE . (d) Estimated disparity field with OPT-2. (e) Error in the
disparity map with OPT-2 DE . The disparity field is estimated using a measurement rate of 35% with a 2-bit quantization.

Fig. 8. Comparison of the RD performances between the proposed scheme, DSC scheme [6], block-based scheme [5], and independent coding solutions based
on JPEG 2000 for (a) Sawtooth data set and (b) Plastic data set.

estimation error larger than one. We can see that the error in
the disparity field is highly concentrated along the edges since
crisp discontinuities cannot be accurately captured due to the
scale and smoothness of the atoms in the chosen dictionary.
The disparity information estimated by OPT-2 is presented in
Fig. 7(d), and the corresponding error is shown in Fig. 7(e). In
this case, the regularization constants and in the OPT-2
problem are selected such that the DE is minimized. We see
that the addition of the consistency term in the correlation
estimation algorithm improves the performance.
We then study the RD performance of the proposed algo-

rithms in the prediction of the image in Fig. 8. We show
the performance of the reconstruction by warping the reference
image according to the correlation computed by OPT-1 and
OPT-2. We then highlight the benefit of using the robust data
term in the OPT-1 problem (denoted as OPT-2 (Robust)).
We use the optimization toolbox based on CVX [40] in order
to solve the optimization problem given in (8). We then com-
pare the RD performance to a distributed coding solution (DSC)
based on the low-density parity-check encoding of DCT coef-
ficients, where the disparity field is estimated at the decoder
using expected maximization (EM) principles [6] (denoted as
Disparity learning). Then, in order to demonstrate the benefit of
geometric dictionaries, we propose a scheme denoted as block-
based that adaptively constructs the dictionary using blocks or
patches in the reference image [5]. We construct a dictionary in
the joint decoder from the reference image segmented into
8 8 blocks. We then use the optimization scheme described

in OPT-2 to select the best block from the adaptive dictionary.
In order to have a fair comparison, we encode the reference
image similarly for both schemes (i.e., Disparity learning
and block-based) with a quality of 33 dB (see Section III) and
the search window size is fixed to pixels along the
horizontal direction. Finally, we also provide the performance
of a standard JPEG 2000 independent encoding of image . In
Fig. 8, we first see that measurement consistency term signif-
icantly improves the decoding quality as OPT-2 gives better per-
formance than OPT-1. We further see that the OPT-2 problem
with robust data cost improves the quality of the reconstructed
image by 0.5–1 dB at low bit rates. Then, the results confirm
that the proposed algorithms unsurprisingly outperform inde-
pendent coding based on JPEG 2000; this outlines the benefits
of the use of correlation in the decoding of compressed corre-
lated images. At high rate, the performance of the proposed al-
gorithms, however, tends to saturate as our model mostly han-
dles the geometry and the correlation between images, but it is
not able to efficiently handle the fine details or texture in the
scene due to the image decoding based on warping. In Fig. 8,
it is then clear that the reconstruction of image based on
OPT-1 and OPT-2 outperforms the DSC coding scheme based
on EM principles due to the accurate correlation estimation. It
is worth mentioning that the state-of-the-art DSC scheme based
on disparity learning compensates also for the prediction error
in addition to correlation estimation. Although this is the case,
our scheme outperforms the DSC scheme due to an accurate
disparity field estimation. Finally, the experimental results also
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Fig. 9. RD performance with OPT-2 for decoding (view 5) as a function
of the quality of the reference image (respectively 28, 33, and 38 dB) in the
Sawtooth data set.

show that our schemes outperform the scheme based on the
block-based dictionary mainly because of the richer represen-
tation of the geometry and local transformations with the struc-
tured dictionaries.
We then study the influence of the quality of reference image
on the decoding performance of the second image . We

use OPT-2 to decode (viewpoint 5) by warping when the
reference image is encoded at different qualities (i.e., different
bit rates). Fig. 9 shows that the predicted image quality im-
proves with the quality of the reference image as expected.
While we have observed that the error in the disparity estima-
tion is not dramatically reduced by improved reference quality,
the warping stage permits to provide more details in the rep-
resentation of when the reference is of better quality. Now,
we study the cumulative RD performance of views 1 and 5 for
the Sawtooth data set, i.e., we include the bit rate and quality of
the reference image (viewpoint 1) in addition to the rate and
quality of image (viewpoint 5). Fig. 10 shows the joint RD
performance at reference image bit rates 0.2, 0.3, 0.4, 0.5, 0.75,
and 1.5 bpp. In our experiments, for a given reference image
quality, we estimate the correlation model using OPT-2 (with
2-bit quantized measurements), and we compute the joint RD
performance at that specific reference image bit rate. As shown
before, the RD performance improves with increasing reference
image quality. When we take the convex hull of the RD perfor-
mances (which corresponds to implementing a proper rate al-
location strategy), we outperform independent coding solutions
based on JPEG 2000.
We now study the influence of the quantization bit rate

on the RD performance of with the OPT-2 optimization
scheme. We compress the measurements using 2-, 4-, and
6-bit uniform quantizers. As expected, the quality of the cor-
relation estimation degrades when the number of bits reduces,
as shown in Fig. 11(a). However, it is largely compensated by
the reduction in bit rate in the RD performance as confirmed by
Fig. 11(b). This means that the proposed correlation estimation
is relatively robust to quantization so that it is possible to attain
good RD performance by drastic quantization of the measure-
ments. Finally, we study the improvement offered by the robust
data term [see (8)] in OPT-2 when the measurements have
been compressed with a 2-bit uniform quantizer. In Fig. 11(a),

Fig. 10. Cumulative RD performance of views 1 and 5 for the Sawtooth data
set. OPT-2 is used to predict the image (view 5) using the image (view 1)
as the reference image. The image at view 5 is predicted with varying reference
image bit rates 0.2, 0.3, 0.4, 0.5, 0.75, and 1.5 bpp.

it is clear that the proposed robust data term improves the
performance due to efficient handling of noise in the quantized
measurements.

D. Multiview Image Representation

We finally evaluate the performance of our multiview cor-
relation estimation algorithms using five images from the
Tsukuba data set (center, left, right, bottom, and top views) and
five frames (frames 3–7) from the Flower Garden sequence
[39]. These data sets are downsampled by a factor 2, and the
resolution used in our experiments is 144 192 pixels and
120 180 pixels, respectively. In both data sets, the reference
image (center view and frame 5, respectively) is encoded
with a quality of approximately 33 dB. The measurements

computed from the remaining four images
are quantized using a 2-bit quantizer. We first compare our
results to a stereo setup where the disparity information is
estimated with the OPT-2 problem between the center and
left images in Tsukuba data set. Fig. 12 compares the inverse
depth error (sum of the labels with an error larger than one
with respect to ground truth) between the multiview and stereo
scenarios. In this particular experiment, parameters and
are selected such that they minimize the error in the depth

image with respect to the ground truth. It is clear from the plot
that the depth error is small for a given measurement rate when
all the views are available. It should be noted that the -axis in
Fig. 12 represents the measurement rate per view. Hence, the
total number of measurements used in the multiview scenario
is higher when compared with that in the stereo case. However,
these experiments show that the proposed multiview scheme
gives a better depth image when more images are available.
Similar experimental findings have been observed for the
Flower Garden sequence.
We then study the RD performance of the proposed multi-

view scheme in the decoding of four images (top, left, right, and
bottom images in the Tsukuba data set and frames 3, 4, 6, and
7 in the Flower Garden sequence). The images are decoded by
warping the reference image using the estimated depth image.
Fig. 13 compares the joint RD performance (for four images) of
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Fig. 11. Effect of measurement quantization on the quality of the image decoded with OPT-2 scheme in the Sawtooth data set. The quality of the predicted
image is given in terms of (a) measurement rate and (b) bit rate. The benefit of using robust data cost is illustrated using a 2-bit uniform quantizer.

Fig. 12. Inverse depth error at various measurement rates of the Tsukuba mul-
tiview data set. OPT-2 and OPT-3 problems are used to estimate the depth in
stereo and multiview scenarios, respectively. The measurements are quantized
using a 2-bit quantizer.

our multiview scheme with respect to independent coding per-
formance based on JPEG 2000. As expected, the proposed mul-
tiview scheme outperforms independent coding solutions based
on JPEG 2000 as it benefits from the correlation between im-
ages. Furthermore, as observed in distributed stereo coding, the
proposed multiview coding scheme saturates at high rates as the
warping operator captures only the geometry and correlation be-
tween images but not the texture information.
Finally, we compare our results with a joint encoding ap-

proach where the depth image is estimated from the original
images and transmitted to the joint decoder. At the decoder,
the views are predicted from the reconstructed reference image
and the compressed depth image with the help of view pre-

diction. The results are presented in Fig. 13 (denoted as Joint
Encoding), where the bit rate is computed only on the depth
image encoded using a JPEG 2000 coding solution. The main
difference between the proposed and joint encoding frameworks
is that the quantized linear measurements are transmitted for a
depth estimation in the former scheme, whereas the depth in-
formation is directly transmitted in the latter scheme. There-
fore, by comparing these two approaches, we can judge the ac-
curacy of the estimated correlation model or equivalently the
quality of the predicted view at a given bit rate. In Fig. 13, we
see that at low bit rate 0.2, the proposed scheme estimates

Fig. 13. Comparison of the joint RD performances between the proposed
OPT-3 scheme, joint encoding scheme, and independent coding scheme based
on JPEG 2000. The bit rate of the reference image is not included in the
total bit budget.

better structural information compared with the joint encoding
scheme due to the geometry-based correlation representation.
However, at rates above 0.2, we see that our scheme competes
with joint coding solutions. This leads to the conclusion that
the proposed scheme effectively estimates the depth informa-
tion from the highly compressed quantized measurements. It
should be noted that in the joint encoding framework, the depth
images are estimated at a central encoder. In contrary to this, we
estimate the depth images at the central decoder from the inde-
pendently compressed visual information; this advantageously
reduces the complexity at the encoder, which makes it attractive
for distributed processing applications.

VIII. CONCLUSION

In this paper, we have presented a novel framework for the
distributed representation of correlated images with quantized
linear measurements, along with joint decoding algorithms that
exploit the geometrical correlation among multiple images. We
have proposed a regularized optimization problem in order to
identify the geometrical transformations between compressed
images, which results in smooth disparity or depth fields be-
tween a reference and one or more predicted image(s). We have
proposed a low-complexity algorithm for the correlation esti-
mation problem which offers an effective tradeoff between the
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complexity and accuracy of the solution. In addition, we have
proposed a new consistency criterion such that transformations
are consistent with the compressed measurements in the pre-
dicted image. Experimental results demonstrate that the pro-
posed methodology provides a good estimation of dense dis-
parity/depth fields in different multiview image data sets. We
also show that our geometry-based correlation model is more
efficient than block-based correlation models. Finally, the con-
sistent constraints prove to offer effective decoding quality such
that the proposed algorithm outperforms JPEG 2000 and DSC
schemes in terms of RD performance, even if the images are
reconstructed by warping. This clearly positions our scheme as
an effective solution for distributed image processing with low
encoding complexity.
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