

Laboratoire de Production de Microtechnique (LPM)

Email: thomas.maeder@epfl.ch URL: http://lpm.epfl.ch/tf

Characterisation of an integrated SMD multisensor for compressed air in LTCC technology

Th. Maeder, Y. Fournier, J.-B. Coma, N. Craquelin and P. Ryser

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Industrial compressed air multisensor

Applications

- Process control
- Monitoring of valves, circuits, etc. → better reliability

Features

- Robust measurement of pressure, flow & temperature
- Solderable as an SMD component onto fluidic boards
- Bypasseable for large flows

Concept for compressed air flow-pressure-temperature multisensor

Cross section: soldering & bypassing for large flows

Fabrication: LTCC technology

Advantages

- Thermal, mechanical & chemical stability
- High 3D structuration capability
- Possible to integrate many active sensing materials

Sensing

- Flow: hot-wire anemometer → PTC thermistors
- Temperature → extra PTC thermistors
- Pressure → **piezoresistor** bridge on membrane
- + Adapted electronics

3D view of the 5 used LTCC layers

Resulting LTCC multisensor & test board

Results

- Very precise pressure output for typical compressed air conditions (≈8 bar)
- Nonlinear flow output suitable for sensing wide ranges
- Temperature signal for diagnostics purposes

Gauge pressure [mbar]

Temperature output

Flow sensor

output signal

Conclusions

- Robust multisensor for compressed air achieved
- Reliable measurement of pressure, flow & temperature
- Assembly as an "electrofluidic SMD" demonstrated

Outook

- Reduce required power for flow measurement
- Mixed fluidic / electronic boards