

Fabrication of polymer microdevices based on organic sacrificial pastes

nathalie.serra@epfl.ch

N. Serra, T. Maeder, O. Gentsch, P. Ryser

Wedenesday 14 July, 12:30

Laboratoire de Production Microtechnique http://lpm.epfl.ch/tf

Ecole Polytechnique Fédérale de Lausanne (EPFL)

STI-LPM, Station 17, 1015 Lausanne, Switzerland

Outline

- Introduction
- Process
- Formulation of the sacrificial paste
- Applications: microfluidics
- Conclusion

Introduction

- Fabrication of polymer fluidic and mechanical devices
- → biocompatibility
- Structures defined by sacrificial pastes based on evaporable compounds
- → **formulation** of the pastes

Microchannels covered with silicone-graphite

Cross-section of microchannels

Process: principle

1) screen-printing of the sacrificial paste

3) sublimation of sacrificial layer at 150°C

Process: requirements and solutions

- Viscosity: high importance regarding screenprinting process
 - Use of solvents mixes based on cyclohexanol (easily evaporable compound with high viscosity)
- Processable pastes -> homogeneity
 - Dissolution of plastic crystals followed by precipitation and cooling under agitation-> fine-grained suspensions
- Drying properly (well-defined structures) at moderate temperatures (<100°C)
 - Adapted solvent mixes

Formulation of the sacrificial paste

Investigation focused here on polyols

Code	CAS	Name	Source	M.P. [°C]	B.P [°C]
NPG	126-30-7	Neopentyl glycol	Sigma- Aldrich	130	207
TME	77-85-0	Trimethylolethane	Sigma- Aldrich	200	293
DMHD	110-03-2	2,5-dimethyl-2,5 hexanediol	Sigma- Aldrich	86	214

-> <u>Solid</u> at room temperature, good sublimation ability

Formulation of the sacrificial paste

- Components:
 - TME/DMHD mix
 - TME/NPG mix
- Roles:
 - TME = sublimable material
 - Suspension
 - DMHD/NPG = « waxy binders »
 - Dissolved in solvent
- Suitable solvent mixes
 - Base = cyclohexanol

 \rightarrow creamy paste

Application: microfluidics

Mixing circuit

Application: microfluidics

- Flowmeter plugged to the microfluidic circuit
- Air circulates through the device

Flow in the circuit

Flow setpoint

Actual flow

Valve opening

Conclusions & outlook

- Optimisation of formulation of polyol-based sacrificial layers
- Successful manufacturing of small devices

- Incorporation of amine groups for stability reason
 - complex NPG/2-amino,2-methyl-1,3-propanediol (AMPD)
 - → stabilise "plastic" high-temperature cubic phase
 - Substitution of cyclohexanol by 2-amino-2-methyl-1-propanol (AMP)
 - → "reactive" solvent, compatible with plastic phase

