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Abstract 

We investigate in this work the formulation of composite resistive pastes based on epoxy resins and graphite 

for micro-heater manufacturing via thick-film technology. These resistive pastes are designed for screen-

printing onto a printed circuit board (PCB) substrate; further coating with expandable polydimethylsiloxane 

(PDMS), a composite based on an elastomeric matrix and expandable microspheres, results in one-shot 

thermal actuators allowing pumping and sealing in disposable microfluidic lab-on-a-chip devices. The 

resistive paste must therefore have controlled rheology and resistivity, and exhibit good temperature stability 

in order to allow high heating power densities. This paper details the formulation and characterisation of 

suitable epoxy-graphite resistive composites, and the control of their properties through solvents. 
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1. Introduction 

Micro-fluidic devices are often based on clean-room processes and materials, e.g. thin-film deposition 

onto silicon or Pyrex® glass, which are unsuitable for very high-volume disposable devices. Recently, a 

move towards polymers is observed, as their properties such as transparency, low-cost and biocompatibility 

make them particularly interesting for micro-fluidic applications. Deposition of devices onto polymer is best 

done by printing processes such as screen printing and inkjet, depending on the desired materials. One type 

of envisioned device consists of one-shot valves and pumps to extract and analyze small blood samples and 
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using heated PDMS / expandable microsphere composites for actuation [1,2]. However, directly using the 

copper conductive tracks as heaters [3] has the disadvantage of too low resistance values and low lateral 

resolution due to the copper tracks acting as heat spreaders. Therefore, we have endeavoured in this work to 

use polymer / graphite resistive pastes combined with thick-film technology. Graphite was chosen over 

carbon black as filler as it presents several advantages such as a much higher electrical and thermal 

conductivity, which allows, in principle, corresponding properties in its composites. However, due to its 

strong anisotropy, the physics of these composites are complex and not fully understood to date. Carbon-

polymer resistors with both thermoplastic [4-7] or thermoset [8-14] matrices, have been investigated 

previously and can be adjustable in resistivity depending on the filler concentration and type (various grades 

or mixes of carbon black, graphite or carbon fibre). These systems are known as percolative materials; their 

conductivity is often observed to follow, slightly above the percolation threshold, a power law of the 

form [15,16]: 

! " !0 (x - xc)t for x > xc  (1) 

where ! represents the bulk conductivity of the composite, !0 a proportionality constant, x the volume 

concentration of the conductive filler phase and xc the critical value of x for percolation to occur, i.e. the 

percolation threshold. The percolation threshold xc is the value of x where conductivity due to the particle 

network overtakes that of the matrix [17]. Both xc and !0 depend on the microscopic details (microstructure 

and mean interparticle junction conductance), whereas the critical exponent t is supposed to be independent 

of the material (t = t0 ! 2 in three-dimensional lattices). However, the universality of t is limited; ca. half of 

reported experimental results exhibit t " t0 [18], which can be explained by mechanisms such as the 

tunnelling-percolation model [19], where interparticle conduction occurs by tunnelling, which is likely in our 

case. 

In spite of their advantages, polymer/graphite materials present several issues we have to address. First, 

standard graphite tends to have a high percolation threshold in polymers, resulting in a high viscosity that 

can be problematic for both screen-printing and bulk polymer compounding processes. Several types of 

graphite were tested for conductive fillers, as well as different solvents in order to obtain an adapted 

formulation of the composite. Temperature stability of the fabricated resistors is also an important issue, and 

is limited by the glass transition temperature (Tg) of the epoxy matrix. Tg lies at ca. 100°C for “standard” 

epoxies, i.e. in our range of application. Therefore, composites were formulated in this study using both 

"standard" and high-Tg epoxies for comparison. 

The overall purpose of this study is therefore to obtain the most adapted formulation for polymer/graphite 

resistive pastes, having a rheology compatible with screen printing, a low resistivity and temperature stability 

at 100°C or above. As this work mainly concentrates on the formulation of the resin, we chose a graphite 

filler with a low degree of shape anisotropy. 



 

2. Experimental 

2.1. Graphite and epoxy resins 

Formulation of thermally stable polymer/graphite resistors is here the “key factor” for a suitable 

application in a microfluidic device as it is directly connected to the Tg of the matrix. Different materials 

were tested to give a large array of potential composites design. Three nominal graphite sizes of the same 

TIMREX® series (provided by TIMCAL, Switzerland) were used for composite manufacturing in order to 

see the impact on resistivity and rheology. These materials are all “conventional” graphite and look like a 

fine black powder constituted of ca. ellipsoidal particles with a density of 2.3 g/cm3. Table 1 gives their main 

properties. The nominal particle size means that 95% of the particles have a major axis smaller than 4 #m 

(resp. 15 #m and 44 #m).  Two epoxies, whose properties are given in Table 2, were used for the tests: 

EpoTEK® 377 and Martens Plus® provided resp. by Polyscience AG and Swiss Composites (Switzerland). 

 

Table 1. Properties of graphite powders (supplier data) 

Name 
 

Particle size 
(#m) 

Specific surface area 
(m2/g) 

KS4 4 26 
KS15 15 12 
KS44 44 9 

 

Table 2. Main properties of epoxy resins (supplier data). 

Name Tg (°C) Viscosity (mPa·s) at R.T. Curing schedule 
EpoTEK® 377 ~   95 150-300 2h at 150°C 
Martens Plus® ~ 200 2300 24h at 100°C + 15h at 230°C 

 

2.2. Basic epoxy-graphite composites 

A first series of straight resin-graphite composite inks, using the three types of graphite with an 

EpoTEK® 377 matrix, was prepared by mixing with a three-roll mill (same procedure used throughout this 

work), in order to determine the effect of particle size on resistivity as well as the volume fraction needed for 

our application. Test resistors were screen-printed on alumina substrate metallised with thick-film Au 

terminations. After curing, resistivity was measured through a four-point probe. Cured thickness was 

typ. 50 #m. 



2.3. Formulation with solvents 

Depending on the application, high conductivity can be desired, resulting in higher filler loadings. 

However, because of processability reasons, these higher loadings cannot always be achieved with simple 

resin-solid systems, requiring the addition of solvents in order for the inks to remain processable; solvents 

have a double effect on the composite: the dilution decreases the viscosity of the matrix, and the filler 

concentration in the "raw" composite decreases. Ideally solvents should be miscible with the resin, but 

remain inert, without chemical reactions. Miscibility can be easily predicted from Hansen solubility 

parameter theory [20,21]. Concerning reactivity, epoxies are known to have reactivity towards –OH groups, 

which leads us to avoid alcohols as solvents. The last important point is the boiling point, which should be 

high enough to avoid the formation of bubbles within the coating during the heating phase. Moreover, for 

screen-printing, high boiling points (in the 200°C range) are preferred, as they avoid premature drying of the 

ink. However, the boiling point should also be low enough to fully evaporate the solvent during the resin 

curing phase. Considering all these requirements, a range of esters and ethers were therefore selected and 

tested as potential solvents. Table 3 sums up their relevant characteristics and Figure 1 presents their vapour 

pressure vs. temperature. In the experiments, A/B0 will refer to the reference sample, i.e. without any 

solvent. Triacetin was not tested in this study, and is given only for comparison purposes as a high-boiling 

ester. 

Table 3. Properties of tested solvents [22]. Tb = boiling point; P150°C = vapour pressure at 150°C;  M = molar mass; 
d = density. 

Name Type CAS-n° Tb (°C) P150°C 
(kPa) 

M 
(g/mol) 

d 
(kg/m3) 

Symbol 

Diglyme Ether 111-96-6 162 76 134.17   943 A/B1 
Triglyme Ether 112-49-2 216 11 178.23   986 A/B2 
Tetraglyme Ether 143-24-8 275      1.8 222.28 1’009 A/B3 
Dibutyl carbitol Ether 112-73-2 256      4.2 218.33   885 A/B4 
Dipropylene glycol dimethyl ether Ether 111109-77-4 175 49 162.23   903 A/B5 
Amyl acetate  Ester 628-63-7 149        103 130.18   876 A/B6 
Propylene glycol diacetate Ester 623-84-7 191 30 160.17 1’050 A/B7 
Triacetin Ester 102-76-1 258      2.3 218.20 1’160 / 

 

In preliminary studies, we already had successfully tested ethylene glycol dimethyl ethers, also known as 

glymes, as solvents for epoxies. These compounds find wide uses in the industry, as inert solvents for 

chemical synthesis and coatings. They gave promising results, but di- and triglyme are known to be 

toxic [23-25], and the water affinity of these glymes is rather a drawback, as they may pick up undesired 

moisture from the air during processing. Therefore it is of great interest to find less problematic substitutes to 

these compounds, especially for di- and triglyme. The abovementioned solvents were tested through 

measurement of the weight loss during curing of the resin and the resistivity of the resulting composites. 



Composites in this series were made using the same “standard” epoxy as in 3.1, EpoTEK® 377, loaded 

with graphite KS4 at 10% and 20% volume fraction. Then, ca. 20% (mass) of solvent was added and mixed 

to the paste. 

 

 

Fig. 1. Vapour pressure vs. temperature (calculated by the Antoine equation [26,27]). † [27]; * [26]; § dipropylene glycol 
dimethyl ether, approximate data from [28]; ** propylene glycol diacetate, data from [29] refitted together with boiling 
point; †† interpolated between di- and tetraglyme and adjusted to known pressure at 162°C [30]. Tmax is the maximum 
validity temperature indicated for the fits in the references. 

 

2.4. Thermal stability and TCR 

Finally, a last experiment was carried out to assess the thermal stability of our composite, with the aim to 

achieve a low drift of the resistivity up to 140°C. For this test, two compositions were prepared, one with the 

standard EpoTek® 377 resin (c) and the other with a special Martens Plus® resin formulated for high-

temperature stability (d). In both cases, KS4 graphite was added to give 20% volume in the final resin and 

ca. 10% mass diglyme solvent was added to lower resin viscosity. 

Stability was qualified by performing three full thermal cycles between 30 and 140°C on the test resistors, 

with resistivity measured each 10°C. Also, the temperature coefficient of resistance (TCR) was measured 

between 30 and 65°C, i.e. safely below the lowest Tg. 



 

3. Results 

3.1. Basic epoxy-graphite (solvent-less) composites 

The room-temperature resistivities of the first series of composites (EpoTEK® 377 matrix with all three 

graphite powders) are given in figure 2. 

 

Fig 2. Resistivity of the composites vs. graphite filler volume fraction in EpoTEK® 377, for the three graphite powder sizes. 

 

Several conclusions can be drawn from this graph. First, particle size clearly appears to have no 

significant effect on resistivity, the tendency of the curve as well as the values remaining the same for the 

three types, in general agreement with studies with fillers with low to moderate geometric anisotropy [5]. 

Therefore, we decided to use KS4, the finest powder, for the other tests, as this maximises 

reproducibility (i.e. the film gets closer to an “infinitely large” system) and allows printing with higher 

resolution (compatibility with very fine screen meshes). Secondly, it was specified that the application 

required a low resistivity, e.g. a high filler volume fraction. Based on this first set of values, we decided that 

a 20% volume concentration in conductive filler was an adequate compromise between low resistivity and 

processability. Finally, we note the critical volume fraction for percolation is quite low < 4%, but wide 

critical fractions are found in the literature, even for graphite of low geometric anisotropy [4,5,7,10,12,13], 

which can be due to various processing factors such as aggregation, or even small debris [17]. 



3.2. Formulation of the inks with solvents 

The room-temperature resistivity of the composites formulated with solvents is given in figure 3, as a 

percentage of the "solvent-less" sample. Solvents strongly decrease resistivity, which is a desired effect at 

high filler loadings, where maximal conductivity is desired. We suppose the increased fluidity allowed by the 

solvent facilitates contact between the graphite particles, an effect also driven by the contraction of the 

matrix brought about by the evaporation of the solvent. This effect is very marked at higher filler loadings, as 

shown in figure 2. In this case, there are much more graphite particles, thus, with appropriate fluidity of the 

paste, it becomes easier to create conductive paths between particles, resulting in a higher conductivity of the 

final composite. It must also be noted that working with the reference (without solvent) sample becomes 

difficult at higher loading, as for instance at 20% volume fraction in graphite; processing of even higher 

loadings would only be possible through solvent addition. 

 

(a) (b) 

Fig 3. Resistivity of composites loaded with graphite at 10% (a) and 20% (b) volume fraction. 

 

Moreover, adequate solvents for epoxies must evaporate completely during the curing process of the 

composite (2 hours at 150°C in the oven), which was checked through mass loss measurements. The 

composite mass was measured at 30, 60 and 120 minutes, and the results are reported in figure 4. Several 

remarks can be drawn from the graphs. First, the reference sample shows a loss, probably corresponding to 

water evolution. As far as the A series (10% volume fraction in graphite) is concerned, we can notice that in 

each case, at least 80% of the total mass loss occurs in the first 30 minutes, not to say almost all of the loss 

for samples 1, 5 and 6. This result is ascribed to the high vapour pressure of the corresponding solvents (see 

Figure 1): Solvents 2 & 7, and especially 3& 4, have low vapour pressures, and thus slower evaporation. 

This trend is also observed for composites loaded at 20%, where the evaporation process, however, is slowed 

down by the presence of a higher fraction of filler particles, which increases the tortuosity of the diffusion 

paths to the surface.  



 

(a) (b) 

Fig 4. Profile loss mass for samples loaded in graphite at 10% (a) and 20% (b) volume fraction. 

 

3.3. Thermal stability and TCR 

Figure 5 gives the result of the thermal stability tests. For EpoTEK® 377 (Fig. 5c), we can see appreciable 

amounts of hysteresis in the curves, with the first cycle exhibiting a large evolution. A transition is clearly 

observed at 60-80°C, roughly corresponding to the Tg of the matrix. Above Tg, several effects are in 

competition: thermal expansion, mobility (charge carriers, bonds between crosslinks) and lower elastic 

modulus with higher Poisson coefficient. The resistivity of the composite is therefore unstable in the range of 

our application, compelling us to choose epoxy Martens Plus® (Fig. 5d), which has a higher Tg, to shift this 

undesired effect to higher temperatures. Thermal cycling between 30 and 140°C of test resistors 

demonstrated that this final composite is more stable with temperature, although significant change is still 

observed in the 1st cycle. Stability could be further improved by substituting part of the graphite with carbon 

black [12-14]. The presence of both fillers also in principle allows a lower resistivity at high loadings [7,13]. 

The TCR values, measured in the 30-65°C range where both resins are stable, are given in Table 4. A 

higher TCR magnitude (positive or negative) is desirable to achieve temperature control through the resistor 

value, and will be sought in future work by adjusting the formulation. It must be noted that TCR is strongly 

influenced by the substrate thermal expansion through the piezoresistive effect [31]; final TCR values on 

PCB are likely to be different. 



 

Fig 5. Traces of three thermal cycles for 20% KS4 in (c) EpoTEK® 377 and (d) Martens Plus®. 

 

 

Table 4. TCR (30-65°C) of the samples on alumina substrates. 

Sample TCR 
average ± std. dev. 

(ppm/K) 
(c) EpoTek® 377 + 20% KS4 -150 ± 13 
(d) Martens Plus® + 20% KS4 -320 ±   5 

 
 
 

3.4. Application 

The use of a high-Tg resin, a high graphite loading and solvent to allows processability – formulation (d) 

in previous section – allows stable, low-value resistors apt to be used as micro-heaters for overlying 

expandable PDMS films (Fig. 6). In a separate study [32], it was determined that such heaters need to reach 

ca. 110°C to safely heat the overlying PDMS above its expansion threshold of 80°C, and that the required 

power on a typical PCB was ca. 500 mW for 1 mm square resistors. Formulation (d) with 50 #m cured 

thickness yields roughly 100 $, giving very reasonable supply parameters of ca. 70 mA at 7 V. In the light of 

the results of section 3.2, diglyme may of course be substituted by a less toxic compound. 

 



 

Fig 6. Heating resistor on PCB, 3 mm square [32]. 

 

4. Conclusion 

In this work, the resistivity and stability of epoxy-graphite composites were investigated. We achieved 

control of the paste rheology by tuning the formulation with appropriate solvents, which remain inert with 

the matrix and evaporate in a controllable fashion during the curing. Different esters and ethers were tested, 

giving a large array of potential solvents with evaporation properties adaptable to the epoxy curing 

conditions. We also found substitutes to the toxic glymes that were previously used in our application. The 

control of the paste rheology allows high filler loadings, necessary to obtain low resistivity values. It was 

also demonstrated that particle size has almost no effect on resistivity, which is in accordance with 

theoretical models. We thus decided to use graphite with the smallest particle size to maximise printing 

resolution and reproducibility. The Tg of the matrix was shown to have a pronounced effect on the 

temperature stability. Thermally stable heaters were therefore successfully formulated using an epoxy matrix 

with a high Tg, yielding resistors well suited for the manufacture of micro-heaters by economical printing 

processes. With further improvements in formulation and provided the achievable resolution (ca. 100 #m) is 

adequate for the envisioned application, this technology constitutes a promising alternative to costly clean-

room processes. 
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6. Figure captions 

Fig. 1. Vapour pressure vs. temperature (calculated by the Antoine equation [26,27]). † [27]; * [26]; 
§ dipropylene glycol dimethyl ether, approximate data from [28]; ** propylene glycol diacetate, 
data from [29] refitted together with boiling point; †† interpolated between di- and tetraglyme and 
adjusted to known pressure at 162°C [30]. Tmax is the maximum validity temperature indicated for 
the fits in the references. 
 
Fig 2. Resistivity of the composites vs. graphite filler volume fraction in EpoTEK® 377, for the 
three graphite powder sizes. 
 
Fig 3. Resistivity of composites loaded with graphite at 10% (a) and 20% (b) volume fraction. 
 
Fig 4. Profile loss mass for samples loaded in graphite at 10% (a) and 20% (b) volume fraction. 
 
Fig 5. Traces of three thermal cycles for 20% KS4 in (c) EpoTEK® 377 and (d) Martens Plus®. 
 
Fig 6. Heating resistor on PCB, 3 mm square [32]. 
 
 



 

7. Table captions 

 
Table 1. Properties of graphite powders (supplier data). 
 
Table 2. Main properties of epoxy resins (supplier data). 
 
Table 3. Properties of tested solvents [22]. Tb = boiling point; P150°C = vapour pressure at 150°C;  
M = molar mass; d = density. 
 
Table 4. TCR (30-65°C) of the samples on alumina substrates. 
 
 


