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The implementation of linearized operators describing inter- and like-species collisions in the global
gyrokinetic particle-in-cell code ORB5 [S. Jolliet, Comput. Phys. Commun. 177, 409 (2007)] is
presented. A neoclassical axisymmetric equilibrium with self-consistent electric field can be
obtained with no assumption made on the radial width of the particle trajectories. The formulation
thus makes it possible to study collisional transport in regions where the neoclassical approximation
breaks down such as near the magnetic axis. The numerical model is validated against both
analytical results as well as other simulation codes. The effects of the poloidally asymmetric Fourier
modes of the electric field are discussed, and the contribution of collisional kinetic electrons is
studied. In view of subsequent gyrokinetic simulations of turbulence started from a neoclassical
equilibrium, the problem of numerical noise inherent to the particle-in-cell approach is addressed. A
novel algorithm for collisional gyrokinetic simulation switching between a local and a canonical
Maxwellian background for, respectively, carrying out the collisional and collisionless dynamics is
proposed, and its beneficial effects together with a coarse graining procedure [Y. Chen and S. E.
Parker, Phys. Plasmas 14, 082301 (2007)] on noise and weight spreading reduction are

discussed. © 2010 American Institute of Physics. [doi:10.1063/1.3519513]

I. INTRODUCTION

Global gyrokinetic particle-in-cell (PIC) simulations
have been widely recognized as powerful tools for studying
microinstabilities and anomalous transport in tokamaks. In
the core of such systems, collisionality is weak, and colli-
sionless models have been extensively used. A finite dissipa-
tion is nonetheless necessary in order for the nonlinear tur-
bulent system to reach steady state."? In a simulation code,
this dissipation can be of numerical origin, e.g., related to the
finite difference scheme used in Eulerian codes® or produced
by an artificial decay of the weights in Jf PIC Lagrangian
codes.* Implementing realistic collision operators enables,
however, to account for true physical dissipation,5 with in-
teresting effects on microinstability dispersion and associated
turbulent transport. Indeed, this so-called anomalous trans-
port, which may lead to particle and heat fluxes much higher
than the purely collisional transport predicted by the neoclas-
sical theory, can itself be strongly affected by collisional ef-
fects: in particular, in the ion temperature gradient regime,
the turbulence level is regulated by the axisymmetric modes,
called zonal flows.® Since the zonal flow is damped by col-
lisions, taking the collisional physics into account may lead
to a different transport level with respect to collisionless tur-
bulence simulations.” Also, pitch angle scattering may have
electrons skip from a trapped to an untrapped trajectory and
in this way affect the mechanism of the trapped electron
mode (TEM), in particular its growth rate.

In this paper, we present a practical discretization of lin-
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earized collision operators implemented in the global gyro-
kinetic PIC code ORBS,8 which, in particular, avoids numeri-
cal overshoots at the borders of the pitch angle space. There
is a computational price for implementing collisions into a
gyrokinetic code, especially in the frame of the Jf PIC ap-
proach. The practical implementation of collisions’ ' indeed
leads to a spreading of weights13 with the potential effect of
increased numerical noise. Contrary to collisionless simula-
tions, weights thus appear as a growing additional dimension
of the numerical system, which, despite spread reduction
schemes, "> requires a larger number of numerical particles
to resolve. Furthermore, since the phase-space volumes are
not constant in time, a second weight for each marker” is
required. Moreover, an algorithm that switches between a
local Maxwellian background for carrying out the collisional
dynamics and a canonical Maxwellian background for carry-
ing out the collisionless dynamics is proposed. Its positive
effects together with a coarse graining procedure14 on the
noise level of the simulation are pointed out, enabling to start
a relevant turbulent simulation from a low-noise neoclassical
equilibrium.

The implementation of collision operators in global
drift- or gyrokinetic codes including full guiding center tra-
jectories opens many possibilities of investigating issues re-
lated to neoclassical transport, which are not reachable with
collisionless simulations. Several studies of neoclassical
transport have been performed in the past by codes designed
specifically for carrying out computations within the neoclas-

. . . 16—18 - . .
sical approximations, 018 je., in particular, p,/L.<<1, where
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pp 1s the banana width and L. is the characteristic gradient
length of the equilibrium profiles. Going beyond these ap-
proximations is clearly of interest. Various studies of neo-
classical transport and equilibria using global codes account-
ing for finite banana width effects have thus already been
performed, both considering Lagrangianu‘lg"21 and
Eulerian>** methods. The corresponding axisymmetric elec-
tric field ensuring ambipolarity has also been investi-
gated,l9_21 showing its crucial effect on the neoclassical equi-
librium. Such global neoclassical simulations including full
ion and electron dynamics will be studied.

This paper is organized as follows: in Sec. II, the simu-
lation model used by ORBS is briefly explained, including the
considered magnetic equilibrium, density and temperature
profiles, as well as some definitions related to neoclassical
transport. The ORBS numerical methods are developed in Sec.
III, with details concerning the newly implemented collision
operators. Neoclassical transport simulation results are pre-
sented in Sec. IV, with insights beyond the neoclassical ap-
proximation, in particular, simulations including terms ne-
glected within the neoclassical limit such as the effects of the
poloidally asymmetric modes. Global simulations including
the full kinetic ion and electron dynamics are also studied in
the frame of neoclassical runs. Finally, Sec. V discusses the
possibility to start gyrokinetic turbulent simulations from a
neoclassical equilibrium, focusing particularly on the crucial
noise problem. In particular, Sec. V proposes an algorithm
enabling collisional runs that take advantage of the collision-
less stationary solutions of the gyrokinetic equation. Conclu-
sions are drawn in Sec. VI.

Il. SIMULATION MODEL

The physical model we consider is the standard gyroki-
netic equation within the electrostatic approximation, as de-
rived by Hahm in Ref. 24, to which collisional effects have
been added in the form of approximate Landau collision op-
erators. Note that although Hahm’s equations have been
originally derived under the assumption that e¢/T<1,
where ¢ is the electrostatic potential and T is the tempera-
ture, it has been shown in Ref. 25 that these same equations
are, in fact, valid as long as |vgxp/vg|l~k pred/T<1,
where k| is the perpendicular wave number of the potential
and p; is the Larmor radius. This subsonic condition is
clearly verified for all the neoclassical simulation results pre-
sented in this paper.

A. Gyrokinetic equations

In the frame of the gyrokinetic theory, each species is
characterized by its gyroaveraged particle distribution func-
tion f. The distribution is usually expressed in terms of the
gyrocenter variables (I?,vH, ), where R is the guiding center
position, vy=0 -B/B is the parallel velocity of the particle, B
is the magnetic field, and ,u=mvi/ 2B is the magnetic mo-
ment. The gyrokinetic equation with collisions, governing
the evolution of f, reads as
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D
Ef=—C(f), (1)

where C is the nonlinear Landau collision operator on f and
D/ Dt is the collisionless gyrokinetic operator,
D_0 dR 4 dv 9

—=—+ ~ + . (2)
Dt gt dt gr dt dv

In the limit of electrostatic fluctuations, the time derivative
of the gyrocenter variables (dﬁ/ dr, dvy/dr, dw/dr) imple-
mented as particle trajectories in ORB5 (Ref. 8) are the equa-
tions derived by Hahm,24

AR _
—_—= = —+ + + N
dt Ug=U0+Uyp+ Ut UVUgxp
Ug (3)
dv 1 N -
o= i (gE = uVB), )
t muvy
du
—=0, 5
" (5)

where m and g are the particle mass and charge, respectively,
and b=B/B. The drift velocity 0, is composed of the VB
drift Gy, the curvature drift 7, and the E X B drift 7y 5. The
detailed equations of motion implemented in ORBS are given
in Ref. 8. The collision operator appearing on the right hand
side of Eq. (1) is linearized with respect to a local Maxwell-
ian fin: C(f) = C(Sfyn), where 8fiy=f—finm. This approxi-
mation is justified as long as Jfy; remains small compared
to fim- This statement is clearly verified for the simulation
results presented in this paper since the time scale we con-
sider, typically a collision time, is small compared to the
neoclassical confinement time. Indeed, an estimate for the
deviation from the background distribution is given by
Of i~ Ar- Vi~ fumAr/ L., where Ar is the typical radial
excursion of the particle along its collisional trajectory and
L. is the characteristic gradient length of the equilibrium
profiles. As |Ar/L.|<1 after a few collision times for the
systems of interest, the scaling |8fim/fiml <1 is indeed en-
sured. The local Maxwellian background fj, given in the
gyrocenter variables, reads as

no(W) [ mvﬁ Bu } ©)
2Ty (W)m2 "L ” 21(W) ~ Ty(W) |

fLM=

where temperature and density are functions of the poloidal
magnetic flux W. Thus, Eq. (1) reads as

D A
Ef=_c(5fLM)~ (7)

More details are given in Sec. II B. In the neoclassical order-
ing, i.e., v /v)| ~ pp/ L. <1, drifts are neglected in the gyro-
kinetic operator D/Dt applied to Jf;y; so that one considers
the following equation instead:
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D = [Bf + o )] ®)
Dl . LM = Df ™M M/ |»

where
D J A J dUH d
- =_+U“b'__,+__. (9)
Dt ., Ot gR  dt dvy,

The equations for the characteristics underlying the advec-
tion operator (9) are thus

dR .

_=5G=va’ (10)
dt

d 1~ - =

Ao —h. (g - uVB), (11)
dt m

du

——=0. 12
it (12)

Equation (8), which treats drifts perturbatively by keeping
the term 0, only on the right hand side (RHS), will be re-
ferred to as the neoclassical limit case. Note that with respect
to Ofim, this equation is local to a magnetic surface. Con-
versely, Eq. (7), which treats the finite orbit width effects
resulting from drifts ¥, without approximations, will be re-
ferred to as the global case.

Let us point out that the usual neoclassical ordering
breaks down near the magnetic axis, as the radial excursion
of particles from a flux surface can become comparable to
the minor radius. In particular, as stated explicitly in Ref. 26,
in this region, the ordering |0,-V&fuml ~ |54 Viml applies
instead of the standard neoclassical ordering |5d'ﬁ5fLM|
< |5d~€fLM , which, in fact, leads to transport being radially
nonlocal. It is to be emphasized, however, that this nonlocal
ordering does not alter the scaling |9f v <fim. Indeed, it is
the gradient and not Jfj,, itself that becomes large. Consid-
ering the term 6d-ﬁ5fLM beyond the standard neoclassical
theory, along with a linearized collision operator, thus brings
a relevant correction to the local approximation breaking
down near the axis. Note that this correction does not im-
prove the accuracy of the calculation away from the mag-
netic axis, since in this case, 5d-€5fLM is of the same neo-
classical order as the nonlinear collisionality C[8fn, OfLml
we neglect.

The gyrokinetic equation is coupled with the quasineu-
trality equation. Further considering the decomposition
fi=fim.i+ 6fim,» the background ion density is given by the
gyrodensity 7z,

B - .
;0(X) = f Z”d3RdUHdeLM,i(R’UH’M) dR+p-x), (13)

where p(u) is the Larmor radius vector and Bj=B+my

X (ﬁ X l;) b/ q. One assumes that the background densities of
electrons and ions verify quasineutrality, i.e., Zn;g=n,,
where Z is the ionization degree. The perturbed ion density
has both a perturbed gyrodensity contribution dn; as well as
a polarization drift term dn,;,
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511,()?) =§i+ 5I/lp01’[. (14)

In ORBS5, the polarization drift term dn,; is both linearized
and expanded to second order in k | p;;, where k| is the char-
acteristic perpendicular wave number and p;; is the ion
Larmor radius: én, =V | (Zn;oV | ¢/B();). Note that the po-
larization drift linearization assumes that | f y| < fim. In the
case of drift-kinetic electrons, the following quasineutrality
equation for the fluctuating components is considered:
-V, {MVM} = Zon () — o, (%), (15)
BQ,;
where dn, is the perturbed electron density, (); is the ion
cyclotron frequency, and ¢ is the electrostatic potential.
Since the electrons are considered drift-kinetic in Eq. (15),
the electron density is equal to the electron guiding center
density. In case an adiabatic electron response may be as-
sumed, the quasineutrality equation for the fluctuating com-
ponents is instead given by

ML(\P) > 1n;0(V)
T.(0) [¢(x,t)—<¢>(\1’,t)]—vl{ B0, Vl¢>]
= on,(3). (16)

where T, is the electron temperature, ¢ is the elementary
charge, and () stands for the flux surface average operator.
Note that the considered electron adiabatic response is lin-
earized, having further invoked |e(¢p—())/T,|<1.

B. Collision operators

The finite Larmor radius (FLR) effects resulting from the
change of variables from particle to gyrocenter variables,
otherwise retained in the collisionless gyrokinetic turbulent
dynamics in ORB5, have been neglected with respect to the
collision operat01rs.27’28 This approximation is justified if the
perpendicular wavelength of the electrostatic perturbation is
larger than the Larmor radius. This should be well satisfied
for all species in the frame of neoclassical transport studies.
This assumption should also hold for collisional damping of
zonal flows as well as for collisional trapping/detrapping of
electrons in the TEM turbulent regime.

1. Electron-ion collisions

Invoking the low electron-ion mass ratio, m,/m;<<1, the
electron-ion collisions are modeled by the Lorentz operator,
assuming immobile ions in the laboratory frame,

Cei[fi’fe] = Vei(v)izfe’ (17)
where

SN N A Sl

L= ag(l §)a§+1—§2aa2 ’ (18)

having introduced the pitch angle variable £=v;/v and the
gyroangle «. Considering the decomposition f,=fp,
+ OfLM.e» ONE obtains
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Cei[fi’fe] = Cei[fiv 5fLM,e] = Vei(U)i2 5fLM,ev (19)

having noted that C,[f;,fim.]=0, as the Lorentz operator
annihilates any isotropic velocity distribution function. The
electron-ion collision frequency v,;(v) is given by

3
_ [ U
Vei(v) = Vei( v e) >

20
B nZ** In A 20
~ 8memu

Vei >

where m, is the electron mass, vy, ,=\T,/m, is the electron
thermal velocity, €, is the permittivity of free space, and In A
is the Coulomb logarithm. It is assumed that In A is constant
over the whole plasma, and one approximates n; = n;o(V) for
computing the collision frequency, where n;,(W) is the den-
sity of the local Maxwellian background. The distribution
being invariant with respect to « in the gyrokinetic descrip-
tion, the operator C,; thus reduces to

o
Colfdfiane] = - w(v)%[(l - 5%%?“} e

2. Self-collisions

Self-collisions are treated through a linearized operator
and are split into two terms. Considering again a local
Maxwellian background fiy, the full distribution is decom-
posed into f=f]\+ Ofim- Using the bilinearity of the colli-
sion operator with respect to each of its two arguments, one
obtains

CLf.f1= Clfimefiml + Clfims Ofiml + CLOf Lo fimd
k—,—/

0

+ CLOfLms Ofiml
-
neglected (22)

where the term C[fu./fLMm] cancels out as fj; is a stationary
state of the self-collision operator. The term C[ &f1 . Ofim] 18
neglected as a result of the linearization process. The linear-
ized self-collision operator thus finally reads as

é( Ofim) = Clfims fiml + CLOf L fiml- (23)

The term C[f} i, 8f1ml» corresponding to the collisions of the
perturbation Jfjy; on the local Maxwellian background f,
is given by

J - Jd
C[fLM’ 5fLM] = a_zf ' F(ﬁ) Sfim— (9_17 ’ D(l7) Ofim | (24)

where the drag vector I and the diffusion tensor D are writ-
ten as follows:"”

['=-9H(V)7, (25)
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=2 .- .
- —””‘h<1<(v)[1 - —f} " zH(v)%), (26)
4 v v
with I being the identity tensor and
4

_ ng"lnA

=5 27
g 2megmuy, @7

being the thermal self-collision frequency for the species
with mass m, charge ¢, thermal velocity vy,=V7/m, and
background density n. Defining the normalized velocity v
=v/vy, the functions H, K, and G related to the Rosenbluth
potentials are introduced:

1l 2
H(v) = —| erf(v/ \2) - \/jV€_VZ/2} , (28)
T

\

K(V) = é (V2 = 1erf(v/\2) + \/zvfz“’z/z], (29)

o

G(v)=(2v2 = 1)H(V) = K(v), (30)

using the definition erf(x)=(2/ \/7_T) J5dt exp(—?) for the error
function. The operator C[fjn, OfLm] given by Eq. (24) can,
in fact, be explicitly decomposed into a pitch angle scattering
term and a thermalization term,

CULM’ 5f LM] = VD(U)iz5f LM
Lol o a2 cmﬂ
- (90[ 5 V(U)fLMm)( ik (31)

having defined vp(v)=vK(v)/2v? as the pitch angle fre-
quency and v (v)=vH(V)/v? as the thermalization frequency.

The term C[Sfim,fim] is the background reaction that
ensures conservation of mass, momentum, and kinetic en-
ergy of the linearized self-collision operator. For practical
reasons, to avoid having to reconstruct Jfjy; and taking its
derivative at each time step, operations strongly subject to
numerical noise in a §f PIC code, one does not implement
the exact form of this operator, as derived directly from the
Landau operator, but makes use of an approximate form

CLOfim-fiml :fLMB(‘SfLM)s12J3

C[ 5fLM’fLM]
— MM (s
i (ofLm)
_ L {6\/771{(\/) WJU” + \';G(v)ﬁ—f},
n(x) Uth Uty
(32)

where P, and &€ are the changes in the parallel momentum
and the kinetic energy of the perturbation distribution, re-
spectively, due to the operator defined in Eq. (24),

OP(Sf s %) = —f C[fLM’afLM]v\\d3v’ (33)
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OE(Sf s X) = — J Clfim 5fLM]v2d3U- (34)

Let us notice that due to the invariance of the distribution
function with respect to the gyroangle, we only need to con-
sider the variation of the parallel component of the velocity
in Eq. (33). The operator B, although a physical simplifica-
tion, nevertheless satisfies the local conservation properties.
The functional form of Eq. (32) indeed ensures that

ffLMB(5fLM)d3U =0, (35)
ffLMB(5fLM)UIIdSU + 0P |(6fm. %) =0, (36)
ffLMB( 5fLM)v2d3U + 6(Of %) = 0. (37)

The operators C[fiwm, fim]) and fimB(Sfiy) thus together
conserve parallel momentum and kinetic energy and indi-
vidually conserve mass. One can furthermore show'*"? that
the operators (24) and (32) verify properties of self-
adjointness, satisfy the H-theorem, and that a linearized
shifted Maxwellian of the form

U U2
Ofim=Jiml crter— +e3 5 (38)
Uth Uth

will be annihilated by the total collision operator, i.e.,

C[fLM’ 6fLM] +fLMB(5fLM) =0 for any 6fLM of the form (38),
where ¢y, ¢,, and c; are arbitrary constants.

C. Equilibrium profiles

The considered “ad hoc” equilibrium29 consists of toroi-
dal, axisymmetric, nested magnetic surfaces with circular,
concentric, and poloidal cross sections. In this case, the axi-
symmetric magnetic field is given by B=V¥x ﬁ@
+F(W)€¢, assuming that =W (r) with d¥/dr=rB,/g, as
well as F=RyB,, so that

. BR
B=20 °[é¢+ 4 ée}, (39)
R Roq(r)

where R is the major radius, r is the local minor radius, ¢ is
the toroidal angle, 6 is the poloidal angle, and é, and é, are
the unitary vectors in the toroidal and poloidal directions,
respectively. Furthermore, B, and R, stand for the magnetic
field amplitude and major radius on the magnetic axis
(r=0). The profile g is chosen quadratic, introducing the glo-
bal minor radius a,

2
Cf(r)=670+f?1;, (40)

which is related to the safety factor profile ¢,(r) by the fol-
lowing relation:
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() =\1-€q,r), (41)

where e=r/R is the local inverse aspect ratio. For all simu-
lation results presented in Secs. IV and V, the values g
=0.854 and g,;=2.184 have been chosen.

In this paper, we use several kinds of temperature and
density profiles. Let A stand for either the temperature T or
density n of a given species. The first kind of profile, referred
to as type 1, is defined with respect to the poloidal flux
coordinate s=\VW/ Wy,

dln.A K4

ds*  [1- COSh_z(SO/AA)]

X [cosh‘z( s; SO) —cosh’2<AS—0)], (42)
A A

where s,=0.5 is chosen so that d In .A/ds?*=0 for s=0,1 and
dIn A/ds’=—k 4 for s=s,. Profiles referred to as type 2 are
defined with respect to the geometrical radial coordinate r,
with a similarly peaked shape as profiles of type 1,

dln A
d(r/a)

a7
=— Ky cosh‘2< d aA ro)’ (43)
A

with 75=0.5. Profiles referred to as type 3 are defined with
respect to the same coordinate r, with a flat logarithmic gra-
dient over a wide region of the torus,

din A ky {r/a—(?O—AA)}
=——\tanh| —————
d(r/a) 2 A,

- tanh[ %M] } , (44)

where the values 7,=0.5, A,=0.04, and A ,=0.4 have been
chosen.

D. Fluxes, diffusivity, and force balance

We define, respectively, the particle flux I', the kinetic
energy flux Qy,, the potential energy flux O, the heat flux
gy, and the bootstrap current j, for each species as follows:

A4 , dR 1 , AP
F: N . dl)f_ = - dvf_ s
V| dr [ \ IV dr /¢
(45)
1 m , d¥
Ouo={ o [ @) (46)
K <|V\Ir| 2 dr s
1 s dv
Opr=\ = dqubfg , (47)
V| s
1 m dw
gu=1{ — Jd3vf{—(v2—50t2h)+qq§]— . (48)
|qu| 2 dr s
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jb:<Bf dsva> ; (49)
AV

where d¥/dr=VW¥-dR/dr and (A)g=(1/S)[¢Ado is defined
as the poloidal flux surface average of a quantity A, with S
being the surface value. (A),y=[aAd*x/AV stands for the
volume average over the small volume AV enclosed between
two neighboring magnetic surfaces ¥ and W+AW. In prac-
tice, to ensure sufficient statistical accuracy from the PIC
approach, surface averages are replaced by volume averages
using the relation (A)g=(|VW|A)xy/{|V¥|)5y. The heat flux
can be written as qy=Qy;,+ ont—gTF. Accounting for the
contribution Qp, from the potential energy g¢ when com-
puting the heat flux g is essential, as first pointed out by
Helander in Ref. 30. Neglecting this term leads to unphysi-
cally large contribution from Ugxp to the heat flux in the
presence of nonzero poloidal mode numbers. For diagnostic
purposes, the particle and heat diffusivities are estimated in
certain cases using the following relations, respectively,
D=T"/|Vn| and xy=qy/(n|VT]). Let us emphasize that these
relations are based on the approximation of neglecting the
off-diagonal elements of the transport matrix. In general,
temperature gradients contribute also to the particle flux, in
the same way as the density gradient contributes to the heat
flux. Diffusivities are usually normalized with respect to the
gyro-Bohm (GB) units: ygg=c,p>/a, where c, is the sound
speed, c,=VvZT,/m;, and the sound Larmor radius is defined
as p,=c,/ ;. The size of the considered plasma is given by
the parameter p*=p,/a. For typical simulations presented in
this paper, p*~1/100. Note that assuming that T,=T;, Z=1,
and a~ L,~ Ly, the neoclassical assumption p,/Ly~p,/L,
~p*q,/Ve<<1 is still valid in a large part of the plasma.

An important neoclassical equation is the ion force bal-
ance, which reflects the conservation of the toroidal momen-
tum,

i dV  RB,T; d d ZeE
Jﬂ_:_u (k=1)—InT,— —lnn;+ o , (50)
n; dr Ze dr dr T,

1

where E, is the radial electric field, n; is the ion density, and
Jpi 18 the ion contribution to the bootstrap current. This rela-
tion is derived by Hinton and Hazeltine in Ref. 31 [Eq.
(6.134)], but where a ratio B,/ Bygjoiqa appears to be missing.
The coefficient k predicted by ORB5 will be studied, as well
as neoclassical transport coefficients, with respect to the col-
lisionality parameter v*. Defined basically as the ratio be-
tween the detrapping collision frequency and the bounce fre-
quency, it reads for ions as

—
R ] 6T
v = O—qs/z, with 7,,= —— (51)
TiiUth if3 Vii

and for electrons as

Ryg, 3 \e";r
1/: = O—%m, with 7,= s (52)
TeVth <€ 4Ve[

with v,; and v; being the collision frequencies as given by
Egs. (20) and (27), respectively.
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lll. NUMERICAL METHODS

The code ORBS uses a df PIC algorithm, where the full
distribution f is decomposed into a numerical background f
and a deviation &f:f=f,+ 6f. For collisional runs, since the
collision operators are linearized with respect to a local Max-
wellian (Sec. II B), this latter distribution is an obvious
choice for the numerical ion and electron backgrounds: f
=fLm- This particular choice for f, is more obvious in the
case of simulations carried out in the standard neoclassical
limit, i.e., evolving Eq. (8), which results from a linearization
with respect to fi of the whole gyrokinetic equation (colli-
sional and collisionless dynamics). The collision operators
are treated separately from the collisionless dynamics, ac-
cording to a time splitting approach.

For the following, let us introduce the notation D'/Dt,
which stands for D/ Dt in the global case and for D/Dt|,, in
the neoclassical limit, as defined in Sec. II, so that one
may always write the gyrokinetic equation (7) or Eq. (8) as
follows:

!

D_5 _ 2 2 S
Di fim=— thLM+C( i) |- (53)

A. Solving the gyrokinetic equation with collisions
using the of approach
Equation (53) for &f is solved using the low-noise PIC

8f-method. The linearized collision operator C(8fLy;) can, in
general, be decomposed into two terms,

é( Ofm) = Crp(dfim) + Cir(dfim)
test particle term  background reaction term (54)

In the case of electrons, for example, e-i collisions contribute
to Crp with the Lorentz operator (19) and e-e self-collisions
contribute to both Cpp and Cyyr with the operators

Clfim, Ofiml and CLfLa. fLml given by Egs. (24) and (32),
respectively. Thus, Eq. (53) for dfyy reads as

D
_5fLM:_

D
Dr EfLM + Cpr(dfim) |- (55)

where the operator D/ Dt is defined as
D/Dt b D,/Dt + CTP‘ (56)

The PIC representation requires introducing a set of N so-
called numerical markers in the gyrokinetic phase space
z=(13,v”,,u). Using the notation z,(¢), r=1,...,N, for the or-
bits of these markers, the marker distribution function g(z,?)
can be written in a discretized form as follows:

N
gz0) =2 8[z—z,(0]. (57)
r=1

The physical distribution Jf is linked to the marker distribu-
tion g by the so-called weight field W(z,1),

Ofimlz,t) = W(z,1)g(z,1), (58)

which in discretized form, using Eq. (57), becomes
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N
Sfim(z1) = W(z,0) 2, 8[z - z,(1)]
r=1

N
= > Wlz,(1),118[z - 2,(1)]

r=1
N

=2 w08z -20)], (59)
r=1

having introduced the so-called particle weight w,(¢) defined
here as the value of the weight field at the marker position,

w(t) := Wlz,(1),1]. (60)

In the same way, one may introduce the second weight field

P(z,1), linking the physical background distribution fj,; to
15

g’

Jim(z,0) = P(z,0)g(z,1), (61)

which in discretized form, similar to Eq. (59), becomes

N
fim(zt) = 2 p0)8[z-2,0)], (62)
r=1

having introduced the second weight p,(f) of the marker,
defined here as

pt) = P[z,(1),1]. (63)

At least formally, there is quite some freedom as to the
choice of the evolution of the marker distribution g. How-
ever, for practical reasons, it is convenient to consider the
following equation:

Do (64)
Dt

Using the PIC representation (57), the evolution equation
(64) for g is ensured by the marker trajectory equations,

z,(1), (65)

coll

7,(t) + 9

1) d
0="3 ot

P dr

no coll

where d/dt|,, con z,(¢) stands for the collisionless part of the
trajectories and is given by Egs. (3)—(5) in the case of global
simulations and by Eqgs. (10)—(12) in the limit of the neoclas-
sical ordering. The time variation 8/ &t | z,(f) stands for the
collisional contribution accounting for the Ctp operator. The
equation of motion (65) clearly represents stochastic trajec-
tories resulting from random velocity kicks, which must be
sampled from appropriate probability distribution functions
(PDFs) for correctly representing Cpp. This type of stochastic
equations of motion is called Langevin equations. In ORBS,
the collisionless and the collisional dynamics are handled
sequentially using a time splitting approach. To represent 5f
with the numerical markers still requires, according to Eq.
(59), an equation for the marker weight w,(z). For this pur-
pose, one writes somewhat more explicitly the time deriva-
tive along trajectories (65) acting as an operator on a phase-
space field,
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(66)

where f‘TP is the drag and 4. is the random acceleration
related to the diffusion part of the collision operator Crp,
which, in general, can be written as

J - d
CTP( 5fLM) = 6_17 ’ |:FTP(5) Ofim — &_ﬁ : DTP(ﬁ) Sfim |-

(67)
The operator &/ 6t is related to D/ Dt by the relation
oD <i § >+$ i+—§'2 :D (68)
s D \ag )T s T asan ™

To obtain an evolution equation for each weight w,(z), one
starts by taking its time derivative
d o
—w,(t) = —W[z=2z,(1),t
g0 =5Mz=2).1]
s 6fLM) 15 Sfim 8
=—|\—|=—"72 - =8, 69
6t< g got M g’ 5tg (69)
the last step having been carried out using the chain rule,
which is justified as 6/ ot represents a first order differential
operator. In practice, one proceeds by making use of Eq.
(68), but dropping the last two terms on the RHS of this

relation.”” Thus, one carries on by considering
61D ( J = )
—=— | =T 70
& Dt \ag " (70)

!
where the notation = points out what may appear to be an ad
hoc simplification. Inserting Eq. (70) into Eq. (69) thus fi-
nally leads to
d Sfim P

!
—wt)=——5fim—
dtWr() ¢Di fim 2 Dtg

1 |D
=- g EthM"' CBR(foLM)]

, (71)
[z,(0).1]

having made use of Egs. (55) and (64) and noticing that the
contribution from the compressibility of the drag term,
a/ dv - pr, in Eq. (70) cancels out. Contrary to a collisionless
system, the value of the marker distribution g(z,7) is not
invariant along the marker trajectories z,(¢). There is thus,
a priori, a practical problem at evaluating the RHS of rela-
tion (71), involving the factor 1/g[z,(¢),t], which can be
identified to the phase-space volume associated with the
marker. This is solved by making use of the second weight
pA0)=Plz,(0),t]=fim/ &1z (.- 50 Eq. (71) becomes

d 1 D
awr(t) == Pr(f)fL_M EthM + CBR(EfLM):|

[z,(t),r].
(72)
The details on evaluating Cgy are discussed in Sec. III D. An

equation for the second weight p,(¢) is now necessary and is
derived in a similar way as for w,(z),
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FIG. 1. (Color online) Extended three-dimensional velocity space for ran-
dom kicks, with the different coordinate systems. The velocities before the
kick 7}, and after the kick 0, are shown.
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02
=pl Fint thLM
having again made use of Eq. (64), the definition of the
operator D/ Dr, as well as Crp(fim)=0. One notices that col-
lisions have no effect on the p-weights for the considered
local Maxwellian background fj ;. In the neoclassical limit,
there is, in fact, no collisionless dynamics for the p-weights
as Dfim/ Dt,eo=0. Note that in the absence of collisions, the
two weights are closely coupled in the global case (D'/Dr
=D/Dr) by the relation d/d#(p,+w,)=0, which, in fact, re-
flects the invariance of both the full distribution f and the
marker distribution g along the collisionless trajectories. This
relation also enables to express the p-weight in terms of the
w-weight, thus illustrating how a single weight is sufficient
for carrying out collisionless simulations.

(73)

[z,(0).1]

B. Interpretation of marker weights

Dropping the terms in the operator 8/ ot going from Eq.
(68) to Eq. (70) leads to the set of weight equations (72) and
(73), which are, in fact, exact when correctly reinterpreted.
This was shown and discussed in detail in Refs. 11 and 13.
What needs to be reconsidered, however, are the original
definitions of the weights w,.(¢) and p.(r) in terms of the
weight fields W(z,r) and P(z,1) given by Egs. (60) and (63),
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respectively, with significant practical consequences. As a
result of the modifications leading to Eq. (70), once the sys-
tem has evolved from its initial state and undergone colli-
sional processes, two markers can meet at the same phase-
space point with different weights. In other words, a
spreading of weights occurs over time at each phase-space
point z and at a rate that is proportional to the collision
frequency. The original definition of the weights (60) and
(63) as the (single) value of the weight fields at the marker
positions, used to initialize the weights at r=0, is thus clearly
violated at any time other than r=0. It is, in fact, only the
statistical average over all weights of markers in the vicinity
of a phase-space point, which provides an estimate of the
weight fields W and P, not the weights of a single marker.
Contrary to a collisionless system, the weights w and p must
thus be considered as additional effective dimensions of the
numerical system, whose extensions grow on the collisional
time scale. The practical price to pay for this weight spread-
ing is increasing numerical noise as the simulation evolves.

C. Discretization of the Lorentz e-i collision
operator

The electron-ion collision operator defined by Eq. (19)
contributes to the test particle operator Cyp, which, through
random kicks, affects the marker trajectories in velocity
space. Effectively, only the pitch angle direction & of the
markers is modified. No background reaction operator Cgr
appears in the electron-ion collisions, and the w-weight equa-
tion is thus unaffected by this type of collisions. Rewriting
the e-i collision operator (21) as follows:

s
Clfl=- Vei(v){é@éf) + a_gz[(l - §2)f]}, (74)

enables to conveniently identify the corresponding drag and
diffusion in the é-direction. The random increment A¢ on the
pitch angle variable resulting from e-i collision over an in-
finitesimally small time step Ar may thus be evaluated as

Aé=—2¢&v,(v)Ar+RV2(1 - &) v,(v)At, (75)

where R is a random number sampled from a PDF with
average 0 and variance 1. In practice, making use of Eq. (75)
for a finite time step may, however, result in & ,=§+A¢&
falling outside of its correct interval [—1,1]. For the purpose
of conveniently treating e-i collisions, one thus temporarily
expands the two-dimensional gyrokinetic velocity space
back to three dimensions as follows: at any configuration
space point R, one starts by defining ¢, as an arbitrary uni-

tary vector perpendicular to b. The incoming velocity, i.e.,
before the collisional kick, of a given particle at R is defined
as ﬁinzvul;+vlél, with v, =\2B(R)u/m. As shown in Fig.
1, one then expands the velocity space to three dimensions
by introducing a first orthonormal coordinate system (x,y,z)

with &,:=b and é,:=¢é,. A second orthonormal coordinate
system (x',y’,z’) is then defined such that é,:=¢, and
é.1:=0,;,/v;,. Let us introduce the spherical angles (6, ¢) as-
sociated with the system (x',y’,z’). In these variables, the
e-i collision operator reads as
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B B (O S W'
Cof =- ”ei(v)[ sin aaa(sm 000) ¥ sin? M«pz]' (76

One clearly has 6,,=0. The angles 6,,=A#6 and ¢, for the
outgoing velocity following the kick are obtained by taking
two random angles: ¢, from a uniform distribution between
0 and 27, while AG=2R\/v,;(v)At is computed making use
of R sampled from a PDF of average 0 and variance 1. The
new velocity reads as

Uou = Uinl SIN(A B)cos(p)é,: + sin(A O)sin(p)é,
+cos(Ab)é.]. (77)
Note that the property v}, =v2, is verified exactly, i.e., with

no discretization error. Performing the reverse change of co-
ordinates from (x’,y’,z’) to (x,y,z) finally gives

- A > 2 A A
Uj.out = Vout * €z = Uout * (_ V1 - giney’ + ginez')

=v;,[— sin(Af)sin(p) V1 - §izn + &, cos(AB)], (78)

2 _ .2 2
U1 out = Vin = Ul out> (79)

providing the outgoing gyrokinetic variables (v oy Mout
=mvi’0ut/ZB). The outgoing pitch angle variable
& u=—sin(AB)sin()\1-& +&, cos(Af) resulting from Eq.
(78) verifies &, € [-1, 1] by construction even for finite val-
ues of A, which thus resolves the practical issue related to
the scheme based on Eq. (75).

D. Discretization of the self-collision operator
1. Handling the test particle operator C[f,, 6f ]

Similar to the Lorentz operator, this part of the linearized
self-collision operator is accounted for through appropriately
defined random kicks to marker trajectories. Introducing
again (x,y,z) and (x',y’,z’), the orthogonal systems defined
in Sec. III C, and making use of the Rosenbluth potentials
defined by Egs. (28) and (29), the velocity increments related
to the Langevin method for like-species collisions can be
written, according to Egs. (25) and (26), as'

[K(V) DAt
Avxr = U %Rl’
[K(V) DAt
Al)yr =vy TR2, (80)

Av. == H\V)v VAt + v VH(V) VALR5,

where R;, R,, and R; are three independent random
numbers sampled from a PDF with average 0 and variance 1.
Going back to gyrokinetic velocity variables provides
(UH,out’lu'oulzmvzi,out/ZB) with

1
Ulout = U_[_ AUy’vi,in + (Uin + sz’)vll,inL (8 1)

m
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1

Ui,out = Avi, + = [Avy v+ (Vi + Ao Ll (82)
in

Notice that by working temporarily in the expanded three-

dimensional velocity space avoids similar practical problems

related to the bounded pitch angle variable space as for the

e-i Lorentz collision operator.

2. Handling the background reaction operator
Cl of ;s fim]

The background reaction operator C[fia./fiml 1S
handled in the w-weight equation according to Eq. (72). As
collisions are stepped separately from the collisionless dy-
namics by making use of a time splitting approach, only the
collisional part of the weight evolution (72) is addressed
here,

; (83)
(z,(0),0)

Y L ofianind]
ar Pr fint LM>JLM

the term Dfj /Dt having been dropped as it relates to col-
lisionless dynamics. The functional form for C[8f | m,fiml 18
chosen as in Eq. (32). A straightforward estimation for the
fields 8P, and &€ would be given by'®'?

PD=Sw, | oe-s), (84)
r coll
2
s@=Sw 2| szoz), (85)
r 5t coll

where 8/ 6t |, stands for the variations due to self-collisions
on the background. However, such an approach does not
ensure exact conservation of mass, parallel momentum, and
energy as it suffers from numerical errors related to the finite
time stepping and to the statistical description with a finite
number of markers. A modified scheme suggested by Satake
et al.>® has been implemented in ORBS5, which ensures con-
servation of the three velocity moments within each configu-
ration space bin « exactly, i.e., to numerical round-off. Let us
briefly rederive here the underlying algorithm. The integra-
tion of Eq. (83) follows the test particle scattering of markers
off the background, which, as described in Sec. III D 1, ac-
counts for the contribution C[fi, 8fim] of the linearized
self-collision operator. As a result of this scattering, each
marker r, having an incoming velocity 0y, ,, is reassigned a
new outgoing velocity ﬁout,,:v”in,ﬁAav. The integration of
Eq. (83) can be written similarly as wgy,=w, ,+Aw,. To
compute Aw, according to Eq. (83), one considers the fol-
lowing functional form:

Aw,=— &[(1 —3VaG(V)AN, + 6\";H(v)%

a th «

AE,

+\TG(V) = } : (86)
Uth

where the functions H and G given by Egs. (28) and (30) are

evaluated at the normalized outgoing velocity V=vy /Uy as

with n, and vy, , being the background density and thermal
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velocity at the center of the bin « in which the marker is
currently localized. The parameters AN,, AP, and AE,,
specific to each bin, are to be determined so as to ensure
exact conservation of the velocity moments. In particular,
note the additional term proportional to AN, in Eq. (86)
compared to Eq. (32), whose purpose is to ensure conserva-
tion of mass to round-off despite numerical discretization
errors. Conservation of moments within the bin a of volume
AV, over the full discretized collision step reads as

1
2 Winy = 2 Wou, = WZ Aw,=0, (87)

area

2 Win,/Vllin,r = E Wout,rUllout,r

rea rea

1
= F E AerHout,r == APHw (88)

area

2 _ 2
E Win,rvin,r_ 2 Wout,rvout,r

rea rea

1
=—2> Aw,v?

AV out,r — A(c;llcw (89)

area

where AP, ,==,w;, Av/AV, and A&, =3,w;, A(v?)/AV,,
having defined AUH,r:UHOut,r_vHin,r and A(UE):Uoul,r_vizn,r' In-
serting Eq. (86) into Eqgs. (87)-(89) provides a linear system
of three equations for the parameters (AN,,AP,,AE,),
which can be written as follows:

AN, 0

M, APa = APHa s (90)
AE,] \Ag,

with

1

1 E Dr v
AV n H2(>ut,r

area 23

M, =

out,r

Uout.r 1
x([l-3\,@01,6\@}1%,\/%2—). (91)
Uth a Uth

The matrix M, and the RHS of system (90) must be com-
puted separately for each bin « and at each collisional time
step. The solution of Eq. (90) provides the coefficients
(AN,,AP,,AE,), which are then inserted into Eq. (86), thus
enabling to finally compute the weight increments Aw, and
fully complete the self-collision stepping. The algorithm
clearly ensures exact numerical conservation of the velocity
moments by construction. In the limit of large number of
markers per bin, as well as AV,—0, the scheme obviously
converges to the original equation (32) for the background
reaction. In particular, note that in this limit, the matrix M,
reduces to
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TABLE I. Run parameters for local neoclassical electron transport.

Profile 1 alRy=0.36 1/p*=140 A7=0.3 A,=0.3
A : 1
U =
M,= d3pHM o ([1 —3\’/’7_TG],6\"’7TH_2”,\/7TG_2)
Mo\ » Uth Uth
v
=1 (92)

so that, according to Eq. (90), AN,=0, AP,=AP,,, and
AE,=AE&, as in Eq. (32).

IV. NEOCLASSICAL TRANSPORT SIMULATIONS

Neoclassical transport benchmarks, both for ions and
electrons, are shown in order to validate the implementation
of the collision operators described in Sec. III. Simulations
are initialized here with f; \(t=0)=0. Invoking the axisym-
metry of the neoclassical equilibrium which may be assumed
in a tokamak, the binning for the background reaction opera-
tor described in Sec. III D 2 needs only to be performed in
the poloidal plane. We use typically 64 bins in the radial
direction and 128 bins in the poloidal direction. The typical
number of markers used in the neoclassical simulations is
100X 10° for the global case with self-consistent electric
field and 20X 10° for the local case assuming no electric
field. The time step and the total simulation time are dictated
by the transit time and the collision time, respectively, for the
banana regime and inversely for the collisional regime.

A. Benchmarks for local neoclassical electron
transport: No electric field

The results of this subsection, obtained with the param-
eters given in Table I, benchmark electron neoclassical trans-
port computed with ORBS5 against previous numerical and
analytical results. One considers the local neoclassical limit
case, i.e., solving Eq. (8) for the electron distribution, and no
electric field. The ion dynamics is not taken into account
here, as it is anyway decoupled from the electron dynamics
in this local limit. Both the full linearized electron collision
operator, i.e., considering both e-e self-collisions and e-i
pitch angle scattering, as well as the simplified Lorentz
model, i.e., considering e-i collisions alone, are used. Note
that the latter is equivalent to the former when setting the
ionization degree Z— . The particle flux I' produced by a
density gradient alone, considering «,=5 and «;=0, is
shown in Fig. 2, and the energy flux Qy;, produced by a
temperature gradient alone, considering «,=0 and «7=5, is
shown in Fig. 3. These results are benchmarked against ana-
Iytical fits to results from the Eulerian—-Fokker—Planck code
cQL3D (Ref. 17) and analytical results derived for the Lor-
entz model (Z— o) in the review by Hinton and Hazeltine.”!
Figures 2(a) and 3(a) present the fluxes at the radial position
5=0.425 as a function of the effective collisionality »*, rang-
ing from the low collisionality (banana) regime for v*<<1 up
to the collisional regime for »*> 1. Figures 2(b) and 3(b)
present the neoclassical fluxes as a function of radius, ac-
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FIG. 2. (Color online) Neoclassical electron particle flux I' for «,=5, «p
=0, as a function of (a) the effective collisionality »* at the given radial
position s=0.425 and (b) as a function of radius with a collisionality ac-
counting for the density and temperature profiles, v*(s=s,)=0.18. ORB5 re-
sults are shown for Z=% and Z=1 and compared with analytical fits to
cQL3D results for Z= and Z=1, as well as analytical results for the Lorentz
model given in the review by Hazeltine and Hinton.

counting for the radial variations of density and temperature
profiles both for computing the local gradients as well as for
estimating collisionality. The collisionality at s=5y=0.5 was
fixed to v*=0.18 and »*=0.68 for Figs. 2(b) and 3(b), respec-
tively. The agreement between ORBS, CQL3D, and the Hinton—
Hazeltine results may be considered satisfactory, in particu-
lar, considering that the CQL3D curves are only obtained
through approximate fits to the actual simulation results and
the Hinton—Hazeltine are the result of approximate analytical
derivations.

B. Neoclassical ion transport with self-consistent
electric field

The neoclassical theory predicts the establishment of a
radial electric field leading to an axisymmetric equilibrium,
which was first computed in a global simulation by Wang
et al. using the FORTEC code.”’ In order to study a neoclas-
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FIG. 3. (Color online) Neoclassical electron energy flux Qy;, for «,
=0, x;=35, as a function of (a) the effective collisionality v* at the given
radial position s=0.425 and (b) as a function of radius with a collisionality
accounting for the density and temperature profiles, v*(s=s,)=0.68. ORBS
results are shown for Z=% and Z=1 and compared with analytical fits to
cQL3D results for Z=% and Z=1, as well as analytical results for the Lorentz
model given in the review by Hazeltine and Hinton.

sical equilibrium with self-consistent electric field, we solve
the global drift-kinetic equation for ions. Indeed, as neoclas-
sical simulations involve electric fields with long wave-
lengths, it is relevant to neglect FLR effects even in the
collisionless dynamics. Equation (7) is solved, together with
the quasineutrality equation (15) or Eq. (16), assuming axi-
symmetry, i.e., keeping only the toroidal Fourier mode n=0
of the fluctuating fields of;y; and ¢. Both adiabatic and ki-
netic electron dynamics will be considered in the following.
The standard neoclassical approximation retains only the flux
surface averaged potential and thus neglects the poloidal
components of the field. The specific parameters of the simu-
lations are given in Tables II and III (cases 1 and 2, respec-
tively). If not mentioned otherwise, a standard run is carried
out with full marker motion, i.e., in the global case, and a
purely radial electric field. The radial electric field E, is
obtained from the flux surface average (¢) of the electro-
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TABLE II. Run parameters, ion transport benchmark, case 1.

Profile 2
Kk7=3.58

a/Ry=0.36
K,=0.79

T,/T=1
1/p*=150

vi(r/a=0.5)=0.03
Ar=4,=03

static potential ¢, solution to the quasineutrality equation:
E.=—& )/ dr. The considered ion species is deuterium. The
electron temperature is the same as the ion temperature. In
global simulations, collision frequencies are estimated lo-
cally, i.e., consistent with background density and tempera-
ture variations.

1. Zonal flow damping: Rosenbluth—Hinton test

The study of the self-consistent axisymmetric electro-
static fields in the frame of neoclassical transport is closely
linked to the study of zonal poloidal flows, which play a
crucial role in regulating microturbulence,’ and geodesic
acoustic mode (GAM) oscillations.® Thus, we start by pre-
senting here linear simulations [i.e., dropping the term
Tpxg- 38fim/ IR of Eq. (7)] of zonal flow damping, corre-
sponding to the so-called Rosenbluth—Hinton test. The elec-
trons are considered adiabatic and the full axisymmetric po-
tential ¢, is retained. The collisionless theory of zonal flow
damping predicts an undamped residual value.** Collisions
are expected to lead to a decaying residual zonal flow in a
characteristic time of the order of the collision time. Figure 4
shows the damping of the radial electric field E, at the
magnetic surface s=0.55, for the geometrical parameters
of case 2 but having set gradients to zero (k,=x;=0),
as usually done for carrying out the Rosenbluth—Hinton
test. Oscillations, whose frequency is estimated by
wg=(vy /RYNT/2+23/(7¢7) according to Ref. 35 in
the drift-kinetic limit, are due to the initial excitation of
GAMs, which are Landau damped. Neglecting the finite-
orbit-width effects, an estimation of the damping rate is
given by ys=(vy, ,»/Ro)exp(—qf—O.S)\2+l/qf.36 Defining
w=1+ 1.6qf/ V€, the time evolution of the electric field may
be written as follows:*’

E(@ _

1
£(0)" (1 - ;)exp(— vat)cos(wgt)

2 [
+lexp<'8—2t>{l —erf<@>], (93)
w w w

where erf is the error function defined in Sec. II B. The
small long-time collisional response has been neglected
here. Considering a finite collisionality, we define
,8:37quvq7/ (e ln3/2[16\/j17t]). In the collisionless limit,
B—0 and Eq. (93) becomes thus**

TABLE III. Run parameters, ion transport benchmark, case 2.

Profile 2

Kr=kK,=1.2

alRy=0.2
Ar=02

T,/T=1
A,=02

0.012<v;(r/a=0.5)<12
1/p"=150
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FIG. 4. (Color online) Rosenbluth-Hinton test at s=0.55 considering an
axisymmetric field, linear dynamics, without pressure gradient. The time
evolution of the radial electric field E,=— ¢)/ dr predicted by ORB5 is com-
pared to the analytical behavior derived by Rosenbluth and Hinton for the
collisionless and the collisional cases, respectively.

E:T((l))) = (1 - é)exp(— yet)cos(wgt) + é (94)
The predicted damping rates and residuals, shown by
dashed-dotted lines in Fig. 4, match well the time evolution
of the radial electric field given by ORB5 at s=0.55, for a
collisionless and a collisional run, respectively. This test is
crucial in order to ensure a correct level of the zonal flow in
turbulent simulations.

2. lon fluxes with adiabatic electrons

In this section, a benchmark is performed against previ-
ous neoclassical numerical results obtained with both the
Eulerian code GT5D and the PIC code FORTEC-3D,* re-
taining only the flux surface averaged potential (p=(¢)).
These results are also compared with neoclassical analytical
results. All the ORB5 results are within the typical range of
the small discrepancies between GT5D and FORTEC-3D, and
may thus be considered as consistent with other codes. Fig-
ure 5(a) presents the ion heat diffusivity xp; as a function of
radius in units of ygga/L, for case 1 parameters (Table II),
which results exclusively from the 5fLMﬁd'€W contribution
to the kinetic energy flux Q,;, given by Eq. (46), and matches
well the analytical predictions from Chang and Hinton,”
where the neoclassical assumption is valid, i.e., away from
the magnetic axis. The force balance parameter &, introduced
in Eq. (50), is shown around the midradius region for the
same case 1 in Fig. 5(b) and compared with the analytical
large aspect ratio predictions from Hinton and Hazeltine,”" as
well as with the results from the moment equation approach
derived by Hirshman and Sigmar.40

Figure 6 shows a collisionality scan for the ion heat dif-
fusivity yp; and the neoclassical force balance parameter k at
r=0.5a for case 2 parameters (Table III). Predictions coming
from the moment equation approach (Hirshman—Sigmar4O)
are shown in addition to the results derived by Hinton and
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FIG. 5. (Color online) (a) Ion heat diffusivity y;; and (b) neoclassical force
balance coefficient k as a function of radius. Case 1 parameters, adiabatic
electrons, and retaining only (¢) from the quasineutrality equation. Global
ORB5 results at time t=7;(r/a=0.5) are compared to simulations from GT5D
and FORTEC-3D, as well as analytical results from Chang and Hinton, Hinton
and Hazeltine, Hirshman and Sigmar.

Hazeltine in Ref. 31 for the coefficient k£ appearing in the
force balance equation (50). In Fig. 7(a), showing the time
evolution of the particle flux at r=0.5a for the same case 2,
the ambipolarity condition is verified, resulting in a vanish-
ing ion flux for t—oc since the electrons are assumed to
respond adiabatically. The setting up of the neoclassical ra-
dial electric field at r=0.5a is shown in Fig. 7(b).

Possible effects from the poloidal Fourier modes m # 0,
retained beyond the neoclassical approximation, are studied
in Fig. 8, corresponding to case 1 parameters (Table II). In
Fig. 8(a), the ORB5 results for ¢p=(¢) have been added for
reference. Considering only the kinetic contribution to the
heat flux, one could be misled into interpreting this kinetic
energy flux as a contribution to the thermal transport: it is
not, as pointed out in Ref. 30. Actually, the potential energy
flux from the background f,; compensates the kinetic en-
ergy flux from the background f},,, leading to the same heat
diffusivity level as in the standard neoclassical approxima-
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FIG. 6. (Color online) (a) Ion heat diffusivity x,; and (b) the neoclassical
force balance coefficient k as a function of the effective collisionality. Con-
sidering parameters of case 2 and adiabatic electrons, ORB5 results, shown
for position r/a=0.5 and at time ¢~ 7;(r/a=0.5), are compared to simula-
tions from GTsD and FORTEC-3D, as well as analytical results from Chang and
Hinton, Hinton and Hazeltine, Hirshman and Sigmar.

tion (purely radial electric field). The potential energy flux is
crucial in order to treat the effects of the m# (0 poloidal
modes in neoclassical transport, as discussed in Ref. 30. Re-
taining the m # 0 poloidal modes still ensures a total vanish-
ing particle flux, which is shown in Fig. 8(b): the full axi-
symmetric potential ¢ leads to an inward flux related to the
drift velocity Uy p acting on fj ), compensating the outward
flux contribution from Jfjy; related mainly to the magnetic
drift velocity Uyp+0.. The ambipolarity is thus satisfied, as
there is no electron transport, the electron response being
assumed adiabatic in these simulations.

3. Adding collisional kinetic electrons

Case 1 simulations were repeated, considering kinetic
electrons with a nonphysical ion-electron mass ratio m;/m,
=200 and experiencing both self-collisions as well as pitch
angle scattering on ions. Thanks to the smaller mass ratio,
the transit time scale separation between electrons and ions
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FIG. 7. (Color online) Time evolution of (a) particle flux I" and (b) radial
electric field E,.=—&¢)/dr at r=0.5a for case 2 parameters and v*(r/a
=0.5)=0.12. Comparison of the results from ORB5, GT5D, and FORTEC-3D. The
ambipolarity is satisfied and an equilibrium neoclassical electric field is
established.

./ w;~\m;/m, is reduced, which facilitates the multispe-
cies kinetic simulations. The electron collisionality is artifi-
cially enhanced such that v,/ v; ¢, ~50. We notice in Fig.
9, obtained by neglecting the (n=0,m # 0) modes, that the
ratio between electron and ion heat transport is consistent
with the neoclassical ordering of heat transport x,./x;
~ M Voo i/ M;V; n,~ 1/4. Moreover, electrons and ions both
show a similar outward particle flux, which ensures the am-
bipolarity condition. The small discrepancy between electron
and ion fluxes reflects the statistical numerical error.

The effects of kinetic electrons on the neoclassical equi-
librium electric field are small, as clearly shown in Fig.
10(a). This results from the fact that the electric field ensur-
ing the ambipolarity by shaping the particle orbits depends
mainly on the ion dynamics since the average ion orbit width
is much larger (by a factor \Vm;/m,) than the electron orbit
width. The orbit squeezing produced by the shear of the ra-
dial electric field is discussed in Ref. 41. Figure 10(b) shows
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FIG. 8. (Color online) Retaining all poloidal Fourier modes of the axisym-
metric potential and comparison to simulation results within the neoclassical
limit of a purely radial electric field (see Fig. 5). (a) Case 1 parameters,
adiabatic electrons, ion heat diffusivity at 1=0.57;(r/a=0.5) as a function of
radius: retaining all poloidal Fourier modes does not change the heat trans-
port level. (b) Case 2 parameters, time evolution of the particle flux at r
=0.5a for v*(r/a=0.5)=0.085. Ambipolarity is satisfied.

that kinetic electrons lead to an important bootstrap current,
mainly produced by passing electrons, while the ion contri-
bution to this current is essentially negligible.

4. Breakdown of the neoclassical approximation

The neoclassical approximation is valid under the as-
sumption that the banana width is small compared to the
characteristic length of the system. In order to illustrate the
limitations of this approximation, one chooses a configura-
tion without density gradient, considering the parameters of
Table IV, i.e., with relatively low value of 1/p*. The compu-
tations are carried out without considering self-consistent
electric fields. As discussed in Ref. 26, it is problematic to
define diffusivity near the axis because of nonlocal effects
and the absence of separation between the transport time
scale and the neoclassical confinement time scale. However,
the temperature profile does not relax significantly over our
simulation times, making the study of an effective diffusivity
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FIG. 9. (Color online) Case 1 parameters with collisional kinetic electrons.
Particle and heat diffusivity of ions and electrons as a function of radius for
¢=(¢) and time =27, =100v,_ ;. The results are in accordance with neo-
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classical transport scaling laws and ensuring ambipolarity.

relevant. Comparing global and local ORB5 simulations in
Fig. 11, one notices that the neoclassical approximation is
valid over the radial region r/a=0.45, while it breaks down
near the magnetic axis. This result is mainly explained by the
fact that near the magnetic axis, trapped particles follow po-
tato orbits whose width is of order \,~ (4%piRy)" 3% which
may be siggiﬁcantly larger than the standard banana width
Py~ qpr/ Ve These large orbit widths can thus become com-
parable to the local minor radius within a significant radial
region around the magnetic axis for the large aspect ratio and
large p* tokamak considered here, which violates the stan-
dard neoclassical assumption. These results are consistent
with the previous ones: the reduction of the neoclassical
transport near the axis with respect to the standard theory has
been predicted in a low collisionality regime by a Lagrangian
transport theory43 as well as by simulation results. ***

V. TOWARD GYROKINETIC TURBULENT
SIMULATIONS

A. Noise control requirement

Although exclusively neoclassical simulations using
ORBS5 have been presented here, the main purpose of the code
is to carry out turbulent simulations. Due to the PIC repre-
sentation considered in ORB5, a major impediment to obtain-
ing physically relevant results is the problem of numerical
noise. Noise is diagnosed in ORB5 by examining the charge
density in nonresonant turbulent modes, which are very
strongly Landau damped, and only arise due to sampling
errors.® In order to define a signal-to-noise ratio, the follow-
ing definitions are introduced: the signal is defined by the
modes of the charge density inside a certain Fourier filter F,
while the noise is defined by the modes outside the Fourier
filter,
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FIG. 10. (Color online) Case 1 parameters, ¢=(¢). Kinetic electron contri-
butions to (a) the neoclassical radial electric field at r=0.5a and (b) the
bootstrap current at r=0.5a. The electric field is weakly changed by consid-
ering kinetic electrons, while an important bootstrap current is produced,
mainly by passing electrons.
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Invoking the fact that microturbulence is essentially aligned
along the magnetic field line, the filter JF retains Fourier
modes (n,m), which, at a given radial position r, are such
that |ng,(r)—m| = Am, where Am=5 is typically chosen. Let
us point out that the Fourier modes are computed using a

TABLE IV. Run parameters for studying the breakdown of neoclassical
approximation.

Profile 2

k,=0

a/R=0.28

k=4

T,/T=1
Ar=03

vi(r/a=0.5)=0.1
1/p*=80
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FIG. 11. (Color online) Neoclassical approximation breakdown. Reduction
of the neoclassical transport predicted by ORBs close to the magnetic axis
when considering the full marker motion. In the neoclassical limit, ORB5
results match well the analytical predictions by Chang and Hinton.

straight field line poloidal angle. In the case of the axisym-
metric (n=0) simulations considered here, the filter F re-
duces to keeping the poloidal modes |m|= Am. If the noise
becomes large compared to the physical signal, the simula-
tions become irrelevant and are not further carried out. Al-
though noise may be kept within limits using a reasonable
number of markers for carrying out neoclassical simulations,
since only the axisymmetric mode n=0 needs to be resolved,
we wish to eventually have neoclassical simulations to be
followed by turbulence runs, and one must thus ensure that
noise is kept as low as possible and under control both in the
former and latter simulations. Noise control is especially cru-
cial for simulations with collisions, which increase the noise
due to the random kicks used in the diffusive part of the
operators. Collisions indeed lead to weight spreading, adding
two dimensions, w and p, to the extended numerical phase
space and thus requiring a new interpretation of the
weights,11 as already discussed in Sec. III B. ORB5 was al-
ready equipped with a noise-reduction scheme, which con-
sists of an artificial decay of the Weights.4 Unfortunately, this
method is not practical in a collisional simulation since the
required decay rate is at least of the same order as the typical
collision frequency, thus masking the physical effects of col-
lisions. ORBS therefore also features a newly implemented
collisional noise control scheme, based on the coarse grain-
ing procedure proposed in Ref. 14. The method involves a
periodic binning of markers in phase space and a reassign-
ment of each weight to the average weight value of all mark-
ers within the bin. This approach ensures a significant weight
spreading reduction. The coarse graining in ORBS will be
explained in detail in a forthcoming paper. Its beneficial ef-
fect on the noise level is nonetheless already illustrated here

TABLE V. Run parameters, CYCLONE case.

Phys. Plasmas 17, 122301 (2010)

in the case of a neoclassical test based on the CYCLONE
case,46 performed with adiabatic electrons and at low colli-
sionality: »*(r=0.5a)=0.035. The physical parameters of the
CYCLONE case are given in Table V. Let us point out that
in view of preparing turbulent runs, these neoclassical
simulations were performed by retaining poloidal modes
m € [-5,5] of the axisymmetric potential ¢,_. It is shown in
Fig. 12(a) that the coarse graining procedure may stabilize
the weight spreading, reflected by the saturation of the total
weight variance once the system has reached collisional
equilibrium. As a corollary, the numerical noise defined in
Eq. (95) also stabilizes at the same time, as shown in Fig.
12(b). The neoclassical properties of the simulations are es-
sentially unaffected by the coarse graining procedure, as
shown in Fig. 13, presenting the heat diffusivity yy; as a
function of the radial position for the CYCLONE case.

B. Collisional éf-algorithm with local/canonical
Maxwellian background switching

Although we only considered a local Maxwellian back-
ground so far (fy=f1m), there is, in fact, some freedom in the
choice of f, as stated in Sec. III, at least for carrying out the
collisionless dynamics of global simulations represented by
the left hand side of Eq. (7). The collisionless version of
ORB5 usually considers a canonical Maxwellian background,
defined as follows:

Ny
M= (7 T(Wo)/m) 2 P

{_ mvﬁ B Bu
27(¥o)  T(¥y)

where “temperature” 7 and “density” N are functions of the
toroidal canonical momentum V=¥ +¢F(¥)v,/mB, where
F(V)=RB,, is the poloidal current flux function. Note that
due to the velocity dependence of W, A and 7 differ from
the actual density n, and temperature 7|, associated with fy;.
Following the procedure described in Sec. III, the equations
for the evolution of the w- and p-weights in case of global
collisionless simulations considering a canonical Maxwellian
background fc); can be derived, leading to

} . (96)

d 1 D

i t)=— N — - ’ 97
dtWCM’r() paurd )fCM Dl [z, (1)1 o7
d LD

dtPCMJ( )=pemal )f oM thCM [2,(1).1] .

When considering this latter decomposition, one issue that
needs to be carefully addressed is related to the field equa-
tion. Previously, ORB5 has assumed that the background dis-
tributions themselves verify quasineutrality.8 This condition
may easily be satisfied, in practice, when working with a
local Maxwellian as its corresponding density is straightfor-
ward to prescribe [the field ny(V) in Eq. (6)]. Prescribing the
background density is, however, less evident when working

Profile 3 a/Ry=0.37 T,/T;=1

Kkr=2.63 k,=0.81 1/p*=180
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FIG. 12. (Color online) Effects of the coarse graining procedure. (a) Total
weight variance and (b) numerical noise. CYCLONE parameters with
v*(r/a=0.5)=0.035. The noise and the weight spreading are fully stabilized
by the coarse graining algorithm for this low collisionality.

with a canonical Maxwellian as the field N(W,) in Eq. (96)
may not be identified to the actual background density, with
W, being a function of velocity. In this case, it is simpler to
assume that it is the full initial distribution that satisfies the
quasineutrality condition. We introduce the following cor-
rected density Ony:

— B -
(%) = f Z”d3Rdv”d,u[fi(R,v”,,u,t=O)

~foiR.oy w]SR + 53, (99)
which is subtracted at each time step on the RHS of the
quasineutrality equation (16), leading to

eny(V)
T (V)

= 6n(F) — dng().

[H(x.0) —(D(V,1)] -V, - {

(100)

The background fy is a stationary state of the collisionless
gyrokinetic equation. Making use of the two-weight ap-
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FIG. 13. (Color online) The coarse graining procedure does not affect the
fundamental neoclassical results such as the heat diffusivity ;. Both
simulations, with and without coarse graining, show that the transport
level may be conserved while controlling the noise. v*(r/a=0.5)=0.035;
1=0.57;(r/a=0.5).

proach, it is possible to take advantage of this collisionless
equilibrium function even in collisional runs. This is
achieved by switching, in the frame of the time splitting
scheme, between a canonical Maxwellian background repre-
sentation for carrying out the collisionless advection step and
a local Maxwellian background representation for carrying
out the collisional step. This mixed background approach is
schematized in Fig. 14. Considering a local Maxwellian
background for carrying out collisions is indeed a practical
constraint as the collision operators have been linearized
with respect to such a distribution. Let us point out that this
mixed background scheme is essentially used for ions, as
Jim=/fcm for electrons.

For carrying out collisions, such a switching scheme re-
quires transforming for each marker r between its two
weights (Wem,»Pom,) in the canonical Maxwellian back-
ground fcy representation and its two weights (Wi, i)
in the local Maxwellian background fj ), representation. Two
equations are necessary for defining this weight transforma-
tion. The first is obtained by requiring that at any time the
same total distribution f must be obtained by the two repre-
sentations,

Time Loop
Collisionless dynamics Collisional dynamics
over At over At
f=f,, *8f, > f=f, *8f,
weights w_ , p,, weights w ., p,,,

FIG. 14. Mixed background collisional delta-f algorithm: time loop for
switching between a canonical Maxwellian background for stepping the
collisionless dynamics and a local Maxwellian background for stepping the
collisional dynamics.
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f=fem+ fcm=Jfim+ Ofms (101)

where Ofcy and Of; stand for the deviations of the full
distribution from the canonical and local Maxwellian back-
grounds, respectively. Together with the PIC discretizations,
Eq. (101) implies for the weights of each marker

Wem,r + Pom,r = Wim,r + P, (102)

The second equation is obtained by noticing that at any time
and for any marker r, one also has

Pemr em(z,) _

- —0. 103
PLMm,r fLM(Zr) o ( )

having introduced the notation o, for the ratio of the two
backgrounds at the current marker position z, in the phase
space. After the collisionless advection step, one can thus
transform from canonical to local weights using Egs. (102)
and (103),

_ Demr
Pim,r= >
Ur

(104)

1
Wim,r = Wewm,r T (1 - |PcMrs
r

(105)

and carry out the collisions in the frame of the local
Maxwellian background representation, as described in
Sec. III D. This will result for each marker in a new position
z, in the phase space and a corresponding background ratio
o, =fem/fimls as well as a first weight increment Awpy
from self—collirsions, given by Eq. (86). Let us recall that the
second weight remains invariant, Ap;,=0, as a result of
collisions. Transforming back to the canonical weights, one
obtains the corresponding weight increments from the colli-
sional step,

7
ApCM,rz AO-i’pLM,r: (; - 1>pCM,r’ (]06)

o,
AWCM,r = AWLM,r - APCM,r = AWLM,r - (; - 1>pLM,r-
(107)

The new phase-space positions z, as well as the
weights  wey, =wem,+Awen, and  pey,=pem,+Apewm,r
=pcem,0,/ o, of each marker, may then be used for carrying
out the next collisionless advection step, thus closing the
time loop in Fig. 14.

In order to validate the background switching algorithm,
a collisional simulation is carried out with this new scheme
and compared to the results obtained for the same physical
conditions with the standard fixed local Maxwellian back-
ground approach. Both algorithms make use of the coarse
graining procedure described in Sec. V A. The simulations
solve the global neoclassical problem and consider the physi-
cal system described in Table V with v*(r=0.5a)=0.35. The
two simulations must, in particular, represent identical initial

Phys. Plasmas 17, 122301 (2010)

0
d. —local background
5 --- mixed backgrounds
=)
tL
W _10
[0)
o
o
-157 ]
2% 02 04 06 08 1 1.2
t[z.]
1)
x10™
6| Db. 1
”:"’ . —local background
= : --- mixed backgrounds
A
c
N2 ]
A
£
Ox
v O
'
-2 i ]
0 0.2 0.4 0.6 0.8 1 1.2

tlr)

FIG. 15. (Color online) Comparing the fixed local Maxwellian background
approach with the novel collisional algorithm switching between a canonical
and a local Maxwellian background. (a) Radial electric field E, and (b) ion
kinetic energy flux Qy;, as a function of time. »*=0.35.

conditions, chosen as the local Maxwellian for the total ini-
tial distribution, f(r=0)=f . The standard algorithm is thus
carried out with the local Maxwellian as a fixed background
Sfo=fim and 8f;m(r=0)=0, while the new algorithm starts
from the canonical Maxwellian background fy=fc\ and
Sfem(t=0)=f m—fcm» but then switches to the local
Maxwellian background representation for carrying out
collisions.

Considering the already mentioned assumption that ini-
tial distribution density satisfies the quasineutrality condi-
tion, both algorithms (fixed and switching background)
should be identical in the limit of sufficient resolution. This
is confirmed by the results shown in Fig. 15 for the test case
problem considered here. Figure 15(a) plots the time evolu-
tion of the radial field at r/a=0.5 toward its equilibrium state
over a typical collision time, while Fig. 15(b) presents the
time traces for the ion kinetic energy flux. Note that the
curves related to the two numerical approaches are indeed
essentially identical.

One of the advantages of using a canonical Maxwellian
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FIG. 16. (Color online) Results from global neoclassical simulations using
the mixed background approach and the standard local background method,
considering different initial conditions: both a local Maxwellian f;,; and a
canonical Maxwellian foy. (a) Signal/noise ratio, v*(r/a=0.5)=0.035 and
(b) radial electric field E, at r/a=0.5, v*=0.35.

background for carrying out the collisionless dynamics is the
fact that significantly larger time steps, typically by a factor
of 2, may be taken, than when considering a local Maxwell-
ian background, while still ensuring a stable and equivalently
accurate simulation. This is obviously related to the fact that
the right hand side of the weight equation contains a term
proportional to dW/dt|ydfim/d¥ in the case of a local
Maxwellian background, while the corresponding term
dW,/dt|ydfcom/ ¥, in the case of a canonical Maxwellian is
absent, as dW/dt|,=0. Here, d/dt|, stands for the time de-
rivative along unperturbed trajectories, so that, in particular,

v
dr

dR

= . 6‘1’: Jop+U.) - ﬁ\lf
o dt (UVB Uc)

0

(108)

Considering the same basic parameters as for the simulation
results of Fig. 15, Fig. 16 illustrates how the collisional al-
gorithm based on background switching may be of an advan-
tage when considering an appropriate initial distribution.
Starting the run with f(¢=0)=fcy, the algorithm with back-

Phys. Plasmas 17, 122301 (2010)

a. —_f(t=0)=f,,

_____ f(t=0)=fCM

-1+ 1

0 0.2 0.4 0.6 0.8 1

t[r.]
1
x10™
6, |
b. __f(t=0)=f,,,

— 5’ a
("JOUJ
— 4 ... f(t=0)=f B
E N CM
A 3 :
C
M2 1
A.E 1
G ot
v O

-1}

_2

0 0.2 0.4 0.6 0.8 1

tir)

FIG. 17. (Color online) Results from global neoclassical simulations using
the mixed background approach for different initial conditions. (a) Particle
flux I' and (b) kinetic energy flux Qy;,, ¥*=0.35.

ground switching provides a better signal/noise ratio than the
standard fixed local Maxwellian background scheme for the
same initialization, as shown in Fig. 16(a), in addition to the
increased time step already mentioned. The standard algo-
rithm is, however, less noisy than the switching background
scheme when considering a local Maxwellian fi,; as the total
initial distribution: f(z=0)=f} . Figure 16(b) shows how dif-
ferent neoclassical radial electric fields establish themselves
for the different considered initial conditions. This is consis-
tent with the fact that different toroidal flows are generated
for the two types of initial distributions, which lead to dif-
ferent radial electric fields, in agreement with the force bal-
ance relation (50). In fact, the radial electric fields have op-
posite signs, depending on whether the simulation starts from
a canonical or local Maxwellian. Note, in particular, the ab-
sence of GAM oscillations in Fig. 16(b) for the initialization
f(t=0)=fcum. The particle and the ion kinetic energy fluxes,
however, appear not to be sensitive to the initial conditions,
as shown in Fig. 17.
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VI. CONCLUSION

Collisional effects have been added to the global gyro-
kinetic Jf particle-in-cell code ORBS in the form of electron-
ion pitch angle scattering, as well as electron-electron and
ion-ion linearized self-collisions. The corresponding colli-
sion operators have been implemented using a robust algo-
rithm based on a Langevin-type approach, which addresses
the possible issue of overshooting the pitch angle domain as
a result of finite time stepping.

Using these newly implemented collision operators, neo-
classical transport in a tokamak has been investigated. Simu-
lations have been carried out both within the standard neo-
classical approximation as well as beyond, amounting to,
respectively, neglecting or keeping drifts in the marker tra-
jectories. Contrary to the former simulations, which are local
to a magnetic surface, the latter, including the full particle
trajectories, need to be carried out over the whole plasma
volume and are therefore global. Global simulations have
also been carried out, accounting for the possible significant
effects of self-consistent electrostatic fields.

Successful benchmarks of the collisional ORB5 code
were carried out by comparing the simulations both against
analytical results within the standard neoclassical approxi-
mation as well as simulation results from other codes. Com-
parisons with the GTSD and FORTEC-3D codes were particu-
larly valuable for validating the global simulations.

In agreement with the previous studies, limitations of the
standard neoclassical approximations have been pointed out.
This includes the breakdown of neoclassical ordering near
the magnetic axis, leading to reduced fluxes in this region
compared to those predicted by the standard theory. The role
played by the poloidally asymmetric modes of the electro-
static potential, usually neglected in neoclassical transport
studies, has also been analyzed.

Finally, the crucial issue of numerical noise, common to
all PIC simulations, was addressed. The numerical noise
problem is exacerbated in collisional simulations based on
the Langevin approach as a result of the so-called weight
spreading effect. To this end, a novel df-algorithm, which
switches between a canonical and a local Maxwellian back-
ground for, respectively, carrying out the collisionless and
collisional dynamics in the frame of a time splitting scheme,
has been developed. Only temporarily during the collision
step does one switch to a local Maxwellian background,
around which the collision operators have been conveniently
linearized. This novel Jf-algorithm was carefully bench-
marked against the standard fixed local Maxwellian back-
ground approach, and its beneficial effect on reducing
weights and enabling increased time steps, by as much as a
factor of 2, has been illustrated. Combined with a coarse
graining procedure, newly implemented in the ORB5 code as
well, this novel algorithm enables to obtain neoclassical
equilibria with a good signal/noise ratio. Such global neo-
classical equilibria, including self-consistent background
electric fields, provide a sound starting point for carrying out
turbulent collisional gyrokinetic simulations, which shall be
the focus of our ongoing research effort.
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