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Abstract— A square trisection is a problem of assembling three
identical squares from a larger square, using a minimal number
of pieces. This paper presents an historical overview of the square
trisection problem starting with its origins in the third century. We
detail the reasoning behind some of the main known solutions. Finally,
we give a new solution and three ruler-and-compass constructions. We
conclude with a conjecture of optimality of the proposed solution.

I. INTRODUCTION

Geometric problems are some of the earliest mathematical
challenges undertaken by humanity. The most striking problems
are often the simplest. The one we will discuss is correlated with
the geometric demonstration of the Pythagorean theorem. Paper,
pencil, ruler, compass and scissors are sufficient tools to explore
the ways of transforming a square into three identical smaller
squares. This problem is simple enough to be understood by a
child, and mathematicians have studied it for over a thousand years.

As an introduction to the trisection problem, let us first consider
a simpler one - how to divide a square to construct four identical
smaller squares. The obvious answer is shown in Figure 4. We
simply draw lines through the middle of opposing sides. The
next problem asks how to divide a square to construct two
identical smaller squares. The first solution that comes to mind
is to draw the cross formed by the two diagonals (Figure 5).
We assemble two identical squares by pairing the pieces. A
second solution is to create a smaller square whose vertexes are
the midpoints of each side of the big square (Figure 6). The
second smaller square is assembled from the four triangles. The
first solution is preferable because it uses four pieces instead of five.

The square trisection problem can be summarized in the
following way:

Provide a solution for dividing a large square into a minimum
number of small polygons that can be reassembled to make three
identical smaller squares whose surface area is equal to one third
of the large square’s surface area.

II. HISTORY

The Gnomon of the Zhou by Liu Hui (arround 263 AD) can
be considered as the first general geometric proof by dissection of
Pythagoras’ theorem [1]. Thābit Ibn Qurra’ (826 – 901) [2] and
Bhāskara Āchārya (1114 – 1185) [5], also provides very famous
geometric proofs by dissection. If we could ask to any of them
how to solve this problem, they would probably reply “Use my
dissection to divide the square into two squares of 1/3 and 2/3 of
its surface, then simply cut the square of surface 2/3 in two!”. These
proofs of the Pythagoras’ theorem by dissection give solutions to
the square trisection problem, but the solutions aren’t minimal.
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From the 8th century AD up to the 15th century 1, Muslims
dominated the world through their science. The craftsmen who
built the mosques used mosaics adorned with geometric patterns
of great aesthetic value and sometimes found themselves faced
with the complex problem of dissections. One such problem was
figuring out how to assemble three identical squares to form a new
one, using a minimal number of pieces.

Abū’l-Wafā’ Al-Būzajānı̄ (940 – 998), born in Iran, was the
most skillful and knowledgeable professional geometry expert of
his time. In his treatise “Kitāb fı̄mā ya h. taju ilayhi al-s.āni’ min
a’māl al-handasa” (On the Geometric Constructions Necessary for
the Artisan, chapter On Divinding and Assembling Squares [3]),
he wrote:

“I was present at a meeting in which a number of
geometers and artisans participated. They were asked
about the construction of a square from three squares.
Geometers easily constructed a line suche that the square
of it is equal to the three squares but none of the artisans
was satisfied. They wanted to divide those squares into
pieces from which one square can be assembled. [...]
Some of the artisans locate one of these squares in the
middle and divide the next one on its diagonal and divide
the third square into one isosceles right triangle and two
congruent trapezoids and assemble together.”

Figure 1 details this reasoning. If we assume that the small central
square has unit lenght, then the diagonal of the big square must
be 1 +

√
2 which is less than

√
6, the diagonal of a square of

area 3. Thus this construction is wrong (see error in bold lines
in Figure 7). Abū’l-Wafā’ gave the first correct solution to this
problem (Figure 2). One of the copies of his treatise can be seen
at the “Bibliothèque Nationnale Française de Paris”.

Fig. 1: Before Abū’l-Wafā’’s solution (credit Reza Sarhangi)



Fig. 2: Abū’l-Wafā’ solution (credit Reza Sarhangi)

Abū’l-Wafā’ has generalized this dissection for proving the
Pythagorean theorem 1 (see Alpay Özdural in [3]). A representation
of his generalization can be seen in many mosaics on the largest
mosque in Iran, the Jameh Mosque of Isfahan (Figure 3) [4].

Around 1300, a 9-piece solution and a 8-piece solution were
found, presumably 2 by Abū Bakr al-Khalı̄l al-Tājir al-Rasadı̄. In
reference [6] we can see the details of these solutions; they are
also reproduced in Figures 8 and 9.

It was not until the 18th - 19th centuries [7] that mathematicians
such as J-É. Montucla, P. Kelland, P. Busschop, De Coatpont
(Figure 10), and E. Lucas (Figure 11) revisited this issue. Henry
Perigal found the first square trissection solution which uses
only 6-pieces (Figure 23), around 3 the 1840’s, but published
his technique only in 1875, and the solution itself in 1891. His
solution is similar to one of the two proposed by Abū Bakr
al-Khalı̄l. The Perigal version is asymmetric but, by shifting the
diagonal of the cut, has two fewer pieces. It is noteworthy that
Philipe Kelland published a very similar technique for dissecting
a gnomon (L-shaped part of a square with one corner missing) in
1855 [8].

Henry Perigal rediscovered in 1835 the same dissection as
Abū’l-Wafā’ for proving Pythagoras’ theorem. He considered this
proof to be his best work (see [12] On Geometric Dissections
and Transformations p.103) and later made an engraving of this
dissection for his tomb 4.

During the 20th century, H.E. Dudeney [13] and Sam Loyd’s
[14] both republished Perigal’s 6-piece solution. More recently,
Greg N. Frederickson found a 7-piece hinge-able and symmetric
solution (Figure 18), and Nobuyuki Yoshigahara found a 9-piece
dissection using exactly three time three identical pieces (which
is indeed a 7-piece solution) (Figure 12). In recent times, new
solution attempts were published in a few mathematics journals
[16].

1. Encyclopedia of the History of Arabic Science Roshdi Rashed (1996), Vol. 2
Chap. 14, by B.A.Rosenfeld and A.P.Youschkevitch.

2. According to A. Özdural, Abū Bakr al-Khalı̄l was the assumed author of
those dissections presented in the anonymous manuscript “Fı̄tadākhul al-ashkāl al-
mutashaābiha aw al-mutawaāfiaq” [6]

3. According to the appendix after Rogers (1897) publication [12]
4. Online pictures http://plus.maths.org/issue16/features/perigal/

Below is a summary of the most significant solutions for this
problem. For each, we provide a figure with demonstrating the
solution. The only exception are J-É. Montucla and P. Busschop,
who both provide a wonderful procedure for transform any
rectangle in a square, but their final results are not very interesting
(their solutions looks similar to Edouard Lucas’ dissection, with
an extra piece).

10th Abū’l-Wafā’, 9-piece trisection [3]
14th Abū Bakr al-Khalı̄l, 9 & 8-piece trisection [6]
1778 Jean-Étienne Montucla, 8-piece trisection [7]
1873 Paul Busschop, 8-piece trisection [9]
1877 M. de Coatpont, 7-piece trisection [10]
1883 Edouard Lucas, 7-piece trisection [11]
1891 Henry Perigal, 6-piece trisection [12]
2002 Greg N. Frederickson, 7-piece hinge-able trisection [18]
2004 Nobuyuki Yoshigahara, 3x3 = 7-piece trisection [17]

For more information on this problem, its history, and on dis-
sections in general, we refer the reader to three excellent books
by Greg N. Frederickson [18]. We also recommend the fabulous
chronologically arranged list of recreational problems by David
Singmaster [15].

III. REVISITING KNOWN SOLUTIONS

It can be frustrating to view the results of a dissection problem
without any idea about of how it was found. For example, given
Nobuyuki Yoshigahara’s 9-piece dissection (Figure 12), it would
be difficult to even consider such a dissection before seeing it. One
can see that the three small squares are dissected in the same way
and might guess that the angles were carefully calculated, but it
would be very difficult re-discover this solution even after having
seen it.

The purpose of this chapter is to explain our reasoning process
used to re-discover three wonderful historical dissections created
by Abū’l-Wafā’, Greg N. Frederickson and Henry Perigal. Finaly,
we will present a new original 6-piece non-convex square trisection
solution.

Fig. 3: Detail Jameh Mosque of Isfahan (credit Alain Juhel)
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Abù’l-Wafà
Our first idea was just try to place a small square at the center

of the original square, and then to rotate it until we found a
position with useful geometrical properties. We discovered that
one specific angle enable us to create one new square of with 2/3
of the original surface area by joining the remaining pieces. The
angle that aligns an edge of the small square with the middle of
one sides of the large square (Figure 14) enables the four vertexes
of the large square to join together (Figure 15), and the vertexes
in the original square become the center of the 2/3 area square.
We can then draw diagonals that cut this new square of area 2/3
into two pieces. In Figure 16, those diagonals are drawn with
dashed lines. Finally, Figure 17 shows the solution proposed by
Abū’l-Wafā’ one thousand years ago.

Note that Abū’l-Wafā’ did not use this trick to solve the
problem (see Figure 2). Tessellations were a well-known artistic
technique during this time period. In Greg N. Frederickson’s first
book (see pp. 51-52 in [18]), the autor shows how Abū’l-Wafā’

could have discovered dissections of (a2 + b2) squares to a large
square using tessellations. Thus, we could also use the technique
of superimposing tessellations.

Fig. 13: Abū’l-Wafā’ (10th)

9-piece trisection

Fig. 14: Idea: This angle cut sides in the middle. AW 1/4

Fig. 15: Idea: Assemble corners to obtained a new 2/3 square. AW 2/4

Fig. 16: Dashed lines are diagonals of the 2/3 square’s cut. AW 3/4

Fig. 17: Abū’l-Wafā’’s solution. AW 4/4



Greg N. Frederickson
The previous solution uses a square with the surface area being

2/3 of the original square, raising the question of a plausibility of
getting the two small squares of with 1/3 of the original surface
area directly. The central square allows us to have two edges of
the right length that can be used to make the two smaller squares.
Keeping the same angle as Abū’l-Wafā’, if we extend the lines
from two of the sides of the central square, we go through the
midpoints of two sides of the large square (Figure 19). Then both
symmetric grey shapes can be completed using the remaining
triangles (Figure 20). We cut this triangle to obtain the desired
length for the second side of the small square (Figure 21) and the
last remaining piece complements the 1/3 surface area square.

Greg N. Frederickson’s dissection (Figure 22) is hinge-able,
meaning that if we attach the pieces together with hinges, we
can swing the pieces one way to form one figure, and swing
them the other way to form a different figure. Note that Greg N.
Frederickson did not use this trick to solve the problem. His goal
was to discover a hinge-able dissection and he chose a specific
method called T-strip that would guarantee a hinge-able dissection.
More details are found in Greg N. Frederickson’s second book [18].

Fig. 18: Greg N. Frederickson (2002)

7-piece trisection

Fig. 19: Idea: Same angle used by Abù’l-Wafà. GNF 1/4

Fig. 20: Slide remaining triangle to complete square. GNF 2/4

Fig. 21: Cut at right length and apply symetry. GNF 3/4

Fig. 22: Greg N. Frederickson’s hingeable solution. GNF 4/4



Henry Perigal

Instead of starting with the larger square, now we consider
the reverse problem: align three squares, each having 1/3 of the
original surface area, and try to assemble them. We fixed the final
desired length on two edges: one top and one bottom. The edges
are overlapping (Figure 24) so we cannot cut the two vertical lines
that could be used as edges of the final square. Let’s us draw only
one vertical line with the right length to obtain a final square edge.
Let us draw only one vertical line with the right lenght to obtain
a final square edge. We remark that we could cut the block by an
oblique line connecting a vertex to the extremity of the vertical
one (Figure 25) and then drag the triangle obtained along the cut
line until the two segments of the vertical constitute one final
edge (Figure 26). To complete the square, it only remains to move
the triangle along the same cut line (Figure 27). Figure 28 shows
Henry Perigal’s dissection.

Fig. 23: Henry Perigal (1891)

6-piece trisection

Fig. 24: Idea 1: Reverse process: start with three final squares. HP 1/5

Fig. 25: Idea 2: What we would like to do, but can’t. HP 2/5

Fig. 26: Idea 3: Do the cut for one side only. HP 3/5

Fig. 27: Triangles will slide. HP 4/5

Fig. 28: Henry Perigal’s solution. HP 5/5



IV. A NEW DISSECTION

This last Perigal’s 6-pieces solution is not symmetrical, unlike
all the previous solutions. We decided to attempt to find a
symmetrical solution using 6 pieces. We begin by examining
the wrong dissection in Figure 29, used by the artisans before
Abū’l-Wafā’ proposed his solution. The problem with that wrong
dissection is that the area of the two half squares in the corners
is too big. But if, as did the artisans in the 10th century, a square
tile is cut using this solution, the error will be approximately
twice 1.7% on each side of the middle band; it would be barely
noticeable. We posed a problem of slightly reducing the length of
the edges of the two half squares.

Our idea was to incline the middle band, without worrying
about other pieces, until it reached red lines (we will discuss the
final obtained angle later), so that it would be wide enough for the
central square to be of the right size (Figure 30). As the whole
area taken by one half square by the rotation of the central band,
is given to the other half square, this transformation retains the
property that interests us: the assembly of the two half square
will form a square with exactly 1/3 of the original area. Next,
to make a square with the middle band, we just need to drag the
complementary part to the center (Figure 31). That created the
second small square. Its area is 1/3 of the original square, and
it does not overlap the center of the large square (Figure 32). By
symmetry, we could now construct the third square and finally
obtain the new 6-piece symmetrical solution in Figure 33.

The final rotating angle is π/6, implying that the construction of
the dissection can uses the trisection of the right angle. However,
we found the correct angle was by augmenting the width of the
middle band. This led us to find the same construction reasoning
only on angles.

Assume the area of the big square is 3. To construct this
dissection using only a ruler, the first step is to identify lengths
1 on its edges. Join the corners to these points as shown in
Figure 35. The two last points can be obtained by intersecting
the lighter segments. Figure 36 shows an other construction using
only a compass. On the figure, all the arcs have the radius equal
to 1, and the two full lighter circles have the radius equal to

√
3−1.

V. FUTURE WORK

The new proposed dissection is not tight: we can slide the
position of the both segments which are in the two symmetric parts
of the middle band. Since this solution has one not-used degree of
freedom, it generates an infinite number of different, but equivalent,
dissections. This opens a possibility of finding a better solution.
Perhaps there is a 5-piece dissection without any degree of freedom.

We conjecture however that a 5-piece solution can not exist.
In the future, we would like to propose an algebraic proof, using
the fact that we need to divide irrational lenghts using integers.
Another interesting approach would be to write an approximation
algorithm to test all possible dissections. Unfortunately, the
wealth of geometric problems has, so far, eluded the ingenuity
of computer scientists, given its infinite number of possibilities.
This research area is completely undeveloped, and the arrival of
such algorithms would offer great opportunities for finding new
unknown polygonal or polyhedral dissections.

Fig. 29: Wrong dissection

Fig. 30: Idea: Enlarge the central band. CB 1/4

Fig. 31: Slide to complete square. CB 2/4

Fig. 32: Apply symetry. CB 3/4

Fig. 33: A new solution. CB 4/4



VI. CONCLUSIONS

The incredible diversity of solutions presented in this paper
shows the beauty and complexity of dissections. The question that
arises whenever we find a new solution is: can we do better?

But what does “better” mean? We generally choose some
metric to optimize, such as the number of pieces, and then break
ties using another metric such as symmetry. But these preferences
are not absolute requirements. We could instead try to minimize
the total length of all cuts, or the total number of straight cuts
using a pair of scissors on a folded paper. A metric could also be
a property, such as requiring all pieces to be convex, so that an
artisant can cut them easily, or requiring all pieces be hinge-able,
to tesselate the plane. And so on.

For this particular problem, the number of pieces and the
geometry aesthetics via symmetry appear to be important factors.
The new solution presented in this paper has the dual advantage
of being both optimal and symmetric. Moreover, this new 6-piece
trisections is an infinite familly of equivalent solutions. Professor
Frederickson has very aptly remarked that in the particular position
of Figure 37, all 6 pieces have exactly the same area, which is
rather unique.

Fig. 34: Christian Blanvillain (2010)

6-piece trisection

Fig. 35: Construction using only ruler

Fig. 36: Construction using only compass

Fig. 37: Construction of six equal areas
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